
Reinforcement Learning Conference (August 2024)

A Study of the Weighted Multi-step Loss Impact
on the Predictive Error and the Return in MBRL

Abdelhakim Benechehab
abdelhakim.benechehab1@huawei.com
Noah’s Ark Lab, Huawei
Department of Data Science, EURECOM

Albert Thomas
albert.thomas@huawei.com
Noah’s Ark Lab, Huawei

Giuseppe Paolo
giuseppe.paolo@huawei.com
Noah’s Ark Lab, Huawei

Maurizio Filippone
maurizio.filippone@kaust.edu.sa
Statistics Program, KAUST

Balázs Kégl
balazs.kegl@huawei.com
Noah’s Ark Lab, Huawei

Abstract

In model-based reinforcement learning, most algorithms rely on simulating trajec-
tories from one-step models of the dynamics learned on data. A critical challenge of
this approach is the compounding of one-step prediction errors as the length of the
trajectory grows. In this paper we tackle this issue by using a multi-step objective
to train one-step models. Our objective is a weighted sum of the mean squared error
(MSE) loss at various future horizons. We find that this new loss is particularly
useful when the data is noisy (additive Gaussian noise in the observations), which is
often the case in real-life environments. We show in a variety of tasks (environments
or datasets) that the models learned with this loss achieve a significant improvement
in terms of the averaged R2-score on future prediction horizons. To our surprise,
in the pure batch reinforcement learning setting, we find that the multi-step loss-
based models perform only marginally better than the baseline. Furthermore, this
improvement is only observed for small loss horizons, unlike the trend present with
the R2-score on the respective datasets.

1 Introduction

Figure 1: Schematic representation of
the multi-step prediction framework.

In reinforcement learning (RL) we learn a control agent
(or policy) by interacting with a dynamic system (or en-
vironment), receiving feedback in the form of rewards.
Although successful in various applications (Silver et al.,
2017; 2018; Mnih et al., 2015; Vinyals et al., 2019), RL
remains largely confined to simulated environments and
does not extend to real-world engineering systems. Model-
based reinforcement learning (MBRL), can potentially
narrow the gap between RL and applications thanks to
a better sample efficiency.

MBRL algorithms alternate between two steps: i) model
learning, a supervised learning problem to learn the dy-
namics of the environment, and ii) policy optimization,
where a policy and/or a value function is updated by sampling from the learned dynamics. MBRL
is recognized for its sample efficiency, as policy/value learning is conducted from imaginary model
rollouts, which are more cost-effective and readily available than rollouts in the true dynamics (Jan-
ner et al., 2019).

1



Reinforcement Learning Conference (August 2024)

While MBRL algorithms have achieved significant success, they are prone to compounding errors
when planning over extended horizons (Lambert et al., 2022). To tackle this problem, our approach
involves adjusting the training objective of these models to focus on optimizing for long-horizon
error (Fig. 1). This strategy is especially beneficial in presence of additive noise in observations, a
context that mirrors real-world scenarios. Interestingly, we find that despite improving the predictive
error of models, this approach does not necessarily result in significantly better model-based policies
(especially for longer loss horizons).

The formal definition of the multi-step loss is given in Section 2. We then present the experimental
setup and results in Section 3. In the appendices section, we provide a detailed related work
(Appendix A), a theoretical analysis of the multi-step loss in tractable systems (Appendix B), and
the details of our experiments (Appendix C, D, and E).

2 The multi-step loss

In MBRL, it is common to use a parametric model p̂θ that predicts the state1 one-step ahead
ŝt+1 ;̂pθ(st, at). We train this model to optimize the one-step predictive error L

(
st+1, p̂θ(st, at)

)
(MSE or NLL for stochastic modeling) in a supervised learning setting. To learn a policy, we use
these models for predicting h steps ahead by applying a procedure called rollout.

In practice, a rollout corresponds to generating ŝt+j ;̂pθ(ŝt+j−1, at+j−1) recursively for j =
1, . . . , h, to collect a trajectory τ = (s0, a0, ŝ1, a1, ..., ŝj , aj , ...), where (at, . . . , at+h−1) = at:t+h−1 =
aτ is either a fixed action sequence generated by planning or sampled from a policy at+j ;π(st+j)
for j = 1, . . . , h, on the fly. We denote p̂j

θ(st, at:t+j−1) = p̂θ

(
ŝt+j−1, at+j−1

)
for j = 1, . . . , h, the

prediction after j recursive applications of the model.

Using p̂h
θ (st, at:t+h−1) to estimate st+h is problematic for two reasons:

• A distribution mismatch occurs between the inputs that the model was trained on (st+1 ;

p(st, at)) and the inputs the model is being evaluated on (ŝt+1 ;̂pθ(st, at)) Talvitie (2014;
2017).

• The predictive error (and the modeled uncertainty in the case of stochastic models) will
propagate through the successive model calls, leading to compounding errors (Lambert
et al., 2022; Talvitie, 2014; Venkatraman et al., 2015).

To mitigate these issues, we study models that, given the full action sequence at:t+h−1, learn to
predict the state st+h by recursively predicting the intermediate states st+j , for j = 1, . . . , h. We
address this problem through the use of a weighted multi-step loss that accounts for the predictive
error at different future horizons.

Definition (Weighted multi-step loss). Given horizon-dependent weights α = (α1, . . . , αh) with∑h
i=1 αi = 1, a one-step loss function L, an initial state st, an action sequence aτ = at:t+h−1, and

the real (ground truth) visited states sτ = st+1:t+h, we define the weighted multi-step loss as

Lh
α

(
sτ , p̂θ(st, aτ )

)
=

h∑
j=1

αjL
(
st+j , p̂j

θ(st, at:t+j−1)
)
.

The dependency of Lh
α on h is omitted in the rest of the paper when h is clear from the context.

Furthermore, the loss L used in the multi-step loss Lα will always be the MSE.

A multi-step loss with equal weights has been previously used in the literature (Lutter et al.,
2021; Byravan et al., 2021; Xu et al., 2018). However, we are not aware of any other work that

1In this section, we do not make the distinction between states s and observations o as the definition of the
multi-step loss is independent of the underlying MDP.

2



Reinforcement Learning Conference (August 2024)

thoroughly study the more general weighted case of the multi-step loss, nor it’s relevance for
noisy observations (typically, this corresponds to homoscedastic Gaussian noise in the observations:
ot = st + ϵt with ϵt ∼ N (0, σ2) and σ ∈ R). Indeed, predicting at different timesteps can be seen
as a multi-task problem due to the system’s periodicity and the growing scale of the long-horizon
error. Therefore, we suggest the weighting mechanism as a mean to balance the training objective.

3 Experiments & results

In this section, we evaluate the performance of models trained with the multi-step loss Lα for
different values of the maximal horizon h ∈ {2, 3, 4, 10} and different noise levels of the dynamics
σ. For the weights α = (α1, . . . , αh), we consider an exponential parametrization (with a single
parameter β) to reduce the size of the search space: αi = ( 1 − β

1 − βh+1 )︸ ︷︷ ︸
normalization constant

·βi for i ∈ {1, . . . , h}.

For the evaluation of the models we consider both a static and a dynamic setup. The static evaluation
denotes the evaluation of dynamics models in terms of predictive error in held-out test datasets. For
the dynamic evaluation we will consider the offline MBRL setting (Levine et al., 2020) where the
goal is to learn a policy from a given dataset without interacting further with the environment.
The static evaluation is done on three classical RL environments (Cartpole swing-up, Swimmer and
Halfcheetah) and various datasets (eight in total) collected with different behavior policies (random,
medium, full_replay and mixed_replay) on these environments. The dynamic evaluation is done
on the Cartpole swing-up environment where the rewards are fully determined by the observations.
The details of these tasks are provided in Appendix C. For all these tasks, we use the same neural
network model. Implementation details for the model are given in Appendix D.

3.1 Static evaluation with the R2 metric

In this section, we consider a long-horizon aggregated R2 score R2(H) as our metric (details provided
in appendix E.1.1). For the weights of the loss, we perform a grid search over β values, selecting the
value giving the best R2(H) averaged over 3 cross-validation folds.

102

101

100
0

100

101

102

re
la

tiv
e 

im
pr

ov
em

en
t cartpole - random cartpole - mixed_replay cartpole - full_replay swimmer - random

2 3 4 10
horizon h

102

101

100
0

100

101

102

re
la

tiv
e 

im
pr

ov
em

en
t swimmer - mixed_replay

2 3 4 10
horizon h

halfcheetah - random (D4RL)

noise scale
0.0 0.01 0.02 0.03 0.04 0.05

2 3 4 10
horizon h

halfcheetah - medium (D4RL)

2 3 4 10
horizon h

halfcheetah - medium_replay (D4RL)

Figure 2: The series of bar plots display the relative improvement with respect to the h = 1 baseline,
in the test R2(50) metric for various environments, and datasets. Performance is evaluated over loss
horizons h with the relative improvement measured on a logarithmic scale. The relative noise scale,
ranging from 0.0 to 0.05, is color-coded and represents a ratio of the range of the state space, for
each dataset. The error bars indicate the 95% confidence intervals (mean ± 1.96 · standard error)
obtained with the three cross-validation folds.

As can be seen from Fig. 2 For most of the datasets (all the Cartpole and Swimmer datasets, and
Halfcheetah random and medium_replay) the benefit of using the multi-step loss when there is noise

3



Reinforcement Learning Conference (August 2024)

is significant and for most of them (all the Cartpole datasets, Swimmer random and Halfcheetah
random) the larger the noise the higher the benefit. The impact of the horizon h of the loss is less
clear although for some datasets increasing the horizon h as the noise increases also helps. This
result is more mitigated on Halfcheetah medium which we suggest is due to the optimization process
or the capacity of the model.

3.2 Dynamic evaluation: offline MBRL

We consider the offline setting where given a set of N trajectories D = {(si
t, ai

t, si
t+1, . . .)}N

i=1, the goal
is to learn a policy maximizing the return in a single shot, without interacting with the environment.

We use a Dyna-style agent that learns a parametric model of the policy based on data generated
from the learned dynamics model p̂θ. Specifically, we train a Soft Actor-Critic (SAC) (Haarnoja
et al., 2018) with short rollouts on the model à la MBPO Janner et al. (2019), a popular MBRL
algorithm. We then rely on model predictive control (MPC) at decision-time where the action search
is guided by the SAC policy. The details of this agent are given in Appendix C.3.

The experiments are run on the Cartpole mixed_replay dataset without and with small noise (scale
of 1%). The reason is that the range of episode returns spanned by this dataset makes us hope that it
is possible to learn a model that is good enough to learn a successful policy (for which episode returns
are higher than 800). The distribution of the returns on the random and full replay datasets makes
it more challenging to learn a successful policy. The goal here is not to study a new offline MBRL
algorithm, avoiding unknown regions of the state-action space, but studying the improvement that
can be obtained with the multi-step loss when varying the horizon h. Finally, in order to isolate the
effect of dynamics learning, we assume that the reward function is a known deterministic function
of the observations (which is another reason why we only consider cartpole for dynamic evaluation).

0

200

400

600

800

re
tu

rn

noise = 0.0 noise = 0.01

label
h=1
h=2 - R2
h=4 - R2
h=10 - R2
h=10 - return

Figure 3: Returns of the agents trained
on multi-step models in the Cartpole
mixed_replay task. The error bars indicate
the 95% confidence intervals (mean ± 1.96 ·
standard error).

As it is acknowledged that static evaluation metrics
may not always align with the final return of agents
(Lambert et al., 2021), we include the performance of
the models trained on the 10-step loss with weights
tuned to maximize the return, using the same grid
search as for the R2 (labeled h=10 - return).

Without noise. Fig. 3 shows the return obtained
by different models on the Cartpole mixed_replay
task. Against a strong baseline (h = 1), it is ob-
served that the multi-step models exhibit marginally
superior performance, especially for h values of 2 and 4. However, this trend is not maintained for
h = 10, indicating that larger horizons may not be beneficial in this context, despite the improvement
in the static metric (R2 score).

With noise. In the presence of noise, we observe that the performance of all models, including
the baseline, significantly decreases. Notably, the optimal multi-step models do not demonstrate
any improvement in this setting.

4 Discussion & Conclusion

In the previous experiments, we show that although h = 10-models improve over the smaller horizons
in the R2 metric, this does not translate to better agents in the Cartpole mixed_replay task even
when the weights are tuned on the return. Potential explanations of this finding include: the
well-known objective mismatch in MBRL, the optimization difficulty induced by the autoregressive
nature of the model, and the weights search space exponentially-growing with the horizon.

In this paper, we study a weighted multi-step loss that leads to models exhibiting significant im-
provements in the R2 score over popular RL environments with noisy dynamics. The insights from

4



Reinforcement Learning Conference (August 2024)

dynamic evaluation present a more complex picture. We found that longer horizons in the loss
present a more challenging problem in the scope of Offline MBRL. To fully understand the observed
behaviour, possible follow-up ideas include extending the dynamic evaluation to more RL environ-
ments, using a hyperparameters search engine for a more exhaustive weight search, and applying the
multi-step prediction framework to other autoregressive models such as Recurrent Neural Networks
or Transformers.

References
Pieter Abbeel, Varun Ganapathi, and Andrew Ng. Learning vehicular dynamics,

with application to modeling helicopters. Advances in Neural Information Process-
ing Systems, 18, 2005. URL https://proceedings.neurips.cc/paper/2005/hash/
09b69adcd7cbae914c6204984097d2da-Abstract.html. Read.

Souhaib Ben Taieb and Gianluca Bontempi. Recursive Multi-step Time Series Forecasting by
Perturbing Data, January 2012. URL https://ieeexplore.ieee.org/abstract/document/
6137274.

Souhaib Ben Taieb, Gianluca Bontempi, Amir F. Atiya, and Antti Sorjamaa. A review and com-
parison of strategies for multi-step ahead time series forecasting based on the NN5 forecasting
competition. Expert Systems with Applications, 39(8):7067–7083, June 2012. ISSN 0957-4174.
doi: 10.1016/j.eswa.2012.01.039. URL https://www.sciencedirect.com/science/article/
pii/S0957417412000528.

Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and Noam Shazeer. Scheduled Sampling for Sequence
Prediction with Recurrent Neural Networks, September 2015. URL http://arxiv.org/abs/
1506.03099.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. OpenAI gym, 2016.

Arunkumar Byravan, Leonard Hasenclever, Piotr Trochim, Mehdi Mirza, Alessandro Davide Ia-
longo, Yuval Tassa, Jost Tobias Springenberg, Abbas Abdolmaleki, Nicolas Heess, Josh Merel,
and Martin A. Riedmiller. Evaluating model-based planning and planner amortization for con-
tinuous control. CoRR, abs/2110.03363, 2021. URL https://arxiv.org/abs/2110.03363.

Rohitash Chandra, Shaurya Goyal, and Rishabh Gupta. Evaluation of deep learning models for
multi-step ahead time series prediction. IEEE Access, 9:83105–83123, 2021. ISSN 2169-3536. doi:
10.1109/ACCESS.2021.3085085. URL http://arxiv.org/abs/2103.14250. arXiv:2103.14250
[cs].

Kurtland Chua, Roberto Calandra, Rowan McAllister, and Sergey Levine. Deep reinforcement learn-
ing in a handful of trials using probabilistic dynamics models. In Advances in Neural Information
Processing Systems 31, pp. 4754–4765. Curran Associates, Inc., 2018.

Klaus Fraedrich and Bernd Rückert. Metric adaption for analog forecasting. Physica A: Statistical
Mechanics and its Applications, 253(1):379–393, 1998. ISSN 0378-4371. doi: https://doi.org/10.
1016/S0378-4371(97)00668-7. URL https://www.sciencedirect.com/science/article/pii/
S0378437197006687.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft Actor-Critic: Off-Policy
Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor. In Jennifer Dy and
Andreas Krause (eds.), Proceedings of the 35th International Conference on Machine Learning,
volume 80 of Proceedings of Machine Learning Research, pp. 1861–1870. PMLR, 10–15 Jul 2018.

Ferenc Huszár. How (not) to Train your Generative Model: Scheduled Sampling, Likelihood, Ad-
versary?, November 2015. URL http://arxiv.org/abs/1511.05101.

5

https://proceedings.neurips.cc/paper/2005/hash/09b69adcd7cbae914c6204984097d2da-Abstract.html
https://proceedings.neurips.cc/paper/2005/hash/09b69adcd7cbae914c6204984097d2da-Abstract.html
https://ieeexplore.ieee.org/abstract/document/6137274
https://ieeexplore.ieee.org/abstract/document/6137274
https://www.sciencedirect.com/science/article/pii/S0957417412000528
https://www.sciencedirect.com/science/article/pii/S0957417412000528
http://arxiv.org/abs/1506.03099
http://arxiv.org/abs/1506.03099
https://arxiv.org/abs/2110.03363
http://arxiv.org/abs/2103.14250
https://www.sciencedirect.com/science/article/pii/S0378437197006687
https://www.sciencedirect.com/science/article/pii/S0378437197006687
http://arxiv.org/abs/1511.05101


Reinforcement Learning Conference (August 2024)

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In Proceedings of the 32nd International Conference on Interna-
tional Conference on Machine Learning - Volume 37, ICML’15, pp. 448–456. JMLR.org, 2015.

Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. When to trust your model: Model-
based policy optimization. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox,
and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 32. Curran
Associates, Inc., 2019.

Balázs Kégl, Alexandre Boucaud, Mehdi Cherti, Akin Kazakci, Alexandre Gramfort, Guillaume
Lemaitre, Joris Van den Bossche, Djalel Benbouzid, and Camille Marini. The RAMP framework:
from reproducibility to transparency in the design and optimization of scientific workflows. In
ICML workshop on Reproducibility in Machine Learning, 2018.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua
Bengio and Yann LeCun (eds.), 3rd International Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015. URL http:
//arxiv.org/abs/1412.6980.

Alex M Lamb, Anirudh Goyal ALIAS PARTH GOYAL, Ying Zhang, Saizheng Zhang, Aaron C
Courville, and Yoshua Bengio. Professor Forcing: A New Algorithm for Training Recurrent
Networks. In Advances in Neural Information Processing Systems, volume 29. Curran Asso-
ciates, Inc., 2016. URL https://proceedings.neurips.cc/paper_files/paper/2016/hash/
16026d60ff9b54410b3435b403afd226-Abstract.html.

Nathan Lambert, Brandon Amos, Omry Yadan, and Roberto Calandra. Objective mismatch in
model-based reinforcement learning, 2021.

Nathan Lambert, Kristofer Pister, and Roberto Calandra. Investigating Compounding Prediction
Errors in Learned Dynamics Models, March 2022. URL http://arxiv.org/abs/2203.09637.
arXiv:2203.09637 [cs].

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tutorial,
review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

Michael Lutter, Leonard Hasenclever, Arunkumar Byravan, Gabriel Dulac-Arnold, Piotr Trochim,
Nicolas Heess, Josh Merel, and Yuval Tassa. Learning Dynamics Models for Model Predictive
Agents, September 2021. URL http://arxiv.org/abs/2109.14311.

James McNames. Local averaging optimization for chaotic time series prediction. Neurocomputing,
48(1):279–297, 2002. ISSN 0925-2312. doi: https://doi.org/10.1016/S0925-2312(01)00647-6. URL
https://www.sciencedirect.com/science/article/pii/S0925231201006476.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig Petersen,
Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wier-
stra, Shane Legg, and Demis Hassabis. Human-level control through deep reinforcement learning.
Nature, 518(7540):529–533, 2015.

Anusha Nagabandi, Gregory Kahn, Ronald S. Fearing, and Sergey Levine. Neural network dy-
namics for model-based deep reinforcement learning with model-free fine-tuning. In 2018 IEEE
International Conference on Robotics and Automation, ICRA 2018, pp. 7559–7566. IEEE, 2018.

Fernando J Pineda. Dynamics and architecture for neural computation. Journal of Complexity,
4(3):216–245, September 1988. ISSN 0885-064X. doi: 10.1016/0885-064X(88)90021-0. URL
https://www.sciencedirect.com/science/article/pii/0885064X88900210.

6

http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://proceedings.neurips.cc/paper_files/paper/2016/hash/16026d60ff9b54410b3435b403afd226-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2016/hash/16026d60ff9b54410b3435b403afd226-Abstract.html
http://arxiv.org/abs/2203.09637
http://arxiv.org/abs/2109.14311
https://www.sciencedirect.com/science/article/pii/S0925231201006476
https://www.sciencedirect.com/science/article/pii/0885064X88900210


Reinforcement Learning Conference (August 2024)

Doina Precup and Richard S Sutton. Multi-time Models for Temporally Abstract
Planning. In Advances in Neural Information Processing Systems, volume 10. MIT
Press, 1997. URL https://proceedings.neurips.cc/paper_files/paper/1997/hash/
a9be4c2a4041cadbf9d61ae16dd1389e-Abstract.html.

Doina Precup, Richard S. Sutton, and Satinder Singh. Theoretical results on reinforcement learn-
ing with temporally abstract options. In Claire Nédellec and Céline Rouveirol (eds.), Machine
Learning: ECML-98, Lecture Notes in Computer Science, pp. 382–393, Berlin, Heidelberg, 1998.
Springer. ISBN 978-3-540-69781-7. doi: 10.1007/BFb0026709.

Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah Dor-
mann. Stable-baselines3: Reliable reinforcement learning implementations. Journal of Machine
Learning Research, 22(268):1–8, 2021. URL http://jmlr.org/papers/v22/20-1364.html.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez,
Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, Timothy Lillicrap, Karen Si-
monyan, and Demis Hassabis. Mastering chess and shogi by self-play with a general reinforcement
learning algorithm, 2017.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez,
Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, Timothy Lillicrap, Karen Si-
monyan, and Demis Hassabis. A general reinforcement learning algorithm that masters Chess,
Shogi, and Go through self-play. Science, 362(6419):1140–1144, 2018. ISSN 0036-8075. doi:
10.1126/science.aar6404.

Satinder P. Singh. Scaling Reinforcement Learning Algorithms by Learning Variable Temporal
Resolution Models. In Derek Sleeman and Peter Edwards (eds.), Machine Learning Proceedings
1992, pp. 406–415. Morgan Kaufmann, San Francisco (CA), January 1992. ISBN 978-1-55860-247-
2. doi: 10.1016/B978-1-55860-247-2.50058-9. URL https://www.sciencedirect.com/science/
article/pii/B9781558602472500589.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: A simple way to prevent neural networks from overfitting. Journal of Machine Learning
Research, 15(56):1929–1958, 2014. URL http://jmlr.org/papers/v15/srivastava14a.html.

Richard S. Sutton. TD Models: Modeling the World at a Mixture of Time Scales. In Ar-
mand Prieditis and Stuart Russell (eds.), Machine Learning Proceedings 1995, pp. 531–539. Mor-
gan Kaufmann, San Francisco (CA), January 1995. ISBN 978-1-55860-377-6. doi: 10.1016/
B978-1-55860-377-6.50072-4. URL https://www.sciencedirect.com/science/article/pii/
B9781558603776500724.

Richard S Sutton and Brian Pinette. The learning of world models by connectionist networks, 1985.

Richard S. Sutton, Doina Precup, and Satinder Singh. Between MDPs and semi-MDPs: A framework
for temporal abstraction in reinforcement learning. Artificial Intelligence, 112(1):181–211, August
1999. ISSN 0004-3702. doi: 10.1016/S0004-3702(99)00052-1. URL https://www.sciencedirect.
com/science/article/pii/S0004370299000521.

Erik Talvitie. Model Regularization for Stable Sample Rollouts. 2014.

Erik Talvitie. Self-Correcting Models for Model-Based Reinforcement Learning. Proceedings of the
AAAI Conference on Artificial Intelligence, 31(1), February 2017. ISSN 2374-3468, 2159-5399.
doi: 10.1609/aaai.v31i1.10850. URL https://ojs.aaai.org/index.php/AAAI/article/view/
10850.

Naoki Tanaka, Hiroshi Okamoto, and Masayoshi Naito Masayoshi Naito. An optimal metric for
predicting chaotic time series. Japanese Journal of Applied Physics, 34(1R):388, jan 1995. doi:
10.1143/JJAP.34.388. URL https://dx.doi.org/10.1143/JJAP.34.388.

7

https://proceedings.neurips.cc/paper_files/paper/1997/hash/a9be4c2a4041cadbf9d61ae16dd1389e-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/1997/hash/a9be4c2a4041cadbf9d61ae16dd1389e-Abstract.html
http://jmlr.org/papers/v22/20-1364.html
https://www.sciencedirect.com/science/article/pii/B9781558602472500589
https://www.sciencedirect.com/science/article/pii/B9781558602472500589
http://jmlr.org/papers/v15/srivastava14a.html
https://www.sciencedirect.com/science/article/pii/B9781558603776500724
https://www.sciencedirect.com/science/article/pii/B9781558603776500724
https://www.sciencedirect.com/science/article/pii/S0004370299000521
https://www.sciencedirect.com/science/article/pii/S0004370299000521
https://ojs.aaai.org/index.php/AAAI/article/view/10850
https://ojs.aaai.org/index.php/AAAI/article/view/10850
https://dx.doi.org/10.1143/JJAP.34.388


Reinforcement Learning Conference (August 2024)

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Bud-
den, Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, Timothy P. Lillicrap, and Martin A.
Riedmiller. Deepmind control suite. CoRR, abs/1801.00690, 2018. URL http://arxiv.org/
abs/1801.00690.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026–5033,
2012. doi: 10.1109/IROS.2012.6386109.

Arun Venkatraman, Martial Hebert, and J.. Bagnell. Improving Multi-Step Prediction of Learned
Time Series Models. Proceedings of the AAAI Conference on Artificial Intelligence, 29(1), Febru-
ary 2015. ISSN 2374-3468, 2159-5399. doi: 10.1609/aaai.v29i1.9590. URL https://ojs.aaai.
org/index.php/AAAI/article/view/9590.

Oriol Vinyals, Igor Babuschkin, Wojciech M. Czarnecki, Michaël Mathieu, Andrew Dudzik, Juny-
oung Chung, David H. Choi, Richard Powell, Timo Ewalds, Petko Georgiev, Junhyuk Oh, Dan
Horgan, Manuel Kroiss, Ivo Danihelka, Aja Huang, L. Sifre, Trevor Cai, John P. Agapiou, Max
Jaderberg, Alexander Sasha Vezhnevets, Rémi Leblond, Tobias Pohlen, Valentin Dalibard, David
Budden, Yury Sulsky, James Molloy, Tom Le Paine, Caglar Gulcehre, Ziyun Wang, Tobias Pfaff,
Yuhuai Wu, Roman Ring, Dani Yogatama, Dario Wünsch, Katrina McKinney, Oliver Smith, Tom
Schaul, Timothy P. Lillicrap, Koray Kavukcuoglu, Demis Hassabis, Chris Apps, and David Silver.
Grandmaster level in starcraft ii using multi-agent reinforcement learning. Nature, pp. 1–5, 2019.

Ronald J. Williams and David Zipser. A Learning Algorithm for Continually Running Fully Re-
current Neural Networks. Neural Computation, 1(2):270–280, June 1989. ISSN 0899-7667. doi:
10.1162/neco.1989.1.2.270. URL https://ieeexplore.ieee.org/document/6795228. Confer-
ence Name: Neural Computation.

Huazhe Xu, Yuanzhi Li, Yuandong Tian, Trevor Darrell, and Tengyu Ma. Algorithmic framework
for model-based reinforcement learning with theoretical guarantees. CoRR, abs/1807.03858, 2018.
URL http://arxiv.org/abs/1807.03858.

8

http://arxiv.org/abs/1801.00690
http://arxiv.org/abs/1801.00690
https://ojs.aaai.org/index.php/AAAI/article/view/9590
https://ojs.aaai.org/index.php/AAAI/article/view/9590
https://ieeexplore.ieee.org/document/6795228
http://arxiv.org/abs/1807.03858


Reinforcement Learning Conference (August 2024)

Appendix

Table of Contents
A Related Work 9

B Understanding the multi-step loss: two case studies 10
B.1 Uni-dimensional linear system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
B.2 Two-parameter non-linear system . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

C The evaluation setup 12
C.1 Environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
C.2 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
C.3 Agent: SAC + planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

D Implementation details 14

E Details of the experiments 15
E.1 Static evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

E.1.1 The R2(H) metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
E.1.2 R2(100) table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
E.1.3 The weight profile and the effective horizon . . . . . . . . . . . . . . . . . 15

A Related Work

The premises of multi-step dynamics modeling can be tracked back to early work about temporal
abstraction (Sutton et al., 1999; Precup et al., 1998) and mixture of timescale models in tabular
MDPs (Precup & Sutton, 1997; Singh, 1992; Sutton & Pinette, 1985; Sutton, 1995). These works
study fixed-horizon models that learn an abstract dynamics mapping from initial states to the states
j steps ahead. A different approach consists in optimizing the multi-step prediction error of single-
step models that are used recursively, which we study here. This approach has been studied for
recurrent neural networks (RNNs) and is referred to as teacher forcing (Lamb et al., 2016; Bengio
et al., 2015; Huszár, 2015; Pineda, 1988; Williams & Zipser, 1989). The idea consists in augmenting
the training data with predicted states. More recent works have built on this idea (Abbeel et al.,
2005; Talvitie, 2014; 2017; Venkatraman et al., 2015). These methods, albeit optimizing for future
prediction errors, assume the independence of the intermediate predictions on the model parameters,
making them more of a data augmentation technique than a proper optimization of multi-step errors.

The closest works to ours which also consider the intermediate predictions to be dependent on the
model parameters are Lutter et al. (2021), Byravan et al. (2021) and Xu et al. (2018). These works
all use an equally-weighted multi-step loss whereas we emphasize on the need of having a weighted
multi-step loss. Nagabandi et al. (2018) only use an equally-weighted multi-step loss for validation,
which is also common in the time series literature (Tanaka et al., 1995; Fraedrich & Rückert, 1998;
McNames, 2002; Ben Taieb & Bontempi, 2012; Ben Taieb et al., 2012; Chandra et al., 2021). Lutter
et al. (2021) and Xu et al. (2018) find that only small horizons (h = 2, 3, 5) yield an improvement
over the baseline, which we suggest is due to using equal weights in the multi-step loss. Byravan
et al. (2021) successfully use h = 10 with equal weights in the context of model-predictive control
(MPC). However, they consider it as a fixed design choice and might have tailored their approach
accordingly.

9



Reinforcement Learning Conference (August 2024)

B Understanding the multi-step loss: two case studies

B.1 Uni-dimensional linear system

1.0

0.5

0.0

0.5

1.0

dL d

0.0
0.1
0.2
0.3
0.4
0.6
0.7
0.8
0.9
1.0

true

1.5 1.0 0.5 0.0 0.5 1.0 1.5
1

0

1

2

L

Figure 4: The loss function and its derivative
for different values of θ and α, in absence of
noise (σ = 0). In this figure, θtrue is fixed to
a randomly selected value, θtrue = 0.78. The
roots of the derivative are highlighted with
stars.

The first case consists in studying the solutions of
the multi-step loss for h = 2 in the case of an uncon-
trolled linear (discrete) dynamical system with addi-
tive Gaussian noise, and a linear model. With such
a simple formulation, we benefit from the fact that
the optimization is tractable and closed-form solu-
tions can be obtained for each α ∈ [0, 1]. We start
by defining the system and the model.

Definition (Uni-dimensional linear system with
additive Gaussian noise). For an initial state s0 ∈ R
and an unknown parameter θtrue ∈ (−1, 1) (for sta-
bility) we define the transition function and observa-
tions as

st+1 = θtrue · st

ot+1 = st+1 + ϵt+1 with ϵt+1 ∼ N (0, σ2) and σ ∈ R

Definition (Linear model). For an initial state
s0 ∈ R and a parameter θ ∈ R that we learn by
minimizing the multi-step loss for h = 2, we define the linear model as ŝt+1 = p̂θ(st) = θ · st

In this setup, the multi-step loss for h = 2 boils down to a polynomial in the model’s parameter θ:
Lα

(
oτ , p̂θ(st)

)
= α(θst − ot+1)2 + (1 − α)(θ2st − ot+2)2

where oτ = (ot+1, ot+2). The aim of our study is to analyze the statistical properties of θ̂(α) ∈
argminθ Lα

(
oτ , p̂θ(st)

)
for different values of α and different values of the observational noise scale2

σ.

Fig. 4 shows the loss function curve and its critical points for different values of α. The minimizers
θ̂(α) can be obtained by solving the polynomial equation dLα/dθ = 0. When α ∈ (0, 1), we compute
the roots of the cubic polynomial equation using Cardano’s formulas. These latter include at least
one real root (α ≥ 0.3 in Fig. 4) and two (potentially real) conjugate complex roots (α < 0.3 in
Fig. 4).

In the rest of the experiments, we fix a dataset of initial states S0 and sample K times a two-step
transition, yielding a dataset D = (S0, Oj

1, Oj
2)j=1,...,K . This dataset showcases different realizations

of the observational noise, which is sampled i.i.d. from a Gaussian distribution N (0, σ2).

0.0 0.1 0.2 0.3 0.4 0.6 0.7 0.8 0.9 1.0
0

2

4

6

||
(

)
Tr

ue
||2 2

1e 2
noise scale ( )

0.00
0.20
0.40
0.60
0.80
1.00

Figure 5: The impact of α and σ on the dis-
tance between θtrue and θ̂.

We then compare the distance between the minimiz-
ers of the loss function with different values of α
and the true parameter θtrue. When there is more
than one root, we assume access to the sign of θtrue

so that we can choose the correct estimator θ̂(α).
Fig. 5 shows that as the noise increases, the vanilla
MSE loss estimator (α = 1) is not the best estimator
with respect to the distance to the true parameter
θtrue. Interestingly, the best solution is obtained for
α ∈ (0, 1).

2noise and noise scale are used interchangeably. In practice, σ is computed as a percentage (e.g. 2%) of the state
space width.

10



Reinforcement Learning Conference (August 2024)

0.2 0.0 0.2
True

0

1

2

3
De

ns
ity

= 1.00
true

0.0 0.5 1.0 1.5 2.0
1

0

1

2

3

Bi
as

1e 2 Bias = E[ ] True

0.0 0.5 1.0

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

Va
ria

nc
e

1e 2 Var[ ]

Figure 6: The left panel shows the density distribution of θ̂ − θtrue for a fixed σ of 1.0. The middle
panel delineates the bias of the estimator, defined as E[θ̂] − θtrue, across varying levels of σ, and
weights α ∈ {0, 0.5, 1} indicated by color. The right panel presents the variance of the estimator,
V ar[θ̂], as a function of σ for the same set of α values. The shaded regions represent the 95%
bootstrap confidence intervals across ten θtrue values and 100 Monte Carlo simulations.

To understand the observed results, we compute the
closed-form solutions of the multi-step loss in the case of α = 0 and α = 1:

Proposition (α = 1). Given a transition (st ̸= 0, ot+1) from the linear system and a linear model
with parameter θ, the minimizer of the α = 1 multi-step loss can be computed as:

θ̂1 = ot+1

st
= θtrue + ϵt+1

st

Proposition (α = 0). Given a transition (st ̸= 0, ot+1, ot+2) from the linear system, a linear
model with parameter θ, the sign of the true parameter (for instance θtrue > 0), and assuming its
existence ( ot+2

st
> 0), the minimizer of the α = 0 multi-step MSE loss can be computed as:

θ̂0 =
√

ot+2

st
=

√
θ2

true + ϵt+2

st

Remark For ease of notation in proposition (α = 0) and proposition (α = 1), we compute the
solutions given only one transition (st, ot+1, ot+2). In practice, one minimizes the empirical risk
based on a training dataset of size N : D = {(si,t, oi,t+1, oi,t+2)}i=1:N , in which case the closed-form
solutions become: 

θ̂1 = θtrue +
∑N

i=1
ϵi,t+1∑N

i=1
si,t

θ̂0 =
√

θ2
true +

∑N

i=1
ϵi,t+2si,t∑N

i=1
s2

i,t

On the one hand, we observe that while θ̂1 is an unbiased estimator of θtrue (Eϵt+1∼N (0,σ2)[θ̂1] =
θtrue), its variance grows linearly with the noise scale: Varϵt+1∼N (0,σ2)[θ̂1] = σ2

s2
t

. On the other hand,
θ̂0 is a potentially biased estimator, but with a smaller variance if θtrue ≫ 1 ( ϵt+2

4θ2
trues2

t
≈ 0). In this

case we can use a first-order Taylor expansion to approximate Var[θ̂0] = Varϵt+2∼N (0,σ2)[θ̂0]:

Var[θ̂0] = Var
[√

θ2
true + ϵt+2

st

]
≈ θ2

trueVar
[
1 + ϵt+2

2θ2
truest

]
= σ2

4θ2
trues2

t

≤ Var[θ̂1]

11



Reinforcement Learning Conference (August 2024)

For intermediate models (α ∈ (0, 1)), and in general when the conditions of the last result do not
necessarily hold, we use Monte Carlo simulations to compare the variance of θ̂α∈{0,0.5,1}. Fig. 6
shows the variance reduction brought by the multi-step loss when α = 0.5. It is also noticeable that,
up to the noise scales considered in this experiment, α = 0 generates a large bias (which matches
the theoretical insights), while no significant bias is observed for the estimator with α = 0.5. We
conclude that in the case of a noisy linear system, the multi-step MSE loss minimizer with α = 0.5
is a statistical estimator that (empirically) has a smaller variance and a comparable bias to the
one-step loss minimizer. It is worth noticing that when the noise is non-zero the best solution for
the one-step MSE is obtained for α ∈ (0, 1) and not α = 1 (which corresponds to optimizing exactly
the one-step MSE).

In this linear case, we had access to closed-form solutions. However, Fig. 4 shows that choosing
the multi-step MSE loss as an optimization objective introduces additional critical points where a
gradient-based optimization algorithm might get stuck. We now empirically study the optimization
process in the case of a two-parameter neural network.

B.2 Two-parameter non-linear system

0.00 0.25 0.50 0.75 1.00

1.5

2.0

2.5

3.0
Va

lid
at

io
n 

M
SE

1e 1

one-step two-step average

Figure 7: The validation one-step MSE L1
(in yellow), the validation two-step MSE L0
(in green) and the average of these two MSEs
(dashed black line) for different values of α.
The error bars represent the 95% bootstrap
confidence intervals across 2 optimizers, 3 ini-
tialization distributions, 10 initial points, 3
noise levels, and 10 Monte Carlo simulations.

As an attempt to get closer to a realistic MBRL setup
where neural networks are used for dynamics learn-
ing, we study a non-linear dynamical system using a
two-parameters neural network model:

Definition (Two-parameter non-linear sys-
tem with additive Gaussian noise). For an
initial state s0 ∈ R and unknown parameters
θtrue = (θtrue

1 , θtrue
2 ) ∈ R2 we define the transition

function and observations as

st+1 = θtrue
1 · sigmoid(θtrue

2 · st)
ot+1 = st+1 + ϵt+1 with ϵt+1 ;N (0, σ2) and σ ∈ R

Definition (Two-parameters neural network
model). A single-neuron two-layer (without
bias) neural network. We denote its parameters
θ = (θ1, θ2) ∈ R2:

ŝt+1 = p̂(st) = θ1 · sigmoid(θ2 · st)

Fig. 7 shows that even in the presence of noise, com-
pared to the linear case, the best value of α for the
one-step MSE is α = 1. This can be explained by the
use of lower levels of noise in the simulations than the
linear case. The intermediate models obtained for α ∈ {0.25, 0.5, 0.75} represent a trade-off between
the one-step and two-step MSEs. The average of the two MSEs, which we use in the experiment
section to assess the overall quality of our models over a range of horizons, achieves its minimum
for α = 0.75. Notice that the validation losses are only used for evaluation, and do not match the
training loss which depends on α.

C The evaluation setup

C.1 Environments

12



Reinforcement Learning Conference (August 2024)

(a) Cartpole (b) Swimmer (c) Halfcheetah

Figure 8: The environments: Cartpole swing-up,
Swimmer and Halfcheetah.

In the present study, we examine three distinct
environments within the scope of continuous
control reinforcement learning, as delineated in
Fig. 8, each exhibiting varying degrees of com-
plexity. The complexity of a given environment
is primarily determined by the dimension of the
state space ds, and the dimension of the action
space da. Notably, Cartpole swing-up is a classic
problem in the field where the task is to swing
up a pole starting downwards, and balance it
upright. The other considered tasks are Swimmer and Halfcheetah, which are two locomotion tasks,
aiming at maximizing the velocity of a virtual robot along a given axis. Swimmer incorporates fluid
dynamics with the goal of learning an agent that controls a multi-jointed snake moving through wa-
ter. On the other hand, Halfcheetah simulates a two-leg Cheetah with the goal of making it run as
fast as possible. For the latter environments, we use the implementation of OpenAI Gym (Brockman
et al., 2016), and the implementation of Deepmind Control (Tassa et al., 2018) for Cartpole. Both
libraries are based on the Mujoco physics simulator (Todorov et al., 2012). A detailed description
of these environments is provided in Table 1.

Table 1: The environments characteristics. ds: the dimension of the state space, da: the dimension
of the action space, xt: position along the x-axis, ẋt: velocity along the x-axis, ∥at∥2

2: the action at

magnitude, θ: the angle of the pole (only for Cartpole).

environment ds da task horizon reward function

Cartpole swing-up 5 1 1000 1+cos θt
2 × 1+e

−0.25 log(10)x2
t

2 ×
(

1 −
a2

t
5

)
× 1+e

−0.04 log(10)ẋ2
t

2

Swimmer 8 2 1000 ẋt − 0.0001 × ∥at∥2
2

Halfcheetah 17 6 1000 ẋt − 0.1 × ∥at∥2
2

C.2 Datasets

In this section, we introduce the different datasets that are used to evaluate the multi-step models.
These datasets are collected using some behavior policies that are unknown to the models.

Table 2 illustrates the features of datasets across the three environments: Cartpole Swing-up, Swim-
mer, and Halfcheetah. These environments vary in dataset size and behavioral policies. In the Cart-
pole Swing-up setting, each of the three datasets (random, mixed_replay, and full_replay) includes
50 episodes, which are split into training, validation, and testing subsets. The and full_replay depict
complete learning trajectories of an unstable model and a state-of-the-art (sota) model-based Soft
Actor-Critic (SAC) respectively (Janner et al., 2019), and integrated with shooting-based planning
Appendix C.3. For the Swimmer environment, both the random and full_replay datasets consist
of 50 episodes each. The random dataset is derived from a random policy, whereas the full_replay
dataset is generated using a model-based SAC with planning. For both the Cartpole Swing-up and
Swimmer environments, the datasets were self-collected due to the absence of a unified benchmark
that includes datasets from both tasks.

To enhance our understanding of the differences among these datasets, we present the distribution of
returns for each dataset in Fig. 9. It is important to note that the variance in returns within a dataset
serves as an indicator of the extent of the state space covered by that dataset. Specifically, datasets
collected using a fixed policy exhibit a notably narrow distribution, predominantly concentrated
around their mean values, as exemplified by the Halfcheetah random and medium datasets. This
characteristic of the datasets significantly influences the out-of-distribution generalization error in
offline MBRL, which represents a major challenge in this context.

13



Reinforcement Learning Conference (August 2024)

Table 2: The datasets characteristics. mf : model-free, mb: model-based, random → π: all episodes
collected to learn the policy π. The datasets size is given in episodes (of 1000 steps each).

environment dataset size (train/valid/test) behavior policy

Cartpole swing-up
random 50 (36/4/10) random policy

mixed_replay 50 (36/4/10) random → unstable mb SAC + planning
full_replay 50 (36/4/10) random → mb SAC + planning

Swimmer random 50 (36/4/10) random policy
mixed_replay 50 (36/4/10) random → unstable mb SAC + planning

Halfcheetah
random (D4RL) 100 (76/4/20) random policy
medium (D4RL) 100 (76/4/20) mf sac at half convergence

medium_replay (D4RL) 200 (156/4/40) random → mf sac at half convergence

0 200 400 600 800

random

mixed_replay

full_replay

cartpole

0 50 100 150 200 250 300 350

random

mixed_replay

swimmer

0 1000 2000 3000 4000 5000
return

random

medium

medium_replay

halfcheetah

Figure 9: A comparison of the distribution of returns across the considered datasets.

C.3 Agent: SAC + planning

Soft Actor-Critic (SAC) (Haarnoja et al., 2018) is an off-policy algorithm that incorporates the
maximum entropy framework, which encourages exploration by seeking to maximize the entropy of
the policy in addition to the expected return. SAC uses a deep neural network to approximate the
policy (actor) and the value functions (critics), employing two Q-value functions to mitigate positive
bias in the policy improvement step typical of off-policy algorithms. This approach helps in learning
more stable and effective policies for complex environments, making SAC particularly suitable for
tasks with high-dimensional, continuous action spaces.

In addition to Dyna-style training of the SAC agent on the learned model with short rollouts a
la MBPO (Janner et al., 2019), we use Model Predictive Control (MPC). MPC is the process of
using the model recursively to plan and select the action sequence that maximizes the expected
cumulative reward over a planning horizon H. The set of K (population size) action sequences
{(ak

t:t+H)k∈{1,...,K}} is usually generated by an evolutionary algorithm, e.g. Cross Entropy Method
(CEM) (Chua et al., 2018). In this study, the pre-trained SAC guides the MPC process by generating
candidate action sequences from the learned stochastic policy.

D Implementation details

For all the models, we use a neural network composed of a common number of hidden layers and two
output heads (with Tanh activation functions) for the mean and standard deviation of the learned

14



Reinforcement Learning Conference (August 2024)

probabilistic dynamics (The standard deviation is fixed when we want to use the MSE loss). We use
batch normalization (Ioffe & Szegedy, 2015), Dropout layers (Srivastava et al., 2014) (p = 10%), and
set the learning rate of the Adam optimizer (Kingma & Ba, 2015) to 0.001, the batch size to 64, the
number of common layers to 2, and the number of hidden units to 256 based on a hyperparameter
search executed using the RAMP framework (Kégl et al., 2018). The evaluation metric of the
hyperparameter optimization is the aggregated one-step validation R2 score across all the offline
datasets. The neural networks are trained to predict the difference between the next state and the
current state ∆t+1 = st+1 −st. More precisely, the baseline consists in the single-step model trained
to predict the difference ∆t+1 using the one-step MSE. The other multi-step models, take their own
predictions as input to predict the difference ∆t+h = st+h − ŝt+h−1 at horizon h

For the offline RL experiments, we use SAC agents from the StableBaselines3 open-source library
(Raffin et al., 2021) while keeping its default hyperparameters. In the offline setting, we train the
SAC agents for 500, 000 steps on a fixed model by generating short rollouts of length 100 from states
of the the dataset selected uniformly at random. At evaluation time, the MPC planning is done by
sampling 500 action sequences from the SAC policy, and rolling out short rollouts of horizon 20 for
return computation. This return is then bootstrapped with the value function learned by SAC.

E Details of the experiments

E.1 Static evaluation

E.1.1 The R2(H) metric

The commonly used metrics for the static evaluation are the standard mean squared error (MSE)
or the explained variance (R2) which we prefer over the MSE because it is normalized and can be
aggregated over multiple dimensions. In our attempt to reduce compounding errors in MBRL, we
are especially interested in the long-term predictive error of models. For each horizon h, the error
is computed by considering all the sub-trajectories of size h from the test dataset. The predictions
are computed by calling the model recursively h times (using the ground truth actions of the sub-
trajectories) and the average R2 score at horizon h (featuring the predictions p̂h

θ (st, at:t+h) and
groundtruth states st+h), R2(h), averaged over the sub-trajectories is computed. We then report
the average R2 score, R2(H), over all prediction horizons from 1 to H: R2(H) = 1

H

∑H
h=1 R2(h).

E.1.2 R2(100) table

The static evaluation has been conducted by training models on the multi-step loss for different
values of h ∈ {2, 3, 4, 10} and β ∈ {0.1, 0.3, 0.5, 0.75, 1.0, 1.5, 2.0, 3.0, 5.0, 20.0}. Table 3 shows the
corresponding test R2(100) scores and their standard deviations after the symbol ±. For each
horizon h, we show the best value of the β parameter, as it’s different across environments, datasets,
and noise scales.

E.1.3 The weight profile and the effective horizon

We can define the effective horizon he that reflects the prediction horizon at which we effectively
optimize the prediction error: given a weighted multi-step loss Lα with nominal horizon h and
weights α, the effective horizon he is defined as he =

∑h
i=1 αi · i.

For a given model trained using the multi-step loss, the optimal effective horizon is an indication
of the time scale needed for optimal performance. However, models that have a different nominal
horizon h and the same effective horizon he do not necessarily have the same performance. Precisely,
the loss with the larger nominal horizon is setting small weights on the furthest horizons, which has
a direct impact on the loss landscape and consequently on the optimization process.

Table 4 shows the optimal effective horizon he, and the exponentially parametrized weight profiles
(characterized by the decay parameter β), for different values of the horizon h and the noise scale σ.

15



Reinforcement Learning Conference (August 2024)

Environment Dataset Noise scale One-step Multi-step
h=2 [β] h=3 [β] h=4 [β] h=10 [β]

Cartpole swing-up

random
0 972 +- 4 975 +- 1 [0.1] 977 +- 2 [0.3] 980 +- 1 [0.1] 986 +- 1 [0.75]
0.01 864 +- 5 930 +- 1 [2.0] 950 +- 2 [2.0] 946 +- 3 [1.0] 954 +- 4 [0.75]
0.02 508 +- 16 690 +- 15 [2.0] 769 +- 7 [2.0] 812 +- 7 [1.5] 836 +- 7 [0.75]

mixed_replay
0 812 +- 106 915 +- 22 [0.75] 921 +- 32 [2.0] 925 +- 24 [0.5] 931 +- 20 [0.75]
0.01 541 +- 51 574 +- 26 [0.1] 659 +- 44 [3.0] 653 +- 51 [1.5] 679 +- 38 [0.75]
0.02 428 +- 9 335 +- 4 [2.0] 459 +- 71 [0.75] 481 +- 12 [1.0] 457 +- 38 [0.75]

full_replay
0 705 +- 52 828 +- 6 [2.0] 843 +- 42 [2.0] 858 +- 32 [0.75] 880 +- 21 [0.5]
0.01 714 +- 7 709 +- 10 [0.1] 718 +- 6 [1.5] 722 +- 33 [0.75] 683 +- 32 [0.1]
0.02 530 +- 14 551 +- 34 [0.1] 527 +- 21 [1.5] 530 +- 46 [0.1] 541 +- 24 [0.1]

Swimmer

random
0 983 +- 1 974 +- 3 [0.1] 978 +- 0 [0.1] 975 +- 1 [0.1] 974 +- 2 [0.1]
0.01 934 +- 6 941 +- 0 [0.1] 941 +- 2 [0.1] 942 +- 1 [0.5] 943 +- 2 [0.5]
0.02 865 +- 14 869 +- 17 [0.1] 880 +- 8 [0.5] 892 +- 4 [0.5] 891 +- 4 [0.5]

mixed_replay
0 609 +- 46 680 +- 184 [20.0] 734 +- 18 [20.0] 875 +- 25 [3.0] 735 +- 120 [0.75]
0.01 874 +- 14 904 +- 16 [0.5] 901 +- 16 [3.0] 936 +- 5 [0.1] 920 +- 8 [0.75]
0.02 850 +- 13 893 +- 8 [1.0] 878 +- 6 [0.3] 886 +- 4 [1.0] 883 +- 8 [0.75]

Halfcheetah

random
0 755 +- 3 746 +- 7 [0.1] 775 +- 3 [0.1] 765 +- 9 [0.5] 766 +- 5 [0.3]
0.01 737 +- 4 732 +- 27 [0.1] 756 +- 9 [0.1] 763 +- 6 [0.1] 725 +- 5 [0.5]
0.02 704 +- 3 711 +- 17 [0.1] 709 +- 23 [0.1] 701 +- 3 [0.5] 731 +- 0 [0.3]

medium
0 516 +- 19 268 +- 51 [0.1] 547 +- 10 [0.3] 562 +- 63 [0.3] 640 +- 13 [0.3]
0.01 691 +- 11 634 +- 20 [0.1] 674 +- 28 [0.1] 695 +- 3 [0.1] 710 +- 4 [0.1]
0.02 718 +- 4 422 +- 242 [0.1] 675 +- 15 [0.1] 690 +- 1 [0.1] 702 +- 13 [0.1]

medium_replay
0 541 +- 54 446 +- 70 [3.0] 589 +- 15 [0.75] 632 +- 7 [0.75] 771 +- 12 [0.5]
0.01 709 +- 12 725 +- 4 [0.1] 737 +- 7 [0.1] 737 +- 16 [0.1] 773 +- 9 [0.3]
0.02 687 +- 26 723 +- 16 [0.1] 731 +- 6 [0.1] 765 +- 18 [0.3] 750 +- 7 [0.3]

Table 3: R2(100) for different environments, datasets, and noise scales. We highlight entries that
have significantly larger score. In addition, to the mean pm standard deviation of the reported
metric, the table also shows the best β selected for each loss horizon h.

Table 4: Best he(β) values found with a grid search for each horizon and each noise scale. The
values are averaged over the eight datasets.

horizon h

2 3 4 10

σ (%) he (β)
0.0 1.30 (0.81) 1.48 (0.45) 1.58 (0.41) 2.09 (0.46)
0.01 1.26 (0.56) 1.65 (0.76) 1.74 (0.51) 2.23 (0.47)
0.02 1.36 (0.86) 1.65 (0.72) 2.08 (0.78) 2.72 (0.54)
0.03 1.33 (0.67) 1.95 (1.21) 2.13 (0.81) 2.33 (0.50)
0.04 1.40 (0.74) 1.88 (1.01) 2.02 (0.74) 2.49 (0.55)
0.05 1.49 (1.33) 1.76 (0.83) 2.28 (0.97) 2.22 (0.51)

The main insight of Table 4 is that regardless of the nominal horizon h, the effective horizon he (and
equivalently the decay parameter β) increases with the noise scale. This finding supports the idea
that multi-step models are increasingly needed when incorporating information from the future is
crucial to achieve noise reduction. As discussed in the previous experiment, the results are highly
dependent on the task (environment/dataset), while in Table 4 we aggregate the results across tasks,
and still observe the increasing trend.

Another important result highlighted in Table 4 is the upper bound on the effective horizon (he

does not go beyond 2.52), even when the nominal horizon is large (e.g 10). This suggests that while
putting weight on future horizons error does help the model, it is not beneficial to fully optimize for
these horizons. Indeed, the additional components of the multi-step MSE loss act as a regularizer
to the one-step loss, rather than a completely different training objective.

16


	Introduction
	The multi-step loss
	Experiments & results
	Static evaluation with the R2 metric
	Dynamic evaluation: offline MBRL

	Discussion & Conclusion
	Appendix
	 Appendix
	Related Work
	Understanding the multi-step loss: two case studies
	Uni-dimensional linear system
	Two-parameter non-linear system

	The evaluation setup
	Environments
	Datasets
	Agent: SAC + planning

	Implementation details
	Details of the experiments
	Static evaluation
	The R2(H) metric
	R2(100) table
	The weight profile and the effective horizon




