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Abstract

Optimizing GPU kernels for high performance
is a complex task, often demanding deep archi-
tectural knowledge, extensive profiling, and itera-
tive experimentation. This challenge is amplified
when targeting newer or less-documented GPU ar-
chitectures where traditional development aids are
scarce. This paper introduces an LLM-powered
“GPU Kernel Scientist,” an automated methodol-
ogy for iteratively refining accelerator kernels.

Our methodology employs LLMs in a multi-stage,
evolutionary process: (a) strategically selecting
promising prior code versions as a basis for new
iterations; (b) generating hypotheses for optimiza-
tion experiments, based on existing code and as-
similated knowledge from general GPU literature;
and (c) autonomously implementing these experi-
ments through code modification and subsequent
submission to an external evaluation system, us-
ing only observed timing data as performance
feedback. We detail how this approach navigates
the challenges of the AMD MI300 target archi-
tecture and leverages LLMs to compensate for
limited domain-specific human expertise.

In addition to our results, we present the architec-
tural design, operational workflow, and qualitative
insights, highlighting the potential of LLM-driven
agents to democratise and accelerate GPU kernel
optimization, especially in resource-constrained
or rapidly updating hardware environments.

1. Introduction

GPU kernel optimization is a significant challenge and tra-
ditionally requires specialist expertise. This challenge be-
comes magnified when tackling new/niche hardware with
limited documentation, doubly so with weak profiling tools.
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Figure 1. GPU Kernel Scientist Process

Our proposed solution to this problem is a “GPU Kernel
Scientist” — an automated, iterative framework that can opti-
mise kernels for non-CUDA hardware, with access only to
end-to-end timing results.

The core idea is to use frontier LLMs to create a cycle
of code selection, experiment ideation, and code genera-
tion/modification based only on limited feedback from an
online testing/benchmark platform.

The key contributions of this brief paper are:
¢ Presenting the novel framework itself;

* Demonstrating its application to HIP kernel optimization
under severe information/tooling constraints; and

* Highlighting how LLMs can bridge knowledge gaps and
drive optimization in such scenarios.

We will first discuss related work, then detail our methodol-
ogy, and early experimental findings. Examples and code
are available in the Appendix and Supplementary materials.

2. Related Work

Computer code has long been a target of evolutionary meth-
ods (Koza, 1992), where functions were directly encoded in
tree structures that use analogues of the crossover and muta-
tion analogues from Genetic Algorithms (Holland, 1975) to
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create novel offspring. In recent times, though, LLMs have
provided a new way to create novel individual programs
from parent code (Novikov et al., 2025; Romera-Paredes
et al., 2024). Here, the LLM acts as both crossover and mu-
tation operator, potentially also tuning its own instructions
in the process (as in Fernando et al., 2024).

Our approach is to focus on the LLM crossover process,
emphasising its active role in the code creation and search
process. Thus, we have a GPU Kernel Scientist, rather than
a GPU Kernel Evolver.

Indeed, this work may also be cast as a synthesis between
the proposed Al Scientist (Lu et al., 2024; Yamada et al.,
2025) and the interesting Al CUDA Engineer (Lange et al.,
2025). While the scope of our ‘science’ is far more limited
than the former, our focus on writing kernel code is more
aligned than the latter. There are several key differences
between this work and the Al CUDA Engineer, where our
work (i) focusses on one relatively complex kernel (exami-
nation of the AT CUDA Engineer outputs shows that it was
tackling many simpler tasks); (ii) optimises for one unusual
hardware platform, where the lack of reference material is a
significant hurdle; and (iii) does not have access to profiling
information, nor a library of kernels with benchmark data.

The number of challenges available via KernelBench
(Ouyang et al., 2025) makes it an excellent benchmark,
whereas the number of kernels attempted by our system is
very limited, since our focus is on the kernels required for
the The AMD Developer Challenge 2025 (AMD, 2025a).
Moreover, the diversity of kernels required for inference
of LLMs (for instance) may well be decreasing over time,
while the variety of hardware is increasing : These fac-
tors have influenced the design choices made for our GPU
Kernel Scientist.

Works such as OpenTuner (Ansel et al., 2014) and Kernel-
Tuner (van Werkhoven, 2019) operate in a way that might be
likened to hyper-parameter tuning. In contrast, the changes
to code made by our work can be far more broad in scope
- potentially testing out radically different approaches to
the kernel optimization problem. Thus, it seems that these
tuning frameworks could also be applied (automatically, via
LLM) to the kernels produced by our system, making the
efforts complementary.

Frameworks such as OpenAl Triton (Tillet et al., 2019),
TileLang (Wang et al., 2025) and ThunderKittens (Spector
et al., 2024) aim at reducing the detailed work required to
implement advanced kernel patterns. However, while these
frameworks could be a target of future work, the competition
environment only has support for Triton, and it is not clear
the extent to which the AMD low-precision operators would
work. Thus, we decided in our work to focus on optimising
AMD HIP kernels directly.

3. Methods

Our GPU Kernel Scientist involves the orchestration of 3
LLM ! processing stages, which iteratively update a growing
list of kernels as illustrated in Figure 1.

This process was started with a few ‘seed’ kernels, being:

e The (provided) basic PyTorch implementation

e A direct translation of the first kernel into HIP - which
was approximately 6 times slower than PyTorch

* A translation of the problem into a HIP kernel that made
use of the Matrix Cores (gv Nvidia’s Tensor Cores)

While the latter seems like a ‘gift’ to the LLM, the lack of
code examples using the low-precision operations on this
specific hardware made even human/Al co-creation of a
working (verified to give correct results) very challenging.
This extended deep-dive was then summarised (by the LLM)
into a ‘findings’ document, so that the quirks of the hardware
could be concisely used by future iterations.

Compared to the extensive CUDA (Nickolls et al., 2008)
resources available online, the AMD documentation is
thin. We made use of the AMD rocWMMA library (AMD,
2025c), AMD HIP reference (AMD, 2024), and AMD Ma-
trix Instruction Calculator (AMD, 2025b), largely by getting
the LLM to summarise these sources insofar as they were
relevant to the kernel specifications. We also referred the
LLM to CUDA resources such as Boechm (2022), and Arm-
bruster (2024) which details how Nvidia’s Tensor Cores can
be used. The LLM itself ‘translated’ between Nvidia and
AMD platforms.

3.1. LLM Evolutionary Selector

The first stage in the GPU Kernel Scientist process is to
select two individuals from the population of different ker-
nels. The members of the population are identified by an
ID, and the IDs of each of their ‘parents’ is also given, as
well as the benchmark results for 6 specified MxKxN input
configurations.

The LLM is instructed to choose one of the individuals to
be the ‘Base’ for the next experiment, and another (the ‘Ref-
erence’) to be chosen for its ability to help in analysing
experiments. Thus, instead of having a sophisticated selec-
tion mechanism (or other diversity-enhancing ideas, such
as in Mouret & Clune (2015)), we rely on the LLM’s abil-
ity to decide what makes sense from the multi-objective
optimization situation laid out for it.

See Appendix A.1 for examples of the decision process that
the LLM reports for several of its choices.

Ispecifically Gemini 2.5 Flash Preview 05-20, and Gemini 2.5
Pro Preview 05-06
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3.2. LLM Experiment Designer

The second stage in the process is to design useful experi-
ments to be performed subsequently. For this, we focus on
the existing ‘Base’ code for the individual passed in from
the prior step, and augment this code with external knowl-
edge (e.g. blog posts, or summaries of segments of manuals,
as described above).

The key instructions here are two-fold:

* Firstly, produce 10 ‘avenues’ that might be considered
for experimentation - this list is intentionally longer than
required, but it has been found that this increases the
diversity of options available to the second part;

* Secondly, produce 5 experiment plans, which involve an
overall experiment description, and then multiple lines
of rubric. In addition, the LLLM is asked to estimate the
range of performance benefit that the experiment might
produce, as well as the degree to which the experiment is
‘innovative’.

See Appendix A.2 for examples of the experiment planning

process that the LLM reports.

Following the ‘planning’ of 5 experiments, 3 of them are
chosen (without replacement), such that the process always
choses those experiments that are (i) the most innovative;
(ii) the highest maximum performance; and (iii) the highest
minimum performance. This helps to keep a broad range of
alternative paths under consideration, and leads to 3 inde-
pendent instances of the LLM Kernel Writer being launched
for the next step in the process.

3.3. LLM Kernel Writer

This stage lies at the heart of the GPU Kernel Scientist pro-
cess : Without the ability to produce syntactically correct
kernel code, while following the instructions in an exper-
iment’s rubric, the whole process would clearly fail. For-
tunately, the Gemini 2.5 Pro model used was surprisingly
capable of producing valid code, even when asked to make
significant structural changes.

Extensive context is provided to the LLM:

* Description of the task (as provided by the competition
organisers), along with the PyTorch basic implementation
for the task;

* The ‘findings’ document produced in collaboration with
the LLM (see earlier), with pseudocode for a high perfor-
mance kernel;

* Two code listings : One for the ‘Reference’ code, the
other for the ‘Base’ code. The Base code will be the
basis of the ‘diff” through which the output HIP code is
produced, while the Reference code (suggested by the
LLM Evolutionary Selector in the first stage) is provided

in-context due to its potential to help contrast with or
support the code changes.

* For each of these code listings, a one-step experiment
analysis is given, which consists of the description of
the experiment that lead to each code sample, and the
performance benchmarks of its parent and itself. NB: By
construction, all this information will exist.

As output, the LLM must produce a new HIP kernel (with
calling code, ready for PyTorch integration), as well as a
short report on which techniques it used to implement the
experiment rubric (this part was also added to the one-step
experiment analysis above, for completeness, since it was
occasionally observed that the LLM decided against actually
following through with the whole experiment rubric).

The Supplementary material (see Appendix A.4) includes an
example a HIP kernel produced by the GPU Kernel Scientist,
and Appendix A.3 has a breakdown of its key features.

3.4. Kernel Testing & Evaluation

The kernel testing and evaluation regime was dictated by
the The AMD Developer Challenge 2025 competition plat-
form. Fortunately, command-line tools were available, so
the whole process could be automated in a closed loop.

Note, however, that the constraints that the competition’s
interface imposed on our GPU Kernel Scientist also meant
that the system had to be more capable than if those con-
straints were not present. The most significant limitation
was the lack of any tools for profiling the kernels (apart from
end-to-end running time for each of the benchmark MxKxN
configurations).

In addition, in order to be a ‘good citizen’, it was decided
that requests for testing/evaluation should only be made se-
quentially (rather than in parallel), which limited the overall
number of kernels that could be processed.

4. Findings

As noted above, there were several constraints around which
the GPU Kernel Scientist system had to navigate, and these
are addressed in the following subsections.

4.1. Limited Target-Specific Documentation

The CUDA ecosystem is much better supported than the
AMD server-class MI300 GPU targeted for kernel devel-
opment here. Thus, the GPU Kernel Scientist system was
required to be able to probe the capabilities of the GPU for
itself, and apply fundamental GPU optimization principles
rather than specific hardware pre-trained knowledge.

Also important was the observed ability of the LLM to
generalize from related architectures (e.g. inferring HIP
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best practices from CUDA documentation if provided in
prompts), and then verify its understanding by performing
well-chosen experiments.

4.2. Compensating for Lack of Profiling Tools

Since the competition submission benchmark timings were
the only evaluation tool available, the present system had
no choice by to use them as the primary performance signal.
Thus, the LLM had to correlate code changes with these
black-box timing results (implicitly, or by being shown
before/after benchmarks). The authors also observed the
LLM performing experiments designed to isolate effects of
specific changes to infer their performance impact.

Thus, while having better profiling tools would clearly have
been a benefit, our GPU Kernel Scientist was shown to be
capable of optimising code under harsh constraints.

4.3. Augmenting Limited Human Expertise

One clear objective in building the system was for it to
perform competitively without the authors having to become
GPU experts in the process. Thus, a conscious decision
was made to require all ‘clever’ steps in the process of
bootstrapping the system to originate from the LLM itself.
This included a lengthy initial hardware probing phase (this
debugging was done by examining the return values of the
competition test interface) being driven by the LLM, so that
it could produce its own ‘findings’ documentation?.

Once the initial bootstrapping phase was over, all decisions
about which code to change, and how, were left to the LLM
system. If new documents were found that might be ap-
propriate (e.g. blog posts), they were given to the LLM to
digest into a form that was more relevant to the current task
- and this digested form was made available to the LLM
Experiment Designer.

In this way, the LLM became a “knowledge partner,” sug-
gesting techniques that the authors were not aware of. In
addition, the GPU Kernel Scientist system eliminated any
trial and error burden for human developers by proposing
informed experiments that it itself performed iteratively.

4.4. Iterative Refinement as a Discovery Process

The loop created for the GPU Kernel Scientist allows the
system as a whole to learn about the target architecture
through experimentation, without explicit guidance.

It is clear (from reading the output of the LLM Experi-
ment Design process, as well as the techniques that the

2 Apparently, there were issues concerning the layout of mem-
ory blocks on the Matrix Core units, and how these could be spread
across a warp. As may be apparent, the details were left to the
LLM, for its own consumption.

LLM Kernel Writer chose to implement) that the system can
achieve self-consistent directed action through the experi-
mental loop. Thus, the system has properties that apparently
go beyond those of the the individual LLMs that make it up.

4.5. Competition Results

Table 1 shows illustrative results from the Competition,
where the leaderboard was based on the geometric average
execution time of the submitted kernel(s) over 18 specific
matrix input sizes.

Table 1. AMD Developer Challenge - summary results

Execution
Implementation time in us  Comment
PyTorch reference ~ 850 Uses library fp16

Human 1 place 105  top-8 had access

to actual MI300
Naive HIP ~ 5000 Unoptimized
This work ~ 450 LLM-only

One unknown about the final leaderboard is the highest
position (lowest time) of the human entry that did not have
access to actual hardware. The authors believe that having
access to profiling information, and faster iteration cycles
for hyper-parameter optimisation, would enable the LLMs
to optimise in a more focussed way.

5. Discussion & Future Work

It is clear that the Gemini 2.5 Pro models can effectively
generating syntactically correct and novel HIP code. Sur-
prisingly, previously common challenges (such as “halluci-
nations”, producing non-compiling code, or difficulty with
highly complex logic) did not seem to be a major factor.
This may have been a result of the LLM contexts being
carefully controlled, with known-working code consistently
being present by construction.

One surprising facet of this work is the extent to which the
system was able to bootstrap itself from very little available
documentation. While the first working HIP kernel was
‘easy’, to understand the semantics of the compiler intrin-
sics for AMD Matrix Cores required actively probing for
compilation/execution errors until the actual behaviour was
revealed. The Gemini 2.5 Pro LLM was found to be capable
of prompting for human intervention to enable this kind of
debugging process.

In the specific case of the AMD MI300, the kernels devel-
oped by humans over the course of the competition could
provide substantial extra documentation of the capabilities
of these GPUs, significantly supplementing the sample code
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that was available from public sources. This could immedi-
ately be used in the context of our work to enable optimisa-
tion of other AMD targets.

5.1. Broader Implications & Limitations

The GPU Kernel Scientist system shows potential for de-
mocratizing high-performance GPU programming. This
could be used to accelerate kernel development cycles, es-
pecially for exploratory work on new hardware, which is an
important factor in an industry that is currently beholden to
a single supplier of GPU hardware.

As mentioned earlier, the system’s current reliance on ex-
ternal evaluation means that it does not operate in parallel,
causing it to make slow optimization progress overall. In ad-
dition, the authors believe that having access to fine-grained
feedback from profilers would give the GPU Kernel Scien-
tist system a significant boost in capability.

5.2. Future Work

The overall structure of the GPU Kernel Scientist lends
itself to adaptation to other target hardware, frameworks
and tooling. Applications could include hardware from
vendors with a currently limited installed base, or vendors
want to build out broader capabilities without having to
scale human resources.

To facilitate our system’s adaptability to new frameworks
(where there could potentially be little up-to-date documen-
tation) we are planning to build automatic tools to expand
the knowledge base that it can access dynamically.

In conclusion, our GPU Kernel Scientist demonstrates the
profound potential of LLM-driven evolutionary processes
to navigate and conquer complex optimization challenges,
even with limited prior knowledge or tooling, showcasing a
powerful new paradigm for performance engineering.

Acknowledgements

Support for this research was provided by the Google Al
Developer Programs team, including access to the Gemini
models and GPUs on Google Cloud Platform.

The authors thank the ES-FoMo III workshop reviewers for
their time and valuable feedback.

References

AMD. AMD Instinct MI300 Instruction Set
Architecture  Reference Guide, 2024. URL
https://www.amd.com/content /dam/amd/
en/documents/instinct-tech—-docs/
instruction—-set—-architectures/amd-
instinct-mi300-cdna3-instruction-set—

architecture.pdf.

AMD. AMD developer challenge, May 2025a.
URL https://www.datamonsters.com/amd-
developer—-challenge-2025.

AMD. Amd matrix instruction calculator,
2025b. URL https://github.com/ROCm/
amd_matrix_instruction_calculator.

AMD. AMD rocWMMA library, 2025c. URL https:
//github.com/ROCm/rocWMMA.

Ansel, J., Kamil, S., Veeramachaneni, K., Ragan-Kelley,
J., Bosboom, J., O’Reilly, U.-M., and Amarasinghe, S.
OpenTuner. In Proceedings of the 23rd international
conference on Parallel architectures and compilation,
New York, NY, USA, August 2014. ACM.

Armbruster, A. How to write a fast matrix multi-
plication from scratch with Tensor Cores, 8 2024.
URL https://alexarmbr.github.io/2024/
08/10/How-To-Write-A-Fast-Matrix-—
Multiplication-From-Scratch-With-—
Tensor—-Cores.html.

Boehm, S. How to optimize a CUDA matmul ker-
nel for cuBLAS-like performance: a worklog, 12
2022. URL https://siboehm.com/articles/
22 /CUDA~MMM.

Fernando, C., Banarse, D. S., Michalewski, H., Osindero,
S., and Rocktischel, T. Promptbreeder: Self-referential
self-improvement via prompt evolution. In Salakhutdi-
nov, R., Kolter, Z., Heller, K., Weller, A., Oliver, N.,
Scarlett, J., and Berkenkamp, F. (eds.), Proceedings of
the 41st International Conference on Machine Learn-
ing, volume 235 of Proceedings of Machine Learning
Research, pp. 13481-13544. PMLR, 21-27 Jul 2024.
URL https://proceedings.mlr.press/v235/
fernando24a.html.

Holland, J. H. Adaptation in natural and artificial systems.
Complex Adaptive Systems. Bradford Books, Cambridge,
MA, 1975.

Koza, J. R. Genetic programming. Complex Adaptive
Systems. Bradford Books, Cambridge, MA, December
1992.

Lange, R. T., Prasad, A., Sun, Q., Faldor, M., Tang, Y.,
and Ha, D. The AI CUDA engineer: Agentic CUDA
kernel discovery, optimization and composition. Tech-
nical report, Sakana AI, 02 2025. URL https://
pub.sakana.ai/ai-cuda-engineer/paper/.


https://www.amd.com/content/dam/amd/en/documents/instinct-tech-docs/instruction-set-architectures/amd-instinct-mi300-cdna3-instruction-set-architecture.pdf
https://www.amd.com/content/dam/amd/en/documents/instinct-tech-docs/instruction-set-architectures/amd-instinct-mi300-cdna3-instruction-set-architecture.pdf
https://www.amd.com/content/dam/amd/en/documents/instinct-tech-docs/instruction-set-architectures/amd-instinct-mi300-cdna3-instruction-set-architecture.pdf
https://www.amd.com/content/dam/amd/en/documents/instinct-tech-docs/instruction-set-architectures/amd-instinct-mi300-cdna3-instruction-set-architecture.pdf
https://www.amd.com/content/dam/amd/en/documents/instinct-tech-docs/instruction-set-architectures/amd-instinct-mi300-cdna3-instruction-set-architecture.pdf
https://www.datamonsters.com/amd-developer-challenge-2025
https://www.datamonsters.com/amd-developer-challenge-2025
https://github.com/ROCm/amd_matrix_instruction_calculator
https://github.com/ROCm/amd_matrix_instruction_calculator
https://github.com/ROCm/rocWMMA
https://github.com/ROCm/rocWMMA
https://alexarmbr.github.io/2024/08/10/How-To-Write-A-Fast-Matrix-Multiplication-From-Scratch-With-Tensor-Cores.html
https://alexarmbr.github.io/2024/08/10/How-To-Write-A-Fast-Matrix-Multiplication-From-Scratch-With-Tensor-Cores.html
https://alexarmbr.github.io/2024/08/10/How-To-Write-A-Fast-Matrix-Multiplication-From-Scratch-With-Tensor-Cores.html
https://alexarmbr.github.io/2024/08/10/How-To-Write-A-Fast-Matrix-Multiplication-From-Scratch-With-Tensor-Cores.html
https://siboehm.com/articles/22/CUDA-MMM
https://siboehm.com/articles/22/CUDA-MMM
https://proceedings.mlr.press/v235/fernando24a.html
https://proceedings.mlr.press/v235/fernando24a.html
https://pub.sakana.ai/ai-cuda-engineer/paper/
https://pub.sakana.ai/ai-cuda-engineer/paper/

GPU Kernel Scientist: An LLM-Driven Framework for Iterative Kernel Optimization

Lu, C., Lu, C., Tjarko Lange, R., Foerster, J., Clune,
J., and Ha, D. The AI scientist: Towards fully auto-
mated open-ended scientific discovery. arXiv e-prints,
art. arXiv:2408.06292, August 2024. doi: 10.48550/
arXiv.2408.06292.

Mouret, J.-B. and Clune, J. Illuminating search spaces by
mapping elites, 2015. URL https://arxiv.org/
abs/1504.049009.

Nickolls, J., Buck, I., Garland, M., and Skadron, K. Scalable
parallel programming with CUDA. In ACM SIGGRAPH
2008 classes, New York, NY, USA, August 2008. ACM.

Novikov, A., Vii, N., Eisenberger, M., Dupont, E., Huang,
P-S., Wagner, A. Z., Shirobokov, S., Kozlovskii,
B., Ruiz, F. J. R., Mehrabian, A., Kumar, M. P,
See, A., Chaudhuri, S., Holland, G., Davies, A.,
Nowozin, S., Kohli, P., and Balog, M. AlphaEvolve:
A coding agent for scientific and algorithmic discov-
ery. Technical report, Google DeepMind, 05 2025.
URL https://storage.googleapis.com/
deepmind-media/DeepMind.com/Blog/
alphaevolve-a-gemini-powered-
coding—agent—-for-designing—advanced-
algorithms/AlphaEvolve.pdf.

Ouyang, A., Guo, S., Arora, S., Zhang, A. L., Hu, W,
Ré, C., and Mirhoseini, A. KernelBench: Can LLMs
write efficient GPU kernels?, 2025. URL https://
arxiv.org/abs/2502.10517.

Romera-Paredes, B., Barekatain, M., Novikov, A., Balog,
M., Kumar, M. P., Dupont, E., Ruiz, F. J. R., Ellen-
berg, J. S., Wang, P., Fawzi, O., Kohli, P., and Fawzi,
A. Mathematical discoveries from program search with
large language models. Nature, 625(7995):468—475, Jan-
uary 2024.

Spector, B. F., Arora, S., Singhal, A., Fu, D. Y., and
Ré, C. ThunderKittens: Simple, fast, and adorable
Al kernels, 2024. URL https://arxiv.org/abs/
2410.203909.

Tillet, P., Kung, H. T., and Cox, D. Triton: an intermediate
language and compiler for tiled neural network computa-
tions. In Proceedings of the 3rd ACM SIGPLAN Interna-
tional Workshop on Machine Learning and Programming
Languages, New York, NY, USA, June 2019. ACM.

van Werkhoven, B. Kernel tuner: A search-
optimizing GPU code auto-tuner.  Future Gener-
ation Computer Systems, 90:347-358, 2019. doi:
https://doi.org/10.1016/j.future.2018.08.004. URL
https://www.sciencedirect.com/science/
article/pii/S0167739X18313359.

Wang, L., Cheng, Y., Shi, Y., Tang, Z., Mo, Z., Xie, W.,
Ma, L., Xia, Y., Xue, J., Yang, F.,, and Yang, Z. Tile-
Lang: A composable tiled programming model for Al
systems, 2025. URL https://arxiv.org/abs/
2504.175717.

Yamada, Y., Lange, R. T., Lu, C., Hu, S., Lu, C., Fo-
erster, J., Clune, J., and Ha, D. The AI scientist-v2:
Workshop-level automated scientific discovery via agen-
tic tree search, 2025. URL https://arxiv.org/
abs/2504.08066.


https://arxiv.org/abs/1504.04909
https://arxiv.org/abs/1504.04909
https://storage.googleapis.com/deepmind-media/DeepMind.com/Blog/alphaevolve-a-gemini-powered-coding-agent-for-designing-advanced-algorithms/AlphaEvolve.pdf
https://storage.googleapis.com/deepmind-media/DeepMind.com/Blog/alphaevolve-a-gemini-powered-coding-agent-for-designing-advanced-algorithms/AlphaEvolve.pdf
https://storage.googleapis.com/deepmind-media/DeepMind.com/Blog/alphaevolve-a-gemini-powered-coding-agent-for-designing-advanced-algorithms/AlphaEvolve.pdf
https://storage.googleapis.com/deepmind-media/DeepMind.com/Blog/alphaevolve-a-gemini-powered-coding-agent-for-designing-advanced-algorithms/AlphaEvolve.pdf
https://storage.googleapis.com/deepmind-media/DeepMind.com/Blog/alphaevolve-a-gemini-powered-coding-agent-for-designing-advanced-algorithms/AlphaEvolve.pdf
https://arxiv.org/abs/2502.10517
https://arxiv.org/abs/2502.10517
https://arxiv.org/abs/2410.20399
https://arxiv.org/abs/2410.20399
https://www.sciencedirect.com/science/article/pii/S0167739X18313359
https://www.sciencedirect.com/science/article/pii/S0167739X18313359
https://arxiv.org/abs/2504.17577
https://arxiv.org/abs/2504.17577
https://arxiv.org/abs/2504.08066
https://arxiv.org/abs/2504.08066

GPU Kernel Scientist: An LLM-Driven Framework for Iterative Kernel Optimization

A. Appendix
A.1. LLM Evolutionary Selector

Here are three typical samples from the output of Evolutionary Selector stage, illustrating the way in which the LLM is
capable of sophisticated judgements:

basis_code: "00052"

basis_reference: "00046"

rationale: >
"Run 00052 is selected as the basis code due to its consistently lowest average
benchmark scores across all input configurations, indicating the best overall
performance achieved so far.
Run 00046 is chosen as the reference because it represents a divergent optimization
path from a common ancestor (00037), offering specific strengths
(e.g., better performance on the first benchmark than 00052) that can provide valuable
comparative insights for the kernel scientist, despite its overall lower performance."

basis_code: "00089"

basis_reference: "00087"

rationale: >
"Run 00089 is selected as the basis code due to its superior overall performance,
achieving the lowest average benchmark score and excelling in
five out of six configurations.
Run 00087, its direct parent, is chosen as the reference because it represents the
immediate previous highly optimized iteration, providing crucial context
for understanding the precise improvements and minor trade-offs leading to the
current best performance."

basis_code: "00097"

basis_reference: "00091"

rationale: >
"Run 00097 is chosen as the basis for new experiments due to its consistently
best overall performance across all benchmark configurations.
Run 00091 is selected as the reference because,
while an ancestor with a higher total benchmark score,
it uniquely performs better on one specific configuration (m=6144, k=512, n=4096),
providing valuable insight into optimization trade-offs for the kernel scientist."
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A.2. LLM Experiment Designer

Here is a sample from the output of Experiment Designer stage, showing how the Avenues (truncated here) provide helpful
ideation for the Experiments, and also how the LLM believes that it is capable of estimating the likely performance gains,
and also opining on each experiment’s ‘innovation’:

## Task 1: Optimization Avenues

£k X o ok ok X X X o

*xLDS Bank Conflict Mitigation for A/B Data:*x Analyze and re-pad shared memory
**Optimized LDS Layout for rocWMMA:x+ Adjust the storage pattern of “1lds_a_ping/pong”
**Wider Vectorized Global Loads:xx Check if “load_gmem_tile_to_lds_vectorized™ ....
**Increase Thread Block Occupancy:xx Explore larger “TBLOCK_X_ DIM" values
*xCooperative Store to Global C:xx Distribute the final write-back of the C matrix
**Fine-tune Tile Sizes (TB_M, TB_N, TB_K) :x* Systematically experiment with
**xOptimize Scale Application Loop:x* Review the unrolled scaling loop for potential
**Asynchronous Scale Loading:** Consider decoupling the loading of scaling factors
**Register Pressure Management:*x Profile the kernel's register usage to determine
**Padding Global Memory Inputs:*x For smaller matrix dimensions or specific access

## Task 2: Experiments

Tyaml

experiment:

- description: >
"Rectify the LDS data layout for matrix A and B to perfectly match
the expectations of “rocwmma::load _matrix_sync™ and its fragment types,
addressing potential performance bottlenecks from layout mismatches or bank conflicts.
The current global-to-LDS load seems to produce a row-major K x M layout for A,
while rocWMMA expects column-major M x K for its "MatrixA_MfmaFrag~."
rubric: >
"Modify “load_gmem_tile_to_lds_vectorized™ to transpose or reorder data during
the load from global memory so that “1lds_a_target”™ stores A" in a column-major
M x K format (M being the fastest moving dimension) and “1lds_b_target”™ stores "B~
in a row-major K x N format (N being the fastest moving dimension),
aligning with the rocWMMA fragment definitions (“col_major™ for A, “row_major  for B).
Adjust padding if necessary."
performance: [15, 40]
innovation: 85
- description: >
"Redesign the final C matrix write-back to global memory by distributing
the write operations across all active waves in the thread block, rather than Jjust
the first wave, to improve global memory write bandwidth utilization and reduce
idle time for other waves."
rubric: >
"Remove the "if (wave_id_in_block == 0)° guard from the final store loop.
Implement a cooperative store pattern (e.g., using “rocwmma::store_matrix_sync’
if suitable for “bfl6\_t~ outputs, or manually distributing the store elements
using “threadIdx.x™ and “wave_id_in_block”™) to ensure all waves contribute to writing
the "TB_M x TB_N" tile to global memory.
Ensure boundary checks are correctly handled for all contributing threads."
performance: [5, 15]
innovation: 60
- ... etc
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A.3. LLM Kernel Writer

The following is the output from the LLM when asked to explain the various features of a specific kernel produced by the
GPU Kernel Scientist process. The code for this kernel is included in the Supplementary Material.

The specific prompt used (in conjunction with copy/pasting the HIP code verbatim) was : “For the following HIP kernel,
please describe the major features that it has (eg: does it do swizzling, use the AMD Matrix Cores, shared memory, etc)”.
The output was then converted to IZTEX format for inclusion here.

HIP Kernel Major Features (author: Gemini 2.5 Flash)

This HIP kernel implements a highly optimized General Matrix Multiply (GEMM) operation (C' = A x B) with additional
scaling, specifically tailored for AMD GPUs using the rocWMMA library. It leverages various low-level optimizations to
maximize performance.

AMD MATRIX CORES (VIA ROCWMMA)

Integration: The kernel heavily relies on the rocwmma library, which provides C++ interfaces to AMD’s Matrix Fused
Multiply-Add (MFMA) instructions.

* Fragment Types: MatrixA MfmaFrag, MatrixB MfmaFrag, and Accumulator MfmaFrag are defined using
rocwmma : : fragment, indicating direct utilization of MFMA hardware.

¢ MFMA Dimensions: The kernel is configured for a 32x32x16 MFMA variant (MFMA M_TILEM = 32u,
MFMAN_TILEN = 32u,MFMA K. TILEK = 16u), which is typical for FP8 inputs on AMD GPUs.

* Core Operation: The mma_sync function from rocWMMA is explicitly called to perform the matrix multiplication and
accumulation within a wave.

MIXED-PRECISION ARITHMETIC

e Input Data Types: Input matrices A and B are of type fp8_t (__hip_-fp8_e4m3_fnuz), a low-precision 8-bit floating-
point format.

¢ Accumulator Data Type: Intermediate accumulation within the Accumulator MfmaFrag is performed in float
(single-precision), ensuring higher precision for intermediate sums.

¢ Output Data Type: The final output matrix C is cast to bf16_t (.-hip bfloatl16), a 16-bit floating-point format.
This common pattern (FP8 compute, FP32 accumulate, BF16 output) is prevalent in AI/ML mixed-precision workflows.

SHARED MEMORY (LDS) AND PIPELINING

LDS Usage: The kernel extensively utilizes __shared__memory (Local Data Share) for efficient data staging. Specifically,
lds_a_ping, 1lds_a_pong, 1ds_b_ping, and 1ds_b_pong are declared as shared memory buffers to hold tiles of
matrices A and B.

Double Buffering (Pipelining): A classic ping-pong double-buffering scheme is implemented for loading A and B tiles
into LDS. This design overlaps computation with data transfer, significantly improving occupancy and reducing memory
stalls:

* While one set of LDS buffers (ping or pong) is used for computation (by compute_lds_tile_mma), the other is
concurrently filled with the next tile from global memory (by load_gmem_tile_to_lds_vectorized).

e Strategic synchronize_workgroup () calls ensure data coherence and proper synchronization between the load and
compute stages of the pipeline.
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LDS RE-PURPOSING FOR SCALE CACHING

Dynamic Use: A sophisticated optimization employed is the re-purposing of the already used LDS buffers (specifically
lds_a_double_buffers) for caching a_scale and b_scale values. This occurs after the corresponding A/B data has
been processed by the MFMA units within that pipeline stage. The technique involves casting the LDS pointers (fp8_t *)
to float * to overlay the scale data.

Efficiency: This approach maximizes the utilization of the limited LDS capacity by dynamically allocating different data
types to the same memory region at different stages of the kernel’s execution. Scales are cooperatively loaded into LDS by
all threads in the block.

MULTI-WAVE THREAD BLOCK EXECUTION

Block Configuration: The kernel is configured with TBLOCK_X_DIM = 128u (or potentially 256u), which is a multiple
of AMD’s typical wave size (64). This means each thread block launches and manages multiple waves concurrently.

* Distributed Global Memory Loads: The 1load_gmem_tile_to_lds_vectorized function distributes the global
memory load tasks among all threads in the block (block_thread_id), ensuring efficient utilization of global memory
bandwidth.

* Redundant Per-Wave MFMA Computation: Each wave within the block computes the MFMA operations (mma_sync)
redundantly on the same LDS data. This is often an efficient pattern for rocWMMA as fragment operations are typically
wave-level and results are accumulated within each wave’s private registers.

» Single-Wave Global Memory Write: Crucially, the final results are written from the accumulator fragments to global
memory only by wave_id_-in_block == 0. This prevents redundant writes and potential write conflicts to the same
global memory locations from different waves within the same block, which would otherwise lead to correctness issues or
severe performance degradation.

SCALING AND QUANTIZATION

Dynamic Range: The kernel takes separate global_a_scale_ptr and global_b_scale_ptr inputs, which are
per-matrix-element scaling factors.

Per-Element Scaling: It applies a per-element scaling to the accumulated FP 32 results using the formula accum_value
x scale_aval * scaleb.val_inv (where scale b_val_inv is the inverse of the B-scale). This scaling is
performed before the final cast to BF'1 6 for storage in global memory. This mechanism is characteristic of dynamic range
quantization methods used in machine learning inference to map low-precision inputs to higher-precision outputs.

DATA LAYOUTS AND ACCESS PATTERNS

¢ Matrix Layouts: Input matrices A and B are configured for column-major global layout (col_ma jor), while the output
matrix C is configured for row-major global layout (row_ma jor).

* Vectorized Loads: The 1oad_gmem_tile_to_lds_vectorized helper function performs vectorized loads from
global memory to LDS (e.g., loading 4 FP 8 elements at once by casting to an int » pointer), optimizing global memory
bandwidth utilization.

SWIZZLING

Implicit Handling: The kernel does not explicitly implement data swizzling (reordering elements to optimize cache
locality or access patterns beyond linear/vectorized loads) within its custom load routines. Instead, this detail is delegated to
the rocWMMA library. The rocwmma : : load-matrix_sync function internally handles the necessary data reordering
and packing of matrix fragments to align with the specific memory access patterns and data layouts expected by the
underlying MFMA hardware for optimal performance.
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In summary, this HIP kernel exemplifies a highly optimized, mixed-precision GEMM implementation designed for AMD
GPUs, demonstrating advanced techniques for performance and correctness by deeply integrating with hardware features
and memory hierarchy.

A.4. Supplementary Materials
To access a zip file of Supplementary Materials, please use the following link:

https://drive.google.com/file/d/1uPE6_RLAOagwS2VwF-_ZCwxWoeTl1Sr3D/view
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