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ABSTRACT
Deep learning for tabular data has garnered increasing attention
in recent years, yet employing deep models for structured data
remains challenging. While these models excel with unstructured
data, their efficacy with structured data has been limited. Recent
research has introduced retrieval-augmented models to address
this gap, demonstrating promising results in supervised tasks such
as classification and regression. In this work, we investigate us-
ing retrieval-augmented models for anomaly detection on tabular
data. We propose a reconstruction-based approach in which a trans-
former model learns to reconstruct masked features of normal sam-
ples. We test the effectiveness of KNN-based and attention-based
modules to select relevant samples to help in the reconstruction
process of the target sample. Our experiments on a benchmark of 31
tabular datasets reveal that augmenting this reconstruction-based
anomaly detection (AD) method with sample-sample dependencies
via retrieval modules significantly boosts performance. The present
work supports the idea that retrieval module are useful to augment
any deep AD method to enhance anomaly detection on tabular
data. Our code to reproduce the experiments is made available on
GitHub.

CCS CONCEPTS
• Security and privacy→ Intrusion/anomaly detection and mal-
waremitigation; •Computingmethodologies→ Semi-supervised
learning settings; Neural networks.
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1 INTRODUCTION
Semi-supervised anomaly detection (AD) consists in learning to
characterize a normal distribution using a dataset only composed
of samples belonging to the normal1 class, in order to identify in a
separate dataset the samples that do not belong to this normal dis-
tribution, namely anomalies. This class of algorithms is often used
when the imbalance between classes is too severe, causing standard
supervised approaches to fail [39]. Examples of such applications
are cyber intrusion detection [2], fraud detection on credit card pay-
ment [15, 35], or tumor detection on images [37]. On the contrary,
unsupervised anomaly detection refers to identifying anomalies
in a dataset without using labeled training data. These algorithms
aim to discover patterns or structures in the data and flag instances
that deviate significantly from these patterns. The application of
such an approach usually includes detecting mislabeled samples or
removing outliers from a dataset that may hinder a model’s training
process.

While deep learning methods have become ubiquitous and are
widely used in the industry for various tasks on unstructured data,
relying on deep models for tabular data remains challenging. In-
deed, Grinsztajn et al. [11] discuss how the inherent characteristics
of tabular data make this type of data challenging to handle by
standard deep models. Hence, recent research on deep learning
for structured data [1, 9, 17, 29, 32] has been oriented towards
proposing novel training frameworks, regularization techniques or
architectures tailored for tabular data. Similarly, general AD meth-
ods appear to struggle with tabular data, while the best-performing
AD algorithms on tabular data involve accounting for the particular
structure of this data type. For instance, [3, 22, 30, 34] put forward
self-supervised anomaly detection algorithms targeted for tabular
data that significantly outperform general methods on most tested
datasets.

In particular, recent research has emphasized the pivotal role
of combining feature-feature and samples-sample dependencies in
fostering deep learning model’s performance on tabular data [9, 17,
32]. Following these recent findings, we investigate the benefits of

1The term normal relates to the concept of normality, in opposition to anomaly.
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including external retrieval modules to leverage sample-sample
dependencies to augment existing AD methods. External retrieval
modules can be considered instrumental as they can augment any
existingmodel thatmay only rely on feature-feature dependencies.
In contrast, models that rely on internal retrieval mechanisms are
bound to some inductive biases and cannot be used to learn all
possible tasks that may be relevant for anomaly detection.

Leveraging both types of dependencies is critical to detect all
types of anomalies effectively and can increase consistency across
datasets, as we empirically show in section 5.1. Han et al. [13]
categorize anomalies in tabular data into 4 families of anomalies
which require different types of dependencies to be correctly iden-
tified. First, dependency anomalies explicitly refers to samples that
do not follow the dependency structure that normal data follow
require feature-feature dependencies to be efficiently identified.
Second, global anomalies refer to unusual data points that deviate
significantly from the norm. Relying on both dependencies should
improve a model’s capacity to detect these anomalies. Third, local
anomalies that refer to the anomalies that are deviant from their
local neighborhood can only be identified by relying on sample-
sample dependencies. Finally, clustered anomalies, also known as
group anomalies, are composed of anomalies that exhibit similar
characteristics. This type of anomaly requires feature-feature de-
pendencies to be identified.

We test the relevance of external modules by employing trans-
formers [36] in a mask-reconstruction framework to construct an
anomaly score as it was proven to offer strong anomaly detection
performance [34]. We implement several external retrieval methods
to augment the vanilla transformer and evaluate the performance
of each approach on an extensive benchmark of tabular datasets.

We empirically show that the tested approaches incorporating
retrieval modules to account for the sample-sample relations out-
perform the vanilla transformer that only attends to feature-feature
dependencies. Furthermore, we propose an empirical experiment
to account for the pertinence of combining dependencies, showing
that detecting some types of anomalies can require a particular
type of dependency.

The present work offers the following contributions:

• We propose an extensive evaluation of retrieval-based meth-
ods for AD on tabular data.

• We empirically show that augmenting existing AD methods
with a retrieval module to leverage sample-sample depen-
dencies can help improve detection performance.

• We compare our approach to existing methods found in the
literature and observe that our method obtains competitive
performance metrics.

• We provide an explanation as to why combining dependen-
cies leads to better identification of anomalies in tabular
data.

2 RELATEDWORKS
Ruff et al. [25] discuss how anomaly detection bears several denom-
inations that more or less designate the same class of algorithms:
anomaly detection, novelty detection, and outlier detection. The lit-
erature comprises 4 main classes of anomaly detection algorithms:

density estimation, one-class classification, reconstruction-based,
and self-supervised algorithms.

Density estimation. It is often seen as the most direct approach to
detecting anomalies in a dataset. The density estimation approach
consists in estimating the normal distribution and flagging low
probability samples under this distribution as an anomaly. Existing
methods include using Copula as the COPOD method proposed
in [18], Local Outlier Factor (LOF) [5], Energy-based models [41]
flow-based models [20].

Reconstruction-based methods. Other anomaly detectionmethods
focus on learning to reconstruct samples belonging to the normal
distribution. In inference, the capacity of the model to reconstruct
an unseen sample is used as a measure of anomalousness. The
more capable a model is to reconstruct a sample, the more likely the
sample is to belong to the normal distribution seen in training. Such
approach include methods involving autoencoders [6, 16], diffusion
models [38, 42], GANs [27] or attention-based models [34].

One-Class Classification. One-class classification describes the
task of identifying anomalies without directly estimating the nor-
mal density. This class of algorithm involves discriminative models
that directly estimate a decision boundary. In [26, 28, 33], the au-
thors propose algorithms that estimate the support of the normal
distribution, either in the original data space or in a latent space.
During inference, one flags the samples outside the estimated sup-
port as anomalies. Other one-class classification methods include
tree-based approaches such as isolation forest (IForest) [21], ex-
tended isolation forest [14], RRCF [12] and PIDForest [8]. Other
methods include approaches to augment existing one-class classifi-
cation methods with a classifier by generating synthetic anomalies
during training, such as DROCC [10].

Self-Supervised Approaches. Given the recent successes of self-
supervision formany tasks, researchers have also investigated using
self-supervised methods for anomaly detection. [3] and [22] pro-
pose transformation based anomaly detection methods for tabular
data. The former relies on a classifier’s capacity to identify which
transformation was applied to a sample to measure anomalousness,
while the latter relies on a contrastive approach. Similarly, [30]
also proposes a contrastive approach to flag anomalies by learn-
ing feature-feature relation for normal samples. Parallel to this
line of work, [24, 31] have focused on proposing self-supervised
approaches for representation learning tailored for anomaly detec-
tion.

Retrieval modules. Retrieval modules have gained attention in
recent years in many fields of machine learning. For instance, [4]
introduces a retrieval module to foster the scalability and efficiency
of diffusion models. Parallel to that, [19] introduced retrieval for
cross-task generalization of large language models, and [7] intro-
duced it to enhance prompt learning. Finally, retrieval methods
have been increasingly used to increase the performance of deep
models for tabular data. For instance, [17] and [32] introduced in-
ternal retrieval modules in deep architecture for supervised tasks
on tabular data, while [34] relied on internal retrieval modules for
anomaly detection. Finally, [9] investigated using external retrieval
modules to augment an MLP for supervised tasks on tabular data.
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Figure 1: Forward pass for sample z, see section 3.4 for more detail on training procedure. In the case of no retrieval module,
the prediction for a sample z consists of the upper part of the figure with 𝜆 = 0.

3 METHOD
3.1 Learning Objective
Let D𝑡𝑟𝑎𝑖𝑛 = {x𝑖 ∈ R𝑑 }𝑛

𝑖=1 represent the training set composed
of 𝑛 normal samples with 𝑑 features. The standard approach to
anomaly detection involves learning some function 𝜙𝜃 : R𝑑 → Z
by minimizing a loss function L. The chosen loss function and
the space Z will vary according to the class of the considered
anomaly detection algorithm. Nevertheless, the overall aim of L is
to characterize the distribution of the samples in the training set as
precisely as possible. Depending on the chosen AD algorithm, the
obtained representation 𝜙𝜃 (x) of sample x can be used directly or
indirectly to compute an anomaly score.

Formally, the training objective can be summarized as follows

min
𝜃 ∈Θ

∑︁
x∈D𝑡𝑟𝑎𝑖𝑛

L(x, 𝜙𝜃 (x)), (1)

where L(x, 𝜙𝜃 (x)) will vary according to the chosen task. For a
reconstruction-based method, Z can be the original data space
and L can be the squared ℓ2-norm of the difference between the
original sample x and its reconstructed counterpart, L(x, 𝜙𝜃 (x)) =
∥x − 𝜙𝜃 (x)∥2.

Introducing an external retrieval module permits keeping the
original objective unchanged while augmenting 𝜙𝜃 with sample-
sample dependencies through non-parametric mechanisms. The
model involves non-parametric relations as it leverages the entire
training dataset to make its prediction. Hence, the model can con-
jointly attend to feature-feature and sample-sample interactions to
optimize its objective.

Formally, instead of minimizing the loss as described in eq. (1),
the parameters 𝜃 of the function 𝜙𝜃 are optimized to minimize the
loss function as follows

min
𝜃 ∈Θ

∑︁
x∈D𝑡𝑟𝑎𝑖𝑛

L (x, 𝜙𝜃 (x;D𝑡𝑟𝑎𝑖𝑛)) . (2)

Nevertheless, not all approaches to AD may benefit from such
non-parametric mechanisms. Some pretext tasks involving sample-
sample dependencies may lead to degenerate solutions, e.g. ap-
proaches based on contrastive learning such as the approaches
of [22] or [30]. However, reconstruction-based AD methods ap-
pear as a natural class of algorithms that may benefit from these
non-parametric mechanisms.

Mask Reconstruction. In the mask reconstruction context, we
empirically investigate the pertinence of external retrieval mod-
ules, as detailed in section 3.2. Our approach includes stochastic
masking which consists in masking each entry in a sample vector
x ∈ R𝑑 with probability 𝑝𝑚𝑎𝑠𝑘 while setting as the objective task
the prediction of the masked-out features from the unmasked fea-
tures. Formally, we sample m ∈ R𝑑 a binary mask vector taking
value 1 when the corresponding entry in x is masked, 0 otherwise.
This mask m is then used to construct x𝑚, x𝑜 ∈ R𝑑 representing
respectively the masked and unmasked entries of sample x. x𝑚, x𝑜
are obtained as follows,

x𝑚 = m ⊙ x
x𝑜 = (1𝑑 −m) ⊙ x, (3)

where 1𝑑 is the 𝑑-dimensional unit vector.
A model 𝜙𝜃 : R𝑑 × {0, 1}𝑑 → R𝑑 is trained to reconstruct the

mask features x𝑚 from its unmasked counterpart x𝑜 and the mask
vector m. By construction, 𝜙𝜃 (x𝑜 ;m) only has non-zero values for
corresponding masked features in m.

In the present work, we evaluate the benefit of replacing the
traditional reconstruction learning objective defined as

min
𝜃 ∈Θ

∑︁
x∈D𝑡𝑟𝑎𝑖𝑛

𝑑 (x𝑚, 𝜙𝜃 (x𝑜 ;m)), (4)

where 𝑑 (., .) is a distance measure; with its equivalent augmented
with a retrieval module as follows

min
𝜃 ∈Θ

∑︁
x∈D𝑡𝑟𝑎𝑖𝑛

𝑑
(
x𝑚, 𝜙𝜃

(
x𝑜 ;m,D𝑜

𝑡𝑟𝑎𝑖𝑛

) )
, (5)



CIKM ’24, October 21–25, 2024, Boise, ID, USA. Hugo Thimonier, Fabrice Popineau, Arpad Rimmel, and Bich-Liên Doan

(a) F1-score (↑) (b) Rank (↓)

Figure 2: For each of the 31 datasets on which models were evaluated, we report the average F1-score over 20 runs for 20 different
seeds. We refer readers to Thimonier et al. [34] for details on the obtained metrics and the hyperparameters used for each
method. For both figures, the model displayed on the far left is the worst-performing model for the chosen metric, and the one
on the far right is the best-performing model. We also highlight the metric of the best-performing model in bold.

where D𝑜
𝑡𝑟𝑎𝑖𝑛

= {x𝑜
𝑖
∈ R𝑑 }𝑛

𝑖=1. In inference, D𝑜
𝑡𝑟𝑎𝑖𝑛

is replaced by
D𝑡𝑟𝑎𝑖𝑛 in which none of the features of the training samples are
masked.

3.2 Retrieval methods
Let z denote the sample of interest for which we wish to reconstruct
its masked features z𝑚 given its observed counterpart z𝑜 . Let C
denote the candidate samples from the training set from which 𝑘

helpers are to be retrieved, andH the retrieved helpers,H ⊆ C.
We consider several external retrieval modules that rely on simi-

larity measures to identify relevant samples to augment the encoded
representation of the sample of interest z. It involves placing a re-
trieval module after the transformer encoder and before the output
layer, as shown in figure 1. We investigate in section 5 the impact of
modifying the location of the retrieval module and consider placing
it before the encoder as an alternative.
For each method, the retrieval module consists in selecting the
top-𝑘 elements that maximize a similarity measure S(·, ·) and use
a value function to obtain representations of the chosen samples
V(·, ·) to be aggregated with sample z.

KNN-based module. First, we consider a simple method that iden-
tifies the 𝑘 most relevant samples in C using a KNN approach. For-
mally, the similarity and value functions are defined as follows

S(z, x) = −∥hz − hx∥
V(z, x) = hx,

(6)

where hx and hz denote the representations of respectively sample
x and z and ∥ .∥ is the ℓ2-norm.

Attention-based modules. Second, we consider attention mecha-
nisms to select H . We consider three types of attention inspired
by those proposed in [9]. First, the vanilla attention (later referred
to as v-attention), where the score and value function used to

select the retrieved samples are defined as

S(z, x) =𝑊𝑄 (hz)⊤𝑊𝐾 (h𝑥 )
V(z, x) =𝑊𝑉 (hx).

(7)

where𝑊𝑄 ,𝑊𝐾 and𝑊𝑉 are learned parameters.
Second, we also consider another type of attention module, later
referred to as attention-bsim, which involves replacing the score
function defined in eq. (7) as follows

S(z, x) = − ∥𝑊𝐾 (hz) −𝑊𝐾 (hx)∥2

V(z, x) =𝑊𝑉 (hx).
(8)

Third, we consider attention-bsim-bval a modification of the
value function in eq. (8) as

S(z, x) = − ∥𝑊𝐾 (hz) −𝑊𝐾 (hx)∥2

V(z, x) = 𝑇 (𝑊𝐾 (hz) −𝑊𝐾 (hx)),
(9)

where𝑇 (·) = LinearWithtoutBias ◦ Dropout ◦ ReLU ◦ Linear(·).

Aggregation. The retrieval modules necessitate aggregating the
obtained retrieved representations V(z, x) with the representation
of the sample of interest z. We aggregate the value of the selected
top-𝑘 helpers, to be fed to the final layer

h̃z = (1 − 𝜆) · hz + 𝜆 · 1
𝑘

∑︁
𝑥∈H

V(z, x). (10)

where 𝜆 ∈ [0, 1) is a hyperparameter.

3.3 Anomaly score
We construct an anomaly score to assess whether a test sample be-
longs to the normal distribution or should be considered an anomaly.
As a reconstruction-based method, our anomaly score is directly
obtained from the optimized loss during training: the better the
trainedmodel reconstructs a sample, themore likely the sample is to
be normal. Indeed, since the model has exclusively seen normal sam-
ples during training, it should be less able to reconstruct anomalies
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Table 1: Comparison of transformer-based methods. We observe that the external retrieval module attention-bsim significantly
improves the AD performance of the vanilla transformer by 4.3% regarding the F1-Score and 1.2% for the AUROC.

Transformer +KNN +v-att. +att-bsim +att-bsim-bval
F1-Score (↑) 56.2 56.1 55.7 58.6 53.9
AUROC (↑) 83.4 83.1 83.1 84.4 82.1

correctly since they stem from a different distribution. On the con-
trary, unseen normal samples should be well reconstructed. We rely
on the squared ℓ2-norm of the difference between the reconstructed
sample and the original sample for numerical features, while we
use the cross-entropy loss function for categorical features.

We rely on a mask bank composed of𝑚 𝑑-dimensional masks to
construct the anomaly score. We apply each mask to each valida-
tion sample and reconstruct the masked features to compute the
reconstruction error for each mask. Thus, each validation sample
is masked and reconstructed𝑚 times. The anomaly score is con-
structed as the average reconstruction error over the𝑚 masks. To
construct the mask bank, we fix the maximum of features to be
masked simultaneously 𝑟 and and construct𝑚 =

∑𝑟
𝑘=1

(𝑑
𝑘

)
masks.

Choosing deterministic masks instead of random masks to create
the mask bank used for inference is beneficial for two reasons. First,
since the model will reconstruct all features at least once, it in-
creases the likelihood of identifying different types of anomalies.
Indeed, anomalies that deviate from the normal distribution due
to a single feature would only be identified if the corresponding
mask hiding this feature would be included. Second, this approach
ensures that all samples are masked identically to build the anomaly
score. We investigate the impact of constructing a random mask
bank instead of a deterministic mask bank in section 5.5.
We use the whole unmasked training set2 C = D𝑡𝑟𝑎𝑖𝑛 to predict the
masked features of each sample for each of the𝑚 masked vectors
and construct the anomaly score for a validation sample z as

AD-Score(z;D𝑡𝑟𝑎𝑖𝑛) = 1
𝑚

𝑚∑︁
𝑘=1

L(z(𝑘 ) ;D𝑡𝑟𝑎𝑖𝑛), (11)

where L(z(𝑘 ) ;D𝑡𝑟𝑎𝑖𝑛) designates the loss for the sample z with
mask 𝑘 .

3.4 Training pipeline
Let x ∈ X ⊆ R𝑑 be a sample with 𝑑 features, which can be either
numerical or categorical. Let 𝑒 designate the hidden dimension of
the transformer. The training pipeline consists of the following
steps:

Masking. We sample from a Bernoulli distribution with proba-
bility 𝑝𝑚𝑎𝑠𝑘 whether each of the 𝑑 features is masked.

mask = (𝑚1, . . . ,𝑚𝑑 ),

where𝑚 𝑗 ∼ B(1, 𝑝𝑚𝑎𝑠𝑘 ) ∀𝑗 ∈ [1, ..., 𝑑] and𝑚 𝑗 = 1 if feature 𝑗 is
masked.

2For large datasets, we resort to a random subsample of the training set for computa-
tional reasons.

Encoding. For numerical features, we normalize to obtain 0mean
and unit variance, while we use one-hot encoding for categorical
features. At this point, each feature 𝑗 for 𝑗 ∈ [1, 2, ..., 𝑑] has an 𝑒 𝑗 -
dimensional representation, 𝑒𝑛𝑐𝑜𝑑𝑒𝑑 (x𝑗 ) ∈ R𝑒 𝑗 , where 𝑒 𝑗 = 1 for
numerical features and for categorical features 𝑒 𝑗 corresponds to
its cardinality. We then mask each feature according to the sampled
mask vector and concatenate each feature representation with the
corresponding mask indicator function. Hence, each feature 𝑗 has
an (𝑒 𝑗 + 1)-dimensional representation

((1 −𝑚 𝑗 ) · 𝑒𝑛𝑐𝑜𝑑𝑒𝑑 (x𝑗 ),𝑚 𝑗 ) ∈ R𝑒 𝑗+1,
where x𝑗 is the 𝑗-th features of sample x.

In-Embedding. We pass each of the features encoded representa-
tions of sample x through learned linear layers Linear(𝑒 𝑗 + 1, 𝑒).
We also learn 𝑒-dimensional index and feature-type embeddings
as proposed in [17]. Both are added to the embedded representa-
tion of sample x. The obtained embedded representation is thus of
dimension 𝑑 × 𝑒

ℎx = (ℎ1x, ℎ2x, . . . , ℎ𝑑x) ∈ R𝑑×𝑒 ,

and ℎ 𝑗x ∈ R𝑒 corresponds to the embedded representation of feature
𝑗 of sample x.

Transformer Encoder. The embedded representation obtained
from the previous step is then passed through a transformer encoder.
The output of the transformer hx is of dimension 𝑑 × 𝑒 .

Out-Embedding. The output of the transformer, hx ∈ R𝑑×𝑒 is
then used to compute an estimation of the original 𝑑-dimensional
vector. To obtain the estimated feature 𝑗 , we take the 𝑗-th𝑑-dimensional
representation which is output by the transformer encoder, ℎx𝑗 ∈
R𝑑 , and pass it through a linear layer Linear(𝑒, 𝑒 𝑗 ), where 𝑒 𝑗 is 1
for numerical features and the cardinality for categorical features.

External Retrieval Modules. During training, for a batch B com-
posed of 𝑏 samples, for each sample x ∈ B, the entire batch serves
as the candidates C. In inference, a random subsample of the train-
ing set is used as C. Both for training and inference, when possible
memory-wise, we use as B and C the entire training set.
As input, the retrieval module receives a R𝑑×𝑒 representation for
each sample. Operations described in eq. (6), (7), (8) and (9) are
performed on the flattened representations of samples x, hx

𝑓 𝑙𝑎𝑡𝑡𝑒𝑛
∈

R𝑑 ·𝑒 . After selecting H ⊆ C, each sample is transformed back to
its original dimension to allow aggregation as described in eq. (10).

4 EXPERIMENTS
Datasets. We experiment on an extensive benchmark of tabu-

lar datasets following previous work [30, 34]. The benchmark is
comprised of two datasets widely used in the anomaly detection
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literature, namely Arrhythmia and Thyroid, a second group of
datasets, the "Multi-dimensional point datasets", obtained from the
Outlier Detection DataSets (ODDS)3 containing 28 datasets. We
also include three real-world datasets from [13]: fraud, campaign,
and backdoor. We display each dataset’s characteristics in table 7
in appendix A.1.

Experimental Settings. Following previous work in the AD litera-
ture, [3, 44], we construct the training set with a random subsample
of the normal samples representing 50% of the normal samples, we
concatenate the 50% remaining with the entire set of anomalies to
constitute the validation set. Similarly, we fix the decision thresh-
old for the AD score such that the number of predicted anomalies
equals the number of existing anomalies.

To evaluate to which extent sample-sample dependencies are
relevant for anomaly detection, we compare models that attend to
relations between samples to the vanilla transformer model. We
compare the different methods discussed using the F1-score (↑) and
AUROC (↑) metrics following the literature. For each dataset, we
report an average over 20 runs for 20 different seeds; we display
the detailed results for all five transformer-based methods in tables
8 and 9 in appendix B.1 and report in Table 1 the average F1 and
AUROC.

We considered three regimes for the transformer dimensions de-
pending on the dataset size. The transformer encoder comprises 2 or
4 layers with 4 attention heads and hidden dimension 𝑒 ∈ {8, 16, 32}
for smaller to larger datasets. We train the transformer with a mask
probability 𝑝𝑚𝑎𝑠𝑘 set to 0.25 or 0.15 and rely on the LAMB opti-
mizer [40] with 𝛽 = (0.9, 0.999) and also included a Lookahead [43]
wrapper with slow update rate 𝛼 = 0.5 and 𝑘 = 6 steps between
updates. We also include a dropout regularization with 𝑝 = 0.1
for attention weights and hidden layers. We ensure that during
training, all samples from a batch are not masked simultaneously
so that the retrieval module receives encoded representations of
unmasked samples as it will in the inference stage. We considered
the same transformer architecture and hyperparameters for the
same dataset for each considered approach. For external retrieval
modules, we chose for simplicity 𝜆 = 0.5 for aggregation as detailed
in eq. (10). We study in section 5.3 the effect of varying the value of
𝜆 on the model’s performance. For the KNNmodule, we set 𝑘 = 5 as
the cardinality of H since KNN-based anomaly detection methods
[23] with 𝑘 = 5 have shown strong anomaly detection performance
[30]. In contrast, for the attention modules, we set H = C and use
the attention weights to compute a weighted mean to be aggre-
gated as in eq. (10). We further discuss the choice of 𝑘 in section
5.2. Finally, depending on the dataset, we trained the model until
the loss stopped improving for 50 or 100 consecutive epochs. Each
experiment in the present work can be replicated using the code
made available on github4.

Results. As reported in Table 1, we observe that not all retrieval
modules induce a significant boost in anomaly detection perfor-
mance. We observe that only the transformer augmented by the
attention-bsim module performs significantly better than the
vanilla transformer. Indeed, augmenting the vanilla transformer
3http://odds.cs.stonybrook.edu/
4https://github.com/hugothimonier/Retrieval-Augmented-Deep-Anomaly-
Detection-for-Tabular-Data

with the retrieval module detailed in eq. (8) allows to increase the
average F1-score by 4.3% and AUROC by 1.2%. This result is all
the more interesting since it contradicts the results obtained for
the supervised classification and regression tasks investigated in
previous work [9] where the module that obtains the best perfor-
mance is attention-bsim-bval. However, let us mention that the
attention-bsim-bval module involved in our work is not identi-
cal to the one put forward in [9] as it does not involve any label.

For completeness, we compare the different architectures pro-
posed in the present work to existing methods in the literature. We
rely on the experiments conducted in [30, 34] for the metrics of
the competing methods. We display in figure 2 the comparison to
existing methods. We compare our methods to recent deep methods,
namely GOAD [3], DROCC [10], NeuTraL-AD [22], the contrastive
approach proposed in [30] and NPT-AD [34]. We also compare to
classical non-deep methods such as Isolation Forest [21], KNN [23],
RRCF [12], COPOD [18] and PIDForest [8]. We refer the reader to
[34] for the detail on the F1-score per dataset for other methods
than those shown in Tables 8 and 9 in appendix B.1.

5 DISCUSSION
5.1 Why combine dependencies?
To account for the fact that the retrieval-augmented transformer
outperforms the vanilla transformer, we hypothesize that different
types of anomalies require different dependencies to identify them.
In this section, we provide a simple example to demonstrate this
statement. Consider a simple three dimensional data space, x =

(𝑥1, 𝑥2, 𝑥3) ∈ R3, in which the relation between the features of
normal sample are defined as follows,

𝑥2 = 𝛼1 + 𝛽1𝑥1 + 𝜀

𝑥3 = 𝛼2 + 𝛽2𝑥22 + 𝜀,
(12)

where 𝜀 is some white noise and (𝛼1, 𝛼2, 𝛽1, 𝛽2) ∈ R2 are scalars.
Let us consider two types of anomalies as shown in Figure 3.

First anomalies of type 1, in which the relations between features
are identical to the ones given in eq. (12) but in a different subspace.
Now consider type 2 anomalies, for which the values of the gener-
ating feature 𝑥1 are in the same subspace as normal samples, the
relation between 𝑥1 and 𝑥2 is the same, but the parameters of the
relation between 𝑥2 and 𝑥3 differ. Type 1 (resp. 2) anomalies are
akin to local anomalies (resp. dependency anomalies) discussed in
[13].

To test our hypothesis, we compare the retrieval augmented
transformer to the vanilla transformer andMask-KNN, a reconstruction-
based technique introduced in [34], that relies on KNN imputation
to reconstruct masked features. Mask-KNN (resp. the transformer)
can be considered approximately equivalent to the retrieval aug-
mented transformer without considering the feature-feature depen-
dencies (resp. the sample-sample dependencies).

In the present framework, models only leveraging inter-feature
relations, such as the vanilla transformer, may have limited ca-
pacities to identify anomalies if they satisfy the same relations as
given in eq. (12) but in a different subspace, i.e., anomalies of type
1. Similarly, a model that only relies on inter-sample relations, e.g.,
Mask-KNN, would struggle to correctly identify anomalies of type
2 as they lie in a subspace close to normal samples.

http://odds.cs.stonybrook.edu/
https://github.com/hugothimonier/Retrieval-Augmented-Deep-Anomaly-Detection-for-Tabular-Data
https://github.com/hugothimonier/Retrieval-Augmented-Deep-Anomaly-Detection-for-Tabular-Data


Retrieval Augmented Deep Anomaly Detection for Tabular Data CIKM ’24, October 21–25, 2024, Boise, ID, USA.

Table 2: Comparison of the F1-score (↑) of transformer+attention-bsim across values of 𝑘 . Here −1 stands for H = C. Some
values are N/A either because it is not relevant to compute or when there are not enough samples in the training set for the
selected value of 𝑘 .

𝑘 0 5 25 50 200 500 −1
transformer+attention-bsim

Abalone 42.5±7.8 53.0±6.4 54.9±5.4 55.0±5.4 52.0±5.6 54.0±6.5 53.0±5.7
Satellite 65.6±3.3 71.5±2.4 71.3±1.3 71.2±1.6 70.8±1.8 71.2±1.7 71.9±1.5
Lympho 88.3±7.6 91.7±8.3 93.3±8.2 91.7±8.3 N/A N/A 90.0±8.1
Satimage 89.0±4.1 88.8±3.8 88.4±3.8 89.4±4.2 88.8±4.3 89.1±4.3 93.2±1.7
Thyroid 55.5±4.8 56.9±5.3 55.9±5.2 56.3±5.2 56.4±5.2 55.9±5.6 55.8±6.3
Cardio 81.0±4.1 81.2±1.6 81.9±1.4 81.9±1.4 81.9±1.4 81.9±1.4 80.6±2.4

Ionosphere 88.1±2.8 89.4±5.0 90.2±4.5 89.8±4.3 N/A N/A 91.7±2.1
mean 70.3 76.1 76.6 76.5 70.0 70.4 76.6

mean std 4.9 4.7 4.3 4.3 3.7 3.9 4.0

Table 3: Share (%) of each class correctly identified (↑). Average
over 5 data splits. The Table should be read as follows: On
average, the transformer correctly classified 78.5% of type 1
anomalies as anomalies.

Normal Anomalies Anomalies
(type 1) (type 2)

Mask-KNN 93.0% (±0.4) 100.0%(±0.0) 77.3%(±4.4)
Transformer 91.4% (±1.4) 78.5%(±1.0) 100.0%(±0.0)
+att-bsim 94.6% (±0.5) 88.0%(±0.8) 100.0%(±0.0)

Synthetic Dataset. We effectively test this hypothesis by con-
structing a synthetic three-dimensional dataset where the features
of normal samples satisfy the relations described in eq. (12). We
also construct two types of anomalies where type 1 anomalies fol-
low the same inter-feature relation as normal samples but with
values in a non-overlapping interval as those of the normal class.
Type 2 anomalies are constructed to be close to the normal popu-
lation but with inter-feature relation differing from eq. (12). This
synthetic dataset is displayed in figure 3. The normal population
comprises 1000 samples, and we generate 200 anomalies for each
type. We use half of the normal samples to train models and use
the rest merged with the anomalies as the validation set. We com-
pare the capacity of Mask-KNN, the vanilla transformer, and the
retrieval-augmented transformer to identify anomalies and dis-
play the obtained results in Table 3. We consider the same mask
bank, {(1, 0, 0), (0, 1, 0), (0, 0, 1)}, for all three approaches. We use
the same strategy for selecting the decision threshold as detailed in
section 4. See appendix B.2 for more details on the experimental
setting.

Results. We observe in Table 3 that the vanilla transformer strug-
gles to detect type 1 anomalies in comparison with other methods,
as they explicitly require inter-sample dependencies to be identified.
Nevertheless, it correctly identifies 91.4% of normal samples on aver-
age and perfectly detects type 2 anomalies. Conversely, Mask-KNN
obtains significantly lower performance than competing methods
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Figure 3: Anomalies of type 1 ( ) require inter-sample de-
pendencies to be correctly identified with high probability.
Anomalies of type 2 ( ) on the other hand require inter-
feature dependencies to be correctly identified.

for type 2 anomalies while correctly identifying type 1 anomalies
and normal samples. Notice how both methods cannot correctly
identify anomalies from one of the two anomaly types despite using
a perfectly separable dataset. On the contrary, the retrieval aug-
mented transformer can better identify both types of anomalies as
it can leverage inter-sample and inter-feature dependencies. This
experiment provides information as to why combining dependen-
cies for anomaly detection is relevant: it allows the detection of
most anomaly types while other approaches are confined to some
anomaly categories.

5.2 Analysis of the effect of the number of
helpers 𝑘 on the performance

Note that we randomly selected a subset of the dataset from the
benchmark for the ablation studies conducted hereafter. We use this
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Table 4: Comparison of the performance of the transformer
+ attention-bsim model for different retrieval module archi-
tecture based on the F1-score (↑).

Retrieval post-enc post-emb post-emb
Aggregation post-enc post-enc post-emb

Abalone 53.0±5.7 47.0±7.6 30.5±14
Satellite 71.9±1.5 60.5±0.9 65.1±2.3
Lympho 90.0±8.1 91.6±8.3 84.2±11.1
Satimage 93.2±1.7 50.8±17.0 65.9±15.3
Thyroid 55.8±6.3 55.2±5.9 58.1±5.0

Ionosphere 91.7±2.1 88.2±1.4 91.3±2.0
mean 75.9 65.6 65.9

mean std 4.2 6.9 8.3

subset of datasets in each experiment for computational reasons
and to avoid cherry-picking the hyperparameters.

We investigate the impact of varying 𝑘 , the number of helpers, for
both the transformer augmented by attention-bsim and the KNN
module since they are the two best-performing retrieval-augmented
models. We keep hyperparameters constant and only make 𝑘 vary
between runs. We report in Table 2 the obtained results for both
architectures for values of 𝑘 ∈ {0, 5, 25, 50, 200, 500,−1}, where −1
implies thatH = C.

A noticeable trend is that both architectures obtain the best
results with moderate numbers of helper, i.e. 𝑘 ∈ {25, 50}, and
have worse performance for smaller values of 𝑘 . This observation
suggests that performance displayed in tables 1,8, and 9 could be
improved for optimized values of 𝑘 .

5.3 Analysis of the effect of the value of 𝜆
We analyze the performance variation for the best-performing ex-
ternal retrieval module, namely transformer+attention-bsim, for
varying values of 𝜆. We compute the average F1-score over 10 runs
for each value of 𝜆 in {0.1, 0.2, . . . , 0.7} while keeping the same
hyperparameters. We report the results in Table 5.

We observe a slight variation of the average metric across the
datasets when setting lambda values from 0.1 to 0.7. The maximum
value is obtained for 0.5, but the difference with other values of 𝜆
is non-significant. Nevertheless, we observe significant differences
between the obtained results for isolated datasets for different val-
ues of 𝜆. This observation supports the idea that an optimal value
of 𝜆 exists for each dataset, which may differ between datasets.

5.4 Location of the retrieval module
We investigate the impact of the retrieval module’s location on
the retrieval-augmented models’ performance. To do so, we focus
on the transformer+attention-bsim model since it has shown to
be the best-performing retrieval-based method. We compare three
different architectures:

• (post-enc, post-enc) for post-encoder location and post-
encoder aggregation: the architecture detailed in figure 1,

Table 5: Comparison of transformer+attention-bsim across
values of 𝜆 based on the F1-Score (↑).

𝜆 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Abalone 42.5 44.3 47 47.3 46.5 53 46.5 45.8
Satellite 65.6 72 72 72.5 73 71.9 73.5 73.4
Lympho 88.3 90.8 90.8 91.7 92.5 90 91.7 90
Satim. 89 94.5 94.6 94.1 94.1 93.2 93.8 94.1
Thyroid 55.5 57.2 57.4 56.6 56.6 55.8 57.1 57.3
Cardio 68.8 80.9 80.6 80.9 80.9 80.9 80.9 80.7
Ionosp. 88.1 90.3 92.1 92.2 91.2 91.7 92.3 91.7

mean 71.1 75.7 76.4 76.5 76.4 76.6 76.5 76.1

• (post-emb, post-enc), the architecture in which the re-
trieval module is located after the embedding layer, but the
aggregation is still located after the encoder,

• (post-emb, post-emb) the architecture where both retrieval
and aggregation are located after the embedding layer.

We do not report the results for the cardio dataset since it failed to
converge for the (post-emb, post-enc) and (post-emb, post-emb)
architectures and output NaN values in inference. We used the same
hyperparameters for all three architectures. For (post-emb, post-enc)
and (post-emb, post-emb) architectureswe report the average over
10 runs. We display the results in Table 4.

We observe that the (post-enc, post-enc) architecture obtains
the highest mean and lowest mean standard deviation over the
tested datasets by a sizable margin. The transformer encoder’s ex-
pressiveness allows for better representations of a data sample than
the embedding layer and may account for such results. Indeed, this
shows that the retrieval modules that receive the embedded rep-
resentation as inputs are less able to select the relevant sample to
foster mask reconstruction and anomaly detection performance.
Moreover, since the encoder and retrieval modules are trained con-
jointly, the retrieval module can help the encoder converge to a
state that favors sample representations that allow relevant clusters
to be formed.

5.5 Random mask bank
We also investigate the impact of constructing a random mask
bank for inference instead of selecting a deterministic mask bank
as discussed in section 3.3. We construct for inference a random
mask bank composed of the same number of masks as for the deter-
ministic mask bank and use the same probability 𝑝𝑚𝑎𝑠𝑘 as used to
train the model. We compare the performance of the transformer
model+attention-bsim based on the F1-score for the two set-ups
and display the results in Table 6. We observe that the deterministic
mask bank detects anomalies better on most tested datasets. When
computing the anomaly score with the deterministic mask bank, the
model obtains an average F1-score of 76.6 over the 7 datasets, while
with the random mask bank, the model obtains 65.4. Moreover, as
expected, we also observed a significantly larger standard deviation
between runs. We might expect the standard deviation to decrease
as the number of masks increases, which would induce significant
computational overhead.
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Table 6: Comparison of the performance of the transformer +
attention-bsimmodel based on the F1-Score (↑) for twomask
bank set-ups. The samemodel was used for inference in both
set-ups. We report an average over 10 different splits of the
data.

Mask bank random deterministic

Abalone 43.0±14.9 53.0±5.7
Satellite 58.4±5.5 71.9±1.5
Lympho 86.7±8.5 90.0±8.1
Satimage 47.7±20.5 93.2±1.7
Thyroid 55.6±6.1 55.8±6.3
Cardio 81.3±1.6 80.6±2.4

Ionosphere 85.2±4.3 91.7±2.1
mean 65.4 76.6

mean std 8.8 4.0

6 LIMITATIONS AND CONCLUSION
Limitations. As with most non-parametric models that lever-

age the training set in inference, our retrieval-augmented models
display a higher complexity than parametric approaches. These
approaches can scale well for datasets with a reasonable number
of features 𝑑 ; however, for large values of 𝑑 , these models incur a
high memory cost.

Conclusion. In this work, we have proposed an extensive inves-
tigation into external retrieval to augment reconstruction-based
anomaly detection methods for tabular data. We have shown that
augmenting existing AD methods using attention-based retrieval
modules can help foster performance by allowing the model to
attend to sample-sample dependencies. Indeed, our experiments
involving an extensive benchmark of tabular datasets demonstrate
the effectiveness of retrieval-based approaches since the architec-
ture involving the attention-bsim module surpasses the vanilla
transformer by a significant margin. We also provide a first expla-
nation as to why combining both types of dependencies can be
critical to obtaining consistent performance across datasets: differ-
ent types of anomalies require different types of dependencies to
be efficiently detected.

Future Work. Overall, our work showed that the best-performing
attention-based retrieval mechanism relies on other forms of atten-
tion than vanilla attention. Parallel to that, models like NPT-AD
have shown strong performance for anomaly detection on tabu-
lar data and rely on standard multi-head self-attention through
the Attention Between Datapoints (ABD) mechanism, close to the
v-attention module, to leverage inter-sample relations. Our find-
ings may invite further research on modifying the ABD mechanism
involved in NPTs to improve their AD performance. Finally, the
use of external retrieval modules proved effective for the task of
anomaly detection using mask reconstruction. The proposed exter-
nal retrieval module could also be easily added to existing deep-AD
methods to test whether they may prove relevant for other pretext
tasks for anomaly detection on tabular data.
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A DATASETS CHARACTERISTICS AND EXPERIMENTAL SETTINGS
A.1 Dataset characteristics
In Table 7, we display the main characteristics of the datasets involved in our experiments.

Table 7: Datasets characteristics

Dataset 𝑛 𝑑 Outliers

Wine 129 13 10 (7.7%)
Lympho 148 18 6 (4.1%)
Glass 214 9 9 (4.2%)

Vertebral 240 6 30 (12.5%)
WBC 278 30 21 (5.6%)
Ecoli 336 7 9 (2.6%)

Ionosphere 351 33 126 (36%)
Arrhythmia 452 274 66 (15%)
BreastW 683 9 239 (35%)
Pima 768 8 268 (35%)
Vowels 1456 12 50 (3.4%)

Letter Recognition 1600 32 100 (6.25%)
Cardio 1831 21 176 (9.6%)
Seismic 2584 11 170 (6.5%)
Musk 3062 166 97 (3.2%)
Speech 3686 400 61 (1.65%)
Thyroid 3772 6 93 (2.5%)
Abalone 4177 9 29 (0.69%)
Optdigits 5216 64 150 (3%)
Satimage-2 5803 36 71 (1.2%)
Satellite 6435 36 2036 (32%)
Pendigits 6870 16 156 (2.27%)

Annthyroid 7200 6 534 (7.42%)
Mnist 7603 100 700 (9.2%)

Mammography 11183 6 260 (2.32%)
Shuttle 49097 9 3511 (7%)
Mulcross 262144 4 26214 (10%)

ForestCover 286048 10 2747 (0.9%)
Campaign 41188 62 4640 (11.3%)
Fraud 284807 29 492 (0.17%)

Backdoor 95329 196 2329 (2.44%)
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B DETAILED EXPERIMENTS
B.1 Detailed tables for main experiments

Table 8: Anomaly detection F1-score (↑). We perform 5% T-test to test whether the difference between the highest metrics for
each dataset is statistically significant.

Method Transformer +KNN +v-att. +att-bsim +att-bsim
-bval

Wine 23.5±7.9 24.9±5.9 26.5±7.3 29.0±7.7 27.0±5.6
Lympho 88.3±7.6 89.2±7.9 88.3±9.3 90.0±8.1 89.1±7.9
Glass 14.4±6.1 12.8±3.9 12.2±3.3 12.8±3.9 11.1±0.1
Verteb. 12.3±5.2 15.7±2.8 12.7±4.1 14.3±2.6 13.5±5.1
Wbc 66.4±3.2 65.2±4.0 66.2±5.2 65.5±4.4 67.9±4.2
Ecoli 75.0±9.9 75.6±7.5 75.6±9.7 73.8±8.0 75.0±9.7
Ionosph. 88.1±2.8 85.7±3.4 86.0±4.7 91.7±2.1 79.3±1.6
Arrhyth. 59.8±2.2 60.3±2.2 60.2±2.7 61.2±2.1 61.1±2.8
Breastw 96.7±0.3 96.7±0.3 96.8±0.3 96.7±0.3 96.7±0.3
Pima 65.6±2.0 64.7±3.1 64.0±3.3 64.3±2.4 67.0±1.5
Vowels 28.7±8.0 40.0±10.0 49.1±11.1 44.5±10.5 58.0±11.2
Letter 41.5±6.2 32.9±11.8 41.8±11.5 43.7±10.3 28.5±7.1
Cardio 68.8±2.8 65.6±3.6 62.8±6.9 67.7±3.7 68.3±4.5
Seismic 19.1±5.7 17.4±5.5 19.5±6.3 16.7±5.5 17.5±5.4
Musk 100±0.0 100±0.0 100±0.0 100±0.0 100±0.0
Speech 6.8±1.9 6.3±1.4 5.7±1.7 5.9±1.5 5.9±1.7
Thyroid 55.5±4.8 55.5±4.9 56.0±5.9 55.8±6.3 55.3±6.6
Abalone 42.5±7.8 42.5±9.5 49.8±6.5 53.0±5.7 43.2±9.1
Optdig. 61.1±4.7 70.7±16.5 51.5±7.6 62.6±6.5 22.8±5
Satimage2 89.0±4.1 86.8±0.4 90.7±2.6 93.2±1.7 64.2±7.2
Satellite 65.6±3.3 58.6±2.9 57.3±3.0 71.9±1.5 53.7±3.3
Pendig. 35.4±10.9 52.1±9.0 39.0±14.5 53.4±9.8 34.2±12.2
Annthyr. 29.9±1.5 30.4±1.9 30.3±1.5 30.3±1.6 30.5±1.4
Mnist 56.7±5.7 64.2±3.7 61.7±1.0 61.6±1.0 56.7±1.9
Mammo. 17.4±2.2 17.3±2.4 15.5±2.5 17.2±3.0 17.7±2.7
Shuttle 85.3±9.8 90.8±2.9 67.7±13.7 87.8±3.7 95.6±1.8
Mullcr. 100±0.0 100±0.0 100±0.0 100±0.0 100±0.0
Forest 21.3±3.1 18.6±4.6 21.0±5.9 24.9±6.5 11.1±4.1
Camp. 47.0±1.9 48.5±2.1 43.3±2.3 49.7±1.2 49.1±1.1
Fraud 53.4±4.4 56.4±2, 1 56.3±2.1 57.1±2.1 55.2±1.8
Backd. 85.8±0.6 86.1± 0.6 85.2± 0.7 85.3± 0.6 82.4± 1.3

mean 56.2 56.1 55.7 58.6 53.9
mean std 4.4 4.6 5.0 3.7 3.7



Retrieval Augmented Deep Anomaly Detection for Tabular Data CIKM ’24, October 21–25, 2024, Boise, ID, USA.

Table 9: Anomaly detection AUROC(↑). We perform 5% T-test to test whether the differences between the highest metrics for
each dataset are statistically significant.

Method Transformer +KNN +v-att. +att-bsim +att-bsim
-bval

Wine 61.4±6.7 60.4±5.4 62.1±6.4 63.5±7.8 64.5±5.6
Lympho 99.5±0.4 99.6±0.4 99.6±0.5 99.7±0.3 99.7±0.3
Glass 61.2±7.0 61.2±5.0 62.1±7.0 59.3±6.9 59.1±5.8
Vertebral 44.8±5.2 46.7±4.1 45.3±7.1 45.4±3.7 45.4±4.7
WBC 95.0±1.1 94.3±1.5 94.3±1.6 94.2±1.1 95.5±1.6
Ecoli 84.8±1.6 84.8±1.8 85.2±2.7 87.4±1.8 85.4±2.3
Ionosph. 95.4±1.9 93.7±2.7 93.6±4.0 97.5±0.1 87.2±2.3
Arrhyth. 81.7±1.1 81.9±0.9 81.8±0.9 82.3±0.7 82.1±0.9
Breastw 99.6±0.1 99.6±0.1 99.6±0.1 99.6±0.1 99.6±0.1
Pima 67.2±2.4 66.0±3.8 65.4±3.8 65.8±2.9 68.7±1.4
Vowels 78.4±9.2 86.1±5.2 90.4±4.7 88.3±4.5 94.3±2.8
Letter 80.5±4.8 73.5±9.6 81.0±8.7 81.5±6.8 69.1±7.7
Cardio 93.5±1.3 92.0±1.7 89.9±4.2 93.3±1.7 93.7±1.3
Seismic 58.2±7.9 56.8±8.4 57.9±7.6 58.0±6.7 54.8±6.2
Musk 100±0.0 100±0.0 100±0.0 100±0.0 100±0.0
Speech 47.2±0.7 47.3±0.8 47.3±0.8 47.3±0.8 47.0±0.5
Thyroid 93.8±1.2 93.8±1.2 93.6±5.9 93.7±1.5 93.6±1.8
Abalone 88.3±2.0 86.1±3.6 88.0±3.5 87.9±3.7 86.6±2.9
Optdig. 96.4±4.7 96.2±9.8 94.9±1.7 96.7±1.1 83.4±3.2
Satimage 99.7±0.1 99.5±0.2 99.6±0.2 99.8±0.1 96.8±1.9
Satellite 73.8±2.5 68.9±2.0 67.8±2.5 79.5±1.9 62.0±2.9
Pendigits 93.8±2.6 96.5±1.4 94.1±2.8 97.1±1.2 89.4±7.1
Annthyr. 65.4±1.4 66.0±1.7 66.2±1.3 66.2±1.6 66.0±1.1
Mnist 87.4±3.2 90.3±2.2 89.9±0.4 90.0±0.5 87.3±1.0
Mammo. 77.6±1.0 76.8±2.4 75.2±2.9 78.4±1.6 79.8±1.8
Mullcross 100±0.0 100±0.0 100±0.0 100±0.0 100±0.0
Shuttle 97.2±2.2 98.1±0.5 90.2±6.1 97.7±0.9 98.9±0.3
Forest 95.1±0.8 94.5±0.7 95.0±1.0 95.4±0.9 92.7±0.7
Campaign 75.3±2.1 75.7±1.9 69.3±2.0 76.1±2.0 75.9±2.1
Fraud 94.7±0.4 95.1±0.4 95.2±0.4 95.8±0.4 94.7±0.4
Backdoor 95.1±0.2 95.2±0.3 94.5±0.2 94.7±0.1 91.7±0.3
mean 83.4 83.1 83.1 84.4 82.1
mean std 2.4 2.8 2.6 2.0 2.3
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B.2 Synthetic dataset generation and experimental detail for section 5.1
The synthetic three dimensional dataset was generated as follows.

• Normal samples: We consider an interval of values [−2, 3] from which we uniformly sample the first feature 𝑥1. We then sample
𝑥2, 𝑥3 following the relation given in eq. (12) with parameters, (𝛼1, 𝛽1) = (2, 3), (𝛼2, 𝛽2) = (4, 3) and 𝜀 ∼ N(0, 1).

• Anomalies (type 1): We consider an interval of values [3.3, 4] from which we uniformly sample the first feature 𝑥1 and keep the rest
as for normal samples.

• Anomalies (type 2): We consider an interval of values [1.5, 2.5] from which we uniformly sample the first feature 𝑥1 and sample
𝑥2, 𝑥3 following eq. (12) but with parameters (𝛼1, 𝛽1) = (−7.5,−1) and (𝛼2, 𝛽2) = (4, 3).

The vanilla transformer and its augmented version were trained with the following hyperparameters:
• Batch size: −1.
• Patience: 100 epochs.
• Learning rate (lr): 0.001.
• Hidden dim (𝑒): 8.
• Masking probability 𝑝𝑚𝑎𝑠𝑘 : 0.15.
• Number of attention heads: 2.
• Number of layers of the encoder: 2.
• Retrieval hyper-parameters:
– Retrieval location: post-encoder
– Retrieval aggregation location: post-encoder
– 𝜆: 0.5
– C = D𝑡𝑟𝑎𝑖𝑛

– 𝑐𝑎𝑟𝑑 (H) = 500
For Mask-KNN, following [34] we set the number of neighbors to 𝑘 = 5.
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