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Abstract

In knowledge graph embedding, leverag-001
ing relation-specific entity-transformation has002
markedly enhanced performance. However,003
this approach lacks assurance for consistent004
changes in relation and entity embeddings due005
to the disconnected entity-transformation rep-006
resentation, missing valuable inductive bias007
among semantically similar relations. Further-008
more, a generalized plug-in approach as a009
SFBR disrupts this consistency through ex-010
cessive concentration of entity embeddings011
under entity-based regularization, generating012
indistinguishable score distributions among013
relations. To tackle these challenges, we in-014
troduce Relation-Semantics Consistent Filter015
(RSCF), characterized by three features: 1)016
shared affine transformation of relation em-017
beddings across all relations, 2) change-based018
entity-transformation that adds an entity em-019
bedding to its change represented by the trans-020
formed vector, and 3) normalization of the021
change to prevent scale reduction. In knowl-022
edge graph completion tasks with distance-023
based and tensor decomposition models, RSCF024
notably enhances performance across all rela-025
tions, particularly in rare relations in long-tailed026
distribution.027

1 Introduction028

Knowledge graphs (KGs) play crucial roles in a029

wide area of machine learning and its applica-030

tions (Liu et al., 2021; Zhang et al., 2022b; Zhou031

et al., 2022; Fang et al., 2017; Gao et al., 2019; Cao032

et al., 2019; Geng et al., 2022; Wang et al., 2019).033

The KGs, even on a large scale, still suffer from a034

lack of data. For example, 71% of people in Free-035

base have no birthplace information, and 75% have036

no nationality information (Dong et al., 2014). This037

incompleteness issue has been extensively stud-038

ied as a task to predict missing entity information,039

called as knowledge graph completion (KGC). An040

effective approach for KGC is knowledge graph041

embedding (KGE) that learns vectors to represent 042

entities and relations in a low dimensional space 043

to measure the validity of triples. Two primary 044

approaches to determine the validity are distance- 045

based model (DBM) using the Minkowski distance 046

and tensor decomposition model (TDM) regarding 047

KGC as a tensor completion problem (Zhang et al., 048

2020b). A recently tackled issue of the models is 049

to learn only single embedding for an entity, which 050

is insufficient to express its various attributes in 051

complex relation patterns such as 1-N, N-1 and 052

N-N (Wang et al., 2014; Chao et al., 2021; Ge 053

et al., 2023). A proposed and effective approach 054

for this issue is entity-transformation based model 055

(ETM) that uses relation-specific transformations 056

to generate different entity embeddings for rela- 057

tions from their original embedding, enabling more 058

complex entity and relation learning (Liang et al., 059

2021; Wang et al., 2014; Chao et al., 2021; Ge et al., 060

2023). 061

ETMs, however, have a limit to learning useful 062

inductive bias that could be obtained in seman- 063

tically similar relations. For example, Semantic 064

Filter Based on Relations (SFBR), a recently pro- 065

posed method plugged in to various KGE mod- 066

els (Liang et al., 2021), assigns mutually discon- 067

nected relation-specific transformation to each re- 068

lation. Furthermore, under a significantly useful 069

regularizer such as DURA (Zhang et al., 2020b) 070

and N3 (Lacroix et al., 2018), especially on TDM, 071

the method critically concentrates entity embed- 072

dings including unobserved entities and generates 073

indistinguishable score distributions across rela- 074

tions. Both issues are interpreted as limited learn- 075

ing an important and implicit inductive bias that 076

semantically similar relation embeddings have sim- 077

ilar relation-specific entity-transformation, called 078

relation-semantics consistency in this paper. 079

To alleviate the issues, we present Relation- 080

Semantically Consistent Filter (RSCF), incorpo- 081

rating three features: 1) shared affine transfor- 082

1



mation for consistency mapping of relations to083

entity-transformations, 2) change-based entity-084

transformation representation using the affine trans-085

formation to generate only the change of an entity-086

embedding subsequently added by this embedding087

and 3) normalization of the change for preventing088

critical scale reduction breaking consistency. Our089

contributions are as follows.090

• We raise and clarify two problems of entity-091

transformation models in learning inductive092

bias in terms of relation-semantics consis-093

tency.094

• We propose a novel and significantly outper-095

forming relation-semantics consistent filter096

(RSCF) to induce the consistency as a plug-in097

method to KGE models.098

• We provide experimental results on common099

benchmarks of KGC, and in-depth analysis to100

verify the causes and derived effects.101

2 Loss of Useful Inductive Bias102

Because semantically similar relations have similar103

embedding (Yang et al., 2014), we define that map-104

ping relation embeddings to entity-transformations105

is relation-semantically consistent if and only if106

any relation pairs (r1, r2) and shorter pair (r1, r3)107

for a given r1 are mapped to entity-transformation108

pair (T1, T2) and shorter pair (T1, T3), respectively.109

This consistency serves as an inductive bias imply-110

ing that semantically similar relations have similar111

entity-transformations and, therefore, overall simi-112

lar entity embeddings. Two phenomena of losing113

this inductive bias and their causes are as follows.114

Disconnection of Entity-Transformations Dis-115

connected entity-transforamtions loosely use this116

bias, especially under lack of triplet data.117

In existing methods, relation-specific entity-118

transformations use separate parameters such as119

hr = Wrh and tr = Wrt (Liang et al., 2021),120

where h, t, are head and tail entity embedding, and121

Wr is a relation-specific transformation. Despite122

the disconnection, the methods can still learn simi-123

lar Wr for given two similar relation embeddings124

if their desirable entity ranks are similar. However,125

limited observation of entities due to sparse triplet126

data introduces a wide variety of possible entity-127

transformations and their corresponding embed-128

ding distributions, thereby diluting consistency. In129

this environment, the disconnected representation130

without any specific training and initialization pro- 131

cess aiming to foster the consistency is exposed to 132

the loss of useful inductive bias of similar relations. 133

(a) ET-SFBR

Silhouette: -0.27

(b) ET-RSCF

Silhouette: 0.35

(c) EE-SFBR

Silhouette: -0.28

(d) EE-RSCF

Silhouette: 0.29

position

currency

film production

file actor

people place

film place

music role

organization place

producer type

award category

Figure 1: Head entity-transformations and entity embed-
dings for semantically similar relation groups. (a) and
(b) indicate ET of SFBR and RSCF, (c) and (d) indicate
EE of SFBR and RSCF. Points in the same color are
relations in the same group. Clearly distinct Groups are
selected from the original TransE (Appendix B). Sil-
houette score shows numerical results of their in-cluster
concentration relative to inter-cluster distance.

134

Empirical Evidence for Disconnection Figure 1 135

shows the impact of the disconnection via T- 136

SNE visualization of head entity-transformations 137

(ET) and corresponding entity embeddings (EE) 138

of SFBR and RSCF. We split them into relation 139

groups, defined for clearly clustered relations in 140

original TransE1. An entity for EE is randomly se- 141

lected on FB15k-237. The ET and EE distribution 142

of SFBR are mostly dispersed and overlapping be- 143

tween semantically different relation groups, which 144

implies the limit in inducting relation-semantics 145

consistency, while RSCF methods show more in- 146

cluster concentration and decoupling clusters. The 147

higher silhouette score of RSCF supports this phe- 148

nomenon. See more detailed distributions in Ap- 149

pendix I. 150

Entity Embedding Concentration In particular, 151

SFBR additionally loses consistency under entity- 152

based regularization, DURA (Zhang et al., 2020b). 153

In KGE based on tensor decomposition model, 154

DURA has shown significant improvement enough 155

to be inevitable. However, SFBR with DURA re- 156

duces the scale of ET, causing a strong concentra- 157

1For details about the relation group, please refer to the
Appendix H.
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(b) Test Performance (left) and Scale (right)

Figure 2: Entity embedding concentration, and scale
and performance decrease in training. The results are
collected from ComplEX with DURA regularization
and SFBR is applied after 200 epochs (λ: regularization
weight).

tion of entire entity embeddings. Observed entities158

are relatively safe because the score distribution is159

continuously adjusted to predict correct triples, but160

unobserved entities are critically vulnerable to the161

concentration causing indistinguishable score dis-162

tributions for semantically different relations, im-163

plying critically broken consistency. This cause of164

this phenomenon is simply derived in the following165

equations of DURA in the original (above) (Zhang166

et al., 2020b) and DURA in SFBR (below).167

∑
p ||hiRj||22+||hi||22+||tk||22+||tkRj

⊤||22∑
p ||Wrj

hiRj||22+||Wrj hi||
2
2+||tk||22+||tkRj

⊤||22
(1)168

where p = (hi, rj , tk) ∈ S for total training data169

S, hi and tk are head and tail embeddings with170

indices and Rj is a matrix representing relation rj .171

In the equations, the minimum scale of ET Wrj is172

an optimum for distinguished regularization loss173

terms. Therefore, ET scales gradually decrease and174

end up with indistinguishable score distribution in175

all score distributions.176

Empirical Evidence for Concentration Fig-177

ure 2 presents T-SNE visualization of score dis-178

tributions for selected queries. We select the re-179

lation r1 showing significantly low performance180

in ComplEX-SFBR on FB15k-237, and select all 181

queries (h, r1, ?) for the relation r1 in the valida- 182

tion set. We then generate score distribution for 183

each query using RSCF, SFBR, SFBR with nor- 184

malization (SFBR (N)), and the ComplEX-DURA. 185

The results show that SFBR concentrates embed- 186

dings into a small and clear cluster, while the other 187

methods are diversely dispersed. 188

Do We Need to Use DURA regularizer? Gen- 189

erating indistinguishable score distributions can- 190

not be merely resolved by handling the regulariza- 191

tion weight. Figure 2 (b) shows the MRR (left) of 192

ComplEX-SFBR with DURA and transformation 193

scale (right). In training until 200 epochs, largely 194

weighted DURA shows significant performance, 195

but applying SFBR starts to decrease MRR and 196

the transformation scale. The results imply that in- 197

tegrating SFBR with DURA causes performance 198

degradation with scale decrease ending up in the 199

entity embedding concentration. However, the re- 200

sult of SFBR with a small weighted DURA indi- 201

cates that simply excluding DURA on the tensor 202

decomposition model will critically decrease the 203

performance. 204

3 Method 205

Overview In this section, we propose Relation- 206

Semantics Consistent Filter (RSCF) to address the 207

consistency issues. In Figure 3, the overall filtering 208

process of RSCF, distinguished features compared 209

to SFBR, and their intended effects are illustrated. 210

RSCF represents the ET as an addition of original 211

embedding and its relation-specific change ( c⃝). 212

The change is generated by an affine transformation 213

from relation embedding ( a⃝), and then normalized 214

( b⃝), described as 215

er = (

b⃝︷︸︸︷
Np (

a⃝︷︸︸︷
rA ) + 1)︸ ︷︷ ︸
c⃝

⊗e (2) 216

where A ∈ Rn×n is shared affine transformation, 217

r and e ∈ Rn are relation and entity embedding. 218

Np(rA) = rA
∥rA∥p , and ⊗ is an elementwise 219

product. Detailed motivation and effects are as 220

follows. 221

Shared Affine Transformation for Consistency 222

Affine transformation maintains the parallelism of 223

two parallel line segments after the transforma- 224

tion and preserves the ratio of their lengths. This 225

property guarantees consistent mapping of relation 226
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Figure 3: Overview of Relation-Semantics Consistent Filter and Its Effect. Its process (left) is illustrated on SFBR
coloring changed modules. The two effects (right) are shown by comparing SFBR and RSCF on ET and entity
embeddings.

embeddings at least on a line to generated vec-227

tors (part a⃝ in Equation 2). After normalization228

of the generated vectors (part b⃝), the consistency229

still holds because the monotonic increase of dis-230

tance between pairs is guaranteed even if the rate231

of lengths is not equally maintained (simple proof232

in Appendix C). The addition of one vector to the233

normalized change (part c⃝) does not alter the in-234

equality of distances of lines, so the consistency is235

again maintained. Overall, by applying the affine236

transformation, we can maintain the consistency be-237

tween relation embedding and its ET. To implement238

the affine transformation shared across relations,239

we simply adopt a linear transformation for A.240

Change Based Entity Transformation Sharing241

an affine transformation over all relations inevitably242

reduces the expressiveness of ET compared to243

entirely separate relation-specific transformations244

such as SFBR that has shown to yield positive re-245

sults (Liang et al., 2021). To mitigate the negative246

effects from this reduction, we decrease required247

expressiveness by learning only the changes in en-248

tity embeddings, rather than learning their diverse249

positions. Moreover, this change-based ET repre-250

sentation enables safely bounding changes via nor-251

malization without altering original entity embed- 252

dings. To implement it, we add one to the normal- 253

ized change Np(rA) and multiply it to the original 254

entity-embedding (part c⃝). 255

Normalization of Change for Reducing Entity 256

Embedding Concentration The change gener- 257

ated from the affine transformation is normalized 258

by its length, expressed as Np(rA) in the part b⃝. 259

This normalization alleviates critical entity embed- 260

ding concentration via reducing scale decrease of 261

transformed entity embeddings er in DURA reg- 262

ularization. In our relation-specific change based 263

ET, the change of er is simply written as 264

∥α⊗ e∥p (3) 265

where α = Np(rA). This value has a maximum 266

when α has the same direction to e. Since α is a 267

unit vector in p-norm, α = e/∥e∥p . Then, the 268

maximum change is 269

∥ e

∥e∥p
⊗ e∥p = ∥ e2

∥e∥p
∥p =

∥e2∥p
∥e∥p

(4) 270

In practice, the elements of embedding vectors are 271

much less than 1 in most cases. Therefore, the max- 272

imum change ∥e2∥p/∥e∥p is significantly lower 273

than the unrestricted scale change in SFBR. 274
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Extension of RSCF The shared affine transfor-275

mation can be easily extended to Linear − 2 in-276

troduced in SFBR by extending shared affine trans-277

formation We ∈ Rn×n to We ∈ Rn×2n. RSCF278

(Linear-2) can be written as:279

Wr
Linear-2 =

[
diag(w1) diag(w2)
diag(w3) diag(w4)

]
(5)280

where Wr
Linear-2, ∈ Rn×n is ET built from the281

relation-specific change vector Np(rA) + 1 of282

RSCF that is notated as concatenation of diagonal283

values of w1,w2,w3,w4 ∈ Rn/2. Following the284

setting of SFBR, RSCF (Linear-2) and RSCF are285

applied to both head and tail entities in DBM, and286

RSCF is applied to the only head entity in TDM.287

Examples of RSCF for different models are given288

in Appendix A289

4 Related Works290

Disconnection of Relation-Specific Transforma-291

tion in ETM ETM is a model that uses relation-292

specific ET to model various attributes of an en-293

tity. Models such as TransH (Wang et al., 2014),294

TransR (Lin et al., 2015), and TransD (Ji et al.,295

2015) are variants of TransE (Bordes et al., 2013),296

designed to handle complex relations by employ-297

ing hyperplanes, projection matrices, and dynamic298

mapping matrices for their transformation func-299

tions, respectively. To address the heterogeneity300

and imbalance presented in TransE and its vari-301

ants, TransSparse (Ji et al., 2016) utilizes adaptive302

sparse matrices to model different types of rela-303

tions. PairRE (Chao et al., 2021) performs a scaling304

operations through the Hadamard product to the305

head and tail entities. SFBR (Liang et al., 2021)306

presents a universal entity transformation-based307

model applicable to both DBM and TDM. To han-308

dle complex relation in TDM, STaR (Li and Yang,309

2022) integrates scaling, translation, and rotation310

operation for semantic matching scoring functions.311

ReflectE (Zhang et al., 2022a) models the transfor-312

mation function using relation-specific dynamic re-313

flection hyperplanes. CompoundE (Ge et al., 2023)314

applied compound operation to both head and tail315

entities. However, these models have no chance for316

inductive bias sharing due to the separate param-317

eter of ET. Moreover, except for the SFBR, these318

models only use DBM or TDM.319

Entity Embedding Concentration in ETM320

SFBR (Liang et al., 2021) applies ET to both DBM321

and TDM. However, it also suffers from inductive322

Dataset Entities Relations Triples
Train Valid Test

WN18RR 40,943 11 86,835 3,034 3,134
FB15k-237 14,541 237 272,115 17,535 20,466
YAGO3-10 123,182 37 1,079,040 5,000 5,000

Table 1: Statistics of KGC Benchmark Datasets

bias loss due to the separate parameter of ET and 323

indistinguishable score distribution because of the 324

entity embedding concentration. 325

5 Experiments 326

5.1 Settings 327

Dataset To evaluate our proposed RSCF 328

models, we consider three KGs datasets: 329

WN18RR (Toutanova and Chen, 2015), FB15k- 330

237 (Dettmers et al., 2018), and YAGO3- 331

10 (Mahdisoltani et al., 2013) The statistics for the 332

three benchmark datasets are as shown in Table 1 333

Evaluation Protocol We evaluated the perfor- 334

mance of KGC following the filtered setting (Bor- 335

des et al., 2013). The filtered setting removes all 336

valid triples from the candidate set when evaluat- 337

ing the test set, except for the predicted test triple. 338

We adopt the MRR and Hits@N to compare the 339

performance of different KGE models. MRR is the 340

average of the inverse mean rank of the entities and 341

Hits@N is the proportion of correct entities ranked 342

within top k. 343

Baselines and Training Protocol We compare 344

the performance of RSCF with the two categories 345

of KGE models: 1) DBM with entity transfor- 346

mation including TransH (Wang et al., 2014), 347

TransR (Lin et al., 2015), TransD (Ji et al., 2015), 348

PairRE (Chao et al., 2021), SFBR (Liang et al., 349

2021), ReflectE (Zhang et al., 2022a) and Com- 350

poundE (Ge et al., 2023), 2) TDM with entity trans- 351

formation including STaR (Li and Yang, 2022), 352

SFBR (Liang et al., 2021) and SFBR with Normal- 353

ization (SFBR (N)2). Because RSCF is a module 354

that is plugged in based on existing models, we 355

used DBM, including TransE, RotatE, and TDM, 356

including CP, RESCAL, and ComplEX as base 357

models. 358

5.2 Performance 359

Performance on Distance-Based Model Table 2 360

shows the comparison of the performance of the 361

RSCF model and DBMs with ET on WN18RR and 362

FB15k-237. In filter-based models, RSCF shows 363

similar or higher performance than SFBR in most 364

2Detailed description of SFBR (N) is given in Appendix B
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Distance-Based Model
with Entity Transformation

WN18RR FB15k-237
MRR H@1 H@10 MRR H@1 H@10

Non Filter Based Models
TransH (Wang et al., 2014) † .220 .042 .495 .299 .201 .488
TransR (Lin et al., 2015) † .219 .050 .498 .309 .220 .489
TransD (Ji et al., 2015) † .211 .087 .505 .306 .218 .486
PairRE (Chao et al., 2021) - - - .351 .256 .544
ReflectE (Zhang et al., 2022a) .488 .450 .559 .358 .263 .546
CompoundE (Ge et al., 2023) .491 .450 .576 .357 .264 .545

Filter Based Models
TransE-SFBR (Diag) (Liang et al., 2021) .242 .028 .548 .338 .240 .538
TransE-RSCF (Ours) .242 .030 .550 .349 .250 .549
TransE-SFBR (Linear-2) (Liang et al., 2021) .263 .110 .495 .354 .258 .545
TransE-RSCF (Linear-2) (Ours) .301 .187 .512 .356 .260 .546
RotatE-SFBR (Diag) (Liang et al., 2021) .489 .437 .593 .351 .254 .549
RotatE-RSCF (Ours) .489 .441 .584 .355 .259 .548
RotatE-SFBR (Linear-2) (Liang et al., 2021) .490 .447 .576 .355 .258 .553
RotatE-RSCF (Linear-2) (Ours) .496 .455 .581 .361 .267 .551

Table 2: Test performance of DBM-based KGC on FB15k-237 and WN18RR. Bold indicates the best result,
underlined signifies the second best result, and red denotes performance improvement over SFBR. (†: reproduced
result from Zhang et al. (2020a)).

Tensor Decomposition Model
with Eentity Transformation

WN18RR FB15k-237 YAGO3-10
MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10

Non Filter Based Models
STaR-DURA (Li and Yang, 2022) .497 .452 .583 .368 .273 .557 .585 .513 .713

Filter Based Models
CP-DURA + SFBR † .479 .441 .555 .368 .275 .557 .581 .510 .707
CP-DURA + SFBR (N) .480 .442 .555 .368 .274 .558 .582 .513 .708
CP-DURA + RSCF (Ours) .481 .443 .556 .368 .273 .558 .584 .514 .711
RESCAL-DURA + SFBR † .497 .454 .576 .369 .277 .550 .578 .503 .712
RESCAL-DURA + SFBR (N) .499 .457 .577 .369 .277 .552 .581 .510 .710
RESCAL-DURA + RSCF (Ours) .499 .459 .578 .369 .277 .552 .581 .509 .714
ComplEX-DURA + SFBR † .491 .450 .571 .373 .277 .563 .587 .517 .715
ComplEX-DURA + SFBR (N) .493 .452 .572 .374 .278 .564 .586 .514 .717
ComplEX-DURA + RSCF (Ours) .497 .454 .581 .375 .279 .565 .589 .518 .717

Table 3: Test performance of TDM-based KGC on FB15k-237, WN18RR, and YAGO3-10. Bold indicates the best
result, underlined signifies the second best result, and red denotes performance improvement over SFBR. (SFBR
(N): SFBR with normalization, †: reproduced results whose reference results in Appendix E).

settings. Even in comparison with the non-filtered365

model, the best filtered model (RotatE-RSCF) sig-366

nificantly outperforms CompoundE, the state-of-367

the-art DBM method.368

Performance on Tensor Decomposition Model369

Table 3 shows performance of TDMs. In filter-370

based models, our model shows performance im-371

provements in almost all datasets. On WN18RR,372

RESCAL-RSCF shows the highest performance,373

outperforming the SFBR. On FB15k-237 and374

YAGO3-10, ComplEX-DURA-RSCF shows the375

highest performance, outperforming the SFBR. Fur-376

thermore, in performance comparison with the377

non-filtered model, ComplEX-DURA-RSCF out-378

performs STaR on FB15k-237 and YAGO3-10.379

Ablation Study In Table 3, applying only nor- 380

malization to SFBR slightly improves performance 381

on overall datasets and base models, but using 382

affine transformation of RSCF shows more signifi- 383

cant results. 384

Relation-Wise Performance for Long Tailed Dis- 385

tribution To demonstrate the effectiveness of our 386

model on long-tail relations, we sorted relations by 387

their frequency in the train set and divided them 388

into ten groups. Each group has the same rela- 389

tion number. Table 4 shows the MRR scores for 390

each group in TransE, TransE-RSCF (RSCF) and 391

TransE-SFBR (Diag) (SFBR). The results showed 392

that RSCF outperformed SFBR and TrasnE in all 393

groups, indicating that RSCF is also effective for 394
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Relation
Set Frequency TransE RSCF SFBR

MRR MRR MRR
Set1 2435 0.489 0.518 0.486
Set2 5657 0.510 0.534 0.521
Set3 9832 0.403 0.441 0.420
Set4 15410 0.463 0.475 0.465
Set5 23209 0.326 0.337 0.336
Set6 34192 0.509 0.521 0.520
Set7 50157 0.371 0.379 0.371
Set8 74067 0.463 0.482 0.474
Set9 128284 0.311 0.329 0.314
Set10 272115 0.346 0.366 0.355

Table 4: KGC performance of each 10% of unique rela-
tions sorted by their frequency in a long-tailed distribu-
tion.

long-tail relations.395

Performance on Semantically Distinguished Re-396

lation Groups Table 5 presents the validation397

MRR for each relation group, defined as prelimi-398

nary results in Figure 1. RSCF outperformed SFBR399

in all groups except for the position group. These400

results show that reflecting the relation semantics401

into the transformation function can improve model402

performance.403

Relation Group TransE RSCF SFBR
MRR MRR MRR

position 0.370 0.395 0.409
currency 0.529 0.522 0.518
film production 0.218 0.247 0.224
film actor 0.128 0.139 0.133
people place 0.276 0.287 0.283
film place 0.293 0.323 0.314
music role 0.168 0.176 0.154
orgaziation place 0.591 0.626 0.618
producer type 0.397 0.395 0.381
award category 0.353 0.392 0.369

Table 5: KGC performance of each relation-semantic
group on the FB15k-237

Qualitative Example Analysis Table 6 presents404

the correct answers for three sample queries, along405

with the related triples in the training set, and the406

ranks obtained by TransE-RSCF and TransE-SFBR407

(Diag). Since relations of the sampled queries be-408

long to the people place group used in Figure.1,409

the related triples represent triples that include re-410

lations belonging to the people place group. In Ta-411

ble 6, RSCF shows enhanced performance com-412

pared to SFBR, indicating that RSCF can use413

trained bias between similar relations.414

5.3 In-Depth Analysis415

Relation-Semantics Consistency of Entity Em-416

bedding We selected eight queries (h, r, ?) in417

(a) SFBR

query1

query2

query3

query4

query5

query6

query7

query8

(b) RSCF

Figure 4: Visualization for tail entity embeddings for
the same queries.

FB15k-237. Each query has more than 50 answers 418

and has different relation. Figure 4 shows the em- 419

beddings of the related tail entities of queries gener- 420

ated by TransE-SFBR (Diag) (a) and TransE-RSCF 421

(b). This figure illustrates that RSCF concentrates 422

entity embeddings in the same relation group and 423

decouples embeddings in different groups com- 424

pared to SFBR. The result implies that the relation- 425

specific separation of entity embeddings properly 426

works as SFBR, but it also maintains the relation- 427

semantics consistency. See more details about the 428

eight queries in Appendix G. 429
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Figure 5: MRR, regularization loss, entity transforma-
tion scale, and final entity embedding scale over epochs
on the FB15k-237.

Embedding Scale and Score Distribution Recov- 430

ery Figure 5 presents the MRR, regularize loss, 431

transformation scale, and final entity embedding 432

scale over epochs in the validation set of FB15k- 433

237. Following the approach of SFBR (Liang et al., 434

2021), we applied the only DURA regularizer up to 435

200 epochs in ComplEX, then RSCF, SFBR, and 436

SFBR (N) are plugged in after 200 epochs. In the 437

results, SFBR shows a decrease in both transforma- 438

tion scale and final entity embedding scale, accom- 439

panied by a steady decrease in the regularizer loss. 440

In contrast, RSCF and SFBR (N) show almost no 441
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Query (h, r, ?) | Correct Answer Related Triples in Training Set Rank(R/S)

(Guillermo del Toro, /people/person/place_of_birth, ?) | Guadalajara
(Guillermo del Toro, /people/person/places_lived./people/place_lived/location, Jalisco) 9 / 35
(Guillermo del Toro, /people/person/nationality, Mexico)

(Shawn Pyfrom, /people/person/places_lived./people/place_lived/location, ?) | Florida
(Shawn Pyfrom, /people/person/place_of_birth, Tampa) 5 / 32
(Shawn Pyfrom, /people/person/nationality, United States of America)

(Walt Whitman, /people/person/places_lived./people/place_lived/location, ?) | New York
(Walt Whitman, /people/deceased_person/place_of_death, Camden) 3 / 21
(Walt Whitman, /people/person/nationality, United States of America)

Table 6: Example KGC results of RSCF compared to SFBR (R: rank of RSCF, S: rank of SFBR). Related triples
show that similar relations to the queries have similar entities to the correct answers in the training set.

Figure 6: Score-entity graph for randomly samples
queries from Figure 6

decrease in the transformation scale, and the final442

entity embedding scale is maintained. Also, the reg-443

ularizer loss converged at a certain point, indicating444

that both RSCF and SFBR (N) can maintain the em-445

bedding scale due to normalization. Furthermore,446

the MRR decreases in SFBR, while it increases in447

both RSCF and SFBR (N). This result implies that448

entity embedding concentration negatively affects449

to model performance.450

To investigate the detailed change of score dis-451

tribution that directly affects performance, we ran-452

domly sample four queries and present the score453

distribution for all tail entities as shown in Fig-454

ure 6. In the results, SFBR shows near zero scores455

for most entities, and distributions for the queries456

are significantly similar. Applying normalization457

or RSCF, the diversity of scores is recovered as the458

original base model.459

Impact on Over-Smoothed Queries To assess460

the impact of indistinguishable score distribution,461

we conducted a performance evaluation for a se-462

lected relation to show critical entity embedding463

concentration in Figure 2. Table 7 presents the vali-464

dation performance for all queries associated with465

the selected relation. SFBR shows significantly 466

lower performance than RSCF, SFBR (N), and the 467

ComplEX-DURA. This result implies that indis- 468

tinguishable score distribution strongly affects to 469

the accurate prediction of SFBR, simply applying 470

normalization and RSCF gradually recovers it. 471

Model MRR H@1 H@10
ComplEX-DURA + RSCF .395 .283 .609
ComplEX-DURA + SFBR .267 .152 .522
ComplEX-DURA + SFBR (N) .366 .239 .587
ComplEX-DURA .347 .217 .609

Table 7: KGC performance of queries to cause strong
entity embedding concentration in SFBR.

6 Conclusion 472

In this paper, we address the limit in inducing 473

relation-semantics consistency, implying that se- 474

mantically similar relations have similar entity 475

transformation, on entity transformation models 476

for KGC, especially SFBR. We clarify two causes, 477

disconnected entity transformation representation 478

and entity embedding concentration, and provide 479

a novel relation-semantics consistent filter (RSCF) 480

method using shared affine transform to generate 481

the change of entity embedding, normalize it and 482

add it to the embedding. This method significantly 483

improves the performance of KGC compared to 484

state-of-the-art KGE methods for overall relations 485

and especially rare relations. 486

7 Limitations and Future Works 487

RSCF uses the simplest form of affine transforma- 488

tion, but it has a limit of expressing all changes 489

across all embeddings, which requires more ad- 490

vanced approach. Future work should extend the 491

method to additional KGE models to enhance gen- 492

erality. 493
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A Special Cases with RSCF 668

Let hr, tr are transformed head and tail embed- 669

ding by RSCF, then the score function dr(h, r) of 670

TransE-RSCF can be expressed as: 671

dr(h, r) = ∥hr + r− tr∥ (6) 672

The score function dr(h, r) of RotatE-RSCF can 673

be expressed as: 674

dr(h, r) = ∥hr ◦ r− tr∥ (7) 675

The score function dr(h, r) of RESCAL-RSCF can 676

be expressed as: 677

dr(h, r) = ∥hrrt∥ (8) 678

In TDM, tail embeddings are not transformed ac- 679

cording to the settings of SFBR in order to reduce 680

computational costs. 681

B SFBR with Normalization 682

Let Wr is relation-specific ET using separate pa- 683

rameters, then SFBR with normalization can be 684

written as: 685

Np(Wr) + 1 (9) 686

where Np(Wr) = Wr
∥Wr∥p . Additionally, trans- 687

formed entity embedding can be described as: 688

er = (Np(Wr) + 1)e (10) 689

where e is a original entity embedding. 690

C Proof of Consistency of Normalized 691

Change 692

For any relation embedding r1, r2, r3 on a line and 693

their mapped ET T1, T2, T3 by an affine transform, 694

then the consistency holds. Let T2 is on T1T3, and 695

r1r2 is shorter r2r3. Then, T1T2 < T2T3 by the 696

properties of afffine transformation. Because T2 697

is an interpolated point of T1 and T3, ∠T1OT2 < 698

∠T2OT3. After normalization, let ETs projected 699

on T ′
1, T ′

2, and T ′
3. T ′

1T
′
2 =

√
2− 2 cos∠T ′

1OT ′
2, 700

and T ′
2T

′
3 =

√
2− 2 cos∠T ′

2OT ′
3 by simple co- 701

sine rule. Cosine function is monotonically decreas- 702

ing for angles less than π. Therefore, T ′
1T

′
2 < T ′

2T
′
3 703
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Embedding based Model WN18RR FB15k-237
MRR H@1 H@10 MRR H@1 H@10

TransE (Bordes et al., 2013) .226 - .501 .294 - .465
DistMult (Yang et al., 2014) .430 .390 .490 .241 .155 .419
ComplEX (Trouillon et al., 2016) .440 .410 .510 .247 .158 .428
RotatE (Sun et al., 2019) .476 .428 .571 .338 .241 .533
ROTH (Chami et al., 2020) .496 .449 .586 .348 .252 .540
ComplEX-DURA (Zhang et al., 2020b) .491 .449 .571 .371 .276 .560
FieldE (Nayyeri et al., 2021) .48 .44 .57 .36 .27 .55
KGTuner (Zhang et al., 2022c) .484 .440 .562 .352 .263 .530
RotatE-IAS (Yang et al., 2022) .483 .467 .570 .339 .242 .532
CAKE (Niu et al., 2022) - - - .321 .227 .515
STaR-DURA (Li and Yang, 2022) .497 .452 .583 .368 .273 .557
ExpressivE (Pavlović and Sallinger, 2022) .482 .407 .619 .350 .256 .535
SEPA (Gregucci et al., 2023) .500 .454 .591 .360 .264 .549
CompoundE (Ge et al., 2023) .491 .450 .576 .357 .264 .545
ComplEX-DURA + RSCF (Ours) .497 .454 .581 .375 .279 .565

Table 8: Test performance in broader approaches with different constraints based on embedding based KGC on
FB15k-237 and WN18RR. Bold indicates the best result, and underline indicates the second best result.

Tensor Decomposition Model WN18RR FB15k-237 YAGO3-10
MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10

CP-DURA + SFBR(R) .479 .441 .555 .368 .275 .557 .581 .510 .707
CP-DURA + SFBR (Liang et al., 2021) .485 .447 .561 .370 .274 .563 .582 .510 .711
RESCAL-DURA + SFBR(R) .497 .454 .576 .369 .277 .550 .578 .503 .712
RESCAL-DURA + SFBR (Liang et al., 2021) .500 .458 .581 .369 .276 .555 .581 .509 .712
ComplEX-DURA + SFBR(R) .491 .450 .571 .373 .277 .563 .587 .517 .715
ComplEX-DURA + SFBR (Liang et al., 2021) .498 .454 .584 .374 .277 .567 .584 .512 .712

Table 9: Comparison of reproduced SFBR and SFBR reported in Liang et al. (2021)

D Performance Comparison of RSCF704

with Other Knowledge Graph705

Embedding Models706

Table 8 shows the comparison of the test perfor-707

mance of the RSCF and embedding based model708

on WN18RR and FB15k-237. ComplEX-DURA +709

RSCF outperforms all other models in FB15k-237,710

and shows competitive results in WN18RR.711

E Reproduce of SFBR in TDM712

We attempted to reproduce SFBR. During the repro-713

duction process, we designed and executed the ex-714

periments based on the information provided in the715

SFBR and the publicly available datasets. Further-716

more, in an attempt to clarify unclear aspects, we717

tried to communicate with the authors through mul-718

tiple emails. However, the performance reported in719

the paper was not achieved. Table 9 shows repro-720

duced SFBR and SFBR that is reported in Liang721

et al. (2021).722

F Implementation Details 723

We found that the performance of TransE-RSCF on 724

WN18RR is sensitive to the warm-up step. There- 725

fore, we excluded the warm-up step when training 726

TransE-RSCF on WN18RR. Other hyperparame- 727

ters are consistent with the hyperparameters in Sun 728

et al. (2019). Additionally, when training the TDM, 729

we followed the experimental settings described 730

in the SFBR (Liang et al., 2021). The presented 731

results of RSCF represent the best performance 732

among five runs for each model. Experiments for 733

the DBM were conducted on an NVIDIA RTX 734

8000 GPU with 48GB of memory, while experi- 735

ments for the TDM were conducted on an NVIDIA 736

2080TI with 11GB. 737

G Queries in Relation-Specific Separation 738

of Entity Embedding 739

Table 10 presents the eight queries used in Relation- 740

Specific Separation of Entity Embedding (Section 741

5.3). Note that a query consists of (h, r, ?), where 742
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Index Query
1 (Cancer, /people/cause_of_death/people’, ?)
2 (Rock and roll, /music/genre/artists, ?)
3 (Academy Award for Best Actor, /award/award_category/winners./award/award_honor/award_winner, ?)
4 (Bachelor of Science, /education/educational_degree/people_with_this_degree./education/education/major_field_of_study, ?)
5 (Football, /sports/sport/pro_athletes./sports/pro_sports_played/athlete, ?)
6 (MCA Records, /music/record_label/artist, ?)
7 (Yale University, /education/educational_institution/students_graduates./education/education/student, ?)
8 (National Society of Film Critics Award for Best Director, /award/award_category/nominees./award/award_nomination/nominated_for, ?)

Table 10: The queries in T-SNE visualizations that are used in Figure 4

h, r denote head entity and relation, respectively.743

H Relation Groups for Entity744

Transformation745

position

currency

film production

file actor

people place

film place

music role

organization place

producer type

award category

others

Figure 7: Visualization of relation embeddings of
TransE using T-SNE

Figure 7 illustrates the relation embedding of746

TransE. We select ten relation groups whose rela-747

tion embeddings build clear and mutually decou-748

pled clusters, which implies semantically distin-749

guished relation groups. The other relations are750

plotted as grey points. The relations correspond-751

ing to each group are listed in Table 11. Note that752

similar relations belong to the same group.753

(a) ET-SFBR

Silhouette: -0.27

(b) ET-RSCF

Silhouette: 0.35

(c) EE-SFBR

Silhouette: -0.28

(d) EE-RSCF

Silhouette: 0.29

position

currency

film production

file actor

people place

film place

music role

organization place

producer type

award category

Figure 8: Tail entity-transformations and entity embed-
dings for semantically similar relation groups. (a) and
(b) indicate ET of SFBR and RSCF, (c) and (d) indicate
EE of SFBR and RSCF.

I Distribution of Tail 754

Entity-Transformations and 755

Corresponding Entity Embedding 756

Figure 8 presents the T-SNE visualization of tail 757

entity-transformations and corresponding entity 758

embeddings. Even in the tail, RSCF shows more in- 759

cluster concentration and decoupling clusters. Also 760

RSCF exhibits higher silhouette scores compared 761

to SFBR. 762
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Relation Group Relations

position

/sports/sports_team/roster./basketball/basketball_roster_position/position

/soccer/football_team/current_roster./soccer/football_roster_position/position

/ice_hockey/hockey_team/current_roster./sports/sports_team_roster/position

/sports/sports_team/roster./american_football/football_historical_roster_position/position_s

/sports/sports_team/roster./baseball/baseball_roster_position/position

/sports/sports_team/roster./american_football/football_roster_position/position

/american_football/football_team/current_roster./sports/sports_team_roster/position

/soccer/football_team/current_roster./sports/sports_team_roster/position

currency

/location/statistical_region/gdp_nominal_per_capita./measurement_unit/dated_money_value/currency

/film/film/estimated_budget./measurement_unit/dated_money_value/currency

/business/business_operation/operating_income./measurement_unit/dated_money_value/currency

/organization/endowed_organization/endowment./measurement_unit/dated_money_value/currency

/business/business_operation/revenue./measurement_unit/dated_money_value/currency

/business/business_operation/assets./measurement_unit/dated_money_value/currency

/location/statistical_region/rent50_2./measurement_unit/dated_money_value/currency

/education/university/local_tuition./measurement_unit/dated_money_value/currency

/location/statistical_region/gdp_real./measurement_unit/adjusted_money_value/adjustment_currency

/education/university/domestic_tuition./measurement_unit/dated_money_value/currency

/education/university/international_tuition./measurement_unit/dated_money_value/currency

/location/statistical_region/gdp_nominal./measurement_unit/dated_money_value/currency

/location/statistical_region/gni_per_capita_in_ppp_dollars./measurement_unit/dated_money_value/currency

/base/schemastaging/person_extra/net_worth./measurement_unit/dated_money_value/currency

film production

/film/film/costume_design_by

/film/film/executive_produced_by

/award/award_winning_work/awards_won./award/award_honor/award_winner

/tv/tv_program/program_creator

/film/film/film_art_direction_by

/film/film/music
/film/film/film_production_design_by

/film/film/other_crew./film/film_crew_gig/crewmember

/film/film/produced_by

/tv/tv_program/regular_cast./tv/regular_tv_appearance/actor

/film/film/edited_by

/film/film/written_by

/film/film/personal_appearances./film/personal_film_appearance/person

/film/film/story_by

/film/film/cinematography

/film/film/dubbing_performances./film/dubbing_performance/actor

/film/film/production_companies

file actor

/award/award_nominee/award_nominations./award/award_nomination/nominated_for

/tv/tv_network/programs./tv/tv_network_duration/program

/film/special_film_performance_type/film_performance_type./film/performance/film

/film/director/film

/tv/tv_personality/tv_regular_appearances./tv/tv_regular_personal_appearance/program

/film/film_set_designer/film_sets_designed

/tv/tv_writer/tv_programs./tv/tv_program_writer_relationship/tv_program

/film/actor/film./film/performance/film

/tv/tv_producer/programs_produced./tv/tv_producer_term/program

/media_common/netflix_genre/titles

/film/film_distributor/films_distributed./film/film_film_distributor_relationship/film
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/film/film_subject/films

people place

/music/artist/origin

/people/person/places_lived./people/place_lived/location

/people/person/place_of_birth

/government/politician/government_positions_held./government/government_position_held/jurisdiction_of_office

/people/deceased_person/place_of_death

/people/person/nationality

/people/deceased_person/place_of_burial

/people/person/spouse_s./people/marriage/location_of_ceremony

film place

/film/film/distributors./film/film_film_distributor_relationship/region

/film/film/featured_film_locations

/film/film/release_date_s./film/film_regional_release_date/film_release_region

/film/film/release_date_s./film/film_regional_release_date/film_regional_debut_venue

/film/film/country

/film/film/runtime./film/film_cut/film_release_region

/tv/tv_program/country_of_origin

/film/film/film_festivals

music role

/music/group_member/membership./music/group_membership/role

/music/artist/track_contributions./music/track_contribution/role

/music/artist/contribution./music/recording_contribution/performance_role

organization place

/organization/organization/headquarters./location/mailing_address/state_province_region

/organization/organization/place_founded

/user/ktrueman/default_domain/international_organization/member_states

/organization/organization/headquarters./location/mailing_address/country

/people/marriage_union_type/unions_of_this_type./people/marriage/location_of_ceremony

/base/schemastaging/organization_extra/phone_number./base/schemastaging/phone_sandbox/service_location

/government/legislative_session/members./government/government_position_held/district_represented

/organization/organization/headquarters./location/mailing_address/citytown

producer type

/tv/tv_producer/programs_produced./tv/tv_producer_term/producer_type

/film/film/other_crew./film/film_crew_gig/film_crew_role

/tv/tv_program/tv_producer./tv/tv_producer_term/producer_type

award category

/award/award_category/winners./award/award_honor/award_winner

/award/award_category/winners./award/award_honor/ceremony

/award/award_category/category_of

/award/award_category/nominees./award/award_nomination/nominated_for

/award/award_category/disciplines_or_subjects

Table 11: Clearly distinct relation groups that are selected from original TransE
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