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ABSTRACT

Most adversarial attacks and defenses focus on perturbations within small ℓp-
norm constraints. However, ℓp threat models cannot capture all relevant semantic-
preserving perturbations, and hence, the scope of robustness evaluations is limited.
In this work, we introduce Score-Based Adversarial Generation (ScoreAG), a
novel framework that leverages the advancements in score-based generative mod-
els to generate adversarial examples beyond ℓp-norm constraints, so-called un-
restricted adversarial examples, overcoming their limitations. Unlike traditional
methods, ScoreAG maintains the core semantics of images while generating re-
alistic adversarial examples, either by transforming existing images or synthesiz-
ing new ones entirely from scratch. We further exploit the generative capabil-
ity of ScoreAG to purify images, empirically enhancing the robustness of clas-
sifiers. Our extensive empirical evaluation demonstrates that ScoreAG matches
the performance of state-of-the-art attacks and defenses across multiple bench-
marks. This work highlights the importance of investigating adversarial examples
bounded by semantics rather than ℓp-norm constraints. ScoreAG represents an
important step towards more encompassing robustness assessments.

1 INTRODUCTION

Ensuring the robustness of machine algorithms against noisy data or malicious interventions has
become a major concern in various applications ranging from autonomous driving (Eykholt et al.,
2018) and medical diagnostics (Dong et al., 2023) to the financial sector (Fursov et al., 2021). Even
though adversarial robustness has received significant research attention (Goodfellow et al., 2014;
Madry et al., 2017; Croce & Hein, 2020b), it is still an unsolved problem (Hendrycks et al., 2022).

Most works on adversarial robustness define adversarial perturbations to lie within a restricted ℓp-
norm from the input. However, recent works showed that significant semantic changes can occur
within common perturbation norms (Tramèr et al., 2020; Gosch et al., 2023), and that many relevant
semantics-preserving corruptions lie outside specific norm ball choices. Examples include physical
perturbations such as stickers on stop signs (Eykholt et al., 2018) or naturally occurring corruptions
such as lighting or fog (Kar et al., 2022; Hendrycks & Dietterich, 2019). Such examples led to the
inclusion of a first ℓp-norm independent robustness benchmark to RobustBench (Croce et al., 2020)
and a call to further investigation into robustness beyond ℓp-bounded adversaries (Hendrycks et al.,
2022). Thus, in this work we address the following research question:

How can we generate semantic-preserving adversarial examples beyond ℓp-norm constraints?

We propose to leverage the significant progress in diffusion models (Sohl-Dickstein et al., 2015; Ho
et al., 2020) and score-based generative models (Song et al., 2020) in generating realistic images.
Specifically, we introduce Score-Based Adversarial Generation (ScoreAG), a framework designed to
synthesize adversarial examples, transform existing images into adversarial ones, and purify images.
Using diffusion guidance (Dhariwal & Nichol, 2021) ScoreAG can generate semantic-preserving
adversarial examples that are not captured by common ℓp-norms (see Fig. 1). Overall ScoreAG
represents a novel tool for assessing and enhancing the empirical robustness of image classifiers.
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(a) Original (b) ScoreAG (Ours) (c) APGD (ℓ2) (d) APGD (ℓ∞)

Figure 1: Examples of various adversarial attacks on image of class “tiger shark” (a). Despite
the fact that the image generated by ScoreAG (b) lies outside of common ℓp-norm constraints
(ℓ∞ = 188/255, ℓ2 = 18.47), it perfectly preserves image semantics through a realistic pertur-
bation: removing a small fish to change the predicted label to “hammer shark”. This is in stark
contrast to APGD (Croce & Hein, 2020b) with matching norm constraints, which either (c) results
in highly perceptible and unnatural changes, or (d) fails to preserve image semantics completely.

Our key contributions are summarized as follows:
• We overcome limitations of classical ℓp threat models by proposing ScoreAG, a framework

utilizing diffusion guidance on pre-trained models, enabling the generation of unrestricted
and at the same time semantic-preserving adversarial examples.

• With ScoreAG we transform existing images into adversarial ones as well as synthesize
completely new adversarial examples.

• By leveraging the generative capability of score-based generative models, we show that
ScoreAG enhances classifier robustness by purifying adversarial perturbations.

• We demonstrate ScoreAG’s capability in an exhaustive empirical evaluation and show it is
able to compete with existing attacks and defenses on several benchmarks.

2 BACKGROUND

Score-based Generative Modelling. Score-based generative models (Song et al., 2020) are a class
of generative models based on a diffusion process {xt}t∈[0,1] accompanied by their corresponding
probability densities pt(x). The diffusion process perturbs data x0 ∼ p0 into a prior distribution
x1 ∼ p1. The transformation can be formalized as a Stochastic Differential Equation (SDE), i.e.,

dxt = f(xt, t)dt+ g(t)dw, (1)

where f(·, t) : Rd → Rd represents the drift coefficient of xt, g(·) : R → R the diffusion coefficient,
and w the standard Wiener process (i.e., Brownian motion). Furthermore, let pst(xt|xs) describe the
transition kernel from xs to xt, where s < t. By appropriately choosing f and g, p1 asymptotically
converges to an isotropic Gaussian Distribution, i.e., p1 ≈ N (0, I). To generate data, the reverse-
time SDE needs to be solved:

dxt = [f(xt, t)− g(t)2∇xt
log pt(xt)]dt+ g(t)dw. (2)

Solving the SDE requires the time-dependent score function ∇xt
log pt(xt), which is commonly

estimated using a neural network sθ(xt, t). The parameters of this network can be learned through
the following optimization problem:

θ = argmin
θ

Et

{
λ(t)Ex0Ext|x0

[
∥sθ(xt, t)−∇xt log p0t(xt|x0)∥22

]}
. (3)

Here, λ(·) : [0, 1] → R>0 serves as a time-dependent weighting parameter, t is uniformly sampled
from the interval [0, 1], x0 ∼ p0, and xt ∼ p0t(xt|x0).

Diffusion Guidance. To enable conditional generation of unconditionally trained diffusion models,
Dhariwal & Nichol (2021) introduce classifier guidance. The central idea of this approach is to
leverage Bayes’ theorem for the computation of the conditional gradient, enabling the utilization of
an unconditional model for conditional tasks and additionally improving the performance of condi-
tional models. This can be formally described as ∇xt log p(xt|c) = ∇xt log p(xt)+∇xt log p(c|xt),
where ∇xt log p(c|xt) denotes the gradient of a classifier and c the guidance condition.
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rxt log pt(xt|c) = rxt log pt(xt)+rxt log pt(c|xt)

: Task specific condition

x0
xt sθ(xt, t)

x̂0 = xt � tdxt

dt
: Score function

: Guidance term

ScoreAG

dxt = [f(xt, t) � g(t)2rxt
log pt(xt)+rxt

log pt(c,xobs|xt)]dt + g(t)dw

x1

dxt = [f(xt, t) � g(t)2(rxt log pt(xt)+rxt log pt(c|xt))]dt + g(t)dw

(3) Solve adapted reverse-time SDE

(1) Select task-specific guidance term dxt = [f(xt, t) � g(t)2(rxt log pt(xt)+rxt log pt(c|xt))]dt + g(t)dw

dxt = [f(xt, t) � g(t)2(rxt log pt(xt)+rxt log pt(c|xt))]dt + g(t)dw

(2) Adapt reverse-time SDE

to model the conditional score function:

dxt = [f(xt, t) � g(t)2rxt log pt(xt|c)]dt + g(t)dw

rxt log pt(xt|c) = rxt log pt(xt)+rxt log pt(c|xt)

rxt log pt(xt|c) = rxt log pt(xt)+rxt log pt(c|xt)

rxt log pt(xt|c) = rxt log pt(xt)+rxt log pt(c|xt): Conditional score function

x̂0 = xt � tdxt

dt

Figure 2: An overview of ScoreAG and its three steps. ScoreAG starts from noise x1 and iteratively
denoises it into an image x0. It uses the task-specific guidance terms ∇xt

log pt(c|xt) and the score
function ∇xt

log pt(xt) to guide the process towards the task specific condition c. The network sθ is
used for approximating the score function ∇xt

log pt(xt) and for the one-step Euler prediction x̂0.

3 SCORE-BASED ADVERSARIAL GENERATION

In this section we introduce Score-Based Adversarial Generation (ScoreAG), a framework employ-
ing generative models to evaluate robustness beyond the ℓp-norm constraints. ScoreAG is designed
to perform the following three tasks: (1) the generation of adversarial images (GAS), (2) the trans-
formation of existing images into adversarial examples (GAT), and (3) the purification of images to
enhance empirical robustness of classifiers (GAP).

ScoreAG consists of three steps: (1) select a guidance term for the corresponding task to model the
conditional score function ∇xt log p(xt|c), (2) adapt the reverse-time SDE with the task-specific
conditional score function, and (3) solve the adapted reverse-time SDE for an initial noisy image
x1 ∼ N (0, I) using numerical methods. Depending on the task, the result is either an adversarial or
a purified image. We provide an overview of ScoreAG in Fig. 2.

In detail, the conditional score function is composed of the normal score function ∇xt
log pt(xt)

and the task-specific guidance term ∇xt
log p(c|xt), that is

∇xt
log pt(xt|c) = ∇xt

log pt(xt) +∇xt
log pt(c|xt), (4)

where log pt(xt) is modeled by a score-based generative model. Solving the adapted reverse-time
SDE yields a sample of the conditional distribution p(x0|c), i.e., an adversarial or purified image.
To simplify the presentation, we will denote class-conditional functions as py(xt) rather than the
more verbose p(xt|y).
Let y∗ ∈ {1, . . . ,K} denote the true class of a clean image x ∈ [0, 1]C×H×W , ỹ ̸= y∗ be a dif-
ferent class, and f(·) : [0, 1]C×H×W → {1, . . . ,K} a classifier. An image xADV ∈ [0, 1]C×H×W

is termed an adversarial example if it is misclassified by f , i.e., f(x) = y∗ ̸= ỹ = f(xADV),
while preserving the semantics, i.e., Ω(x) = Ω(xADV) with Ω denoting a semantic describing or-
acle. Therefore, adversarial examples do not change the true label of the image. To enforce this,
conventional adversarial attacks restrict the perturbation to lie in a certain ℓp-norm, avoiding large
differences to the original image. In contrast, ScoreAG is not limited by ℓp-norm restrictions but
preserves the semantics by employing a class-conditional generative model. In the following we
introduce each task in detail.

3.1 GENERATIVE ADVERSARIAL SYNTHESIS

Generative Adversarial Synthesis (GAS) aims to synthesize images that are adversarial by nature.
While these images maintain the semantics of a certain class y∗, they are misclassified by a clas-
sifier into a different class ỹ. The formal objective of GAS is to sample from the distribution
py∗(x0|f(x0) = ỹ), where f(x0) = ỹ corresponds to the guidance condition c.

Applying Bayes’ theorem accordingly to Eq. 4, the conditional score can be expressed as:
∇xt

log pt,y∗(xt|f(x0) = ỹ) = ∇xt
log pt,y∗(xt) + sy · ∇xt

log pt,y∗(f(x0) = ỹ|xt), (5)
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where sy is a scaling parameter adjusting the strength of the attack. While the term
∇x log pt,y∗(xt) can be approximated using a class-conditional neural network sθ(xt, t, y),
∇xt

log pt,y∗(f(x0) = ỹ|xt) requires access to a time-dependent classifier or the original image x0.

Considering that we are given a pre-trained classifier and cannot retrain it on perturbed images xt,
we propose to approximate x0 using a one-step Euler method:

x̂0 = xt − t
dxt

dt
(6)

That is we approximate ∇xt
log pt,y∗(f(x0) = ỹ|xt) ≈ ∇xt

log p(f(x̂0) = ỹ), which in practice
corresponds to the CELoss of the classifier f for the class ỹ and the input x̂0. Contrarily to Dhariwal
& Nichol (2021), the one-step Euler method provides compatibility with any pre-trained classifier,
removing the need for a time-dependently one. Moreover, this can be adapted to discrete-time
diffusion models with the approach by Kollovieh et al. (2023). Consequently, ScoreAG can be
utilized with pre-trained classifiers and generative models without the need for specific training.

3.2 GENERATIVE ADVERSARIAL TRANSFORMATION

While the GAS task synthesized adversarial samples from scratch, Generative Adversarial Trans-
formation (GAT) focuses on transforming existing images into adversarial examples. For a given
image x∗ and its corresponding true class label y∗, the objective is to sample a perturbed image
misclassified into ỹ while preserving the core semantics of x∗. We denote the resulting distribution
as py∗(x0|f(x0) = ỹ,x∗), for the guidance condition c = {x∗, f(x0) = ỹ} leading to the following
conditional score in Eq. 4:

∇xt log pt,y∗(xt|x∗, f(x0) = ỹ) = ∇xt log pt,y∗(xt) +∇xt
log pt,y∗(x∗, f(x0) = ỹ|xt). (7)

By assuming independence between x∗ and the adversarial class ỹ, we split the guidance term into
sx ·∇xt log pt,y∗(x∗|xt)+sy ·∇xt log pt,y∗(f(x0) = ỹ|xt), implying that ỹ should not influence the
core semantics of the given image. Note that we introduced the two scaling parameters sx and sy that
control the possible deviation from the original image and the strength of the attack, respectively.
While the score function ∇xt log pt,y∗(xt) and the guidance term ∇xt log pt,y∗(f(x0) = ỹ|xt) can
be modeled as in the GAS setup, we opt for a Gaussian centered at the one-step Euler prediction x̂0

(Eq. 6) to model the distribution pt,y∗(x∗|xt):
pt,y∗(x∗|xt) = N (x̂0, I). (8)

After applying the logarithm, the term simplifies to the mean squared error (MSE). Importantly, this
approach allows the sampled image x0 to approximate x∗ without imposing specific ℓp-norm con-
straints, marking it as an unrestricted attack. Instead, the class-conditional score network sθ ensures
that the core semantics are preserved. Therefore, adversarial examples generated by ScoreAG are
not completely unrestricted but constrained to the manifold learned by the generative model.

3.3 GENERATIVE ADVERSARIAL PURIFICATION

Generative Adversarial Purification (GAP) extends the capability of ScoreAG to counter adversarial
attacks. It is designed to purify adversarial images, i.e., remove adversarial perturbations by lever-
aging the generative capability of the model to enhance the robustness of machine learning models.

Given an adversarial image xADV that was perturbed to induce a misclassification, GAP aims to
sample an image from the data distribution that resembles the semantics of xADV, which we denote
as p(x0|xADV) with xADV corresponding to the guidance condition c. We model its score function
analogously to Eq. 7, i.e.,

∇xt
log pt(xt|xADV) = ∇xt

log pt(xt) + sx · ∇xt
log pt(xADV|xt), (9)

where sx is a scaling parameter controlling the deviation from the input. Note that we omit y∗
since there is no known ground-truth class label. As previously, we utilize a time-dependent neural
network sθ, to approximate the term ∇xt

log pt(xt). The term pt(xADV|xt) is modeled accordingly
to Eq. 8, as before assuming it follows a Gaussian distribution with a mean of the one-step Euler
prediction x̂0. Note that ScoreAG, such as other purification methods, cannot detect adversarial
images. Therefore, they also need to preserve image semantics if there is no perturbation.
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4 EXPERIMENTAL EVALUATION

The primary objective of our experimental evaluation is to assess the capability of ScoreAG in gen-
erating adversarial examples. More specifically, we investigate the following properties of ScoreAG:
(1) the ability to synthesize adversarial examples from scratch (GAS), (2) the ability to transform
existing images into adversarial examples (GAT), and (3) the enhancement of classifier robustness
by leveraging the generative capability of the model to purify images (GAP). This evaluation aims
to provide comprehensive insight into the strengths and limitations of ScoreAG in the realm of ad-
versarial example generation and classifier robustness.

Baselines. In our evaluation we benchmark our adversarial attacks against a wide range of es-
tablished methods covering various threat models. Specifically, we consider the fast gradient
sign-based approaches FGSM (Goodfellow et al., 2014), DI-FGSM (Xie et al., 2019), and SI-NI-
FGSM (Lin et al., 2019). In addition, we include comparisons with Projected Gradient Descent-
based techniques, specifically Adaptive Projected Gradient Descent (APGD) and its targeted vari-
ant (APGDT) (Croce & Hein, 2020b). For a comprehensive assessment, we also examine single
pixel, black-box, and minimal perturbation methods, represented by OnePixel (Su et al., 2019),
Square (Andriushchenko et al., 2020) and Fast Adaptive Boundary (FAB) (Croce & Hein, 2020a),
respectively. Finally, we compare to the unrestricted attacks PerceptualPGDAttack (PPGD), Fast-
LagrangePerceptualAttack (LPA) (Laidlaw et al., 2020), and DiffAttack (Chen et al., 2023a), which
is based on latent diffusion.

To evaluate the efficacy of ScoreAG in purifying adversarial examples, we conduct several experi-
ments in a preprocessor-blackbox setting. For the evaluation we employ the targeted APGDT and
untargeted APGD attacks (Croce & Hein, 2020b) and ScoreAG in the GAS setup. Our experiments
also incorporate the purifying methods ADP (Yoon et al., 2021) and DiffPure (Nie et al., 2022).
Additionally, we compare with state-of-the-art adversarial training techniques that partially utilize
supplementary data from generative models (Cui et al., 2023; Wang et al., 2023; Peng et al., 2023).

Experimental Setup. We employ three benchmark datasets for our experiments: Cifar-10, Cifar-
100 (Krizhevsky et al., 2009), and TinyImagenet. We utilize pre-trained Elucidating Diffusion Mod-
els (EDM) in the variance preserving (VP) setup (Karras et al., 2022; Wang et al., 2023) for image
generation. As our classifier, we opt for the well-established WideResNet architecture WRN-28-
10 (Zagoruyko & Komodakis, 2016). The classifiers are trained for 400 epochs using SGD with
Nesterov momentum of 0.9 and weight decay of 5 × 10−4. Additionally, we incorporate a cyclic
learning rate scheduler with cosine annealing (Smith & Topin, 2019) with an initial learning rate of
0.2. To further stabilize the training process, we apply exponential moving average with a decay
rate of 0.995. Each classifier is trained four times to ensure the reproducibility of our results. For
the restricted methods, we consider the common norms in the literature ℓ2 = 0.5 for Cifar-10 and
Cifar-100, ℓ2 = 2.5 for TinyImagenet, and ℓ∞ = 8/255 for all three datasets. For DiffAttack and
DiffPure we take the implementation of the official repositories, while the use Torchattacks (Kim,
2020) for the remaining baselines.

Evaluation metrics. To quantitatively evaluate our results we compute the adversarial accuracy, i.e.,
the accuracy after an attack, and the robust accuracy, i.e., the accuracy after an attack on a robust
model or after a defense. Furthermore, we use the clean accuracy, i.e., the accuracy of a (robust)
model without any attack. Finally, we compute the FID score (Heusel et al., 2017) to measure the
quality of the synthetic sample in the GAS task.

4.1 QUANTITATIVE RESULTS

Evaluating Generative Adversarial Synthesis. As explained in Sec. 3.1, ScoreAG is capable of
synthesizing adversarial examples. Fig. 4(a) shows the decline in the accuracy and FID score of a
WRN-28-10 classifier as sy increases. Notably, the classifier yields nearly identical performance as
on real data when sy = 0. However, even a minor increase of sy to 0.125 results in a substantial
reduction in accuracy while maintaining a low FID score. Setting sy to 1.0 causes the classifier’s
performance to drop below random guessing levels for the Cifar-10 dataset. Additionally, Fig. 3(a)
presents sample images generated at various scales. Notably, increasing sy leads to subtle modifica-
tions in the images. Rather than introducing random noise, these changes maintain image coherence
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Table 1: Adversarial accuracy for various attacks on the three datasets Cifar-10, Cifar-100, and
TinyImagenet. Best scores are in bold, second best underlined.

Dataset Cifar-10 Cifar-100 TinyImagenet

ℓ∞ restricted
FGSM (Goodfellow et al., 2014) 31.47±13.39 10.82±1.62 1.42±0.17
DI-FGSM (Xie et al., 2019) 0.54±0.54 0.13±0.10 0.04±0.02
SI-NI-FGSM (Lin et al., 2019) 3.01±0.93 1.20±0.16 0.69±0.11
APGD (Croce & Hein, 2020b) 0.18±0.21 0.10±0.03 0.18±0.03
APGDT (Croce & Hein, 2020b) 0.00±0.00 0.00±0.00 0.00±0.00
Square (Andriushchenko et al., 2020) 0.25±0.24 0.19±0.04 0.51±0.05
FAB (Croce & Hein, 2020a) 1.67±1.56 0.76±0.06 0.11±0.19

ℓ2 restricted
APGD (Croce & Hein, 2020b) 1.21±0.05 0.69±0.01 0.15±0.05
APGDT (Croce & Hein, 2020b) 0.11±0.01 0.09±0.01 0.00±0.00
Square (Andriushchenko et al., 2020) 19.67±0.27 7.02±0.42 1.26±0.10
FAB (Croce & Hein, 2020a) 7.41±6.19 1.44±0.33 0.01±0.01

ℓ0 restricted
OnePixel (Su et al., 2019) 82.82±0.94 59.17±0.77 59.42±0.38

Unrestricted
PPGD (Laidlaw et al., 2020) 31.82±2.77 39.76±2.08 2.76±0.10
LPA (Laidlaw et al., 2020) 0.04±0.05 0.00±0.00 0.00±0.00
DiffAttack (Chen et al., 2023a) 14.40±0.97 4.89±1.57 2.13±0.09
ScoreAG (Ours) 0.10±0.09 0.02±0.03 0.00±0.00

sy = 0 sy = 2−3 sy = 2−2 sy = 2−1 sy = 20

(a) Synthesis (GAS).
Original sx = 32 sx = 48 sx = 64 sx = 96

(b) Transform (GAT).
Figure 3: Examples on the Cifar-10 dataset. Fig. 3(a) shows the synthesis (GAS) setup and generates
images of the classes “horse”, “truck”, and “deer”, which are classified as “automobile”, “ship”,
and “horse”, respectively, as sy increases. Fig. 3(b) shows the transformation (GAT) setup and
transforms images of the classes “ship”, “horse”, and “dog”, into adversarial examples classified as
“ship”, “deer”, and “cat”. For sx = 32, the images are outside of common perturbation norms but
preserve image semantics.

up to a scale of sy = 0.5. Beyond this point, specifically at sy = 1.0, there is a noticeable decline
in image quality, as reflected by the FID score.

Since our approach leverages a generative model, it enables the synthesis of an unlimited number of
adversarial examples, thereby providing a more comprehensive robustness assessment. Moreover,
in scenarios requiring the generation of adversarial examples, our method allows for rejection sam-
pling at low sy scales, ensuring the preservation of image quality. This is particularly important for
adversarial training, where synthetic images can enhance robustness (Wang et al., 2023).

Evaluating Generative Adversarial Transformation. Beyond the synthesis of new adversarial
examples, our framework allows converting pre-existing images into adversarial ones as described
in Sec. 3.2. We show the accuracies of various attacks in Tab. 1. Notably, ScoreAG consistently
achieves lower accuracies than the ℓ2 and ℓ0 restricted methods across all three datasets. The only
approaches outperforming it are APGDT with the ℓ∞ norm and LPA. This demonstrates ScoreAG’s
capability of generating adversarial examples. Surprisingly, the other unrestricted diffusion-based
method, DiffAttack, yields considerably higher accuracies. We attribute this discrepancy to the fact
that it only leverages the last few iterations of the denoising diffusion process.

While most baselines, with the exception of FAB and DiffAttack, only assess the robustness of
adversarial examples on the ℓp-constraint border, ScoreAG draws samples from the distribution of
semantic-preserving adversarial examples, as explained in Sec. 3.2, resulting in a more comprehen-
sive robustness evaluation. Intuitively, sy controls the strength of the attack, while sx determines
the possible deviation from the original image.
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Table 2: CIFAR-10 robust accuracy of different adversarial training and purification methods for the
attacks APGD, APGDT, and ScoreAG. If multiple threat models exist, we denote results as ℓ∞/ℓ2.

Model Clean Accuracy APGD APGDT ScoreAG-GAT (Ours) Architecture
ℓ∞ ℓ2 ℓ∞ ℓ2

Adversarial Training
(Cui et al., 2023) 92.16 70.36 - 68.43 - 81.94 WRN-28-10
(Wang et al., 2023) 92.44 / 95.16 70.08 84.52 68.04 83.88 76.19 / 77.79 WRN-28-10
(Wang et al., 2023) 93.25 / 95.54 73.29 85.65 71.42 85.28 73.67 / 79.47 WRN-70-16
(Peng et al., 2023) 93.27 73.67 - 71.82 - 71.92 RaWRN-70-16

Adversarial Purification
ADP (Yoon et al., 2021) 93.09 - - 85.45 - - WRN-28-10
DiffPure (Nie et al., 2022) 89.02 87.72 88.46 88.30 88.18 88.57±0.06 WRN-28-10
ScoreAG-GAP (Ours) 93.93± 0.12 91.34±0.46 92.13±1.41 90.25±0.44 90.89±0.40 90.74±0.67 WRN-28-10
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(a) Synthesis (GAS). (b) Purification (GAP).
Figure 4: The effect of the scale sy in the synthesis (GAS) setting on the FID score and accuracy,
and the effect of the scale sx in the purification (GAP) setup.

Evaluating Generative Adversarial Purification. Finally, we examine the purification ability of
ScoreAG. Tab. 2 shows the purification results for various methods on the Cifar-10 dataset.

Our empirical results show that ScoreAG consistently achieves state-of-the-art performance in robust
accuracy, outperforming other adversarial purification and training methods. Notably, ScoreAG not
only successfully defends attacks but also maintains a high level of clean accuracy comparable to
that of adversarial training methods. This demonstrates ScoreAG’s capability to preserve the core
semantics of images while effectively neutralizing the impact of adversarial perturbations due to
their inherently unrealistic nature. Overall, our observations indicate that purification methods can
better defend against adversarial attacks than adversarial training approaches, which we attribute
to the preprocessor-blackbox setting. Note that it is not possible to detect adversarial examples.
Therefore, the purification needs to be applied to all images. However, ScoreAG still achieves a
high clean accuracy.

Table 3: Adversarial accuracy and median ℓ2 dis-
tances for various hyperparameter configurations.

Adversarial Accuracy in % (↓) Median ℓ2 distance

Dataset Cifar-10 Cifar-100 Cifar-10 Cifar-100

sy = 48
sx = 16 0.10 0.02 1.12 1.09
sx = 32 0.23 0.02 0.65 0.64
sx = 48 0.32 0.03 0.49 0.49
sx = 64 0.34 0.04 0.43 0.40

sy = 64
sx = 48 0.22 0.17 0.50 0.49
sx = 64 0.24 0.02 0.43 0.40
sx = 96 0.28 0.03 0.35 0.30

sy = 96
sx = 48 0.10 0.17 0.51 0.50
sx = 64 0.11 0.21 0.44 0.40
sx = 96 0.13 0.34 0.35 0.30

Hyperparameter study. We explore the im-
pact of the scale parameters sy and sx on ac-
curacy and image purification, as depicted in
Fig. 4. In Fig. 4(b), we examine the efficacy
of image purification against adversarial attacks
of APGD under both ℓ2 and ℓ∞ norms across
different sx scales. At sx = 0, the generated
images are from an unconditional model with-
out guidance and are independent of the input.
Therefore, the robust accuracy equals random
guessing. As sx increases, the accuracy im-
proves, reaching a performance plateau at ap-
proximately sx = 10. Increasing sx further re-
duces the accuracy as the sampled images start
to resemble adversarial perturbations.

Finally, Tab. 3 presents the adversarial accuracy and median ℓ2 distances across different scale con-
figurations for the Cifar-10 and Cifar-100 datasets. We can observe that an increase in sy leads to
reduced classifier accuracy for Cifar-10, effectively improving the efficacy of the adversarial attacks.
A rise in sx, however, increases the accuracy as the generated image closer resembles the original.
The median ℓ2 distance exhibits a similar behavior. While a lower sy yields no difference for both
datasets, increasing sx decreases the median distances for Cifar-10 and Cifar-100. In Fig. 3(b), we
show examples across various sx scales on the Cifar-10 dataset. Notably, all scales preserve the
image semantics and do not display any observable differences.
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4.2 QUALITATIVE ANALYSIS

To investigate the quality of the adversarial attacks, we deploy ScoreAG on the ImageNet dataset
(Deng et al., 2009) with a resolution of 256×256. We use the latent diffusion model DiT proposed by
Peebles & Xie (2022), along with a pre-trained latent classifier from (Kim et al., 2022). The images
are sampled using the denoising procedure by Kollovieh et al. (2023) as explained in Sec. 3.1. Note
that as the generative process is performed in the latent space, the model has more freedom in terms
of reconstruction.

We show an example image of a tiger shark in Fig. 1 with corresponding adversarial attacks. While
the classifier correctly identifies the tiger shark in the baseline image, it fails to do so in the generated
adversarial examples. Notably, the ℓp-bounded methods display noticeable noisy fragments. In
contrast, ScoreAG produces clean adversarial examples, altering only minor details while retaining
the core semantics — most notably, the removal of a small fish — which prove to be important
classification cues. We provide further examples for GAS in Sec. B.4 and for GAT in Sec. B.5.
The synthetic images display a high degree of realism and the transformed images show visible
differences while preserving the semantics of the original image.

4.3 HUMAN STUDY

Table 4: Human study to evaluate the adver-
sarial examples of ScoreAG. The human ACC
corresponds to the majority vote over all eval-
uators. Krippendorff’s alpha (α) indicates the
agreement between human evaluators.

Dataset Model ACC Human ACC α

Clean
Real 98% 100% 0.854
Synthetic 94% 94% 0.705

Adversarial
Real 2% 94% 0.792
Synthetic 0% 70% 0.479

To evaluate whether ScoreAG generates semantic-
preserving adversarial examples, we perform a
human study on adversarially modified (real) as
well as synthetically generated Cifar-10 images.
In particular, we sample five images at random
from each class to generate 50 adversarial exam-
ples using sx = 16 and sy = 48. These adver-
sarial examples have an average ℓ2-norm differ-
ence to their clean counterparts of 0.68 ± 0.24,
exceeding the common ℓ2-norm ball constraint of
0.5 (Croce et al., 2020) by on average 36%. For
the synthetic examples, we generate 50 images
without (sy = 0) and 50 images with guidance
(sy = 0.125), again in a class-balanced fashion. For the adversarial guided synthetic examples, we
employ rejection sampling to only consider images that lead to misclassification by the classifier.
To ensure high data quality for the study, we used the Prolific platform (Eyal et al., 2021) to employ
60 randomly chosen human evaluators to label the 200 images. To avoid bias, we presented the
adversarial examples (synthetic or modified) before the unperturbed examples and introduced the
additional category ”Other / I don’t know”.

We compute human accuracy by choosing the majority vote class of all 60 human evaluators and
compare it with the ground truth class. We show the results of the human study in Tab. 4. While the
model fails to correctly classify the adversarial examples, the human accuracy is still significantly
high (94% for real and 70% for synthetic adversarial images) indicating strong semantic preserva-
tion. Notably, humans can still accurately classify nearly all of the adversarial modified images
despite significantly larger ℓ2 distances. The accuracy is lower but still high for the synthetic im-
ages. The drop in accuracy can be in parts explained by the low resolution of CIFAR-10 images -
making some (also real) examples difficult to visually classify. This is also captured by Krippen-
dorff’s alpha (Krippendorff, 2018), which we use to study the agreement between human evaluators.
It indicates whether the agreement is systematic (with α = 1 for perfect agreement) or purely by
chance (α = 0). In our study, we achieve α-values significantly larger than 0, concluding that the
agreement between human evaluators is systematic for all datasets.

5 RELATED WORK

Diffusion and Score-Based Generative Models. Diffusion models (Sohl-Dickstein et al., 2015;
Ho et al., 2020) and score-based generative models (Song et al., 2020) received significant attention
in recent years, owing to their remarkable performance across various domains (Kong et al., 2020;
Lienen et al., 2023; Kollovieh et al., 2023) and have since emerged as the go-to methodologies for
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many generative tasks. Dhariwal & Nichol (2021) proposed diffusion guidance to perform condi-
tional sampling using unconditional diffusion models, which has subsequently been extended for
more advanced guidance techniques (Nichol et al., 2021; Avrahami et al., 2022). A recent study
has shown that classifiers can enhance their robust accuracy when training on images generated by
diffusion models (Wang et al., 2023), demonstrating the usefulness and potential of diffusion models
in the robustness domain.

Adversarial Attacks. An important line of work are white-box approaches, which have full access
to the model parameters and gradients, such as the fast gradient sign method (FGSM) introduced
by Goodfellow et al. (2014). While FGSM and its subsequent extensions (Xie et al., 2019; Dong
et al., 2018; Lin et al., 2019; Wang, 2021) primarily focus on perturbations constrained by the ℓ∞
norm, other white-box techniques employ projected gradient descent and explore a broader range of
perturbation norms (Madry et al., 2017; Zhang et al., 2019).

In contrast, black-box attacks are closer to real-world scenarios and do not have access to model pa-
rameters or gradients (Narodytska & Kasiviswanathan, 2016; Brendel et al., 2017; Andriushchenko
et al., 2020). Two recent works by Chen et al. (2023a) and Xue et al. (2023) propose DiffAttack and
Diff-PGD, respectively. Diff-PGD performs projected gradient descent in the latent diffusion space
to obtain ℓ∞-bounded adversarial examples, whereas DiffAttack generates unrestricted adversarial
examples by leveraging a latent diffusion model. However, as both methods employ only the final
denoising stages of the diffusion process in a similar fashion to SDEdit (Meng et al., 2021), the ad-
versarial perturbations only incorporate changes of high-level features. Finally, Chen et al. (2023c)
optimize the latent space of Stable Diffusion while a concurrent work by Chen et al. (2023b) lever-
ages GradCAM and PGD to use diffusion models for the generation of adversarial attacks.

Adversarial Purification. In response to the introduction of adversarial attacks, a variety of ad-
versarial purification methods to defend machine learning models have emerged. Early works by
Song et al. (2017) and Samangouei et al. (2018) utilized Generative Adversarial Networks (GANs)
to remove adversarial perturbations from images. Following their work, Hill et al. (2020) proposed
to use Energy-Based Models (EBMs) coupled with Markov Chain Monte Carlo (MCMC) sampling
for adversarial purification. More recent methods have shifted focus towards score-based generative
models, like APD (Yoon et al., 2021), and diffusion models, such as DiffPure (Nie et al., 2022).
However, it only utilizes the final stages of the denoising process for purification and is thereby
limited to only correcting high-level adversarial features.

6 DISCUSSION

Limitations and Future Work. Our work demonstrates the potential and capabilities of score-based
generative models in the realm of adversarial attacks and robustness. While ScoreAG is able to gen-
erate and purify adversarial attacks, some considerable drawbacks remain. Primarily, the evaluations
remain a challenge and currently require human studies due to the generated unrestricted attacks.
Moreover, the proposed purifying approach is only applicable to a preprocessor-blackbox setting,
as we are not able to compute the gradients of the generative process in an efficient manner. Lastly,
integrating certifiable robustness is an open challenge due to the stochastic nature of the generative
process and the challenging unbounded threat model. We are hopeful that these drawbacks will be
addressed in future work. For instance, the introduction of a new metric to quantify the semantic
similarity between the input and the generated adversarial images. To address the gradient compu-
tation, one could explore approximations of the gradients of the sampling process.

Conclusion. In this work, we address the question of how to generate unrestricted adversarial ex-
amples. We introduce ScoreAG, a novel framework that bridges the gap between adversarial attacks
and score-based generative models. Utilizing diffusion guidance and pre-trained models, ScoreAG
can synthesize new adversarial attacks, transform existing images into adversarial examples, and pu-
rify images, thereby enhancing the empirical robust accuracy of classifiers. Our results indicate that
ScoreAG can effectively generate semantic-preserving adversarial images beyond the limitations of
the ℓp-norms. Our experimental evaluation demonstrates that ScoreAG matches the performance of
existing state-of-the-art attacks and defenses. We see unrestricted adversarial examples - as gener-
ated by our work - as vital to achieve a holistic view of robustness and complementary to hand-picked
common corruptions (Kar et al., 2022) or classical ℓp threat models.
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REPRODUCIBILITY

Our models are implemented using PyTorch with the pre-trained EDM models by Karras et al.
(2022) and Wang et al. (2023), and the guidance scores are computed using automatic differen-
tiation. In Tab. 5 and Tab. 6, we give an overview of the hyperparameters of ScoreAG. For the
methods DiffAttack, DiffPure, PPGD, and LPA, we use the corresponding authors’ official imple-
mentations with the suggested hyperparameters. For the remaining attacks, we use Adversarial-
Attacks-PyTorch with its default parameters (Kim, 2020).
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A HYPERPARAMETERS

In Tab. 5 and Tab. 6, we show an overview of the hyperparameters used to train the classifiers and to
evaluate ScoreAG.

Hyperparameter Value

Number of epochs 400
Optimizer SGD
Nesterov momentum 0.9
Weight decay 5 × 10−4

Exponential moving average 0.995
Learning rate scheduler Cyclic with cosine annealing
Initial learning rate 0.2

Table 5: Hyperparameters used to train the WRN-28-10 classifiers.

Hyperparameter Value

Cifar-10
sy (GAT) 96
sx (GAT) 48
sx (GAP) 10

Cifar-100
sy (GAT) 64
sx (GAT) 64

TinyImagenet
sy (GAT) 64
sx (GAT) 16

Table 6: Hyperparameters used to to evaluate ScoreAG.

B ADDITIONAL RESULTS

B.1 RUNTIME COMPARISON OF THE ATTACKS.

In Tab. 7, we compare the runtimes in seconds of various methods. The numbers display the average
time to generate 16 adversarial examples on the Cifar-10 dataset on a GTX 1080Ti. DiffAttack was
the only method with out-of-memory issues (OOM).

FGSM DIFGSM SINIFGSM Square FAB APGD APGDT OnePixel LPA PPGD DiffAttack ScoreAG

0.01 0.27 1.73 67.43 7.03 0.44 0.48 2.62 41.24 2.06 OOM 246.06

Table 7: Average runtimes in seconds of the different attacks on a GTX 1080Ti to generate 16
adversarial images for the dataset Cifar-10.

B.2 MORE CLASSIFIERS FOR ADVERSARIAL ATTACKS USING GAT

To verify the efficacy of ScoreAG, we evaluate the accuracy of GAT on four more classifiers for the
datasets Cifar-10 and Cifar-100 using the same hyperparameters as for the WRN-28-10 architecture.
We show the adversarial accuracy in Tab. 8. As we can observe, ScoreAG successfully generates
adversarial attacks on various classifiers, reaching accuracies close to 0%.

B.3 LARGE PERTURBATION NORMS FOR RESTRICTED ADVERSARIAL ATTACKS

In Fig. 5, we show adversarial examples of different attacks for the image in Fig. 1. We use the same
distances ScoreAG achieves.
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Table 8: Adversarial accuracy of ScoreAG for various classifiers on the datasets Cifar-10 and Cifar-
100.

Classifier Cifar-10 Cifar-100

ResNet-20 0.01 0.10
ResNet-56 0.03 0.13
VGG-19 0.52 0.26
RepVGG-A2 0.04 1.94

(a) APGD (ℓ2) (b) APGDT (ℓ2) (c) Square (ℓ2)

(d) APGD (ℓ∞) (e) APGDT (ℓ∞) (f) Square (ℓ∞)

Figure 5: Different adversarial attacks for the example in Fig. 1. The ℓ∞ and ℓ2 distances are
188/255 and 18.47, respectively. All methods display major changes in the images compared to the
original.

B.4 GENERATIVE ADVERSARIAL SYNTHESIS

In Fig. 6, we provide additional examples of the GAS task. The images are synthetic adversarial
samples of the ImageNet class “indigo bunting”. While all images are classified wrongly, most of
them contain the right core-semantics and display a high degree of realism.
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Figure 6: Selected synthetic adversarial examples on ImageNet for the class ”indigo bunting”. All
images display a high degree of realism and are classified wrongly into various classes.

B.5 GENERATIVE ADVERSARIAL TRANSFORMATION

In Fig. 7, we show additional examples of the GAT task. All original images are classified correctly
into the ImageNet classes “golden retriever”, “spider monkey”, “football helmet”, “jack-o’-lantern”,
“pickup truck”, and “broccoli”, while the adversarial images are classified as “cocker spaniel”, “gib-
bon”, “crash helmet”, “barrel”, “convertible”, and “custard apple”, respectively. While all adversar-
ial images display subtle differences they do not alter the core semantics of the images and are not
captured by common ℓp-norms.
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(a) Original. (b) Adversarial Examples.

Figure 7: Selected transformed adversarial examples on ImageNet. While the adversarial examples
are classified wrongly, the original images are classified correctly. All images maintain the semantics
while being outside of common perturbation norms.
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