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Abstract
Auditing data usage in machine learning models is crucial for regulatory com-
pliance, especially with sensitive data like medical records. In this study, we
scrutinize potential vulnerabilities within an acknowledged baseline method, En-
sembled Membership Auditing (EMA), which employs membership inference
attacks to determine if a specific model was trained using a particular dataset.
We discover a novel False Negative Error Pattern in EMA when applied to large
datasets, under adversarial methods like dropout, model pruning, and MemGuard.
Our analysis across three datasets shows that larger convolutional models pose a
greater challenge for EMA, but a novel metric-set analysis improves performance
by up to 5%. Orthogonally, we introduce EMA-Zero, a GAN-based dataset auditing
method that does not require an external calibration dataset. Notably, EMA-Zero
performs comparably to EMA with synthetic calibration data trained on as few as
100 samples.

1 Introduction
Federated learning (FL) (McMahan et al., 2017) is a collaborative learning framework that allows
participants to collectively train a machine learning model without sharing their private data. A
crucial aspect of FL is respecting participants’ “right to be forgotten" (RTBF), a legal requirement
mandated by regulations like the General Data Protection Regulation (GDPR) (Voigt and Von dem
Bussche, 2017) and the California Consumer Privacy Act (CCPA) (Legislature, 2018), which enables
participants to request data removal from trained models.

The concept of machine unlearning has arisen as a solution to eliminating data from machine learning
models, and various machine unlearning methods have been proposed (Ginart et al., 2019; Liu et al.,
2020; Wu et al., 2020; Bourtoule et al., 2021; Izzo et al., 2021; Sekhari et al., 2021; Gupta et al., 2021;
Ye et al., 2022). However, from the perspective of an FL participant, a more immediate concern is
unlearning verification or data auditing, the process of confirming whether their data has genuinely
been removed from a model. Ensuring reliable data auditing forms the cornerstone of compliance
with RTBF. Unfortunately, there are only a few works in the field of unlearning verification/data
auditing (Huang et al., 2022; Weng et al., 2022; Gao et al., 2022; Zhou et al., 2023; Shi et al., 2023),
and very limited work has been done to assess their robustness and practicality in real-world scenarios.

In this study, we focus on scrutinizing EMA (Huang et al., 2022), a plug-and-play unlearning
verification method that does not require modifications during the training stage (as required by Weng
et al. (2022); Gao et al. (2022); Zhou et al. (2023)), making it more practical. Our key contributions
are:

• We systematically evaluate EMA’s performance against adversarial methods and introduce
improvements to EMA through a novel metric-set analysis (Section 3.2).

• We conduct ablation studies to understand EMA’s poorer performance on larger-scale settings,
with several hypotheses and error patterns explored (Section 3.3).

• We extend the capabilities of EMA by introducing EMA-Zero (Section 4), a variant designed
to function in a no-calibration setting. EMA-Zero utilizes GANs to generate synthetic
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data for shadow model training. This innovative approach brings EMA-Zero close to the
baseline EMA’s performance level while offering applicability in various collaborative learning
scenarios.

2 Preliminary: Ensembled Membership Auditing (EMA)
Ensembled Membership Auditing (EMA) relies on the membership inference attack (Shokri et al.,
2017), a process to determine whether an individual data point was included in the training of the
target model. Specifically, EMA achieves data auditing by aggregating data-wise membership scores
and applying statistical testing, using the following three steps:

1. Calibration Model Training: A calibration model with the same architecture as the target
model is trained on a held-out dataset from the same distribution as the training data.

2. Per-Sample Metric Thresholding: Given calibration training and test datasets Dctr, Dctest

and a metric m, the calibration model generates an independent threshold for m that best
partitions Dctr and Dctest. The specific metrics utilized by baseline EMA are correctness,
confidence, and negative entropy. These thresholds are then applied to the target model’s
outputs on each sample in the query dataset Dq , yielding a binarized result.

3. Statistical Result Aggregation: The binarized results from the previous step are aggregated
for all samples, with a 2-sample t-statistic used to provide a singular p-value on the range of 0
(Dq was not included in training) to 1 (Dq was included in training).

3 Systematic Evaluation of EMA’s Robustness
We systematically evaluate EMA’s robustness against various techniques known to impair membership
inference potency. We detail our experimental setup in Section 3.1 and present results in Section 3.2.
We then conduct ablation studies to understand EMA’s poorer performance on COVIDx in Section 3.3.

3.1 Experimental setup
Datasets and models We conducted experiments using three datasets with different model ar-
chitectures, including MNIST (LeCun et al., 1998) with MLP, COVIDx (Wang et al., 2020) with
ResNet-18 (He et al., 2016), and the Location dataset (Yang et al., 2016) with MLP. More information
about these datasets and their associated models is available in Appendix A.

Adversarial Methods. We evaluated EMA’s robustness against techniques known to impair mem-
bership inference performance, including dropout, pruning, and MemGuard (Jia et al., 2019):

• Dropout (Srivastava et al., 2014) disables nodes at probability p during training to learn more
generalizable patterns (Galinkin, 2021; Salem et al., 2018). We vary probabilities for dropout
from 0 to 0.9 in increments of 0.1.

• Unstructured global magnitude pruning (Brownlee, 2021) is also a countermeasure for mem-
bership inference (Wang et al., 2021). Similar to dropout probability, we vary the sparsity—the
fraction of zeroed-out weights—between 0 and 1 in increments of 0.1 to identify performance
cliffs.

• MemGuard (Jia et al., 2019) adds adversarial noise to hinder membership inference. We
found a bug in their code; therefore, we present results with both buggy and corrected
implementations.

Metrics. For each adversarial method, we consider the potential impact it might have on both the
effectiveness of EMA and model utility. Therefore, we report the drop in both EMA efficacy (i.e.,
“the EMA cost") and the drop in the target model accuracy (i.e., “the classification cost"). The EMA
accuracy is averaged across 378 auditing runs of various configurations; See Appendix A for details.

3.2 Results

Classes Test Acc. EMA Acc.

MNIST + MLP 10 96.24% 92.03%
COVIDx + ResNet-18 3 86.50% 92.13%

Location + MLP 30 51.50% 98.24%

Table 1: Target model accuracies and EMA accuracies.

Baseline performance. Table 1 summarizes
the baselines for MNIST, COVIDx, and Loca-
tion, with the results of (Huang et al., 2022)
being replicated on MNIST and COVIDx. Note
that the 51.50% test accuracy of Location is con-
sistent with previous work (Jia et al., 2019).
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Figure 1: The reduction caused by dropout in EMA
accuracy (i.e., EMA cost) v.s. the reduction in model’s
accuracy (i.e., Classification cost). Dropout values for
key datapoints are annotated, e.g. (0.5).

Dropout’s impact on EMA can be reason-
ably mitigated by careful metric selection.
Figure 1 shows the effects of dropout on both
EMA accuracy and target model accuracy. EMA
is robust to dropout for MNIST and Location,
with poor auditing performance only occurring
at unreasonably high classification costs. On
COVIDx, however, dropout impairs EMA per-
formance by 46% while increasing model accu-
racy. Such results suggest that dropout can act as a practical hindrance to EMA.
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Figure 2: Excluding entropy
boosts EMA performance.

To identify the shortcomings of EMA on dropped-out models, the met-
rics used in the auditing algorithm were fine tuned by a novel metric-set
analysis. In this process, audits were performed using each metric
individually and in various subsets. Surprisingly, we found that the neg-
ative entropy metric worsens auditing performance on all datasets and
dropout levels, including the baselines. Figure 2 shows the improved
auditing performance on COVIDx by removing negative entropy from
the combined metric set.
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Figure 3: EMA cost v.s. Classification cost under pruning.
Sparsity values for key datapoints are annotated, e.g. (0.775).

EMA is not robust against pruning. As
seen from Figure 3, the Location model is
especially robust to pruning, as we incur an
EMA loss only after a classification loss of
over 10% (at a sparsity of 77.5%). How-
ever, MNIST displays an immediate dropoff
in EMA accuracy even at the 10% sparsity
level. COVIDx is yet more staggering: at
the 20% sparsity level, average EMA accuracy drops from 92.13% to 69.28% with only a 2.5%
classification loss. Metric-set analysis was also performed on the pruned models. Unlike the dropout
case, where removing the negative entropy metric significantly improved performance, we found that
the poor EMA accuracy on pruned COVIDx models resulted from a low efficacy of all metrics when
a sparsity of over 20% was applied. Of particular note is the decrease in potency of the “correctness"
metric, which drops from 92.58% to 67.58% at 20% sparsity.

EMA Acc. Test Acc.

Baseline 95.58% 51.50%
MemGuard (buggy) 63.82% 21.00%
MemGuard (correct) 52.34% 37.50%

Table 2: Effects of MemGuard on Location.

MemGuard is a comparatively less practical adver-
sarial technique. We noticed a bug in MemGuard’s
original implementation, where the noisy logits were not
mixed with their denoised counterparts. Results are thus
presented with both mixed (correct) and unmixed (buggy)
logits. As seen from Table 2, MemGuard has a severe ef-
fect on the potency of EMA. However, such results come
with an overly-high classification loss—dropping accuracy to 37.5% for the mixup case and 21.0%
without mixup. Another limitation of MemGuard is that the auditor cannot, in theory, query the target
model directly. Instead of altering the model itself, as dropout does, MemGuard simply serves a
different set of output logits to the end user. Such a fact, as well as the low classification accuracy
MemGuard induces, limits the practicality of its defense against model auditing.

3.3 Discussion
Given the low robustness of EMA to dropped-out and pruned COVIDx models, we examine the
effects of model size and overfitting in order to understand EMA performance. In particular, the
COVIDx model is more generalized and has more parameters than the MNIST or Location models.

Model generalization indicates EMA performance. The COVIDx results in Section 3.2 and
the ablations in Appendix C support the hypothesis that generalized models pose a challenge to
Ensembled Membership Auditing. Such a hypothesis explains why regularization techniques like
dropout and pruning yield a significant decrease in EMA performance, albeit at the cost of target
model accuracy.
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Figure 4: Examining the trends in EMA Accuracy by
dataset size for sparse, dropped-out, and baseline MNIST
models. Regularization (in the left two graphs) induces
false negatives at large dataset sizes, while false positives
are ever-present for smaller dataset sizes.

False Negative Error Pattern. Figure 4
shows EMA accuracy versus dataset size on a
pruned MNIST model. In contrast to the base-
line models, where EMA produces false posi-
tive labels on small dataset sizes, we find that
EMA is also under-sensitive when dropout is
applied. Specifically, EMA produces false nega-
tives (non-membership) on larger query datasets,
which yields a significant performance decrease.
This False Negative Error Pattern (FNEP) was
not witnessed by (Huang et al., 2022).

4 EMA-Zero: Towards Calibration-free Unlearning Verification
Method. EMA faces a significant constraint in that it relies on an external dataset for calibration
model training (Step 1 in Section 2). Consider a scenario within Federated Learning, where a hospital
cannot share a separate dataset with an external auditor due to concerns about compromising patient
Protected Health Information (PHI). To provide similarly-distributed data without compromising
confidentiality, we propose a solution: the provider can train a cost-effective Generative Adversarial
Network (GAN) Goodfellow et al. (2014) on their dataset and offer the auditor access to a black-box
generator. The auditor can then leverage this GAN to generate synthetic images as needed, with the
target model providing labels. These synthetic data and labels can be employed to train the calibration
model and to obtain thresholds for each metric, resulting in a novel pipeline termed “EMA-Zero."
We provide a flow chart for this process in Appendix B.
Results. We use a simple 3-layer, 256-unit MLP for both the generator and discriminator. To
determine the importance of calibration data quality on auditing performance, we vary the amount
of data used to train the GAN, from 100 samples to the full dataset. We present results on COVIDx
below, with consistent results on MNIST in Appendix C. As shown in Table 3, EMA efficacy
seems to be weakly correlated with the quality of the GAN generating the calibration dataset.

Training Size EMA Acc.

0 (Pure Noise) 84.43
100 84.48
200 83.16
1000 87.38
2000 85.35
4000 84.10

Zero noise 86.17

Table 3: EMA Accuracy (%)
v.s. GAN training size. The
last row corresponds to EMA-
Zero with a GAN trained on
4000 unnoised images.

Such results, across both MNIST and COVIDx, yielded the following
key conclusions:

1. (Lack of) Importance of Calibration Dataset: Figure 8 and
Table 3 show that utilizing datasets generated by a low-quality
GAN can yield similar EMA efficacy as using real datasets. One
explanation is that calibration in EMA is effective not because
the calibration dataset mimics the training dataset, but because
of the general process of identifying discrepancies between the
calibration model’s training and testing results.

2. Efficacy of EMA-Zero: This work was able to provide a novel
adaptation of EMA for the scenario with no available calibration
dataset. The EMA-Zero pipeline was able to approach base-
line EMA performance with as few as 100 training samples,
demonstrating its practical applicability.

5 Conclusions
This study examined the efficacy of Ensembled Membership Auditing (EMA). We first evaluated
EMA’s robustness and found that pruning and dropout significantly impair EMA efficacy while
maintaining classification accuracy. We then introduced a novel metric-set analysis and found that
removing negative entropy improved EMA on all models. Ablation studies further indicated that
EMA was less robust with larger and convolutional models. Orthogonally, we proposed a novel
pipeline, EMA-Zero, for situations where the auditor cannot access an in-distribution calibration
dataset. Even with data generated from a low-resource GAN, EMA-Zero was able to reach baseline
EMA levels for both MNIST and COVIDx. Such results demonstrate EMA-Zero’s applicability in
novel collaborative learning settings, where auditors can operate effectively without being exposed to
confidential information.

Future work will develop theoretical guarantees for EMA, mitigate false negatives induced by
regularizers, expand the applicability of our approach to generative models, and extend the study to
explore alternative data auditing methods.
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A Experimental Details
Datasets and models. MNIST LeCun et al. (1998) is a computer vision benchmark with a classifi-
cation task of 10 handwritten digits. A subset of 10,000 images were utilized for training the target
3-layer, 256-node multilayer perceptron (MLP). The OOD fold was collected from the Street View
House Numbers (SVHN) dataset Goodfellow et al. (2013).

COVIDx Wang et al. (2020) dataset contains Chest X-Ray (CXR) images of COVID-positive,
pneumonic, and healthy patients. In contrast to the fully-connected perceptron used for MNIST, a
ResNet18 model was used for COVIDx trained on 4,000 images. A separate OOD fold was also
collected from the Child-XRay dataset Kermany et al. (2018).

Location dataset Yang et al. (2016) is a tabular benchmark that has been widely used in MIA
literature Shokri et al. (2017); Yeom et al. (2018). Location has been used widely in previous works
relating to membership inference Ying et al. (2020). In contrast to the image-based datasets, Location
contains tabular data of 5,010 samples with 446 binary features and a 30-class prediction task Shokri
et al. (2017).

Calculation of EMA accuracy. We vary the configurations among the calibration model (6 choices)
and query datasets (7 different data folds and 9 choices of sizes) as below to obtain 6× 7× 9 = 378
EMA results for each (dataset, model) benchmark:

1. Calibration Model Training: Six calibration models, each containing the same architecture as
the target model, are trained on a held-out dataset from the same distribution as the training
data. Across the six models, the percentage of noise applied to the calibration dataset is
varied by parameter k, where k = 20 has 20% of its data samples perturbed by either noise or
rotation. The models are thus C0, C10, C20, C30, C40, C50.

2. Query dataset: Dq consists of five data folds from the target model’s training set, one untrained
fold from the same data distribution, and one fold from a separate out-of-distribution (OOD)
dataset. For each Dq , we run the results using nine different sizes of truncates.

For each run, we obtain a p-value and convert it to an accuracy by identifying the percent change
from the ground truth p-value (0 or 1). All such percentages across the 378 runs are averaged, with
equal weight given to the training folds, testing fold, and OOD fold.

B EMA-Zero Pipeline

Figure 5: EMA-Zero: Ensembled Membership Auditing with synthetic data.
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EMA-Zero supplants real calibration data for synthetic data produced by an externally-trained
GAN. The data is then passed down to the original EMA processes of calibration model training,
thresholding, and result aggregation.

C Further Results
Ablation: Convolutional vs. Fully-Connected Models. We replaced the MNIST MLP with the
convolutional LeNet5 model to isolate the effects of model type LeCun et al. (1995).
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Figure 6: Loss in average EMA accuracy vs. loss in classification accuracy for LeNet5 and MLP on MNIST.

As seen from Figure 6, EMA is less robust to the convolutional LeNet5 model than it is to the
fully-connected MLP. Specifically, at 2% classification loss, we see that EMA performs up to 10%
more poorly on the convolutional model with dropout and up to 25% more poorly with pruning. Such
results substantiate the COVIDx findings that convolutional models may pose a greater challenge to
EMA than fully-connected ones. An intuitive explanation is that convolutional models capture more
generalized patterns, making them harder to audit.

Ablation: Model Size. We also replaced the original 3-layer MNIST MLP with a 2-layer model to
examine the effects of model size.
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Figure 7: EMA Accuracy and classification accuracy versus dropout for the small and large MLP models.

EMA’s baseline performance on the two models was similar, achieving 92.03% on the three-layer
and 91.96% on the two-layer. As shown in Figure 7, however, both auditing and classification
performance fared better on the smaller model when dropout was induced, with the difference in
EMA accuracy for the two models up to 15% (at a dropout level of 0.5).

EMA-Zero with MNIST. The strong performance of EMA-Zero on COVIDx was replicated on
MNIST. Figure 8 shows EMA-Zero accuracy using the LeNet5 model from Section 3.3.

Interestingly, the quality of the GAN-generated data does not significantly affect EMA performance.
Excluding the GAN experiment with a training size of 20, EMA accuracy seems to hover around 90%
regardless of the strength of the synthetic calibration data, close to the real-data baseline of 91.56%.
It is further apparent that the entirety of the error arises from the false positive error pattern noted by
Huang et. al. 2022 with none of the false negative error (FNEP) described in Section 3.2.
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