
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

MASKED SKILL TOKEN TRAINING FOR HIERARCHICAL
OFF-DYNAMICS TRANSFER

Anonymous authors
Paper under double-blind review

ABSTRACT

Generalizing policies across environments with altered dynamics remains a key
challenge in reinforcement learning, particularly in offline settings where direct
interaction or fine-tuning is impractical. We introduce Masked Skill Token Train-
ing (MSTT), a fully offline hierarchical RL framework that enables policy transfer
using observation-only demonstrations. MSTT constructs a discrete skill space via
unsupervised trajectory tokenization and trains a skill-conditioned value function
using masked Bellman updates, which simulate dynamics shifts by selectively dis-
abling skills. A diffusion-based trajectory generator, paired with feasibility-based
filtering, enables the agent to execute valid, temporally extended actions without
requiring action labels or access to the target environment. Our results in both
discrete and continuous domains demonstrate the potential of mask-guided plan-
ning for robust generalization under dynamics shifts. To our knowledge, MSTT is
the first work to explore masking as a mechanism for simulating and generalizing
across off-dynamics environments. It marks a promising step toward scalable,
structure-aware transfer and opens avenues to explore multi-goal conditioning, and
extensions to more complex, real-world scenarios.

1 INTRODUCTION

Reinforcement learning (RL) agents often struggle to generalize when deployed in environments that
differ from their training conditions (Pinto et al., 2017; Clavera et al., 2019; Abdolshah et al., 2021;
Hansen et al., 2021). In many practical scenarios involving navigation and manipulation, deployment
environments exhibit structural changes (e.g., blocked passages or new obstacles) that invalidate
parts of the agent’s learned behavior repertoire. The changes do not typically require new tasks or
capabilities, but render some previously executable behaviors infeasible. A natural question is: can
agents adapt to such dynamics shifts with minimal additional supervision, i.e., without extensive
interaction or full retraining?

In this work, we address this question in a practical setting where the agent is trained offline in a
source environment and deployed zero-shot in a target environment with altered dynamics. At deploy-
ment, the agent receives a single observation-only demonstration—without action annotations—that
illustrates feasible behavior in the new environment. These demonstrations may come from human
demonstrators or be inferred from video, and are far cheaper to obtain than full action-labeled trajec-
tories or interactive feedback. This setting enables lightweight, low-overhead adaptation and is well
suited to real-world applications where interaction is expensive or infeasible.

We introduce Masked Skill Token Training (MSTT), a hierarchical RL framework for adaptation to
feasibility constraints using only offline data. The key insight is that dynamics shifts can be abstracted
as constraints over a learned space of temporally extended skills. MSTT learns these discrete skills
from source trajectories using a vector-quantized variational autoencoder (VQ-VAE) (van den Oord
et al., 2017; Mentzer et al., 2024), resulting in a compact and reusable skill vocabulary. During
training, MSTT simulates environment changes by randomly masking out subsets of skills, and learns
a feasibility-conditioned critic via a masked Bellman operator that propagates value only through
feasible skill sequences.

At test time, MSTT infers a binary skill mask from a single observation-only demonstration in the
target environment, and plans using the learned critic under the inferred constraints. Unlike prior
off-dynamics RL approaches such as DARC (Eysenbach et al., 2021) and VGDF (Xu et al., 2023),
which require action-labeled data or target interaction, MSTT operates fully offline and uses only

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

observational signals to guide transfer. In contrast to standard hierarchical RL methods (Bagaria &
Konidaris, 2020; Qiao et al., 2025), which assume that learned skills remain valid during deployment,
MSTT explicitly models and adapts to shifts in skill feasibility. MSTT uses a diffusion-based
trajectory generator trained on source data. At deployment, it samples candidate trajectories and
discards those whose encoded skill tokens violate the inferred mask. This enables behavior synthesis
aligned with test-time constraints, without needing to explicitly condition the generative model on
the mask or retraining it for each deployment scenario.

We evaluate MSTT on continuous domains, specifically the Maze2D in D4RL, FetchReach and Habi-
tat environments with test-time modifications and requirements. MSTT significantly outperforms
offline RL and transfer RL baselines, demonstrating robust adaptation using only a single observation-
only demonstration per environment. These results indicate the promise of MSTT as a step toward
enabling structure-aware transfer in dynamic environments with minimal supervision. To our knowl-
edge, this work is the first to tackle the challenging setting of skill-level adaptation under structural
dynamics shifts using only observation-only demonstrations and fully offline training.

To summarize, our main contributions are:

• We formulate a new off-dynamics transfer setting where agents adapt using only observation-only
demonstrations, without access to target actions or environment interaction.

• We propose Masked Skill Token Training (MSTT), a hierarchical RL framework that models
dynamics-induced skill constraints using binary masks, and learns a feasibility-conditioned critic
via masked Bellman updates.

• We integrate a diffusion-based trajectory generator to enable robust skill execution under test-time
constraints, and demonstrate strong generalization across structurally altered environments.

2 RELATED WORKS

Policy Transfer under Dynamics Mismatch. Generalizing RL policies under dynamics mismatch is
a key challenge for real-world deployment. DARC (Eysenbach et al., 2021) addresses Off-Dynamics
RL (ODRL) (Lyu et al., 2024) by learning reward corrections using discriminators trained on transi-
tion dynamics. VGDF (Xu et al., 2023) filters transferable transitions using model ensembles, while
H2O (Niu et al., 2022) reweights offline datasets to better match target distributions. Domain random-
ization (Peng et al., 2018) trains robust policies via diverse simulated dynamics, but often requires
extensive environment access. In the fully offline setting, DARA (Liu et al., 2022) modifies source
rewards based on classifier-estimated transition alignment between source and target domains, while
BOSA (Liu et al., 2024) proposes supported value optimization to better mitigate out-of-distribution
transitions. Unlike these approaches, this work aims to achieve generalization across structural
dynamics shifts without target interaction or explicit modeling of transition mismatches.

Hierarchical Skills and Discrete Latent Policies. Hierarchical RL (HRL) facilitates long-horizon
decision-making by structuring policies around temporally extended skills, improving exploration,
credit assignment, and policy reuse. While classical HRL relies on predefined subgoals or options,
recent works learn skill abstractions from data, often through discrete latent policies that represent
reusable primitives as compact codes. OPAL (Ajay et al., 2021) learns a discrete skill dictionary using
VQ-VAE (van den Oord et al., 2017; Mentzer et al., 2024; Ozair et al., 2021), and QueST (Mete et al.,
2024) encodes variable-length trajectory tokens for multitask reuse. DADS (Sharma et al., 2020) and
VALOR (Achiam et al., 2018) focus on skill predictability and diversity to enhance generalization.
These approaches offer modularity and efficiency but implicitly assume that skills remain executable
during deployment. Our method removes this assumption by introducing a skill-masking mechanism
that enables policies to reason over partially-available skills.

Diffusion-Based Generative Policy Learning. Diffusion models have emerged as an expressive
policy class for offline RL (Kang et al., 2023). Diffuser (Janner et al., 2022) formulates planning
as trajectory denoising through conditional diffusion. Decision Diffuser (Ajay et al., 2023) extends
this idea to decision-making, modeling return-conditioned trajectories. Diffusion Policies (Chi et al.,
2023) apply diffusion to visuomotor control, producing pixel-to-action policies with high fidelity.
Latent Diffusion RL (Venkatraman et al., 2024) leverages low-dimensional latent spaces to improve
efficiency in trajectory generation. These methods achieve strong results in static environments,
capable of composing hierarchical offline knowledge (Zhou et al., 2023; Du et al., 2023; Liang

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

(a) Four-room

s1 s2

s3s4

a2

a2

a2

a2

a1

a1

a1

a1

(b) MDP Abstraction

s1 s2

s3s4

s⊥

a2

blocked

a2

a2

a1

a1

a1

a1

a2 to sink

all actions

(c) MDP with sink

Figure 1: The Four-room environment and its skill-level MDP abstraction. (a) The original Four-room
grid world, where the agent must reach specified goal rooms from varying start locations. (b) Abstract
MDP representation, where rooms are states and inter-room transitions are treated as high-level skills
ai. (c) Modified MDP with a blocked transition (e.g., the door from room 2 to room 3 is impassable),
where executing the corresponding skill leads to a sink state. MSTT learns a feasibility-conditioned
critic through simulated skill masking, enabling transfer to such target domains without interaction.

et al., 2024; Ma et al., 2024), but assume fixed dynamics and do not explicitly handle feasibility
constraints introduced by changes in environment structure. Our method augments this line of work
by conditioning diffusion-based skill generation on masked skill availability, enabling policy rollout
under dynamics-induced constraints.

3 SKILL-LEVEL MDP ABSTRACTION WITH MASKED FEASIBILITY

Recall that our goal is to enable decision-making under dynamics shifts, where certain skills may
become infeasible due to changes in transition feasibility (e.g., due to physical obstacles or altered
connectivity1). In this section, we formalize the connection between skill feasibility and transition
dynamics using a skill-level abstraction of the MDP.

We introduce the notion of a skill mask, a binary indicator over the discrete skill space, which
captures environment-specific feasibility constraints. This mask provides a compact mechanism to
encode target environment dynamics at the skill level, and allows us to analyze how such feasibility
constraints affect value estimation and policy behavior. Our formulation supports off-dynamics policy
transfer by explicitly modeling which skills remain executable in the target environment, without
requiring direct interaction to capture its underlying dynamics or action-labeled trajectories.

To illustrate this abstraction, we use the Four-room navigation domain as an example of a discrete
hierarchical reinforcement learning (Sutton et al., 1999) task involving structured decision-making
with reusable behavioral primitives. As shown in Fig. 1(a), the environment comprises four inter-
connected rooms with doors at fixed positions. The agent is tasked with navigating from different
start locations to designated goal rooms using previously learned skills that enable room-to-room
transitions. These skills can be modeled as temporally extended actions or options.

Skill Abstraction of the Source MDP. We assume that a set of temporally extended skills are
available, which enables the agent to transition between high-level regions of the environment (e.g.,
adjacent rooms). Based on these behaviors, we construct a skill-level abstraction of the environment
in the form of a discrete Markov Decision Process (MDP) (Puterman, 2014)M := (S,A, r, p, γ),
where S denotes the abstract state space (e.g., room indices), A denotes the set of skill-level actions,
r is the reward function defined over abstract states, p captures the skill-induced transition dynamics,
and γ is the discount factor2. This high-level abstraction is illustrated in Fig. 1(b), and serves as the
foundation for reasoning over skill composition in our framework.

1In this work we primarily consider structural dynamics changes such as locked passages or new obstacles,
not continuous changes on parameters of transition, e.g. mass, friction or damping. Transfer across continuous
changes requires training on trajectories from randomly sampled parameters, and we pursue this as future work.

2Since all the skills represented as options in our work with diffusion model have fixed horizon as shown in
Section 4.2, we keep a fixed discounted factor here.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Skill Tokenization Feasibility-Aware Option Sampling

...

...

Skill
Codebook

Trajectory
Encoder

Feasibility
Check

Resample

Figure 2: Overview of our masked skill token learning framework. (Left) Skill tokenization encodes
trajectory segments into discrete latent tokens via a VQ-VAE encoder ϕθ. (Right) At execution time,
the diffusion model Dψ samples candidate sub-trajectories, which are encoded into skill tokens (z).
Feasibility is enforced via the binary mask m(z); only valid options are propagated for Q-learning.

Skill-Level Feasibility Masking. In deployment settings, environment dynamics may differ from
those observed during training, rendering certain skill-level transitions infeasible (e.g., a blocked
passage between room 2 and room 3). To capture such structural constraints, we augment the abstract
state space with a dedicated sink state s⊥, which absorbs any transition resulting from the execution
of an invalid skill (Fig. 1c). This sink state formulation provides a conservative but practical model of
failure, where executing an unavailable skill results in termination—this reflects scenarios such as
safety violations or irreversible errors. While our current formulation adopts this absorbing failure
model, alternative semantics (e.g., remaining in the same state upon executing an invalid skill) are
also possible and are left for future work.

The resulting target MDP is denotedMB := (S ∪ {s⊥},A, r, pB, γ), where B ∈ {0, 1}|S|×|S| is a
blocking matrix indicating the feasibility of transitions. Bi,j = 0 denotes that the transition from si
to sj is blocked under the current dynamics:

pB(sj |si, a) := 0 if Bi,j = 0; pB(s⊥|si, a) :=
∑
sj∈S

(1−Bi,j)p(sj |si, a)

where transitions to blocked states are redirected to a sink state s⊥, which models failure due to
infeasible skill execution. We also introduce a binary availability mask m(s, a) ∈ {0, 1}|S||A|, where
m(s, a) = 0 denotes that action a is blocked at state s.

Masked Bellman Operator. To support learning in the presence of unknown blocked dynamics, we
introduce a masked Bellman operator that uses the binary availability mask m(s, a) ∈ {0, 1}|S||A|,
where m(s, a) = 0 denotes that action a is blocked at state s. The masked Bellman operator modifies
the standard backup by restricting the value propagation to feasible transitions:

(T mQ) (s, a) := r(s) + γ
〈
m(s, a)p(s, a),VmQ

〉
, (1)

where VmQ (s) is a masked value operator that computes the maximum over available actions:

VmQ (s) :=

{
max

a∈A:m(s,a)=1
Q(s, a), if such a exists

r(s), otherwise.
(2)

In other words, this masked operator enables the critic to account for feasibility constraints during
learning by preventing value propagation through blocked or invalid transitions.

Theoretical Justification. Under blocked dynamics, iterative updates using the masked Bellman
operator can converge to a near-optimal policy. Specifically, for any target MDP with infeasible
transitions, there exists an availability mask that enables convergence to a policy whose value closely
approximates that of the optimal policy under the modified dynamics:

Theorem 1. Let Q0 : S ×A → R+ be an initial action-value function. There exists a mask m such
that the iterative update Qk+1 = T mQk converges to a policy πKm whose value under the blocked

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

MDPMB satisfies: ∥∥∥V πK
m

MB
− V ∗

MB

∥∥∥
∞
≤ αγK + β(1− pmin),

where pmin := mins,amaxs′ p(s
′|s, a) and α, β are constants dependent on γ.

For more detailed derivation and proof, please see Appendix A.

3.1 VALIDATING MASKED BELLMAN UPDATES

0.5 0.6 0.7 0.8 0.9 1.0
pmin

3

4

5

6

7

8

9

Va
lu

e
at

 s
1

Optimal Value V *
B

Masked Learning VK

(a) Est. & optimal values

0.5 0.6 0.7 0.8 0.9 1.0
pmin

0

1

2

3

|V
K
−
V

* 
B
| ∞

(b) Gap (ℓ∞-norm)

Figure 3: Performance of the masked Bellman
operator using Eq. (1) and Eq. (2). (a) Converged
value estimates (Est.) at state s1 compared with
the analytically computed optimal values under
blocked dynamics. (b) ℓ∞-norm of the difference
between the estimated and optimal value functions.
Both plots show that the masked Bellman operator
produces accurate estimates, particularly as pmin

approaches 1.

We empirically validate Theorem 1 using the
example discrete environment shown in Fig-
ure 1(a). We simulate masked updates in the
unblocked source MDP (Figure 1(b)) using a
feasibility mask where action 2 is unavailable
at state s2. The resulting value function VK is
computed through K iterations of the masked
Bellman operator. We evaluate performance
across different levels of pmin (which reflects
the entropy of the transition dynamics).

Figure 3 compares the value function estimated
via the masked Bellman operator to the analyt-
ically derived optimal values under blocked dy-
namics. Notably, in low-entropy regimes where
pmin ≈ 1, the largest gap (Figure 3(b)) between
estimated and optimal values becomes negligi-
ble. These findings empirically validate our the-
oretical findings and highlight the potential of
our approach in structured settings where skill
transitions are predictable.

In summary, Theorem 1 shows that masked value learning via the Bellman operator T m can approxi-
mate optimal behavior in a target MDPMB , provided a suitable feasibility mask m is applied. In
hierarchical settings, where skills are temporally extended and induce low-entropy transitions, the
approximation error remains small (e.g., when pmin ≈ 1). This property allows dynamics shifts to
be simulated in the source domain by masking skill availability during training. As a result, value
functions can be learned entirely offline and still generalize to test environments without requiring
access to their true dynamics. We leverage this insight to design the training framework described in
the next section.

4 MASKED SKILL TOKEN LEARNING FOR OFF-DYNAMICS RL
In this section, we transition to learning in continuous state and action spaces, where the discrete skill
abstractions assumed in Section 3 are not directly available.

We introduce Masked Skill Token Training (MSTT), a hierarchical RL framework that learns a
compact skill vocabulary from offline data and supports policy transfer under altered dynamics.
MSTT comprises of three main components: (1) it encodes sub-trajectories into discrete skill tokens
using a VQ-VAE trained on offline demonstrations; (2) it learns a feasibility-aware critic using
masked Bellman updates that simulate skill infeasibility through random masking; and (3) it uses
a diffusion-based policy to generate candidate skills, filtering them according to an inferred skill
feasibility mask obtained from a single observation-only demonstration in the target environment.
We now describe each component in detail.

4.1 SKILL TOKENIZATION VIA UNSUPERVISED TRAJECTORY ENCODING

In continuous environments where the state-action space cannot be directly abstracted into a finite
MDP, we obtain reusable skill representations by learning discrete encodings of raw trajectory
segments from offline data. Specifically, we adapt the VQ-VAE to discover latent behavioral primitives
(sub-trajectories) that form a compact symbolic skill vocabulary.

Let τ1:H = (s1, . . . , sH) denote a sub-trajectory with horizon H , where we let sh denote an
observation with slight abuse of notation. We encode this trajectory using the VQ-VAE encoder ϕθ to

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 1 Offline Masked Hierarchical Reinforcement Learning

Require: Trajectory dataset D, total training steps E, batch size B
1: Initialize critics Qφ1 , Qφ2 and targets Qφ′

1
, Qφ′

2

2: for e = 0 to E do
3: Sample

{
τ
(b)
1:H

}
b∈[B]

uniformly randomly from D

4: Sample
{
m(b

}
b∈[B]

randomly from {0, 1}L

5: Sample N target options at s(b)H and m(b) using Algorithm 2
6: Select best option o′

(b) by Qφ′
1

7: Get clipped Gaussian noised version õ′(b)

8: Get Bellman loss ℓ(b)j from Eq. (4) with double Q-learning

9: Update φj ← φj − η∇φj

1
B

∑
b ℓ

(b)
j , j ∈ {1, 2}

10: if e mod e0 then
11: φ′

j = λφj + (1− λ)φ′
j , j ∈ {1, 2}

12: end if
13: end for
14: return Qφ1

produce a discrete latent token:

z = ϕθ(τ1:H), z ∈ Z := {1, 2, . . . , L},

where L is the size of the learned codebook Z . Each token z ∈ Z indexes a cluster of similar
sub-trajectories in the dataset and thus, the codebook Z provides a discrete abstraction over the
continuous behavior space, with each token capturing consistent transition patterns. We find that
even when trained with observation-only sub-trajectories, the learned codebook captures meaningful
spatial and behavioral structure in the environment.

The VQ-VAE model is trained by minimizing the following loss function over sub-trajectories:

Lskill−enc = ∥τ1:H − ξϑ(z)∥2︸ ︷︷ ︸
reconstruction

+ ∥sg[ϕθ(τ1:H)]− z∥2︸ ︷︷ ︸
codebook loss

+β ∥ϕθ(τ1:H)− sg[z]∥2︸ ︷︷ ︸
commitment

, (3)

where ξϑ is the decoder, sg[·] denotes the stop-gradient operator, and β is a hyperparameter that
balances codebook commitment against the other loss terms.

4.2 DIFFUSION-BASED OFF-DYNAMICS SKILL ADAPTATION

To enable hierarchical decision-making under dynamics shifts, we consider each discrete skill token
z ∈ Z as a temporally extended action following the options framework (Sutton et al., 1999; Sutton
& Barto, 1998). Formally, an option is defined as o = ⟨I, πo,B⟩, where I ⊆ S is the initiation set,
πo is the intra-option policy, and B : S → [0, 1] is the termination condition. Each element of the
option tuple is instantiated using a trajectory segment (s1, a1, . . . , sH) and, thus, πo corresponds to
an action sequence.

To support planning, we extend the masked Bellman operator (Eq. (1)) to operate over options:

Q∗(s, o,m) = R(o) + γH max
o′∈O(s′) :m(ϕθ(o′))=1

Q∗(s′, o′,m), (4)

where O(s′) is the set of valid options at the successor state s′. The return R(o) is computed as
the discounted sum of per-step rewards. If no feasible option is available, the value defaults to the
terminal reward as in Eq. 2.

We apply the VQ-VAE trajectory encoder ϕθ (Section 4.1) to associate each option with a skill
token by encoding the sub-trajectory of observations z = ϕθ(τ1:H). Following the abstraction
introduced in Section 3, we define a skill feasibility mask m(z), which models which skills remain
executable under altered dynamics: i.e., m(z) = 1 indicates a feasible skill, while m(z) = 0 denotes
an infeasible one.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Algorithm 2 Off-Dynamics Option Sampling

Require: Start s, Diffusion model Dψ, encoder
ϕθ, mask m

1: z ← null
2: while z = null do
3: Sample τ1:H ∼ Dψ(· | s)
4: z ← ϕθ(τ1:H)
5: if m(z) = 0 then
6: z ← null ▷ Reject and resample
7: end if
8: end while
9: return Feasible option τ1:H and z

We sample options using a trajectory-level diffu-
sion policy model Dψ, trained to generate plau-
sible observation-action sub-trajectories. Unlike
the VQ-VAE decoder, the diffusion model sup-
ports conditioning on continuous start states s,
enabling flexible skill generation in diverse en-
vironments. Rather than conditioning the model
directly on the feasibility mask, we apply a
simple filtering procedure: sampled trajectories
whose encoded skill tokens are masked out are
discarded (Algorithm 2). The accepted trajec-
tory is then executed as a temporally extended
option. This mechanism allows for zero-shot
composition of valid high-level behaviors under
novel dynamics, guided solely by the feasibility mask.

4.3 MODEL TRAINING AND INFERENCE

The overall training procedure is summarized in Algorithm 1. At each iteration, we randomly sample
trajectory segments and skill masks from the offline dataset, and update the Q-function by minimizing
the squared Bellman error under the masked update rule (Eq. (4)). Although the number of possible
skill-mask combinations grows combinatorially with the size of the skill vocabulary, we find that
the learned skill space is sufficiently structured and random masking provides effective coverage
in practice. To stabilize training, we incorporate several standard techniques from deep Q-learning,
including target networks(Mnih et al., 2016), clipped double Q-learning (Hasselt, 2010; Fujimoto
et al., 2018), and target smoothing via noise injection (Simmons-Edler et al., 2019).

At test time, MSTT infers the feasibility mask from a single observation-only demonstration. The
demonstration can be non-expert as long as it covers essential path towards the goal. MSTT is capable
of compositing skills existed in the demonstration to achieve the goal. We begin by initializing the
skill mask m(z) = 0 for all z ∈ Z . Then, we extract all sub-trajectories τ1:H from the demonstration
and encode them using the trajectory encoder to obtain skill tokens z = ϕθ(τ1:H). For each observed
skill token, we set m(z) = 1, marking the corresponding skill as feasible. This inferred mask is
passed to the learned critic and used to guide sampling via Algorithm 2.

5 EXPERIMENTS

We evaluate MSTT’s ability to achieve observation-only demonstration following in previously
unseen environments with altered dynamics, without additional training or fine-tuning. Our primary
objective is to benchmark MSTT against state-of-the-art offline and transfer RL methods in popular
simulation environments (Figures 4, 5 and 6). We also include a case study showcasing the use of a
Vision-Language Model (VLM) to infer demonstrations from visual observations.

5.1 EXPERIMENTAL SETUP

Environments. We evaluate MSTT in three simulated environments from Gymnasium-Robotics
suite (de Lazcano et al., 2024) and Habitat-Lab (Savva et al., 2019; Szot et al., 2021; Puig et al.,
2024): Maze2D and FetchReach, commonly used in offline (Janner et al., 2022) and hierarchical

(a) Maze2D (b) Target 1 (c) Target 2 (d) Target 3 (e) Target 1 (f) Target 2 (g) Target 3

Figure 4: Environments and test-time performance of MSTT in Maze2D. (a) Source environment
with continuous state and action spaces. Three distinct long-horizon paths connect the start location
(green ball) to the goal (red ball), each requiring hundreds of low-level control steps. (b)-(d) Test-time
variants with altered dynamics, where only one path remains feasible. The agent must navigate to
the goal given observation-only demonstration. (e)-(g) Trajectories generated by MSTT in target
domains. The agents successfully finished navigation by selecting the correct path.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 5: Demonstration in Habitat ReplicaCAD. The agent must navigate to the goal in this studio
with pixel observations, following the demonstration images in order from left to right, then top to
bottom.

Table 1: Performance on Maze2D test suites.
Env Metric BC Diffuser Diffusert BCta DARA MSTT (ours)

T1
Return (↑) 0.0±0.0 83.5±50.78 107.36±27.41 57.76±18.24 39.13±31.93 163.97±67.11
Steps (↓) 350.0±0.0 280.65±42.17 162.84±27.02 157.49±15.61 310.87±31.93 186.92±66.85
Goal (↑) 0% 73% 99% 99% 65% 89%

T2
Return (↑) 0.19±1.89 15.86±39.31 36.05±42.49 19.32±7.11 63.67±22.20 145.51±50.93
Steps (↓) 349.8±1.98 336.7±32.96 298.54±66.76 187.37±57.37 286.33±22.20 211.01±46.74
Goal (↑) 1% 14% 44% 93% 93% 95%

T3
Return (↑) 8.44±12.84 0.0±0.0 27.94±22.04 22.94±21.73 61.83±37.60 111.59±34.74
Steps (↓) 310.85±57.89 350.0±0.0 259.44±63.34 280.29±64.85 288.17±37.60 249.33±35.02
Goal (↑) 32% 0% 73% 54% 78% 99%

Avg
Return (↑) 2.87 33.12 57.11 33.34 54.87 140.35
Steps (↓) 336.88 322.45 240.27 208.38 295.12 215.75
Goal (↑) 11% 29% 72% 82% 78.66% 94.33%

t: fine-tuned on target state-only demonstrations. ta: fine-tuned on target action demonstrations.

RL (Shin & Kim, 2023) research, and a photorealistic 3D indoor navigation task in ReplicaCAD (Szot
et al., 2021) commonly used in embodied AI. Maze2D (Figure 4(a)) requires long-horizon navigation
with continuous control and sparse rewards (1 at the goal). Learning is difficult from non-expert,
fully offline data without hierarchical modeling. At test time, we block certain paths (Eysenbach
et al., 2021), creating target environments where the original policy fails. We evaluate on three such
variants (Figures 4(b)–4(d)), each allowing only a single feasible route. The agent receives a single
locations-only demonstration per environment and must infer the required skills to follow it to the
goal. In FetchReach (Figure 6(a)), the robot controls a gripper to reach target positions, receiving a
reward of −1 per step. In the target variant (Figure 6(b)), a red cuboid defines a constrained region
that incurs a heavy penalty if entered. The agent must imitate a safe coordinates-only demonstration
to reach the goal while avoiding the penalty zone. In ReplicaCAD (Figure 5), the agent must navigate
to a goal in a photorealistic indoor environment using only RGB observations, following a sequence
of images as a demonstration.

Compared Methods and Evaluation Metrics. We compare MSTT against several popular of-
fline RL and imitation learning baselines: Diffuser (Janner et al., 2022) and Behavior Cloning
(BC) (Pomerleau, 1988; Levine et al., 2020), both of which learn from offline data but lack built-in
mechanisms for adapting to new environments. To enable adaptation, we fine-tune Diffuser on target
observation-only demonstrations, denoted as Diffusert. We also include DARA (Liu et al., 2022), an
offline dynamics-aware transfer RL method that extends DARC (Eysenbach et al., 2021) to the offline
setting using action-annotated target data. Additionally, BCta denotes behavior cloning fine-tuned
with action-labeled target demonstrations. Importantly, MSTT uses only state-only demonstrations
in the test environment, while DARA and BCta rely on action annotations. Although these methods
have more information about the target environment, we include their results for completeness and
comparison. Another relevant method that can transfer with observation-only demonstrations is
inverse dynamics (ID) modeling (Radosavovic et al., 2021). However, we find that it performs poorly

Table 2: FetchReach test results.
Metric BC Diffuser Diffusertt BCta DARA MSTT (ours)
Return (↑) -50.0±0.0 -46.95±3.12 -30.85±11.44 -50.0±0.0 -49.64±0.75 -37.26±7.43
Cost (↓) 0.0±0.0 -200.0±206.51 -112.0±99.02 0.0±0.0 -208±85.65 0.0±0.0
Goal (↑) 0% 99% 50% 0% 23% 88%
Failure (↓) 0% 61% 66% 0% 93% 0%
t: fine-tuned on target state-only demonstrations. ta: fine-tuned on target action demonstrations.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 3: Habitat ReplicaCAD test results.
Cost measures the average deviation of
the trajectory coordinates from the demon-
strated trajectory.
Metric Diffuser Diffusertt ID MSTT
Cost (↓) 2.4±3.7 2.2±1.9 1.8±1.5 0.7±0.6
Goal (↑) 10% 16% 23% 75%
t: fine-tuned on target state-only demonstrations.

Table 4: MSTT test results with VLM generated state
demonstration.
Metric Maze T1 Maze T2 Maze T3 FetchReach
Return (↑) 188.6±47.9 152.2±42.2 111.5±35.6 -35.0±6.44
Steps (↓) 162.3±47.6 198.7±42.1 239.4±35.5 35.0±6.4
Goal (↑) 94% 97% 98% 93%
Failure (↓) 6% 3% 2% 0%

in the continuous control tasks in Maze2D and FetchReach, due to the difficulty of accurately learning
the actions from locations alone without robot velocities. Therefore, we only include it in the Habitat
experiment. Evaluation metrics include total episode return, number of steps to reach the goal, and
success/failure rates over 100 trials. We report the mean and standard deviation across trials for each
target task.

5.2 RESULTS

Can MSTT achieve transfer in the off-dynamics scenario with only observation-only demon-
strations? MSTT achieves near-expert performance in all Maze2D variants, FetchReach, and
ReplicaCAD, outperforming all baselines on average, as shown in Tables 1, 2 and 3. Offline RL
methods, such as Diffuser and BC, fail to adapt to the changed dynamics and perform poorly in
transfer settings. Fine-tuning Diffuser on observation-only demonstrations (Diffusert) improves
performance, particularly in Target Env 1, where the model benefits from pretraining bias toward the
correct path. However, it still lags behind MSTT overall. DARA performs inconsistently, showing
moderate success in some settings (e.g., Target Env 2), but struggles to generalize; this is likely due to
limited hierarchical abstraction and a poorly trained domain classifier affected by dataset imbalance.
Planning with inverse dynamics models performs poorly in ReplicaCAD with overfitting to high-
dimentional inputs. These results highlight MSTT’s strength in leveraging skill-level abstractions
and feasibility-aware planning for robust adaptation and demonstration following.

(a) Fetch (b) Target (c) Demo (d) Result

Figure 6: Environments and test-time performance
of MSTT in Fetch. (a) The source environment,
where the robot gripper must reach the goal loca-
tion (red ball). (b) The target environment with
modified dynamics: the red box indicates a re-
stricted region that the gripper must avoid. (c)
Demonstration, where the robot gripper is tasked
with reaching the goal with avoidance. (d) MSTT
successfully executes a trajectory that reaches the
goal while avoiding the red box.

Case study: Using VLMs with MSTT.
We investigate the use of modern vision-
language models (VLMs) to infer observation-
only demonstrations directly from visual obser-
vations. This approach reduces annotation over-
head and illustrates how foundation models can
be used with MSTT for off-dynamics transfer.
Specifically, we prompt VLM to generate coor-
dinates sequences. Full prompt details, model
outputs, and analysis are provided in the ap-
pendix. As shown in Table 4, MSTT achieves
strong performance using these VLM-inferred
demonstrations, demonstrating the potential of
combining pretrained VLMs with our frame-
work for low-effort generalization to new envi-
ronments.

6 CONCLUSION AND FUTURE
WORK

In this work, we introduced MSTT, an offline hierarchical RL framework that uses masked skill
tokens and diffusion-based options to enable skill transfer across off-dynamics environments. By
conditioning value learning on binary skill masks, MSTT simulates skill infeasibility and avoids
the need for action annotations or explicit dynamics modeling. Experiments in both discrete and
continuous settings demonstrate robust transfer performance under dynamics shifts. Future work in-
cludes improving mask sampling strategies for efficiency, incorporating diverse dynamics parameters
with domain randomization, extending to multi-goal transfer via goal-conditioned critics, and further
leveraging LLMs or VLMs to infer demonstrations from visual input to reduce reliance on human
supervision. We believe MSTT forms an important step towards scalable skill transfer in complex,
real-world settings.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

We have taken the following steps to enhance the reproducibility of our results. For our theoretical
results we state required assumptions and problem setups in Section A.1, and include full proofs
in Section A.2. Our simulated environmental setup, dataset processing and experimental pipelines
are documented in Section B. We provide implementation details of the proposed algorithm and
computing environments in Section B of the appendix.

REFERENCES

Majid Abdolshah, Hung Le, Thommen Karimpanal George, Sunil Gupta, Santu Rana, and Svetha
Venkatesh. A new representation of successor features for transfer across dissimilar environments.
In Marina Meila and Tong Zhang (eds.), Proceedings of the 38th International Conference on
Machine Learning, volume 139 of Proceedings of Machine Learning Research, pp. 1–9. PMLR,
18–24 Jul 2021.

Joshua Achiam, Harrison Edwards, Dario Amodei, and Pieter Abbeel. Variational option discovery
algorithms. CoRR, abs/1807.10299, 2018. URL http://arxiv.org/abs/1807.10299.

Anurag Ajay, Aviral Kumar, Pulkit Agrawal, Sergey Levine, and Ofir Nachum. OPAL: offline
primitive discovery for accelerating offline reinforcement learning. In 9th International Conference
on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net,
2021. URL https://openreview.net/forum?id=V69LGwJ0lIN.

Anurag Ajay, Yilun Du, Abhi Gupta, Joshua B. Tenenbaum, Tommi S. Jaakkola, and Pulkit Agrawal.
Is conditional generative modeling all you need for decision making? In The Eleventh Inter-
national Conference on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023.
OpenReview.net, 2023. URL https://openreview.net/forum?id=sP1fo2K9DFG.

Akhil Bagaria and George Konidaris. Option discovery using deep skill chaining. In International
Conference on Learning Representations, 2020.

Cheng Chi, Siyuan Feng, Yilun Du, Zhenjia Xu, Eric Cousineau, Benjamin Burchfiel, and Shuran
Song. Diffusion policy: Visuomotor policy learning via action diffusion. In Robotics: Science and
Systems XIX, Daegu, Republic of Korea, July 10-14, 2023, 2023. URL https://doi.org/
10.15607/RSS.2023.XIX.026.

Ignasi Clavera, Anusha Nagabandi, Simin Liu, Ronald S. Fearing, Pieter Abbeel, Sergey Levine, and
Chelsea Finn. Learning to adapt in dynamic, real-world environments through meta-reinforcement
learning. In International Conference on Learning Representations, 2019.

Rodrigo de Lazcano, Kallinteris Andreas, Jun Jet Tai, Seungjae Ryan Lee, and Jordan
Terry. Gymnasium robotics, 2024. URL http://github.com/Farama-Foundation/
Gymnasium-Robotics.

Yilun Du, Conor Durkan, Robin Strudel, Joshua B. Tenenbaum, Sander Dieleman, Rob Fergus,
Jascha Sohl-Dickstein, Arnaud Doucet, and Will Sussman Grathwohl. Reduce, reuse, recycle:
Compositional generation with energy-based diffusion models and MCMC. In Andreas Krause,
Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett
(eds.), Proceedings of the 40th International Conference on Machine Learning, volume 202 of
Proceedings of Machine Learning Research, pp. 8489–8510. PMLR, 23–29 Jul 2023.

Benjamin Eysenbach, Shreyas Chaudhari, Swapnil Asawa, Sergey Levine, and Ruslan Salakhutdinov.
Off-dynamics reinforcement learning: Training for transfer with domain classifiers. In 9th Interna-
tional Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021,
2021.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4RL: Datasets for deep
data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

Scott Fujimoto, Herke van Hoof, and David Meger. Addressing function approximation error in actor-
critic methods. In Jennifer Dy and Andreas Krause (eds.), Proceedings of the 35th International
Conference on Machine Learning, volume 80 of Proceedings of Machine Learning Research, pp.
1587–1596. PMLR, 10–15 Jul 2018.

10

http://arxiv.org/abs/1807.10299
https://openreview.net/forum?id=V69LGwJ0lIN
https://openreview.net/forum?id=sP1fo2K9DFG
https://doi.org/10.15607/RSS.2023.XIX.026
https://doi.org/10.15607/RSS.2023.XIX.026
http://github.com/Farama-Foundation/Gymnasium-Robotics
http://github.com/Farama-Foundation/Gymnasium-Robotics

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Nicklas Hansen, Rishabh Jangir, Yu Sun, Guillem Alenyà, Pieter Abbeel, Alexei A Efros, Lerrel
Pinto, and Xiaolong Wang. Self-supervised policy adaptation during deployment. In International
Conference on Learning Representations, 2021. URL https://openreview.net/forum?
id=o_V-MjyyGV_.

Hado Hasselt. Double q-learning. In J. Lafferty, C. Williams, J. Shawe-Taylor, R. Zemel, and
A. Culotta (eds.), Advances in Neural Information Processing Systems, volume 23. Curran Asso-
ciates, Inc., 2010. URL https://proceedings.neurips.cc/paper_files/paper/
2010/file/091d584fced301b442654dd8c23b3fc9-Paper.pdf.

Michael Janner, Yilun Du, Joshua B. Tenenbaum, and Sergey Levine. Planning with diffusion for
flexible behavior synthesis. In International Conference on Machine Learning, ICML 2022, 17-23
July 2022, Baltimore, Maryland, USA, volume 162, pp. 9902–9915. PMLR, 2022.

Bingyi Kang, Xiao Ma, Chao Du, Tianyu Pang, and Shuicheng Yan. Efficient diffusion policies for
offline reinforcement learning. In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and
S. Levine (eds.), Advances in Neural Information Processing Systems, volume 36, pp. 67195–67212.
Curran Associates, Inc., 2023.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tutorial,
review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

Zhixuan Liang, Yao Mu, Hengbo Ma, Masayoshi Tomizuka, Mingyu Ding, and Ping Luo. Skilldif-
fuser: Interpretable hierarchical planning via skill abstractions in diffusion-based task execution.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 16467–16476, June 2024.

Jinxin Liu, Zhang Hongyin, and Donglin Wang. DARA: Dynamics-aware reward augmentation in
offline reinforcement learning. In International Conference on Learning Representations, 2022.

Jinxin Liu, Ziqi Zhang, Zhenyu Wei, Zifeng Zhuang, Yachen Kang, Sibo Gai, and Donglin Wang.
Beyond ood state actions: Supported cross-domain offline reinforcement learning. Proceedings of
the AAAI Conference on Artificial Intelligence, 38(12):13945–13953, Mar. 2024. doi: 10.1609/
aaai.v38i12.29302.

Jiafei Lyu, Kang Xu, Jiacheng Xu, Mengbei Yan, Jingwen Yang, Zongzhang Zhang, Chenjia Bai,
Zongqing Lu, and Xiu Li. Odrl: A benchmark for off-dynamics reinforcement learning. In The
Thirty-eight Conference on Neural Information Processing Systems Datasets and Benchmarks
Track, 2024. URL https://openreview.net/forum?id=ap4x1kArGy.

Xiao Ma, Sumit Patidar, Iain Haughton, and Stephen James. Hierarchical diffusion policy for
kinematics-aware multi-task robotic manipulation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 18081–18090, June 2024.

Fabian Mentzer, David Minnen, Eirikur Agustsson, and Michael Tschannen. Finite scalar quantization:
VQ-VAE made simple. In The Twelfth International Conference on Learning Representations,
2024.

Atharva Mete, Haotian Xue, Albert Wilcox, Yongxin Chen, and Animesh Garg. Quest: Self-
supervised skill abstractions for learning continuous control. In Advances in Neural Information
Processing Systems 38: Annual Conference on Neural Information Processing Systems 2024,
NeurIPS 2024, Vancouver, BC, Canada, December 10 - 15, 2024, 2024.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. In Maria Florina Balcan and Kilian Q. Weinberger (eds.), Proceedings of The 33rd
International Conference on Machine Learning, volume 48 of Proceedings of Machine Learning
Research, pp. 1928–1937, New York, New York, USA, 20–22 Jun 2016. PMLR.

Haoyi Niu, Shubham Sharma, Yiwen Qiu, Ming Li, Guyue Zhou, Jianming Hu, and Xianyuan Zhan.
When to trust your simulator: Dynamics-aware hybrid offline-and-online reinforcement learning. In
Advances in Neural Information Processing Systems 35: Annual Conference on Neural Information
Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December

11

https://openreview.net/forum?id=o_V-MjyyGV_
https://openreview.net/forum?id=o_V-MjyyGV_
https://proceedings.neurips.cc/paper_files/paper/2010/file/091d584fced301b442654dd8c23b3fc9-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2010/file/091d584fced301b442654dd8c23b3fc9-Paper.pdf
https://openreview.net/forum?id=ap4x1kArGy

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

9, 2022, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/
ed3cd2520148b577039adfade82a5566-Abstract-Conference.html.

Sherjil Ozair, Yazhe Li, Ali Razavi, Ioannis Antonoglou, Aaron Van Den Oord, and Oriol Vinyals.
Vector quantized models for planning. In Marina Meila and Tong Zhang (eds.), Proceedings of
the 38th International Conference on Machine Learning, volume 139 of Proceedings of Machine
Learning Research, pp. 8302–8313. PMLR, 18–24 Jul 2021.

Xue Bin Peng, Marcin Andrychowicz, Wojciech Zaremba, and Pieter Abbeel. Sim-to-real transfer of
robotic control with dynamics randomization. In 2018 IEEE International Conference on Robotics
and Automation (ICRA), pp. 3803–3810, 2018. doi: 10.1109/ICRA.2018.8460528.

Lerrel Pinto, James Davidson, Rahul Sukthankar, and Abhinav Gupta. Robust adversarial reinforce-
ment learning. In Doina Precup and Yee Whye Teh (eds.), Proceedings of the 34th International
Conference on Machine Learning, volume 70 of Proceedings of Machine Learning Research, pp.
2817–2826. PMLR, 06–11 Aug 2017.

Dean A. Pomerleau. Alvinn: An autonomous land vehicle in a neural network. In D. Touretzky (ed.),
Advances in Neural Information Processing Systems, volume 1. Morgan-Kaufmann, 1988.

Xavier Puig, Eric Undersander, Andrew Szot, Mikael Dallaire Cote, Tsung-Yen Yang, Ruslan Partsey,
Ruta Desai, Alexander Clegg, Michal Hlavac, So Yeon Min, Vladimı́r Vondruš, Theophile Gervet,
Vincent-Pierre Berges, John M Turner, Oleksandr Maksymets, Zsolt Kira, Mrinal Kalakrishnan,
Jitendra Malik, Devendra Singh Chaplot, Unnat Jain, Dhruv Batra, Akshara Rai, and Roozbeh
Mottaghi. Habitat 3.0: A co-habitat for humans, avatars, and robots. In The Twelfth International
Conference on Learning Representations, 2024. URL https://openreview.net/forum?
id=4znwzG92CE.

Martin L Puterman. Markov decision processes: discrete stochastic dynamic programming. John
Wiley & Sons, 2014.

RuiXi Qiao, Jie Cheng, Xingyuan Dai, Yonglin Tian, and Yisheng Lv. Offline reinforcement learning
with discrete diffusion skills. arXiv preprint arXiv:2503.20176, 2025.

Ilija Radosavovic, Xiaolong Wang, Lerrel Pinto, and Jitendra Malik. State-only imitation learning for
dexterous manipulation. In 2021 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pp. 7865–7871, 2021. doi: 10.1109/IROS51168.2021.9636557.

Manolis Savva, Abhishek Kadian, Oleksandr Maksymets, Yili Zhao, Erik Wijmans, Bhavana Jain,
Julian Straub, Jia Liu, Vladlen Koltun, Jitendra Malik, Devi Parikh, and Dhruv Batra. Habitat: A
Platform for Embodied AI Research. In Proceedings of the IEEE/CVF International Conference
on Computer Vision (ICCV), 2019.

Archit Sharma, Shixiang Gu, Sergey Levine, Vikash Kumar, and Karol Hausman. Dynamics-aware
unsupervised discovery of skills. In 8th International Conference on Learning Representations,
ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020. URL https:
//openreview.net/forum?id=HJgLZR4KvH.

Wonchul Shin and Yusung Kim. Guide to control: Offline hierarchical reinforcement learning using
subgoal generation for long-horizon and sparse-reward tasks. In Edith Elkind (ed.), Proceedings
of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI-23, pp.
4217–4225. International Joint Conferences on Artificial Intelligence Organization, 8 2023. doi:
10.24963/ijcai.2023/469. URL https://doi.org/10.24963/ijcai.2023/469. Main
Track.

Riley Simmons-Edler, Ben Eisner, Eric Mitchell, Sebastian Seung, and Daniel Lee. Q-learning for
continuous actions with cross-entropy guided policies, 2019.

Richard S. Sutton and Andrew G. Barto. Reinforcement learning: An introduction. IEEE Trans.
Neural Networks, 9(5):1054–1054, 1998.

Richard S Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-mdps: A framework
for temporal abstraction in reinforcement learning. Artificial intelligence, 112(1-2):181–211, 1999.

12

http://papers.nips.cc/paper_files/paper/2022/hash/ed3cd2520148b577039adfade82a5566-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/ed3cd2520148b577039adfade82a5566-Abstract-Conference.html
https://openreview.net/forum?id=4znwzG92CE
https://openreview.net/forum?id=4znwzG92CE
https://openreview.net/forum?id=HJgLZR4KvH
https://openreview.net/forum?id=HJgLZR4KvH
https://doi.org/10.24963/ijcai.2023/469

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Andrew Szot, Alex Clegg, Eric Undersander, Erik Wijmans, Yili Zhao, John Turner, Noah Maestre,
Mustafa Mukadam, Devendra Chaplot, Oleksandr Maksymets, Aaron Gokaslan, Vladimir Vondrus,
Sameer Dharur, Franziska Meier, Wojciech Galuba, Angel Chang, Zsolt Kira, Vladlen Koltun,
Jitendra Malik, Manolis Savva, and Dhruv Batra. Habitat 2.0: Training home assistants to rearrange
their habitat. In Advances in Neural Information Processing Systems (NeurIPS), 2021.

Mark Towers, Ariel Kwiatkowski, Jordan Terry, John U Balis, Gianluca De Cola, Tristan Deleu,
Manuel Goulao, Andreas Kallinteris, Markus Krimmel, Arjun KG, et al. Gymnasium: A standard
interface for reinforcement learning environments. arXiv preprint arXiv:2407.17032, 2024.

Aaron van den Oord, Oriol Vinyals, and koray kavukcuoglu. Neural discrete representation learn-
ing. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and
R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 30. Curran Asso-
ciates, Inc., 2017. URL https://proceedings.neurips.cc/paper_files/paper/
2017/file/7a98af17e63a0ac09ce2e96d03992fbc-Paper.pdf.

Siddarth Venkatraman, Shivesh Khaitan, Ravi Tej Akella, John M. Dolan, Jeff Schneider, and Glen
Berseth. Reasoning with latent diffusion in offline reinforcement learning. In The Twelfth Inter-
national Conference on Learning Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024.
OpenReview.net, 2024. URL https://openreview.net/forum?id=tGQirjzddO.

Kang Xu, Chenjia Bai, Xiaoteng Ma, Dong Wang, Bin Zhao, Zhen Wang, Xuelong Li, and
Wei Li. Cross-domain policy adaptation via value-guided data filtering. In Advances
in Neural Information Processing Systems 36: Annual Conference on Neural Informa-
tion Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16,
2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
e8ad87f1076fb0f75d89a45828f186b0-Abstract-Conference.html.

Siyuan Zhou, Yilun Du, Shun Zhang, Mengdi Xu, Yikang Shen, Wei Xiao, Dit-Yan Yeung, and
Chuang Gan. Adaptive online replanning with diffusion models. In A. Oh, T. Naumann, A. Glober-
son, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neural Information Processing
Systems, volume 36, pp. 44000–44016. Curran Associates, Inc., 2023.

APPENDIX

A THEORETICAL ANALYSIS

In this section, we present the theoretical results that support the claims made in the main text. We
begin by outlining the detailed problem setup, followed by the statement of the main theorem. The
proof of the theorem is provided thereafter.

A.1 NOTATIONS AND PROBLEM FORMULATION

Let ∆S−1 denote the space of probability distributions over a discrete set S and S = |S|. For a
conditional probability mass function p (Y |X), we denote the probability vector given X = x as
p (x) ∈ ∆S−1. Let R+ = {x ∈ R : x ≥ 0}. The L∞-norm of a vector v is denoted as ∥v∥∞ :=
maxi |[v]i|, where [v]i refers to the i-th entry of v. The inner product between two vectors u and v is
⟨u,v⟩.

In this analysis we consider a finite Markov decision process (MDP) (Puterman, 2014) denoted
as M := (S,A, r, p, γ), which consists of finite state space S, finite action space A, transition
probability function p : S×A → ∆S−1, reward function r : S → [0, 1] and discount factor γ ∈ [0, 1).
The fixed discounted factor here is motivated by our practical choice that skills represented as options
with diffusion model have fixed horizon as shown in Section 4.2, making the original semi-MDP
equivalent to an abstraction MDP. A policy π : S → ∆A−1 maps states to distributions over actions.
An agent equipped with a policy can interact with the environment by taking action at at time step t
according to π based on the current state st, and observing the resulting state transitions and rewards.
The environment transitions to a new state st+1 according to p (st, at) conditioned on the current
state and action. The agent receives a reward r (st) based on the current state. Our analysis can be
generalized to the reward function r : S × A → [0, 1] by modifying the masked Bellman operator
below. But for sake of simplicity in analytical representation, we assume the reward function is state
dependent only.

13

https://proceedings.neurips.cc/paper_files/paper/2017/file/7a98af17e63a0ac09ce2e96d03992fbc-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/7a98af17e63a0ac09ce2e96d03992fbc-Paper.pdf
https://openreview.net/forum?id=tGQirjzddO
http://papers.nips.cc/paper_files/paper/2023/hash/e8ad87f1076fb0f75d89a45828f186b0-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/e8ad87f1076fb0f75d89a45828f186b0-Abstract-Conference.html

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

The agent’s goal is to maximize the expected sum of discounted rewards over time, or expected
return. The objective at s is exactly the value function given by V π (s) = Eπ,p [R|s0 = s] =
Eπ,p [

∑∞
t=0 γ

tr (st) |s0 = s], where R is the return for a trajectory and γ is the discount fac-
tor that determines the importance of future rewards. The action-value function Qπ (s, a) =
Eπ,p [R|s0 = s, a0 = a] represents this expected return conditioned on a specific initial s and
a. We denote the vectors of a value function and an action-value function as V π ∈ RS+
and Qπ ∈ RSA+ , respectively. We define the operator V for a function f : S × A → R+

such that for each s, (Vf) (s) := maxa∈A f(s, a). The Bellman operator for f is denoted as
(T f) (s, a) := r (s) + γ ⟨p (s, a),Vf⟩. Here we also overload Vf and T f to denote the correspond-
ing vector obtained after applying the operators. Let π⋆ be the optimal policy and Q⋆ be the optimal
Q function. The optimal Bellman equation for Q⋆ can be written as Q⋆ = TQ⋆, which lays the
foundation for many reinforcement learning algorithms where p and r are unknown (Sutton & Barto,
1998) to the learner.

In this work, the target test environments may exhibit altered dynamics due to unavailability of
certain transitions, e.g., physical traps or obstructions that block previously accessible paths. For
each transition, we can define a binary function b : S × S → {0, 1}, where b (si, sj) = 1 indicates
that the transition from si to sj is available, and unavailable otherwise. Its matrix form is denoted as
B ∈ {0, 1}S×S , where bi,j := [B]i,j = b (si, sj). bi,j = 0 indicates that the transition path from si
to sj is blocked, and any actions applied at si will not lead to sj . For example, in Figure 1 of the
main text, this corresponds to the case where there is a one-way door from room 3 to room 2. When
such transition attempts are made following the original MDP transition, the agent will collide with
the obstruction and fail the episode, which is equivalent to having 0 rewards in the future.

Therefore, we can model a target environment as an MDPMB := (S∪{s⊥},A, r, pB, γ) with same
action space and reward, but different state space and transition probability function pB : S ∪{s⊥}×
A → ∆S . For all bi,j = 0, we have pB (sj |si, a) = 0 for all a ∈ A, indicating that this transition is
not possible. Since the agent fails the episode when it was about to have an unavailable transition,
we can introduce a sink state s⊥ where r (s⊥) = 0 and pB (s⊥|s⊥, a) = 1, ∀a ∈ A. The probability
of transitioning to other states at s⊥ is 0. The probability of transitioning to s⊥ from si for any a is
pB (s⊥|si, a) =

∑
sj∈S (1− bi,j) p (sj |si, a). pB remains same as p for all other transitions. The

related values inMB are denoted as VMB
, QMB

and V ⋆
MB

, Q⋆
MB

for optimal policy.

During training on the source environmentM, we cannot efficiently modify the real dynamics to
either learn from samples distributed as from the target environment, or learn for many possible
target environments at the same time. We aim to rely on the trajectories collected from the source
environment to approximately learn a policy for a target environment. One way to achieve this is
directly modifying the transition tuple according to B during the Bellman update by changing the
target state to a sink state if the intent transition is unavailable. However, it is difficult to scale to
continuous state environments as it would require comparing state similarity with a suitable state
space partition. Instead, here we tackle this problem based on s and a that lead to the unavailable
transition. Our algorithm in practice deals with partial observations of the state. The formulation here
can align with this practice by considering the aggregations of states with same observation as an
abstract state.

Given B, we define mask m (si, ai) = 0 for any transition (si, ai, sj) if bi,j = 0 and sj ∈
argmaxs∈S p (s|si, ai), and m (si, ai) = 1 otherwise. With this mask vector m ∈ {0, 1}SA,
we introduce the following masked Bellman operator

(T mQ) (s, a) := r (s) + γ ⟨m (s, a)p (s, a),VmQ⟩ , (5)

where

(Vmf) (s) :=

{
max

a∈A:m(s,a)=1
f(s, a) if ∃a ∈ A : m(s, a) = 1

r(s) otherwise
(6)

is a masked operator for a function f : S×A → R+. Eq. (5) is general in that it can be developed into
a loss function based on this temporal difference for learning in continuous environment. Compared
with modifying the transition tuple according to B, T m is more efficient as it does not require
checking the next state in the transition tuple. Moreover, during deployment stage, VmQ can filter
out unavailable skills or actions based on the mask, whereas the B approach would require learning
a dynamics model to predict the next state for checking. Our objective here is to examine the

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

difference of the proposed masked Bellman operator T m compared with learning under the exact B
by theoretically analyzing its behavior and performance.

A.2 THEOREM AND PROOF

Theorem 2. Let Q0 : S × A → R+ be the initial action-value function randomly initialized as∥∥Q0
∥∥
∞ ∈

[
0, 1

1−γ

]
. The masked Bellman operator T m iteratively updates Qk for k = 0, 1, . . .

by Qk+1 = T mQk. The performance of the masked greedy policy πKm(s), which chooses action
according to πKm(s) := argmaxa∈A:m(s,a)=1 Q

K(s, a) if ∃a ∈ A : m(s, a) = 1 and randomly
otherwise, is close to the optimal value function V ⋆

MB
in the target environment after K iterations:∥∥∥V πK

m

MB
− V ⋆

MB

∥∥∥
∞
≤ 2γK

(1− γ)
2 +

2γ (1 + γ)
(
1− γK

)
+ γ (1− γ)

2

(1− γ)
3 (1− pmin) , (7)

where pmin := mins∈S,a∈A p (sd(s, a)|s, a) and sd(s, a) ∈ argmaxs′∈S p (s′|s, a).

To proof this theorem we start with the following lemmas. Since the value function inMB has an
additional sink state s⊥, we extend the definition of both T m and Vm by letting (T mf) (s⊥, ·) := 0
and (Vmf) (s⊥) := maxa∈A f (s⊥, a) for any function f : S ∪ {s⊥} × A → R+.

Lemma 1.
∥∥VmQ⋆

MB
− VQ⋆

MB

∥∥
∞ ≤

γ
1−γ (1− pmin) .

Proof. Based on the definitions, for any s ∈ S,∣∣(VmQ⋆
MB

)
(s)−

(
VQ⋆

MB

)
(s)
∣∣ (LHS)

=


∣∣∣ max
a∈A:m(s,a)=1

Q⋆
MB

(s, a)−max
a∈A

Q⋆
MB

(s, a)
∣∣∣ if ∃a ∈ A : m(s, a) = 1∣∣∣r(s)−max

a∈A
Q⋆

MB
(s, a)

∣∣∣ otherwise.
(8)

Consider the first case when ∃a ∈ A : m(s, a) = 1. We analyze two subcases based on the
value of m (s, π⋆(s)). Let π⋆(s) ∈ argmaxa∈A Q⋆

MB
(s, a), and the lemma is clearly true when

m (s, π⋆(s)) = 1 as LHS = 0. In the other subcase where m (s, π⋆(s)) = 0, by letting π⋆m(s) ∈
argmaxa∈A:m(s,a)=1 Q

⋆
MB

(s, a), we have

LHS = max
a∈A

Q⋆
MB

(s, a)− max
a∈A:m(s,a)=1

Q⋆
MB

(s, a) (9)

= r(s) + γ
〈
pB (s, π⋆(s)),VQ⋆

MB

〉
− r(s)− γ

〈
pB (s, π⋆m(s)),VQ⋆

MB

〉
(10)

≤ γ
∑

s′∈S∪{s⊥}

pB (s′|s, π⋆(s))max
a′∈A

Q⋆
MB

(s′, a′) (11)

≤ γ
∑
s′∈S

pB (s′|s, π⋆(s)) 1

1− γ
(12)

=
γ

1− γ

∑
s′∈S\{sd(s,π⋆(s))}

pB (s′|s, π⋆(s)) (13)

≤ γ

1− γ

∑
s′∈S\{sd(s,π⋆(s))}

p (s′|s, π⋆(s)) (14)

=
γ

1− γ
(1− p (sd (s, π

⋆(s)) |s, π⋆(s))) (15)

≤ γ

1− γ
(1− pmin) . (16)

In Eq. (11) the optimal action-value function at the sink state is 0. Eq. (13) is due to the fact that we
are in the case m (s, π⋆(s)) = 0, where there exists a sd (s, π

⋆) such that b (s, sd (s, π⋆)) = 0.

In the other case when ∀a ∈ A : m(s, a) = 0, we have

LHS =
∣∣r(s)− r(s)− γ

〈
pB (s, π⋆(s)),VQ⋆

MB

〉∣∣ (17)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

= γ

∣∣∣∣∣∣
∑

s′∈S∪{s⊥}

pB (s′|s, π⋆(s))max
a′∈A

Q⋆
MB

(s′, a′)

∣∣∣∣∣∣ (18)

≤ γ

1− γ
(1− pmin) , (19)

by following similar steps from Eq. (11).

The inequality holds at s⊥ since the optimal Q function is 0 at s⊥. The lemma is then proved by
summarizing the above analysis under the L∞-norm.

Lemma 2. The masked Bellman operator T m is a contraction mapping with respect to the L∞-norm,
i.e., for any two vectors f and g, we have ∥T mf − T mg∥∞ ≤ γ ∥f − g∥∞.

Proof. To handle vectors in the space of R(S+1)A
+ , similar to the extension of T m, we also denote pe

as an extended version of p by letting pe (s⊥|s, a) = 0 for all s ∈ S ∪ {s⊥} and a ∈ A. Based on
Eq. (5) and Eq. (6), we have∣∣∣[T mf − T mg]s,a

∣∣∣ (LHS)

= |r(s) + γ ⟨m(s, a)pe (s, a),Vmf⟩ − r(s)− γ ⟨m(s, a)pe (s, a),Vmg⟩| (20)
=γ |⟨m(s, a)pe(s, a),Vmf − Vmg⟩| (21)

=γ

∣∣∣∣∣∑
s′∈S

m(s, a)p (s′|s, a) ((Vmf) (s′)− (Vmg) (s′))

∣∣∣∣∣ . (22)

For any s, we can bound

|((Vmf) (s)− (Vmg) (s))| (23)

=


∣∣∣∣ max
a∈A:m(s,a)=1

f(s, a)− max
a∈A:m(s,a)=1

g(s, a)

∣∣∣∣ if ∃a ∈ A : m(s, a) = 1

|r(s)− r(s)| otherwise
(24)

≤

{
max

a∈A:m(s,a)=1
|f(s, a)− g(s, a)| if ∃a ∈ A : m(s, a) = 1

0 otherwise
(25)

≤max
a∈A
|f(s, a)− g(s, a)| . (26)

Therefore,

LHS ≤ γ
∑
s′∈S

m(s, a)p (s′|s, a)max
a′∈A

|f (s′, a′)− g (s′, a′)| (27)

≤ γ max
s′∈S∪{s⊥},a′∈A

|f (s′, a′)− g (s′, a′)| (28)

= γ ∥f − g∥∞ . (29)

Lemma 3. For any function f : S ×A → R+,
∥∥V πf,m

MB
− V ⋆

MB

∥∥
∞ ≤

2∥f−Q⋆
MB
∥

∞
+γ(1−pmin)

1−γ .

Proof. As stated in Theorem 2, πf,m is defined as the greedy policy with respect to f and m:
πf,m ∈ argmaxa∈A:m(s,a)=1 f(s, a) if ∃a ∈ A : m(s, a) = 1 and randomly otherwise. We can
analyze the difference in two cases based on the value of m (s, π⋆(s)). For any s ∈ S, consider the
case where m (s, π⋆(s)) = 0,

V ⋆
MB

(s)− V
πf,m

MB
(s) (30)

=r(s) + γ
〈
pB (s, π⋆(s)),VQ⋆

MB

〉
− r(s)− γ

〈
pB (s, πf,m(s)), V

πf,m

MB

〉
(31)

≤γ
∑

s′∈S∪{s⊥}

pB (s′|s, π⋆(s))max
a′∈A

Q⋆
MB

(s′, a′) (32)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

≤ γ

1− γ
(1− pmin) , (33)

similar to the steps in Lemma 1. In the other case where m (s, π⋆(s)) = 1,

V ⋆
MB

(s)− V
πf,m

MB
(s) (34)

=Q⋆
MB

(s, π⋆(s))−Q⋆
MB

(s, πf,m(s)) +Q⋆
MB

(s, πf,m(s))−Q
πf,m

MB
(s, πf,m(s)) (35)

≤Q⋆
MB

(s, π⋆(s))− f (s, π⋆(s)) + f (s, πf,m(s))−Q⋆
MB

(s, πf,m(s))

+ γ
〈
pB (s, πf,m(s)),V ⋆

MB
− V

πf,m

MB

〉
(36)

≤2
∥∥f −Q⋆

MB

∥∥
∞ + γ

∥∥V ⋆
MB
− V

πf,m

MB

∥∥
∞ . (37)

Noting that the value function at the sink state is 0, arranging the above inequality gives∥∥V πf,m

MB
− V ⋆

MB

∥∥
∞ ≤

2∥f−Q⋆
MB
∥

∞
1−γ . The lemma is proved by summarizing the above analysis

under the L∞-norm.

Now we are ready to prove Theorem 2.

Proof of Theorem 2. Similar to the extension of the operators T m and Vm, we also extend Qk to be
well-defined on s⊥. Thus, by Lemma 2,∥∥QK −Q⋆

MB

∥∥
∞ =

∥∥T mQK−1 −Q⋆
MB

∥∥
∞ (38)

=
∥∥T mQK−1 − T mQ⋆

MB
+ T mQ⋆

MB
−Q⋆

MB

∥∥
∞ (39)

≤ γ
∥∥QK−1 −Q⋆

MB

∥∥
∞ +

∥∥T mQ⋆
MB
−Q⋆

MB

∥∥
∞ (40)

≤ γ2
∥∥QK−2 −Q⋆

MB

∥∥
∞ + (1 + γ)

∥∥T mQ⋆
MB
−Q⋆

MB

∥∥
∞ (41)

≤ · · · (42)

≤ γK
∥∥Q0 −Q⋆

MB

∥∥
∞ +

K−1∑
k=0

γk
∥∥T mQ⋆

MB
−Q⋆

MB

∥∥
∞ . (43)

The first term in Eq. (43) is bounded by γK

1−γ due to the choice of initialization. To bound the second
term, ∣∣∣[T mQ⋆

MB
−Q⋆

MB

]
s,a

∣∣∣ (LHS)

=
∣∣r(s) + γ

〈
m(s, a)pe(s, a),VmQ⋆

MB

〉
− r(s)− γ

〈
pB(s, a),VQ⋆

MB

〉∣∣ (44)

=
∣∣γ 〈m(s, a)pe(s, a),VmQ⋆

MB

〉
− γ

〈
pB(s, a),VQ⋆

MB

〉∣∣ . (45)

If m(s, a) = 0,

LHS =
∣∣γ 〈pB(s, a),VQ⋆

MB

〉∣∣ (46)

= γ

∣∣∣∣∣∑
s′∈S

pB (s′|s, a)max
a′∈A

Q⋆
MB

(s′, a′)

∣∣∣∣∣ (47)

≤ γ

1− γ

∣∣∣∣∣∣
∑

s′∈S\{sd(s,a)}

pB (s′|s, a)

∣∣∣∣∣∣ (48)

≤ γ

1− γ
(1− pmin) , (49)

by following similar steps from Eq. (13). In the other case, let Sb(s) := {s′ : b (s, s′) = 0}, and
m(s, a) = 1 implies that sd(s, a) /∈ Sb(s). Thus, by Lemma 1,

LHS =γ

∣∣∣∣∣ ∑
s′∈S∪{s⊥}

pe (s
′|s, a)

(
VmQ⋆

MB

)
(s′)−

∑
s′∈S∪{s⊥}

pB (s′|s, a)
(
VQ⋆

MB

)
(s′)

∣∣∣∣∣ (50)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

=γ

∣∣∣∣∣ ∑
s′∈S\Sb(s)

p (s′|s, a)
(
VmQ⋆

MB

)
(s′)−

∑
s′∈S\Sb(s)

p (s′|s, a)
(
VQ⋆

MB

)
(s′)

∣∣∣∣∣
+ γ

∣∣∣∣∣ ∑
s′∈Sb(s)

p (s′|s, a)
(
VmQ⋆

MB

)
(s′)−

∑
s′∈Sb(s)

pB (s′|s, a)
(
VQ⋆

MB

)
(s′)

∣∣∣∣∣
+ γ

∣∣pe (s⊥|s, a) (VmQ⋆
MB

)
(s⊥)− pB (s⊥|s, a)

(
VQ⋆

MB

)
(s⊥)

∣∣ (51)

≤γ
∑

s′∈S\Sb(s)

p (s′|s, a) γ

1− γ
(1− pmin) + γ

∑
s′∈Sb(s)

p (s′|s, a) 1

1− γ
(52)

≤ γ2

1− γ
(1− pmin) +

γ

1− γ
(1− pmin) (53)

=
γ (1 + γ)

1− γ
(1− pmin) . (54)

Therefore, by Lemma 3,∥∥∥V πK

MB
− V ⋆

MB

∥∥∥
∞
≤

2
∥∥QK −Q⋆

MB

∥∥
∞ + γ (1− pmin)

1− γ
(55)

≤ 2

1− γ

(
γK

1− γ
+

K−1∑
k=0

γk
γ (1 + γ)

1− γ
(1− pmin) +

γ

2
(1− pmin)

)
(56)

=
2γK

(1− γ)
2 +

2γ (1 + γ)
(
1− γK

)
+ γ (1− γ)

2

(1− γ)
3 (1− pmin) , (57)

which concludes the proof.

B IMPLEMENTATION DETAILS

In this section we provide details on the environments, datasets and computational resources used in
our experiments.

We use the Maze2D, Fetch and ReplicaCAD domains from the Gymnasium Robotics suite (Towers
et al., 2024) and Habitat-Lab (Savva et al., 2019; Szot et al., 2021; Puig et al., 2024). In Maze2D,
a point-mass is actuated in the x-y plane to navigate to a goal location. Observations consist of
the agent’s (x, y) position while the full state includes velocity as well. Reward is sparse and
r(s, a) = 1.0 when the agent is within a 0.5-unit radius of the goal, and 0 otherwise. The maximal
episode length is 350 steps (trajectory is truncated at 350 if goal is not reached) in our modified
map. The map is modified to have three paths and in each test environment only one path is feasible
for the agent to reach the goal. We follow the D4RL setup (Fu et al., 2020) to collect trajectories
of agents reaching randomly sampled goals. In Fetch, we use FetchReach-v4 from Gymnasium, a
7-DoF Fetch manipulator tasked with moving its gripper to a goal position in 3D space. The reward
is sparse, r = −1 at each timestep until the goal is achieved (within tolerance), upon which r = 0.
The maximal episode length is 50 steps. In the test environment, we add a constraint region to the
workspace to limit the agent’s reachability. The agent will incur a loss of −50 if it moves into the
constraint region. The constraint region is a box (prism) defined by its center [1.4,0.85,0.5] and
half-size [0.1,0.15,0.09] for each edge. In Habitat-Lab, we use the v3 sc3 staging 19 scene
from ReplicaCAD (Szot et al., 2021) to create a visual navigation task. The agent is tasked with
navigating to a goal location with basic naivigation actions including move forward, turn left, and
turn right. The observation is a 64×64 RGB image from the agent’s first-person view. The maximal
episode length is 500 steps. During testing, the agent is required to follow a trajectory not directly
demonstrated in the training dataset with visual observations only.

For offline training in Maze2D and Fetch, we generate a static dataset of 200,000 interactions by
repeatedly sampling a uniformly random goal and recording the full trajectory until the next goal is
reached (with no automatic resets upon success). In Maze2D, the process follows the D4RL data
collection protocol (Fu et al., 2020) by letting the agent navigate under a simple controller (open-loop
waypoints) to the goal. In FetchReach, we pretrain a goal-conditioned actor-critic model and use this

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

policy to collect data. In ReplicaCAD, we collect 5,000 interactions similar to Maze2D using the
shortest-path planner provided by Habitat-Lab. All experiments were conducted on a workstation
featuring an NVIDIA GeForce RTX 3090 graphics card with 24 GB of GDDR6X VRAM, alongside
a 32-core CPU and 128 GB of system RAM. Training the skill autoencoder and the diffusion model
each took approximately 6 hours to converge, while the MSTT algorithm required about 8 hours to
reach full convergence. In our implementation of MSTT, we use a codebook of size 240 to represent
the latent skill space. The length of all skills (horizon of the options from dataset) for the Maze2D
environment is 32, and 8 for the FetchReach and ReplicaCAD environments. The diffusion model is
trained conditioned on a start state using 16 denoising steps for the first two environments and 256
steps for the latter. During testing, the agent conducts close-loop control by executing the option with
their corresponding horizon steps before decision on the next option.

C ADDITIONAL RESULTS

C.1 VALIDATION OF MASKED BELLMAN UPDATE
Observation:

Prompt

Instruction:
You are required to reason a path from the start to the goal and
output all state coordinates needed to complete the task in Fig. 1.

Example:
In a source training environment as shown in Fig. 2, a subtrajectory
(starting from the blue point and ending at the red point) from the
dataset has the following state coordinates:
[5.0303, 1.9299]
[5.0253, 1.9365]
[5.0206, 1.9434]
[5.0151, 1.9526]
…
The two environments have the same map size but different wall
configurations. Note that the spacing between consecutive states in
your trajectory should be consistent with the spacing in the example.

You are given a map (Fig. 1) for a
continuous 2D maze. The green ball
is at the start location and the red
ball is the goal. Their coordinates are
[1.0, 1.0] and [4.0, 4.0].

Vision Language Model

Below is a collision‐free, piecewise‐linear trajectory from the start
[1.0, 1.0] up the left corridor and then across the top corridor to the
goal [4.0, 4.0]. The total path length is 6.0 units, and we’ve broken
it into 201 points.
[1.0000, 1.0000]
[1.0000, 1.0300]
[1.0000, 1.0600]
…
Points 1–101 move straight up from [1.0, 1.0] to [1.0, 4.0]. Points
102–201 move straight right from [1.0, 4.0] to [4.0, 4.0]. Step size
≈0.03 units matches your example spacing.

Generation

Figure 8: Diagram of generating observations
with VLM.

In this section, we empirically validate the masked
Bellman update and the results brought by Theo-
rem 2 by comparing the ℓ∞-norm gaps between dif-
ferent estimated and true evaluated value function.
We simulate the masked Bellman update in the un-
blocked source MDP using all possible feasibility
masks. There are 8 abstracted skills, so the total
number of possible target MDPs is 28 − 1 = 255.
We evaluate the performance of the masked Bellman
update in all these target MDPs. We keep the pmin

at 0.95 for all MDPs. The resulting value function
VK is computed through K iterations of the masked
Bellman operator.

Figure 7(a) shows the ℓ∞-norm gap between VK and
the optimal values. We can see that the gap is small
for most target MDPs. We also find that when pmin

is very close to 1 (e.g. 0.999), all the gaps are close
to 0 (< 0.01). Figure 7(b) shows the ℓ∞-norm gap
between the true evaluation of the policy derived from
VK and the optimal values. We can see that the gap
is also small for most target MDPs.

To validate the proposed training method MSTT on datasets, we collect a dataset of 1000 interactions
in the unblocked source MDP using a random policy. We then train MSTT on this dataset using
randomly sampled masks and discrete state/action features instead of skill representation learning and
diffusion model as they are readily available. Figure 7(c) shows the ℓ∞-norm gap between the true
evaluation of the MSTT policy and the optimal values. We can see that the feasibility conditioned
value function learned by MSTT can induce a policy close to the optimal values on most target tasks.
In Figure 7(b) and 7(c), there are some target MDPs where the gap is non-zero. This is because the
induced policy is derived from the learned value function by breaking ties randomly (due to numerical
errors) when the actions’ values are same. This action deviates from the optimal action and can lead
to a different value at some states.

C.2 EXAMPLE PROMPT AND OUTPUT FROM VLM
In this section, we provide the example prompt and output from the VLM reasoning for a Maze2d
task and a FetchReach task. We prompt GPT-o4-mini-high with images of the environment and
an example trajectory to generate state coordinate sequences. The example diagram is shown in
Figure 8. When prompting the VLM, we give many views of the task environment so that the VLM
can understand the spatial relationship between the robot and different objects in the environments.
We also provide an example trajectory that is used to generate the trajectory shown in the example
image. This can help the VLM to understand the number of steps required for similar tasks in the
environment. From Table 5 and 6, we can see that the VLM can generate satisfactory trajectories for
the given tasks. In future work, we will explore directly generating image frames from a generated
model for visual demonstration following.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

1 20 40 60 80 100 120 140 160 180 200 220 240 255
Test tasks

0.0

0.5

1.0

1.5

2.0

|V
K

−
V

* 
B
| ∞

(a) Estimated values v.s. optimal values

1 20 40 60 80 100 120 140 160 180 200 220 240 255
Test tasks

0.0

0.2

0.4

0.6

0.8

1.0

|V
πK m


B
−
V

* 
B
| ∞

(b) True value evaluations v.s. optimal values

1 20 40 60 80 100 120 140 160 180 200 220 240 255
Test tasks

0.0

0.2

0.4

0.6

0.8

1.0

|V
π m

st
t


B

−
V

* 
B
| ∞

(c) True values of MSTT v.s. optimal values

Figure 7: Comparison of the ℓ∞-norm gaps between different estimated and true evaluated value
functions. (a) The ℓ∞-norm gap between estimated values after convergence of the masked Bellman
update compared with the optimal values. (b) The ℓ∞-norm gap between the true evaluations of the
converged policy and the optimal values. (c) The ℓ∞-norm gap between the true evaluation values of
MSTT policy and the optimal values.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 5: Prompts and Responses from gpt-o4-mini-high for Demonstration Generation (Maze2d).

Prompt
The first picture you see is a map for a continuous 2-dimentional maze viewed from a 3d
renderer. The green ball is the start location where you are at right now. The red ball is the
goal location that you need to reach. The coordinates of green ball is [1.0, 1.0] and red
ball is [4.0, 4.0]. You are required to reason a path from start to goal and output the all
state coordinates.
Example:
In a source training environment as shown in picture 2 in the top down angle, the state
coordinates of a subtrajectory with horizon 32 (starting from blue to red) is
5.0303545, 1.9299148
5.025338, 1.9365628
5.02067, 1.9434459
5.0151925, 1.9526943
5.009231, 1.9643023
5.003044, 1.9782642
4.9968333, 1.9945747
4.990752, 2.013228
4.9849143, 2.0342183
4.9794, 2.0575402
4.974263, 2.0831883
4.9695354, 2.111157
4.9652305, 2.1414409
4.9613495, 2.1740339
4.9578824, 2.2089312
4.954813, 2.246127
4.9521184, 2.2856157
4.949773, 2.327392
4.9477477, 2.3714507
4.9460144, 2.417786
4.944544, 2.4650137
4.9433084, 2.5117943
4.9422803, 2.5571213
4.941435, 2.6002645
4.9407473, 2.6409237
4.940197, 2.6791043
4.9397635, 2.7148123
4.939429, 2.7480536
4.939178, 2.778834
4.938996, 2.8071597
4.938871, 2.833036
4.938792, 2.8564692
The two environments have same map size but different wall configurations. Please output
a full trajectory of continuous state coordinates to complete the task in the first picture.
Note that the spacing between consecutive states in your trajectory should be consistent
with the spacing in the given example.

Response Below is a collision-free, piecewise-linear trajectory from the start [1.0,1.0] up the left
corridor and then across the top corridor to the goal [4.0,4.0]. The total path length is 6.0
units, and we’ve broken it into 201 points (so that each step is ≈0.03 units, similar to your
example)
1.0000, 1.0000
1.0000, 1.0300
1.0000, 1.0600
1.0000, 1.0900
1.0000, 1.1200
1.0000, 1.1500

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 5 continued from previous page

1.0000, 1.1800
1.0000, 1.2100
1.0000, 1.2400
1.0000, 1.2700
1.0000, 1.3000
1.0000, 1.3300
1.0000, 1.3600
1.0000, 1.3900
1.0000, 1.4200
1.0000, 1.4500
1.0000, 1.4800
1.0000, 1.5100
1.0000, 1.5400
1.0000, 1.5700
1.0000, 1.6000
1.0000, 1.6300
1.0000, 1.6600
1.0000, 1.6900
1.0000, 1.7200
1.0000, 1.7500
1.0000, 1.7800
1.0000, 1.8100
1.0000, 1.8400
1.0000, 1.8700
1.0000, 1.9000
1.0000, 1.9300
1.0000, 1.9600
1.0000, 1.9900
1.0000, 2.0200
1.0000, 2.0500
1.0000, 2.0800
1.0000, 2.1100
1.0000, 2.1400
1.0000, 2.1700
1.0000, 2.2000
1.0000, 2.2300
1.0000, 2.2600
1.0000, 2.2900
1.0000, 2.3200
1.0000, 2.3500
1.0000, 2.3800
1.0000, 2.4100
1.0000, 2.4400
1.0000, 2.4700
1.0000, 2.5000
1.0000, 2.5300
1.0000, 2.5600
1.0000, 2.5900
1.0000, 2.6200
1.0000, 2.6500
1.0000, 2.6800
1.0000, 2.7100
1.0000, 2.7400
1.0000, 2.7700
1.0000, 2.8000
1.0000, 2.8300
1.0000, 2.8600
1.0000, 2.8900
1.0000, 2.9200

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Table 5 continued from previous page

1.0000, 2.9500
1.0000, 2.9800
1.0000, 3.0100
1.0000, 3.0400
1.0000, 3.0700
1.0000, 3.1000
1.0000, 3.1300
1.0000, 3.1600
1.0000, 3.1900
1.0000, 3.2200
1.0000, 3.2500
1.0000, 3.2800
1.0000, 3.3100
1.0000, 3.3400
1.0000, 3.3700
1.0000, 3.4000
1.0000, 3.4300
1.0000, 3.4600
1.0000, 3.4900
1.0000, 3.5200
1.0000, 3.5500
1.0000, 3.5800
1.0000, 3.6100
1.0000, 3.6400
1.0000, 3.6700
1.0000, 3.7000
1.0000, 3.7300
1.0000, 3.7600
1.0000, 3.7900
1.0000, 3.8200
1.0000, 3.8500
1.0000, 3.8800
1.0000, 3.9100
1.0000, 3.9400
1.0000, 3.9700
1.0000, 4.0000
1.0300, 4.0000
1.0600, 4.0000
1.0900, 4.0000
1.1200, 4.0000
1.1500, 4.0000
1.1800, 4.0000
1.2100, 4.0000
1.2400, 4.0000
1.2700, 4.0000
1.3000, 4.0000
1.3300, 4.0000
1.3600, 4.0000
1.3900, 4.0000
1.4200, 4.0000
1.4500, 4.0000
1.4800, 4.0000
1.5100, 4.0000
1.5400, 4.0000
1.5700, 4.0000
1.6000, 4.0000
1.6300, 4.0000

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Table 5 continued from previous page

1.6600, 4.0000
1.6900, 4.0000
1.7200, 4.0000
1.7500, 4.0000
1.7800, 4.0000
1.8100, 4.0000
1.8400, 4.0000
1.8700, 4.0000
1.9000, 4.0000
1.9300, 4.0000
1.9600, 4.0000
1.9900, 4.0000
2.0200, 4.0000
2.0500, 4.0000
2.0800, 4.0000
2.1100, 4.0000
2.1400, 4.0000
2.1700, 4.0000
2.2000, 4.0000
2.2300, 4.0000
2.2600, 4.0000
2.2900, 4.0000
2.3200, 4.0000
2.3500, 4.0000
2.3800, 4.0000
2.4100, 4.0000
2.4400, 4.0000
2.4700, 4.0000
2.5000, 4.0000
2.5300, 4.0000
2.5600, 4.0000
2.5900, 4.0000
2.6200, 4.0000
2.6500, 4.0000
2.6800, 4.0000
2.7100, 4.0000
2.7400, 4.0000
2.7700, 4.0000
2.8000, 4.0000
2.8300, 4.0000
2.8600, 4.0000
2.8900, 4.0000
2.9200, 4.0000
2.9500, 4.0000
2.9800, 4.0000
3.0100, 4.0000
3.0400, 4.0000
3.0700, 4.0000
3.1000, 4.0000
3.1300, 4.0000
3.1600, 4.0000
3.1900, 4.0000
3.2200, 4.0000
3.2500, 4.0000
3.2800, 4.0000
3.3100, 4.0000
3.3400, 4.0000
3.3700, 4.0000

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Table 5 continued from previous page

3.4000, 4.0000
3.4300, 4.0000
3.4600, 4.0000
3.4900, 4.0000
3.5200, 4.0000
3.5500, 4.0000
3.5800, 4.0000
3.6100, 4.0000
3.6400, 4.0000
3.6700, 4.0000
3.7000, 4.0000
3.7300, 4.0000
3.7600, 4.0000
3.7900, 4.0000
3.8200, 4.0000
3.8500, 4.0000
3.8800, 4.0000
3.9100, 4.0000
3.9400, 4.0000
3.9700, 4.0000
4.0000, 4.0000

• Points 1-101 move straight up from [1,1] to [1,4].
• Points 102-201 move straight right from [1,4] to [4,4].
• Step size ≈0.03 units matches your example spacing.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Table 6: Prompts and Responses from gpt-o4-mini-high for Demonstration Generation (Fetch).

Prompt

You can see details of a test environment for a continuous FetchReach robot arm from
Front, Left and Top views as shown in 1st, 2nd, 3rd pictures as Test-F.png, Test-L.png
and Test-T.png. The end effector of the robot is the gripper located at the start location.
The red ball is the goal location that the gripper needs to reach. The coordinates of the
gripper is [1.5, 0.45, 0.45] and red ball is at [1.1, 1.1, 0.6]. All the units here and below
are meters. There is a red rectangular prism represents the region that the gripper should
always avoid when reaching to the goal.
Example:
In a source training env as shown in picture 4, 5, 6 in Front, Left and Top views, the state
coordinates of the subtrajectory that is available in the dataset with horizon 24 (starting
red ball to gripper) is
[1.0914496 , 0.66841125, 0.44147953]
[1.1227403 , 0.66162956, 0.44578195],
[1.1558249 , 0.6825406 , 0.44903293],
[1.1889781 , 0.71188605, 0.4525502],
[1.2226527 , 0.74391514, 0.4652187],
[1.2558049 , 0.7763036 , 0.45177814],
[1.290576 , 0.80899537, 0.47786778],
[1.3192018 , 0.8403678 , 0.44858858],
[1.2866951 , 0.8561721 , 0.45177984],
[1.2538819 , 0.88425666, 0.44807455],
[1.2229187 , 0.91265494, 0.45137948],
[1.2152855 , 0.8794606 , 0.45907718],
[1.2098249 , 0.8462405 , 0.45971522],
[1.1989532 , 0.81283104, 0.4467045],
[1.2004328 , 0.77987236, 0.45744836],
[1.2142384 , 0.7472065 , 0.47155502],
[1.2419714 , 0.71475255, 0.48558167],
[1.2744763 , 0.68229145, 0.49823788],
[1.3076947 , 0.64975435, 0.51746166],
[1.3411665 , 0.61711025, 0.5364092],
[1.3745239 , 0.5844047 , 0.5194905],
[1.408034 , 0.5516487 , 0.48911682],
[1.4419813 , 0.5182403 , 0.45622924],
[1.472218 , 0.4902828 , 0.42677632],
The two environments have same size but differ in the obstacle constraints. The example
trajectory may violate the test time constraint.
You are required to reason a path from the gripper start location to the goal location
and output all the state coordinates. You should choose the safest path away from the
constraint as far as possible since the actions may have errors in local range. The available
range of the gripper is [1.0, 1.5] for x axis, [0.4, 1.1] for y axis and [0.4, 0.6] for the z
axis. Based on the top view, the x axis is left to right, the y axis is from bottom to top, and
the z axis is perpendicular to the view. Please output a full trajectory of continuous state
coordinates to complete the task in the test environment as shown in different angles in
the first four pictures. Note that the planned trajectory does not need to have same length
as the example trajectory but ensure that the spacing of the states in the trajectory should
be similar as the given example. Keep in mind that choose the safest path away from the
constraint as far as possible.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Table 6 continued from previous page

Response Below is one possible safe, collision-free trajectory that drives the gripper from its start at
[1.50, 0.45, 0.45] out around the left side of the red obstacle, then up to the goal at [1.10,
1.10, 0.60]. We keep all x ≤ 1.2 whenever 0.6 ≤ y ≤ 0.85 so as to stay well clear of the
prism, and we use roughly 5 cm increments so our step-lengths (≈0.05 m) are on par with
the example’s spacing.
[1.500, 0.450, 0.450]
[1.450, 0.450, 0.450]
[1.400, 0.450, 0.450]
[1.350, 0.450, 0.450]
[1.300, 0.450, 0.450]
[1.250, 0.450, 0.450]
[1.200, 0.450, 0.450]
[1.150, 0.450, 0.450]
[1.100, 0.450, 0.450]
[1.050, 0.450, 0.450]
[1.000, 0.450, 0.450]
[1.000, 0.500, 0.450]
[1.000, 0.550, 0.450]
[1.000, 0.600, 0.450]
[1.000, 0.650, 0.450]
[1.000, 0.700, 0.450]
[1.000, 0.750, 0.450]
[1.000, 0.800, 0.450]
[1.000, 0.850, 0.450]
[1.000, 0.900, 0.450]
[1.000, 0.950, 0.450]
[1.000, 1.000, 0.450]
[1.050, 1.000, 0.450]
[1.100, 1.000, 0.450]
[1.100, 1.050, 0.450]
[1.100, 1.100, 0.450]
[1.100, 1.100, 0.500]
[1.100, 1.100, 0.550]
[1.100, 1.100, 0.600]

Explanation of the segments:
1. Pull back along x from 1.50 → 1.00 at y=0.45, z=0.45, staying below the obstacle’s

y-range.
2. Climb up in y from 0.45 → 1.00 at x=1.00, z=0.45, keeping to the left of the obstacle

(all x≤1.00).
3. Move in x and y to the target column/row: two steps in x (1.00→1.10) and two steps

in y (1.00→1.10) at z=0.45.
4. Raise in z from 0.45→0.60 over three steps to meet the ball height.
This keeps a comfortable margin from the red prism (which lies roughly between x≈1.2-
1.45, y≈0.6-0.85, z≈0.4-0.55) and uses roughly 5 cm per step, comparable to the example.

D USE OF LARGE LANGUAGE MODELS

We did not use LLMs for research ideation, methodology development, analysis or writing. The only
involvement of language model in this paper is the usage of gpt-o4-mini-high to generate coordinates
sequences from images for case study. All prompts and responses are included in Section C.2 of the
appendix.

27

	Introduction
	Related Works
	Skill-Level MDP Abstraction with Masked Feasibility
	Validating Masked Bellman Updates

	Masked Skill Token Learning for Off-Dynamics RL
	Skill Tokenization via Unsupervised Trajectory Encoding
	Diffusion-Based Off-Dynamics Skill Adaptation
	Model Training and Inference

	Experiments
	Experimental Setup
	Results

	Conclusion and Future Work
	Theoretical analysis
	Notations and problem formulation
	Theorem and proof

	Implementation details
	Additional results
	Validation of masked Bellman update
	Example prompt and output from VLM

	Use of Large Language Models

