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ABSTRACT

Generalizing policies across environments with altered dynamics remains a key
challenge in reinforcement learning, particularly in offline settings where direct
interaction or fine-tuning is impractical. We introduce Masked Skill Token Train-
ing (MSTT), a fully offline hierarchical RL framework that enables policy transfer
using observation-only demonstrations. MSTT constructs a discrete skill space via
unsupervised trajectory tokenization and trains a skill-conditioned value function
using masked Bellman updates, which simulate dynamics shifts by selectively dis-
abling skills. A diffusion-based trajectory generator, paired with feasibility-based
filtering, enables the agent to execute valid, temporally extended actions without
requiring action labels or access to the target environment. Our results in both
discrete and continuous domains demonstrate the potential of mask-guided plan-
ning for robust generalization under dynamics shifts. To our knowledge, MSTT is
the first work to explore masking as a mechanism for simulating and generalizing
across off-dynamics environments. It marks a promising step toward scalable,
structure-aware transfer and opens avenues to explore multi-goal conditioning, and
extensions to more complex, real-world scenarios.

1 INTRODUCTION

Reinforcement learning (RL) agents often struggle to generalize when deployed in environments that
differ from their training conditions (Pinto et al.,|2017; |Clavera et al.,[2019; |Abdolshah et al., 2021}
Hansen et al.||2021). In many practical scenarios involving navigation and manipulation, deployment
environments exhibit structural changes (e.g., blocked passages or new obstacles) that invalidate
parts of the agent’s learned behavior repertoire. The changes do not typically require new tasks or
capabilities, but render some previously executable behaviors infeasible. A natural question is: can
agents adapt to such dynamics shifts with minimal additional supervision, i.e., without extensive
interaction or full retraining?

In this work, we address this question in a practical setting where the agent is trained offline in a
source environment and deployed zero-shot in a target environment with altered dynamics. At deploy-
ment, the agent receives a single observation-only demonstration—without action annotations—that
illustrates feasible behavior in the new environment. These demonstrations may come from human
demonstrators or be inferred from video, and are far cheaper to obtain than full action-labeled trajec-
tories or interactive feedback. This setting enables lightweight, low-overhead adaptation and is well
suited to real-world applications where interaction is expensive or infeasible.

We introduce Masked Skill Token Training (MSTT), a hierarchical RL framework for adaptation to
feasibility constraints using only offline data. The key insight is that dynamics shifts can be abstracted
as constraints over a learned space of temporally extended skills. MSTT learns these discrete skills
from source trajectories using a vector-quantized variational autoencoder (VQ-VAE) (van den Oord
et al., 2017; [Mentzer et al., [2024), resulting in a compact and reusable skill vocabulary. During
training, MSTT simulates environment changes by randomly masking out subsets of skills, and learns
a feasibility-conditioned critic via a masked Bellman operator that propagates value only through
feasible skill sequences.

At test time, MSTT infers a binary skill mask from a single observation-only demonstration in the
target environment, and plans using the learned critic under the inferred constraints. Unlike prior
off-dynamics RL approaches such as DARC (Eysenbach et al.,2021)) and VGDF (Xu et al.| [2023)),
which require action-labeled data or target interaction, MSTT operates fully offline and uses only



Under review as a conference paper at ICLR 2026

observational signals to guide transfer. In contrast to standard hierarchical RL methods (Bagaria &
Konidaris} 2020; |Q1a0 et al., [2025), which assume that learned skills remain valid during deployment,
MSTT explicitly models and adapts to shifts in skill feasibility. MSTT uses a diffusion-based
trajectory generator trained on source data. At deployment, it samples candidate trajectories and
discards those whose encoded skill tokens violate the inferred mask. This enables behavior synthesis
aligned with test-time constraints, without needing to explicitly condition the generative model on
the mask or retraining it for each deployment scenario.

We evaluate MSTT on continuous domains, specifically the Maze2D in D4RL, FetchReach and Habi-
tat environments with test-time modifications and requirements. MSTT significantly outperforms
offline RL and transfer RL baselines, demonstrating robust adaptation using only a single observation-
only demonstration per environment. These results indicate the promise of MSTT as a step toward
enabling structure-aware transfer in dynamic environments with minimal supervision. To our knowl-
edge, this work is the first to tackle the challenging setting of skill-level adaptation under structural
dynamics shifts using only observation-only demonstrations and fully offline training.

To summarize, our main contributions are:

* We formulate a new off-dynamics transfer setting where agents adapt using only observation-only
demonstrations, without access to target actions or environment interaction.

* We propose Masked Skill Token Training (MSTT), a hierarchical RL framework that models
dynamics-induced skill constraints using binary masks, and learns a feasibility-conditioned critic
via masked Bellman updates.

* We integrate a diffusion-based trajectory generator to enable robust skill execution under test-time
constraints, and demonstrate strong generalization across structurally altered environments.

2 RELATED WORKS

Policy Transfer under Dynamics Mismatch. Generalizing RL policies under dynamics mismatch is
a key challenge for real-world deployment. DARC (Eysenbach et al.l[2021) addresses Off-Dynamics
RL (ODRL) (Lyu et al.||2024) by learning reward corrections using discriminators trained on transi-
tion dynamics. VGDF (Xu et al., 2023) filters transferable transitions using model ensembles, while
H20 (Niu et al.| [2022)) reweights offline datasets to better match target distributions. Domain random-
ization (Peng et al.l 2018)) trains robust policies via diverse simulated dynamics, but often requires
extensive environment access. In the fully offline setting, DARA (Liu et al., 2022) modifies source
rewards based on classifier-estimated transition alignment between source and target domains, while
BOSA (Liu et al.,2024)) proposes supported value optimization to better mitigate out-of-distribution
transitions. Unlike these approaches, this work aims to achieve generalization across structural
dynamics shifts without target interaction or explicit modeling of transition mismatches.

Hierarchical Skills and Discrete Latent Policies. Hierarchical RL (HRL) facilitates long-horizon
decision-making by structuring policies around temporally extended skills, improving exploration,
credit assignment, and policy reuse. While classical HRL relies on predefined subgoals or options,
recent works learn skill abstractions from data, often through discrete latent policies that represent
reusable primitives as compact codes. OPAL (Ajay et al.,[2021]) learns a discrete skill dictionary using
VQ-VAE (van den Oord et al.| 2017; [Mentzer et al., 2024} |Ozair et al.| 2021)), and QueST (Mete et al.}
2024)) encodes variable-length trajectory tokens for multitask reuse. DADS (Sharma et al.l 2020) and
VALOR (Achiam et al.|,|2018) focus on skill predictability and diversity to enhance generalization.
These approaches offer modularity and efficiency but implicitly assume that skills remain executable
during deployment. Our method removes this assumption by introducing a skill-masking mechanism
that enables policies to reason over partially-available skills.

Diffusion-Based Generative Policy Learning. Diffusion models have emerged as an expressive
policy class for offline RL (Kang et al., 2023). Diffuser (Janner et al., [2022) formulates planning
as trajectory denoising through conditional diffusion. Decision Diffuser (Ajay et al.,[2023)) extends
this idea to decision-making, modeling return-conditioned trajectories. Diffusion Policies (Chi et al.|
2023) apply diffusion to visuomotor control, producing pixel-to-action policies with high fidelity.
Latent Diffusion RL (Venkatraman et al.| [2024) leverages low-dimensional latent spaces to improve
efficiency in trajectory generation. These methods achieve strong results in static environments,
capable of composing hierarchical offline knowledge (Zhou et al., [2023; Du et al., [2023}; [Liang
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(a) Four-room (b) MDP Abstraction (c) MDP with sink

Figure 1: The Four-room environment and its skill-level MDP abstraction. (a) The original Four-room
grid world, where the agent must reach specified goal rooms from varying start locations. (b) Abstract
MDP representation, where rooms are states and inter-room transitions are treated as high-level skills
a;. (¢) Modified MDP with a blocked transition (e.g., the door from room 2 to room 3 is impassable),
where executing the corresponding skill leads to a sink state. MSTT learns a feasibility-conditioned
critic through simulated skill masking, enabling transfer to such target domains without interaction.

et al., 2024} Ma et al., 2024)), but assume fixed dynamics and do not explicitly handle feasibility
constraints introduced by changes in environment structure. Our method augments this line of work
by conditioning diffusion-based skill generation on masked skill availability, enabling policy rollout
under dynamics-induced constraints.

3 SKILL-LEVEL MDP ABSTRACTION WITH MASKED FEASIBILITY

Recall that our goal is to enable decision-making under dynamics shifts, where certain skills may
become infeasible due to changes in transition feasibility (e.g., due to physical obstacles or altered
connectivit. In this section, we formalize the connection between skill feasibility and transition
dynamics using a skill-level abstraction of the MDP.

We introduce the notion of a skill mask, a binary indicator over the discrete skill space, which
captures environment-specific feasibility constraints. This mask provides a compact mechanism to
encode target environment dynamics at the skill level, and allows us to analyze how such feasibility
constraints affect value estimation and policy behavior. Our formulation supports off-dynamics policy
transfer by explicitly modeling which skills remain executable in the target environment, without
requiring direct interaction to capture its underlying dynamics or action-labeled trajectories.

To illustrate this abstraction, we use the Four-room navigation domain as an example of a discrete
hierarchical reinforcement learning (Sutton et al.,|1999) task involving structured decision-making
with reusable behavioral primitives. As shown in Fig. the environment comprises four inter-
connected rooms with doors at fixed positions. The agent is tasked with navigating from different
start locations to designated goal rooms using previously learned skills that enable room-to-room
transitions. These skills can be modeled as temporally extended actions or options.

Skill Abstraction of the Source MDP. We assume that a set of temporally extended skills are
available, which enables the agent to transition between high-level regions of the environment (e.g.,
adjacent rooms). Based on these behaviors, we construct a skill-level abstraction of the environment
in the form of a discrete Markov Decision Process (MDP) (Puterman, [2014) M := (S, A, 7, p,7),
where S denotes the abstract state space (e.g., room indices), A denotes the set of skill-level actions,
r is the reward function defined over abstract states, p captures the skill-induced transition dynamics,
and v is the discount facto This high-level abstraction is illustrated in Fig. and serves as the
foundation for reasoning over skill composition in our framework.

'In this work we primarily consider structural dynamics changes such as locked passages or new obstacles,
not continuous changes on parameters of transition, e.g. mass, friction or damping. Transfer across continuous
changes requires training on trajectories from randomly sampled parameters, and we pursue this as future work.

2Since all the skills represented as options in our work with diffusion model have fixed horizon as shown in
Section@ we keep a fixed discounted factor here.
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Figure 2: Overview of our masked skill token learning framework. (Left) Skill tokenization encodes
trajectory segments into discrete latent tokens via a VQ-VAE encoder ¢y. (Right) At execution time,
the diffusion model D, samples candidate sub-trajectories, which are encoded into skill tokens (z).
Feasibility is enforced via the binary mask m(z); only valid options are propagated for Q-learning.

Skill-Level Feasibility Masking. In deployment settings, environment dynamics may differ from
those observed during training, rendering certain skill-level transitions infeasible (e.g., a blocked
passage between room 2 and room 3). To capture such structural constraints, we augment the abstract
state space with a dedicated sink state s , which absorbs any transition resulting from the execution
of an invalid skill (Fig.[Ik). This sink state formulation provides a conservative but practical model of
failure, where executing an unavailable skill results in termination—this reflects scenarios such as
safety violations or irreversible errors. While our current formulation adopts this absorbing failure
model, alternative semantics (e.g., remaining in the same state upon executing an invalid skill) are
also possible and are left for future work.

The resulting target MDP is denoted M p := (SU {s,}, A, 7, pB,7), where B € {0,1}I51xI5l isa
blocking matrix indicating the feasibility of transitions. B; ; = 0 denotes that the transition from s;
to s; is blocked under the current dynamics:

pB(sjlsi,a) =0 if B;;=0; pB(silsia) = Z (1= Bij)p(sjlsi,a)
SjES

where transitions to blocked states are redirected to a sink state s, which models failure due to
infeasible skill execution. We also introduce a binary availability mask m(s, a) € {0, 1}/SII4!, where
m(s,a) = 0 denotes that action a is blocked at state s.

Masked Bellman Operator. To support learning in the presence of unknown blocked dynamics, we
introduce a masked Bellman operator that uses the binary availability mask m(s,a) € {0, 1}'5 1Al
where m(s, a) = 0 denotes that action a is blocked at state s. The masked Bellman operator modifies
the standard backup by restricting the value propagation to feasible transitions:

(T"Q) (S,(l) =r(s) +7<m(55a)p(5aa)vvg> ) (H

where V(' (s) is a masked value operator that computes the maximum over available actions:

max  Q(s,a), if such a exists
ng(s) .= { a€Aim(s,a)=1 )
r(s), otherwise.

In other words, this masked operator enables the critic to account for feasibility constraints during
learning by preventing value propagation through blocked or invalid transitions.

Theoretical Justification. Under blocked dynamics, iterative updates using the masked Bellman
operator can converge to a near-optimal policy. Specifically, for any target MDP with infeasible
transitions, there exists an availability mask that enables convergence to a policy whose value closely
approximates that of the optimal policy under the modified dynamics:

Theorem 1. Let Qg : S X A — R be an initial action-value function. There exists a mask m such
that the iterative update Qy, 1 = T™Qy, converges to a policy ™ whose value under the blocked

m
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MDP M g satisfies:
K
[V, = Vi | < @2 + (1 = pun),
where pyin 1= min, , maxy p(s'|s, a) and o, B are constants dependent on ~y.

For more detailed derivation and proof, please see Appendix [A]

3.1 VALIDATING MASKED BELLMAN UPDATES

We empirically validate Theorem [I] using the
example discrete environment shown in Fig-
ure [I(a)) We simulate masked updates in the
unblocked source MDP (Figure [I(b)) using a
feasibility mask where action 2 is unavailable
at state so. The resulting value function Vi is
computed through K iterations of the masked 05 o6 07 08 08 10 05 05 07 08 09 10
Bellman operator. We evaluate performance . o

across different levels of py,in (which reflects (a) Est. & optimal values (b) Gap (£oo-norm)
the entropy of the transition dynamics).

Optimal Value V/},,
—s— Masked Leamning V¢
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) . . Figure 3: Performance of the masked Bellman
F}gureE]compares the value function estimated operator using Eq. (T) and Eq. (). (a) Converged
via the masked Bellman operator to the analyt-  y.j,6 estimates (Est.) at state s, compared with
ically derived optimal values under blocked dy- ¢ apalytically computed optimal values under
namics. Notably, in low-entropy regimes where ). eq dynamics. (b) £o.-norm of the difference
Pmin ~ 1, the largest gap (Figure B®) between  poyween the estimated and optimal value functions.
estimated and optimal values becomes negligi- g plots show that the masked Bellman operator

ble. These findings empirically validate our the- . qyces accurate estimates, particularly as pumin
oretical findings and highlight the potential of approaches 1.

our approach in structured settings where skill
transitions are predictable.

In summary, Theorem|[I]shows that masked value learning via the Bellman operator 7™ can approxi-
mate optimal behavior in a target MDP M g, provided a suitable feasibility mask m is applied. In
hierarchical settings, where skills are temporally extended and induce low-entropy transitions, the
approximation error remains small (e.g., when py,in, = 1). This property allows dynamics shifts to
be simulated in the source domain by masking skill availability during training. As a result, value
functions can be learned entirely offline and still generalize to test environments without requiring
access to their true dynamics. We leverage this insight to design the training framework described in
the next section.

4 MASKED SKILL TOKEN LEARNING FOR OFF-DYNAMICS RL

In this section, we transition to learning in continuous state and action spaces, where the discrete skill
abstractions assumed in Section [3|are not directly available.

We introduce Masked Skill Token Training (MSTT), a hierarchical RL framework that learns a
compact skill vocabulary from offline data and supports policy transfer under altered dynamics.
MSTT comprises of three main components: (1) it encodes sub-trajectories into discrete skill tokens
using a VQ-VAE trained on offline demonstrations; (2) it learns a feasibility-aware critic using
masked Bellman updates that simulate skill infeasibility through random masking; and (3) it uses
a diffusion-based policy to generate candidate skills, filtering them according to an inferred skill
feasibility mask obtained from a single observation-only demonstration in the target environment.
We now describe each component in detail.

4.1 SKILL TOKENIZATION VIA UNSUPERVISED TRAJECTORY ENCODING

In continuous environments where the state-action space cannot be directly abstracted into a finite
MDP, we obtain reusable skill representations by learning discrete encodings of raw trajectory
segments from offline data. Specifically, we adapt the VQ-VAE to discover latent behavioral primitives
(sub-trajectories) that form a compact symbolic skill vocabulary.

Let 7.y = (s1,...,sm) denote a sub-trajectory with horizon H, where we let s;, denote an
observation with slight abuse of notation. We encode this trajectory using the VQ-VAE encoder ¢g to
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Algorithm 1 Offline Masked Hierarchical Reinforcement Learning

Require: Trajectory dataset D, total training steps F, batch size B
1: Initialize critics Qy,, Qy, and targets Qs , Q
2: fore:OtoE(go
3: Sample {Tl(: 131 }b c[B] uniformly randomly from D
Sample {m(b}be[B] randomly from {0, 1}*
Sample N target options at s(}l}) and m(®) using Algorithm
Select best option o’ ® by Qy,
Get clipped Gaussian noised version &'(*)

Get Bellman loss E;b) from Eq. @) with double Q-learning

b) .
9: Update ¢; < ¢; — nV%% Zbﬁg» ),] e {1,2}

® >0 B

10: if e mod e; then

11: e =Xp;+ (1 =N}, j€{1,2}
12: end if

13: end for

14: return @,

produce a discrete latent token:
z=¢¢(T.yy), z€2Z2:={1,2,...,L},

where L is the size of the learned codebook Z. Each token z € Z indexes a cluster of similar
sub-trajectories in the dataset and thus, the codebook Z provides a discrete abstraction over the
continuous behavior space, with each token capturing consistent transition patterns. We find that
even when trained with observation-only sub-trajectories, the learned codebook captures meaningful
spatial and behavioral structure in the environment.

The VQ-VAE model is trained by minimizing the following loss function over sub-trajectories:

Loxit—ene = | 715 — &0(2)|° + |Isglo(11.51)] — 21° +8 |0 (T1.1) — sl Q)

reconstruction codebook loss commitment

where &y is the decoder, sg[-] denotes the stop-gradient operator, and /3 is a hyperparameter that
balances codebook commitment against the other loss terms.

4.2 DIFFUSION-BASED OFF-DYNAMICS SKILL ADAPTATION

To enable hierarchical decision-making under dynamics shifts, we consider each discrete skill token
z € Z as a temporally extended action following the options framework (Sutton et al.,[1999; |Sutton
& Barto,, [1998). Formally, an option is defined as o = (Z, 7, B), where Z C S is the initiation set,
T, 18 the intra-option policy, and B : S — [0, 1] is the termination condition. Each element of the
option tuple is instantiated using a trajectory segment (s1,az, ..., sy ) and, thus, 7, corresponds to
an action sequence.

To support planning, we extend the masked Bellman operator (Eq. (1)) to operate over options:

Q*(s,0,m) = R(0) +~ max Q*(s',0',m), 4)
( ) (©)+7 0'€0(s’) :m(¢o(0"))=1 ( )

where O(s') is the set of valid options at the successor state s’. The return R(o) is computed as
the discounted sum of per-step rewards. If no feasible option is available, the value defaults to the
terminal reward as in Eq.[2]

We apply the VQ-VAE trajectory encoder ¢g (Section to associate each option with a skill
token by encoding the sub-trajectory of observations z = ¢g(7,.). Following the abstraction
introduced in Section (3| we define a skill feasibility mask m(z), which models which skills remain
executable under altered dynamics: i.e., m(z) = 1 indicates a feasible skill, while m(z) = 0 denotes
an infeasible one.
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We sample options using a trajectory-level diffu-  Algorithm 2 Off-Dynamics Option Sampling
sion policy model D,, trained to generate plau-
sible observation-action sub-trajectories. Unlike
the VQ-VAE decoder, the diffusion model sup-
ports conditioning on continuous start states s,
enabling flexible skill generation in diverse en-
vironments. Rather than conditioning the model
directly on the feasibility mask, we apply a
simple filtering procedure: sampled trajectories
whose encoded skill tokens are masked out are
discarded (Algorithm [2). The accepted trajec-
tory is then executed as a temporally extended
option. This mechanism allows for zero-shot
composition of valid high-level behaviors under
novel dynamics, guided solely by the feasibility mask.

Require: Start s, Diffusion model Dy, encoder
¢g, mask m
1: z24-null
2: while z = null do
3: Sample 7.7 ~ Dy (- | 5)
4 Z ¢0 (TI:H)
5 if m(z) = 0 then
6: z <4+ null > Reject and resample
7: end if
8: end while
9: return Feasible option 7;.;; and 2

4.3 MODEL TRAINING AND INFERENCE

The overall training procedure is summarized in Algorithm[I} At each iteration, we randomly sample
trajectory segments and skill masks from the offline dataset, and update the Q-function by minimizing
the squared Bellman error under the masked update rule (Eq. (@)). Although the number of possible
skill-mask combinations grows combinatorially with the size of the skill vocabulary, we find that
the learned skill space is sufficiently structured and random masking provides effective coverage
in practice. To stabilize training, we incorporate several standard techniques from deep Q-learning,

including target networks(Mnih et al.,[2016), clipped double Q-learning (Hasselt, 2010} [Fujimoto
2018), and target smoothing via noise injection (Simmons-Edler et al., 2019).

At test time, MSTT infers the feasibility mask from a single observation-only demonstration. The
demonstration can be non-expert as long as it covers essential path towards the goal. MSTT is capable
of compositing skills existed in the demonstration to achieve the goal. We begin by initializing the
skill mask m(z) = 0 for all z € Z. Then, we extract all sub-trajectories 7. ;; from the demonstration
and encode them using the trajectory encoder to obtain skill tokens z = ¢g (7.7 ). For each observed
skill token, we set m(z) = 1, marking the corresponding skill as feasible. This inferred mask is
passed to the learned critic and used to guide sampling via Algorithm 2]

5 EXPERIMENTS

We evaluate MSTT’s ability to achieve observation-only demonstration following in previously
unseen environments with altered dynamics, without additional training or fine-tuning. Our primary
objective is to benchmark MSTT against state-of-the-art offline and transfer RL methods in popular
simulation environments (Figures ] [5]and [f]). We also include a case study showcasing the use of a
Vision-Language Model (VLM) to infer demonstrations from visual observations.

5.1 EXPERIMENTAL SETUP

Environments. We evaluate MSTT in three simulated environments from Gymnasium-Robotics

suite (de Lazcano et al., [2024) and Habitat-Lab (Savva et al., 2019} [Szot et al, 2021},
2024)): Maze2D and FetchReach, commonly used in offline (Janner et al.| 2022) and hierarchical

JESKY Y ) ) 31 =1 [T

(a) Maze2D (b) Target 1 (c) Target 2 (d) Target3  (e) Target 1 (f) Target2 (g) Target 3

Figure 4: Environments and test-time performance of MSTT in Maze2D. (a) Source environment
with continuous state and action spaces. Three distinct long-horizon paths connect the start location
(green ball) to the goal (red ball), each requiring hundreds of low-level control steps. (b)-(d) Test-time
variants with altered dynamics, where only one path remains feasible. The agent must navigate to
the goal given observation-only demonstration. (e)-(g) Trajectories generated by MSTT in target
domains. The agents successfully finished navigation by selecting the correct path.
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4

..

Figure 5: Demonstration in Habitat ReplicaCAD. The agent must navigate to the goal in this studio

with pixel observations, following the demonstration images in order from left to right, then top to
bottom.

Table 1: Performance on Maze2D test suites.

Env Metric BC Diffuser Diffuser; BC:, DARA MSTT (ours)

Return (1)  0.0£0.0 83.5+50.78 107.36+£27.41 57.76+£18.24 39.13+31.93 163.97£67.11
Tl Steps (/) 350.040.0 280.65+42.17 162.84427.02 157.49+15.61 310.87431.93 186.92+66.85
Goal (1) 0% 73% 99% 99% 65% 89%

Return (1) 0.19£1.89  15.86£39.31 36.05+42.49 19.3247.11 63.67+£22.20 145.51£50.93
2 Steps () 349.8+1.98 336.7+32.96 298.54466.76 187.37457.37 286.33+£22.20 211.014+46.74
Goal (1) 1% 14% 44% 93% 93% 95%

Return (1) 8.44+12.84 0.0+0.0 27.94£22.04 2294421.73 61.83+37.60 111.59+34.74
T3 Steps (1) 310.85457.89 350.04+0.0 259.444-63.34 280.29+64.85 288.174:37.60 249.33+35.02

Goal (1) 32% 0% 73% 54% 78% 99%

Return (1) 2.87 33.12 57.11 33.34 54.87 140.35
Avg Steps () 336.88 322.45 240.27 208.38 295.12 215.75

Goal (1) 11% 29% 72% 82% 78.66% 94.33%

t: fine-tuned on target state-only demonstrations. Za: fine-tuned on target action demonstrations.

RL (Shin & Kim|,[2023) research, and a photorealistic 3D indoor navigation task in ReplicaCAD
let al., 2021) commonly used in embodied AL Maze2D (Figure A(a)) requires long-horizon navigation
with continuous control and sparse rewards (1 at the goal). Learning is difficult from non-expert,
fully offline data without hierarchical modeling. At test time, we block certain paths
2021)), creating target environments where the original policy fails. We evaluate on three such
variants (Figures [d(b)H4(d)), each allowing only a single feasible route. The agent receives a single
locations-only demonstration per environment and must infer the required skills to follow it to the
goal. In FetchReach (Figure[6(a)), the robot controls a gripper to reach target positions, receiving a
reward of —1 per step. In the target variant (Figure [6(b)), a red cuboid defines a constrained region
that incurs a heavy penalty if entered. The agent must imitate a safe coordinates-only demonstration
to reach the goal while avoiding the penalty zone. In ReplicaCAD (Figure[3)), the agent must navigate
to a goal in a photorealistic indoor environment using only RGB observations, following a sequence
of images as a demonstration.

Compared Methods and Evaluation Metrics. We compare MSTT against several popular of-
fline RL and imitation learning baselines: Diffuser (Janner et all, [2022)) and Behavior Cloning
(BC) (Pomerleaul, (1988}, [Levine et al.,[2020), both of which learn from offline data but lack built-in
mechanisms for adapting to new environments. To enable adaptation, we fine-tune Diffuser on target
observation-only demonstrations, denoted as Diffuser;. We also include DARA [2022), an
offline dynamics-aware transfer RL method that extends DARC (Eysenbach et all,[2021) to the offline
setting using action-annotated target data. Additionally, BC;, denotes behavior cloning fine-tuned
with action-labeled target demonstrations. Importantly, MSTT uses only state-only demonstrations
in the test environment, while DARA and BC,, rely on action annotations. Although these methods
have more information about the target environment, we include their results for completeness and
comparison. Another relevant method that can transfer with observation-only demonstrations is
inverse dynamics (ID) modeling (Radosavovic et al, 2021). However, we find that it performs poorly

Table 2: FetchReach test results.

Metric BC Diffuser Diffusert; BCiq DARA MSTT (ours)

Return (1) -50.0£0.0 -46.95+3.12 -30.85+11.44 -50.0+0.0 -49.64+0.75 -37.26+7.43
Cost ({) 0.0£0.0 -200.0£206.51 -112.0£99.02 0.0+0.0 -208+£85.65 0.0+£0.0
Goal (1) 0% 99% 50% 0% 23% 88%
Failure ({) 0% 61% 66% 0% 93% 0%

t: fine-tuned on target state-only demonstrations. ta: fine-tuned on target action demonstrations.
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Table 3: Habitat ReplicaCAD test results.
Cost measures the average deviation of
the trajectory coordinates from the demon-
strated trajectory.

Table 4: MSTT test results with VLM generated state
demonstration.

Metric Maze TI Maze T2 Maze T3 FetchReach

Return (1) 188.6+47.9 152.24+42.2 111.5+35.6 -35.0+6.44
Steps ({) 162.34+47.6 198.7+£42.1 239.4+£35.5 35.0+£6.4
Goal (1) 94% 97% 98% 93%
Failure (]) 6% 3% 2% 0%

Metric Diffuser Diffusert; 1D MSTT

Cost (})2.44+3.7 2.2+1.9 1.8£1.5 0.7+0.6
Goal (1) 10% 16% 23% 75%

t: fine-tuned on target state-only demonstrations.

in the continuous control tasks in Maze2D and FetchReach, due to the difficulty of accurately learning
the actions from locations alone without robot velocities. Therefore, we only include it in the Habitat
experiment. Evaluation metrics include total episode return, number of steps to reach the goal, and
success/failure rates over 100 trials. We report the mean and standard deviation across trials for each
target task.

5.2 RESULTS

Can MSTT achieve transfer in the off-dynamics scenario with only observation-only demon-
strations? MSTT achieves near-expert performance in all Maze2D variants, FetchReach, and
ReplicaCAD, outperforming all baselines on average, as shown in Tables [T} [2] and 3] Offline RL
methods, such as Diffuser and BC, fail to adapt to the changed dynamics and perform poorly in
transfer settings. Fine-tuning Diffuser on observation-only demonstrations (Diffuser;) improves
performance, particularly in Target Env 1, where the model benefits from pretraining bias toward the
correct path. However, it still lags behind MSTT overall. DARA performs inconsistently, showing
moderate success in some settings (e.g., Target Env 2), but struggles to generalize; this is likely due to
limited hierarchical abstraction and a poorly trained domain classifier affected by dataset imbalance.
Planning with inverse dynamics models performs poorly in ReplicaCAD with overfitting to high-
dimentional inputs. These results highlight MSTT’s strength in leveraging skill-level abstractions
and feasibility-aware planning for robust adaptation and demonstration following.
Tj\

A

(b) Target

Case study: Using VLMs with MSTT.
We investigate the use of modern vision-
language models (VLMs) to infer observation-
only demonstrations directly from visual obser-
vations. This approach reduces annotation over-
head and illustrates how foundation models can
be used with MSTT for off-dynamics transfer.

=

‘e

L

(a) Fetch (d) Result

(c) Demo

Specifically, we prompt VLM to generate coor-
dinates sequences. Full prompt details, model
outputs, and analysis are provided in the ap-
pendix. As shown in Table[d MSTT achieves
strong performance using these VLM-inferred
demonstrations, demonstrating the potential of
combining pretrained VLMs with our frame-
work for low-effort generalization to new envi-
ronments.

Figure 6: Environments and test-time performance
of MSTT in Fetch. (a) The source environment,
where the robot gripper must reach the goal loca-
tion (red ball). (b) The target environment with
modified dynamics: the red box indicates a re-
stricted region that the gripper must avoid. (c)
Demonstration, where the robot gripper is tasked
with reaching the goal with avoidance. (d) MSTT
successfully executes a trajectory that reaches the

goal while avoiding the red box.
6 CONCLUSION AND FUTURE

WORK

In this work, we introduced MSTT, an offline hierarchical RL framework that uses masked skill
tokens and diffusion-based options to enable skill transfer across off-dynamics environments. By
conditioning value learning on binary skill masks, MSTT simulates skill infeasibility and avoids
the need for action annotations or explicit dynamics modeling. Experiments in both discrete and
continuous settings demonstrate robust transfer performance under dynamics shifts. Future work in-
cludes improving mask sampling strategies for efficiency, incorporating diverse dynamics parameters
with domain randomization, extending to multi-goal transfer via goal-conditioned critics, and further
leveraging LLMs or VLMs to infer demonstrations from visual input to reduce reliance on human
supervision. We believe MSTT forms an important step towards scalable skill transfer in complex,
real-world settings.
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REPRODUCIBILITY STATEMENT

We have taken the following steps to enhance the reproducibility of our results. For our theoretical
results we state required assumptions and problem setups in Section and include full proofs
in Section[A.2] Our simulated environmental setup, dataset processing and experimental pipelines
are documented in Section [B| We provide implementation details of the proposed algorithm and
computing environments in Section [B]of the appendix.
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APPENDIX

A THEORETICAL ANALYSIS

In this section, we present the theoretical results that support the claims made in the main text. We
begin by outlining the detailed problem setup, followed by the statement of the main theorem. The
proof of the theorem is provided thereafter.

A.1 NOTATIONS AND PROBLEM FORMULATION

Let AS~! denote the space of probability distributions over a discrete set S and S = |S|. For a
conditional probability mass function p (Y| X'), we denote the probability vector given X = x as
p(z) € AS71 Let Ry = {z € R: 2 > 0}. The L>-norm of a vector v is denoted as ||v||__ :=
max; |[v],], where [v], refers to the i-th entry of v. The inner product between two vectors w and v is
(u,v).

In this analysis we consider a finite Markov decision process (MDP) (Puterman, |2014) denoted
as M := (S, A,r,p,7), which consists of finite state space S, finite action space .4, transition
probability function p: S x A — AS~1, reward function7: S — [0, 1] and discount factor v € [0, 1).
The fixed discounted factor here is motivated by our practical choice that skills represented as options
with diffusion model have fixed horizon as shown in Section4.2] making the original semi-MDP
equivalent to an abstraction MDP. A policy m: S — A“4~! maps states to distributions over actions.
An agent equipped with a policy can interact with the environment by taking action a, at time step ¢
according to 7 based on the current state s;, and observing the resulting state transitions and rewards.
The environment transitions to a new state s;1 according to p (s¢, a;) conditioned on the current
state and action. The agent receives a reward r (s;) based on the current state. Our analysis can be
generalized to the reward function 7: S x A — [0, 1] by modifying the masked Bellman operator
below. But for sake of simplicity in analytical representation, we assume the reward function is state
dependent only.
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The agent’s goal is to maximize the expected sum of discounted rewards over time, or expected
return. The objective at s is exactly the value function given by V™ (s) = E. , [R|so = s] =
Erp > oo (st) [so = s], where R is the return for a trajectory and v is the discount fac-
tor that determines the importance of future rewards. The action-value function Q7 (s,a) =
Ex,[R|so = s,a0 = a] represents this expected return conditioned on a specific initial s and
a. We denote the vectors of a value function and an action-value function as V™ ¢ RJSF
and Q™ € Rf_A, respectively. We define the operator V for a function f: § x A — R4
such that for each s, (Vf)(s) := maxge f(s,a). The Bellman operator for f is denoted as
(TF)(s,a) =7 (s)+v(p(s,a),Vf). Here we also overload V f and T f to denote the correspond-
ing vector obtained after applying the operators. Let 7* be the optimal policy and Q* be the optimal
Q function. The optimal Bellman equation for @Q* can be written as Q* = 7 Q*, which lays the
foundation for many reinforcement learning algorithms where p and r are unknown (Sutton & Bartol
1998)) to the learner.

In this work, the target test environments may exhibit altered dynamics due to unavailability of
certain transitions, e.g., physical traps or obstructions that block previously accessible paths. For
each transition, we can define a binary function b: S x § — {0, 1}, where b (s;, s;) = 1 indicates
that the transition from s; to s; is available, and unavailable otherwise. Its matrix form is denoted as
B € {0,1}°%% where b ; := [Bl; ; = b(si,85)- bij = 0 indicates that the transition path from s;
to s; is blocked, and any actions applied at s; will not lead to s;. For example, in Figure 1 of the
main text, this corresponds to the case where there is a one-way door from room 3 to room 2. When
such transition attempts are made following the original MDP transition, the agent will collide with
the obstruction and fail the episode, which is equivalent to having 0 rewards in the future.

Therefore, we can model a target environment as an MDP M g := (SU{s, }, A, r, pp,~y) with same
action space and reward, but different state space and transition probability function pg: SU{s } x
A — AS. Forall b; ; = 0, we have pg (s;|s;,a) = 0 for all @ € A, indicating that this transition is
not possible. Since the agent fails the episode when it was about to have an unavailable transition,
we can introduce a sink state s | where r (s, ) = 0 and pg (s1|s1,a) = 1, Va € A. The probability
of transitioning to other states at s is 0. The probability of transitioning to s; from s; for any a is
pB (silsi;a) =3, cs (1= bij)p (s;|si;a). pp remains same as p for all other transitions. The
related values in M p are denoted as Vv, Qs and Vi, Q7 for optimal policy.

During training on the source environment M, we cannot efficiently modify the real dynamics to
either learn from samples distributed as from the target environment, or learn for many possible
target environments at the same time. We aim to rely on the trajectories collected from the source
environment to approximately learn a policy for a target environment. One way to achieve this is
directly modifying the transition tuple according to B during the Bellman update by changing the
target state to a sink state if the intent transition is unavailable. However, it is difficult to scale to
continuous state environments as it would require comparing state similarity with a suitable state
space partition. Instead, here we tackle this problem based on s and a that lead to the unavailable
transition. Our algorithm in practice deals with partial observations of the state. The formulation here
can align with this practice by considering the aggregations of states with same observation as an
abstract state.

Given B, we define mask m (s;,a;) = 0 for any transition (s;,a;,s;) if b;; = 0 and s; €
argmax,cs p (]9, a;), and m (s;,a;) = 1 otherwise. With this mask vector m € {0, 1354,
we introduce the following masked Bellman operator

(T™Q) (s,a) :=71(s) +v(m(s,a)p(s,a),V"Q), 6)
where .
V™) (s) {aGA:rnnl?;,{a)_l f(s,a) ifdaecA:m(s,a)=1 ©
r(s) otherwise

is a masked operator for a function f: S x A — R4. Eq. (9) is general in that it can be developed into
a loss function based on this temporal difference for learning in continuous environment. Compared
with modifying the transition tuple according to B, 7™ is more efficient as it does not require
checking the next state in the transition tuple. Moreover, during deployment stage, V™ @ can filter
out unavailable skills or actions based on the mask, whereas the B approach would require learning
a dynamics model to predict the next state for checking. Our objective here is to examine the
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difference of the proposed masked Bellman operator 7™ compared with learning under the exact B
by theoretically analyzing its behavior and performance.

A.2 THEOREM AND PROOF
Theorem 2. Let Q°: S x A — R be the initial action-value function randomly initialized as
||QO Hoo € [O, ﬁ} The masked Bellman operator T™ iteratively updates Q" for k = 0,1,. ..

by Q"1 = T™QF. The performance of the masked greedy policy &, (s), which chooses action
according to ©& (s) 1= arg MaX,e Aum (s,a)=1 Q% (s,a) if 3a € A : m(s,a) = 1 and randomly

otherwise, is close to the optimal value function V{,  in the target environment after K iterations:

27K L4y (1—7%)+y(1—7)°
(1-79)° 1-9)°

where prin = MiNges.aca P (S4(s,a)|s, a) and sq4(s,a) € argmax, csp ('], a).

=K *
HVMn; —VMBHOQ < (1_pmin)7 (7)

To proof this theorem we start with the following lemmas. Since the value function in M g has an
additional sink state s , we extend the definition of both 7™ and V™ by letting (7™ f) (s1,-) :=0
and (V™ f) (s1) := maxgeca f (s1,a) for any function f: SU{s, } x A — R,.

Lemma 1. vaQj\/tB - VQ,’;\/[B Hoo < 1’_}/77 (1 _pmin) .

Proof. Based on the definitions, for any s € S,

(V" Qi) (5) — (VQiup) (5)] (LHS)

aGA:ITrnl,%e),(a):l Qv (5,0) — max Qi (s,a)| ifJaec A:m(s,a)=1

®)
‘r(s) — max Qi (5, a)‘ otherwise.
Consider the first case when Ja € A : m(s,a) = 1. We analyze two subcases based on the

value of m (s,7*(s)). Let 7*(s) € argmax,c 4 Q4 (s,a), and the lemma is clearly true when
m (s,7*(s)) = 1 as LHS = 0. In the other subcase where m (s, 7*(s)) = 0, by letting 7, (s) €
Arg MaX,e A.m (s a)=1 @iy (5, @), we have

LHS = gle%zl( @ap(5:0) = aeA:ITnnE(%jfa):1 @hts(5:0) ©)

=7(s) +7 (P8 (5,7(5)), VQup ) = 7(5) =7V (PB (5,m7(5)), V@) (10)

<7 Z PB (S/|S77T*(S)) (Ilr,lgﬁ QleB (S/’ a/) (11)
s’eSU{s .}
. 1
<7 ZPB (s']s,m (S))f (12)
s’eS v
= 1% Z pB (8'|s, 7% (s)) (13)
T weS\(satam ()}
<s—— Y pElsT) (14)
T seS\{salom(5))
= T (= (s (5.7 (9) [57(5) 1s)
-
— (1 - min) - 16
<1 (1 = Pmin) (16)

In Eq. (T1) the optimal action-value function at the sink state is 0. Eq. (I3)) is due to the fact that we
are in the case m (s, 7*(s)) = 0, where there exists a s4 (s, 7) such that b (s, s4 (s, 7)) = 0.

In the other case when Va € A : m(s,a) = 0, we have

LHS = [r(s) = (s) = v (pB (5,7"()), VQh, )| an
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=7 D pB(s)s () max Qi (5',a) (18)
s'eSU{s .}

< (1 pm 19

_1_7( _pmm)y ( )

by following similar steps from Eq. (T).

The inequality holds at s since the optimal () function is O at s; . The lemma is then proved by
summarizing the above analysis under the L*°-norm. O

Lemma 2. The masked Bellman operator T™ is a contraction mapping with respect to the L*°-norm,
i.e., for any two vectors f and g, we have |[T™f — T™g|l.. <~ If — 9l .-

Proof. To handle vectors in the space of R&SH)A, similar to the extension of 7™, we also denote p,
as an extended version of p by letting p. (s1|s,a) = 0foralls € SU{s, } and a € A. Based on
Eq. (3) and Eq. (6)), we have

\[Tmf T4l . (LHS)
=|r(s) +v{(m(s,a)pe (s,a), V" f) —r(s) — v (m(s,a)p. (s,a), V"g)]| (20)
:7|<m(87a)p6(87a)7vmf _Vmg>| 2D
=7 | > m(s,a)p (s'|s,a) (V™ f) (s') = (V™) (8/))‘ : (22)

s'eS

For any s, we can bound

(V™) (8) = (V™) (s))] (23)

— if 3 : =1
= aEA:EIrILZ(‘)zS,(a)zl f(S, Cl) aEA:EIrILZ(‘)iS,(a)zl 9(87 a) if 3a € A m(s, a) 24)
[r(s) —r(s)] otherwise
max s,a) —g(s,a)] ifdae A:m(s,a)=1
Lo, W) —(s.0) (5,0) s
0 otherwise
< - . 2
<max|f(s,a) ~ g(s,0)| 26)
Therefore,
LHS < v E;;m(s a)p (s'|s, a) max |f (s',a') = g (s, a')] 27)
< / / _ / / 28
_vs,esurg§§7a/eA|f(s,a) g(s',a)l (28)
=7f -9l (29)
O

2[|f = Q|| +7(1—Pmin)

Lemma 3. For any function f: S x A — Ry, b

Vs = Vil <

Proof. As stated in Theorem |2} 7 ., is defined as the greedy policy with respect to f and m:
Tfm € ArgMaX,c g:m(s,a)=1/ (8,a) if 3a € A : m(s,a) = 1 and randomly otherwise. We can
analyze the difference in two cases based on the value of m (s, 7*(s)). For any s € S, consider the
case where m (s, 7*(s)) = 0,

Vits () = Vi (s) (30)
=r(s) + v (pB (5,7(5)), VQhuy) — 7(s) =7 (PB (5, 7r.m(5)), Vi) 31)
<y Y pe(s]sm(s) max Qv (5, a) (32)

s’eSU{s L} “e
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g
<— (1= min) » 33
ST, (1 = Pmin) (33)
similar to the steps in Lemmal[l] In the other case where m (s, 7*(s)) = 1,
Viag (8) = V™ (s) (34)

=Qig (5,7(5)) = Qs (5:71.m () + Qiuay (5:71m(5)) — QN (5. 7pm(s))  (35)
<Qlup (8,77(5)) = f (5,77(8)) + [ (8,7 1m(5)) = Qg (8,7 7m(5))

+ <pB (s, ﬂ—f»m(s)% V./CIB - V/th;m> (36)
<2 f - Qs lle + [ Vi — VIl - 37)

Noting that the value function at the sink state is 0, arranging the above inequality gives

VIim vy < W Qhipll e i db izing the ab lysi
|| Mz — Mg H(X) =~ ﬁ € lemma 18 prOVe y Summarlzmg the above ana ySlS

under the L°°-norm. O
Now we are ready to prove Theorem 2]

Proof of Theorem[2] Similar to the extension of the operators 7™ and V™, we also extend Q" to be
well-defined on s . Thus, by Lemma@,

1Q% = Qhipll o = ITQ" " = Qiuty |l (38)
= [T Q5 — T Qi + T Qi — @ity (39)
<@ = Quiplloe + 1T Qs — Qi |l (40)
<K - Qi |l + A+ TR, — @il @D
< 42)
K—-1
<R - @il + DA NTT Qs — Q- 43

k=0

The first term in Eq. (@3)) is bounded by 2— due to the choice of initialization. To bound the second
term,

‘ [T™ Qs — Qs e (LHS)
=[r(s) + 7 (m(s,a)pe(s,a), V" Qi) — 7(5) — 7 (PB(5,0), VQ )| (44)
= ”7 <m(s, a)pe(sa a)a VmQj\/lB> -7 <pB(Sa a)7 VQj\/lB>’ . (45)

If m(s,a) =0,

LHS = |y (pB(s,a), VQi,,)| (46)
ZpB '|s,a) maXQMB (s',a") 47
s'eS

Sy X el (48)
s’€S\{sa(s,a)}
~y
S m (1 *pmin)v (49)

by following similar steps from Eq. @) In the other case, let Sp(s) := {s' : b(s,s’) = 0}, and
m(s,a) = 1 implies that s4(s,a) ¢ Sp(s). Thus, by Lemmal

LHS =v Z pe (5']s,a) (VmQj\AB) (s') — Z pB (8'|s,a) (VQ}VIB) ()| (50)

s’eSU{sL} s’eSU{s L}
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=1 Y p(Elsa) (V) ()= Y p(s'ls.a) (V) (5)
s'€S8\Sp(s) s'€8\Sp(s)
1 S p($1sa) (VmQu) ()= S pe (s, ) (Vi) (5)
s'€Sy(s) s'€8y(s)
+ 7 [pe (sils,a) (V™ Qhy) (s1) — pB (sils, a) (VQh,) (s1)] (51
/ v . /
<Y P (s'l3:0) 7= (1= Pain) +7 > p(s'ls,a) T (52)
s'€S\Sp(s) s’ €Sp(s)
2
v v
S 1- min) + —— 1- min 53
T (1 = Pmin) + 7 5 (1 = Prmin) (53)
@+
- 1— v (1 pmln) . (54)
Therefore, by Lemma/3]
- * 2 QK_Q*B m+7(1_pmin)
vt - Vi < L=l

K-1
2 (" e (L+7) g
< —- (1 — p L1 =ps
< (1_7+k§v = (1= i) 5 (1= pin) | (56)

L—n
K 2y (149 (1= F) +y(1— )
- 2 + 3 (1 - pmin) s (57)
(1-=9) (1=7)
which concludes the proof. O

B IMPLEMENTATION DETAILS

In this section we provide details on the environments, datasets and computational resources used in
our experiments.

We use the Maze2D, Fetch and ReplicaCAD domains from the Gymnasium Robotics suite (Towers
et al., 2024} and Habitat-Lab (Savva et al.,|2019; |Szot et al., 2021 |Puig et al.,|2024). In Maze2D,
a point-mass is actuated in the x-y plane to navigate to a goal location. Observations consist of
the agent’s (X, y) position while the full state includes velocity as well. Reward is sparse and
r(s,a) = 1.0 when the agent is within a 0.5-unit radius of the goal, and 0 otherwise. The maximal
episode length is 350 steps (trajectory is truncated at 350 if goal is not reached) in our modified
map. The map is modified to have three paths and in each test environment only one path is feasible
for the agent to reach the goal. We follow the D4RL setup (Fu et al.,|2020) to collect trajectories
of agents reaching randomly sampled goals. In Fetch, we use FetchReach-v4 from Gymnasium, a
7-DoF Fetch manipulator tasked with moving its gripper to a goal position in 3D space. The reward
is sparse, r = —1 at each timestep until the goal is achieved (within tolerance), upon which r» = 0.
The maximal episode length is 50 steps. In the test environment, we add a constraint region to the
workspace to limit the agent’s reachability. The agent will incur a loss of —50 if it moves into the
constraint region. The constraint region is a box (prism) defined by its center [1.4,0.85,0.5] and
half-size [0.1,0.15,0.09] for each edge. In Habitat-Lab, we use the v3_sc3_staging_19 scene
from ReplicaCAD (Szot et al.l [2021)) to create a visual navigation task. The agent is tasked with
navigating to a goal location with basic naivigation actions including move forward, turn left, and
turn right. The observation is a 64 x64 RGB image from the agent’s first-person view. The maximal
episode length is 500 steps. During testing, the agent is required to follow a trajectory not directly
demonstrated in the training dataset with visual observations only.

For offline training in Maze2D and Fetch, we generate a static dataset of 200,000 interactions by
repeatedly sampling a uniformly random goal and recording the full trajectory until the next goal is
reached (with no automatic resets upon success). In Maze2D, the process follows the D4RL data
collection protocol (Fu et al.,2020) by letting the agent navigate under a simple controller (open-loop
waypoints) to the goal. In FetchReach, we pretrain a goal-conditioned actor-critic model and use this
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policy to collect data. In ReplicaCAD, we collect 5,000 interactions similar to Maze2D using the
shortest-path planner provided by Habitat-Lab. All experiments were conducted on a workstation
featuring an NVIDIA GeForce RTX 3090 graphics card with 24 GB of GDDR6X VRAM, alongside
a 32-core CPU and 128 GB of system RAM. Training the skill autoencoder and the diffusion model
each took approximately 6 hours to converge, while the MSTT algorithm required about 8 hours to
reach full convergence. In our implementation of MSTT, we use a codebook of size 240 to represent
the latent skill space. The length of all skills (horizon of the options from dataset) for the Maze2D
environment is 32, and 8 for the FetchReach and ReplicaCAD environments. The diffusion model is
trained conditioned on a start state using 16 denoising steps for the first two environments and 256
steps for the latter. During testing, the agent conducts close-loop control by executing the option with
their corresponding horizon steps before decision on the next option.

C ADDITIONAL RESULTS

You are given a map (Fig. 1) for a
continuous 2D maze. The green ball
is at the start location and the red
ball is the goal. Their coordinates are
[1.0, 1.0] and [4.0, 4.0].

/Observalion:
C.1 VALIDATION OF MASKED BELLMAN UPDATE

In this section, we empirically validate the masked

Bellman update and the results brought by Theo-
rem 2] by comparing the {.,-norm gaps between dif-
ferent estimated and true evaluated value function.
We simulate the masked Bellman update in the un-
blocked source MDP using all possible feasibility
masks. There are 8 abstracted skills, so the total
number of possible target MDPs is 28 — 1 = 255.
We evaluate the performance of the masked Bellman

Instruction:

You are required to reason a path from the start to the goal and
output all state coordinates needed to complete the task in Fig. 1.
Example:

In a source training environment as shown in Fig. 2, a subtrajectory
(starting from the blue point and ending at the red point) from the
dataset has the following state coordinates:

[5.0303, 1.9299]

[5.0253, 1.9365]

[5.0206, 1.9434]

[5.0151, 1.9526]

The two environments have the same map size but different wall
configurations. Note that the spacing between consecutive states in

update in all these target MDPs. We keep the ppin
at 0.95 for all MDPs. The resulting value function
Vi is computed through K iterations of the masked
Bellman operator.

Figure shows the ¢.,-norm gap between Vi and
the optimal values. We can see that the gap is small
for most target MDPs. We also find that when pp,i,
is very close to 1 (e.g. 0.999), all the gaps are close
to 0 (< 0.01). Figure [7(b)] shows the /.-norm gap
between the true evaluation of the policy derived from
Vi and the optimal values. We can see that the gap
is also small for most target MDPs.

!/our trajectory should be consistent with the spacing in the example/

v

Below is a collision-free, piecewise-linear trajectory from the start
[1.0, 1.0] up the left corridor and then across the top corridor to the
goal [4.0, 4.0]. The total path length is 6.0 units, and we’ve broken
it into 201 points.
[1.0000, 1.0000]
[1.0000, 1.0300]
[1.0000, 1.0600]

Points 1-101 move straight up from [1.0, 1.0] to [1.0, 4.0]. Points
102-201 move straight right from [1.0, 4.0] to [4.0, 4.0]. Step size
Q.O} units matches your example spacing.

Figure 8: Diagram of generating observations
with VLM.

To validate the proposed training method MSTT on datasets, we collect a dataset of 1000 interactions
in the unblocked source MDP using a random policy. We then train MSTT on this dataset using
randomly sampled masks and discrete state/action features instead of skill representation learning and
diffusion model as they are readily available. Figure|7(c)[shows the /,,-norm gap between the true
evaluation of the MSTT policy and the optimal values. We can see that the feasibility conditioned
value function learned by MSTT can induce a policy close to the optimal values on most target tasks.
In Figure[7(b) and there are some target MDPs where the gap is non-zero. This is because the
induced policy is derived from the learned value function by breaking ties randomly (due to numerical
errors) when the actions’ values are same. This action deviates from the optimal action and can lead
to a different value at some states.

C.2 EXAMPLE PROMPT AND OUTPUT FROM VLM

In this section, we provide the example prompt and output from the VLM reasoning for a Maze2d
task and a FetchReach task. We prompt GPT-04-mini-high with images of the environment and
an example trajectory to generate state coordinate sequences. The example diagram is shown in
Figure[8] When prompting the VLM, we give many views of the task environment so that the VLM
can understand the spatial relationship between the robot and different objects in the environments.
We also provide an example trajectory that is used to generate the trajectory shown in the example
image. This can help the VLM to understand the number of steps required for similar tasks in the
environment. From Table[5]and[6] we can see that the VLM can generate satisfactory trajectories for
the given tasks. In future work, we will explore directly generating image frames from a generated
model for visual demonstration following.
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(c) True values of MSTT v.s. optimal values

Figure 7: Comparison of the ¢.,-norm gaps between different estimated and true evaluated value
functions. (a) The ¢,,-norm gap between estimated values after convergence of the masked Bellman
update compared with the optimal values. (b) The ¢,,-norm gap between the true evaluations of the
converged policy and the optimal values. (c) The ¢,.-norm gap between the true evaluation values of
MSTT policy and the optimal values.
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Table 5: Prompts and Responses from gpt-o4-mini-high for Demonstration Generation (Maze2d).

Prompt

The first picture you see is a map for a continuous 2-dimentional maze viewed from a 3d
renderer. The green ball is the start location where you are at right now. The red ball is the
goal location that you need to reach. The coordinates of green ball is [1.0, 1.0] and red
ball is [4.0, 4.0]. You are required to reason a path from start to goal and output the all
state coordinates.

Example:

In a source training environment as shown in picture 2 in the top down angle, the state
coordinates of a subtrajectory with horizon 32 (starting from blue to red) is

5.0303545, 1.9299148

5.025338, 1.9365628

5.02067, 1.9434459

5.0151925, 1.9526943

5.009231, 1.9643023

5.003044, 1.9782642

4.9968333, 1.9945747

4.990752,2.013228

4.9849143,2.0342183

4.9794, 2.0575402

4.974263, 2.0831883

4.9695354,2.111157

4.9652305, 2.1414409

4.9613495, 2.1740339

4.9578824,2.2089312

4.954813,2.246127

49521184, 2.2856157

4.949773,2.327392

4.9477471,2.3714507

4.9460144, 2.417786

4.944544,2.4650137

4.9433084,2.5117943

4.9422803, 2.5571213

4.941435, 2.6002645

4.9407473, 2.6409237

4.940197,2.6791043

4.9397635,2.7148123

4.939429, 2.7480536

4.939178,2.778834

4.938996, 2.8071597

4.938871, 2.833036

4.938792, 2.8564692

The two environments have same map size but different wall configurations. Please output
a full trajectory of continuous state coordinates to complete the task in the first picture.
Note that the spacing between consecutive states in your trajectory should be consistent
with the spacing in the given example.

Response

Below is a collision-free, piecewise-linear trajectory from the start [1.0,1.0] up the left
corridor and then across the top corridor to the goal [4.0,4.0]. The total path length is 6.0
units, and we’ve broken it into 201 points (so that each step is ~20.03 units, similar to your
example)

1.0000, 1.0000

1.0000, 1.0300

1.0000, 1.0600

1.0000, 1.0900

1.0000, 1.1200

1.0000, 1.1500
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Tab]e@ continued from previous page

1.0000, 1.1800
1.0000, 1.2100
1.0000, 1.2400
1.0000, 1.2700
1.0000, 1.3000
1.0000, 1.3300
1.0000, 1.3600
1.0000, 1.3900
1.0000, 1.4200
1.0000, 1.4500
1.0000, 1.4800
1.0000, 1.5100
1.0000, 1.5400
1.0000, 1.5700
1.0000, 1.6000
1.0000, 1.6300
1.0000, 1.6600
1.0000, 1.6900
1.0000, 1.7200
1.0000, 1.7500
1.0000, 1.7800
1.0000, 1.8100
1.0000, 1.8400
1.0000, 1.8700
1.0000, 1.9000
1.0000, 1.9300
1.0000, 1.9600
1.0000, 1.9900
1.0000, 2.0200
1.0000, 2.0500
1.0000, 2.0800
1.0000, 2.1100
1.0000, 2.1400
1.0000, 2.1700
1.0000, 2.2000
1.0000, 2.2300
1.0000, 2.2600
1.0000, 2.2900
1.0000, 2.3200
1.0000, 2.3500
1.0000, 2.3800
1.0000, 2.4100
1.0000, 2.4400
1.0000, 2.4700
1.0000, 2.5000
1.0000, 2.5300
1.0000, 2.5600
1.0000, 2.5900
1.0000, 2.6200
1.0000, 2.6500
1.0000, 2.6800
1.0000, 2.7100
1.0000, 2.7400
1.0000, 2.7700
1.0000, 2.8000
1.0000, 2.8300
1.0000, 2.8600
1.0000, 2.8900
1.0000, 2.9200
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Tab]e@ continued from previous page

1.0000, 2.9500
1.0000, 2.9800
1.0000, 3.0100
1.0000, 3.0400
1.0000, 3.0700
1.0000, 3.1000
1.0000, 3.1300
1.0000, 3.1600
1.0000, 3.1900
1.0000, 3.2200
1.0000, 3.2500
1.0000, 3.2800
1.0000, 3.3100
1.0000, 3.3400
1.0000, 3.3700
1.0000, 3.4000
1.0000, 3.4300
1.0000, 3.4600
1.0000, 3.4900
1.0000, 3.5200
1.0000, 3.5500
1.0000, 3.5800
1.0000, 3.6100
1.0000, 3.6400
1.0000, 3.6700
1.0000, 3.7000
1.0000, 3.7300
1.0000, 3.7600
1.0000, 3.7900
1.0000, 3.8200
1.0000, 3.8500
1.0000, 3.8800
1.0000, 3.9100
1.0000, 3.9400
1.0000, 3.9700
1.0000, 4.0000
1.0300, 4.0000
1.0600, 4.0000
1.0900, 4.0000
1.1200, 4.0000
1.1500, 4.0000
1.1800, 4.0000
1.2100, 4.0000
1.2400, 4.0000
1.2700, 4.0000
1.3000, 4.0000
1.3300, 4.0000
1.3600, 4.0000
1.3900, 4.0000
1.4200, 4.0000
1.4500, 4.0000
1.4800, 4.0000
1.5100, 4.0000
1.5400, 4.0000
1.5700, 4.0000
1.6000, 4.0000
1.6300, 4.0000
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Tab]e@ continued from previous page

1.6600, 4.0000
1.6900, 4.0000
1.7200, 4.0000
1.7500, 4.0000
1.7800, 4.0000
1.8100, 4.0000
1.8400, 4.0000
1.8700, 4.0000
1.9000, 4.0000
1.9300, 4.0000
1.9600, 4.0000
1.9900, 4.0000
2.0200, 4.0000
2.0500, 4.0000
2.0800, 4.0000
2.1100, 4.0000
2.1400, 4.0000
2.1700, 4.0000
2.2000, 4.0000
2.2300, 4.0000
2.2600, 4.0000
2.2900, 4.0000
2.3200, 4.0000
2.3500, 4.0000
2.3800, 4.0000
2.4100, 4.0000
2.4400, 4.0000
2.4700, 4.0000
2.5000, 4.0000
2.5300, 4.0000
2.5600, 4.0000
2.5900, 4.0000
2.6200, 4.0000
2.6500, 4.0000
2.6800, 4.0000
2.7100, 4.0000
2.7400, 4.0000
2.7700, 4.0000
2.8000, 4.0000
2.8300, 4.0000
2.8600, 4.0000
2.8900, 4.0000
2.9200, 4.0000
2.9500, 4.0000
2.9800, 4.0000
3.0100, 4.0000
3.0400, 4.0000
3.0700, 4.0000
3.1000, 4.0000
3.1300, 4.0000
3.1600, 4.0000
3.1900, 4.0000
3.2200, 4.0000
3.2500, 4.0000
3.2800, 4.0000
3.3100, 4.0000
3.3400, 4.0000
3.3700, 4.0000
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Table@ continued from previous page

3.4000, 4.0000
3.4300, 4.0000
3.4600, 4.0000
3.4900, 4.0000
3.5200, 4.0000
3.5500, 4.0000
3.5800, 4.0000
3.6100, 4.0000
3.6400, 4.0000
3.6700, 4.0000
3.7000, 4.0000
3.7300, 4.0000
3.7600, 4.0000
3.7900, 4.0000
3.8200, 4.0000
3.8500, 4.0000
3.8800, 4.0000
3.9100, 4.0000
3.9400, 4.0000
3.9700, 4.0000
4.0000, 4.0000

¢ Points 1-101 move straight up from [1,1] to [1.4].
* Points 102-201 move straight right from [1,4] to [4,4].
* Step size ~0.03 units matches your example spacing.
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Table 6: Prompts and Responses from gpt-o4-mini-high for Demonstration Generation (Fetch).

Prompt

You can see details of a test environment for a continuous FetchReach robot arm from
Front, Left and Top views as shown in 1st, 2nd, 3rd pictures as Test-F.png, Test-L.png
and Test-T.png. The end effector of the robot is the gripper located at the start location.
The red ball is the goal location that the gripper needs to reach. The coordinates of the
gripper is [1.5, 0.45, 0.45] and red ball is at [1.1, 1.1, 0.6]. All the units here and below
are meters. There is a red rectangular prism represents the region that the gripper should
always avoid when reaching to the goal.

Example:

In a source training env as shown in picture 4, 5, 6 in Front, Left and Top views, the state
coordinates of the subtrajectory that is available in the dataset with horizon 24 (starting
red ball to gripper) is

[1.0914496 , 0.66841125, 0.44147953]

[1.1227403 , 0.66162956, 0.44578195],

[1.1558249 , 0.6825406 , 0.44903293],

[1.1889781,0.71188605, 0.4525502 ],

[1.2226527 , 0.74391514, 0.4652187 ],

[1.2558049 ,0.7763036 , 0.45177814],

[1.290576 , 0.80899537, 0.47786778],

[1.3192018, 0.8403678 , 0.44858858],

[1.2866951 , 0.8561721 , 0.45177984],

[1.2538819 , 0.88425666, 0.44807455],

[1.2229187 , 0.91265494, 0.45137948],

[1.2152855, 0.8794606 , 0.45907718],

[1.2098249 , 0.8462405 , 0.45971522],

[1.1989532,0.81283104, 0.4467045 ],

[1.2004328 , 0.77987236, 0.45744836],

[1.2142384 ,0.7472065 , 0.47155502],

[1.2419714 , 0.71475255, 0.48558167],

[1.2744763 , 0.68229145, 0.49823788],

[1.3076947 , 0.64975435, 0.51746166],

[1.3411665,0.61711025, 0.5364092 ],

[1.3745239 , 0.5844047 , 0.5194905 ],

[1.408034 ,0.5516487 ,0.48911682],

[1.4419813,0.5182403 , 0.45622924],

[1.472218 ,0.4902828 , 0.42677632],

The two environments have same size but differ in the obstacle constraints. The example
trajectory may violate the test time constraint.

You are required to reason a path from the gripper start location to the goal location
and output all the state coordinates. You should choose the safest path away from the
constraint as far as possible since the actions may have errors in local range. The available
range of the gripper is [1.0, 1.5] for x axis, [0.4, 1.1] for y axis and [0.4, 0.6] for the z
axis. Based on the top view, the x axis is left to right, the y axis is from bottom to top, and
the z axis is perpendicular to the view. Please output a full trajectory of continuous state
coordinates to complete the task in the test environment as shown in different angles in
the first four pictures. Note that the planned trajectory does not need to have same length
as the example trajectory but ensure that the spacing of the states in the trajectory should
be similar as the given example. Keep in mind that choose the safest path away from the
constraint as far as possible.
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Table@ continued from previous page

Response

Below is one possible safe, collision-free trajectory that drives the gripper from its start at
[1.50, 0.45, 0.45] out around the left side of the red obstacle, then up to the goal at [1.10,
1.10, 0.60]. We keep all x < 1.2 whenever 0.6 <y < (.85 so as to stay well clear of the
prism, and we use roughly 5 cm increments so our step-lengths (/20.05 m) are on par with
the example’s spacing.

[1.500, 0.450, 0.450]
[1.450, 0.450, 0.450]
[1.400, 0.450, 0.450]
[1.350, 0.450, 0.450]
[1.300, 0.450, 0.450]
[1.250, 0.450, 0.450]
[1.200, 0.450, 0.450]
[1.150, 0.450, 0.450]
[1.100, 0.450, 0.450]
[1.050, 0.450, 0.450]
[1.000, 0.450, 0.450]
[1.000, 0.500, 0.450]
[1.000, 0.550, 0.450]
[1.000, 0.600, 0.450]
[1.000, 0.650, 0.450]
[1.000, 0.700, 0.450]
[1.000, 0.750, 0.450]
[1.000, 0.800, 0.450]
[1.000, 0.850, 0.450]
[1.000, 0.900, 0.450]
[1.000, 0.950, 0.450]
[1.000, 1.000, 0.450]
[1.050, 1.000, 0.450]
[1.100, 1.000, 0.450]
[1.100, 1.050, 0.450]
[1.100, 1.100, 0.450]
[1.100, 1.100, 0.500]
[1.100, 1.100, 0.550]
[1.100, 1.100, 0.600]

Explanation of the segments:
1. Pull back along x from 1.50 — 1.00 at y=0.45, z=0.45, staying below the obstacle’s

y-range.

2. Climb up in y from 0.45 — 1.00 at x=1.00, z=0.45, keeping to the left of the obstacle

(all x<1.00).

3. Move in x and y to the target column/row: two steps in x (1.00—1.10) and two steps
iny (1.00—1.10) at z=0.45.

4. Raise in z from 0.45—0.60 over three steps to meet the ball height.

This keeps a comfortable margin from the red prism (which lies roughly between x~1.2-

1.45, y=0.6-0.85, z=0.4-0.55) and uses roughly 5 cm per step, comparable to the example.

D USE OF LARGE LANGUAGE MODELS

We did not use LLMs for research ideation, methodology development, analysis or writing. The only
involvement of language model in this paper is the usage of gpt-o4-mini-high to generate coordinates
sequences from images for case study. All prompts and responses are included in Section [C.2]of the

appendix.
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