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Abstract

Predicting interspecies interactions is a key challenge in microbial ecology, as
these interactions are critical to determining the structure and activity of microbial
communities. In this work, we used data on monoculture growth capabilities,
interactions with other species, and phylogeny to predict a negative or positive
effect of interactions. More precisely, we used one of the largest available pairwise
interaction datasets to train our models, comprising over 7,500 interactions be-
tween 20 species from two taxonomic groups co-cultured under 40 distinct carbon
conditions, with a primary focus on the work of Nestor et al.[17]. In this work,
we propose Graph Neural Networks (GNNs) as a powerful classifier to predict the
direction of the effect. We construct edge-graphs of pairwise microbial interactions
in order to leverage shared information across individual co-culture experiments,
and use GNNs to predict modes of interaction. Our model can not only predict
binary interactions (positive/negative) but also classify more complex interaction
types such as mutualism, competition, and parasitism. Our initial results were
encouraging, achieving an Fl-score of 80.44%. This significantly outperforms
comparable methods in the literature, including conventional Extreme Gradient
Boosting (XGBoost) models, which reported an F1-score of 72.76%.

1 Introduction

Understanding microbial species’ functions and interactions for developing structured microbial
communities and processes is experimentally challenging and remains a fundamental problem
in biology and biotechnological applications [[16} 25]]. Gaining a deeper understanding of these
interactions can significantly enhance our capacity to manage and manipulate ecological communities,
offering broad applications in environmental conservation, crop health, and human health [10,24]. For
several decades, microbial communities have been used for the clean-up of contaminated water, soil,
and air and the capture of renewable resources such as energy (biogas and H2), chemicals (short-chain
acids), and water [23|4]. Studying microbial interactions exhaustively through pairwise co-culture
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experiments becomes increasingly impractical with increasing number of species, since the possible
combinations rise exponentially. This limits our ability to experimentally search for key positive
interactions that drive community function. Designing such microbial systems for bioengineering
applications is further complicated by the complexity introduced by spatial organization and temporal
dynamics. This suggests that much can be gained from reducing the parameter space of the system,
e.g., by supervised machine learning methods. Supervised machine learning algorithms [6l 211,
including support vector machines [27]], neural networks [20], random forests [3]], and graph neural
networks [[18] to predict more complex phenotypes of microbial interactions [2,[15} 9]}, a task made
more feasible by the rise of high-throughput techniques for generating large biological data sets.
Predicting interspecific interactions is critical for both understanding and engineering microbial
communities, as the collective behavior of these systems is shaped by intricate relationships between
species. These interactions can be negative where one species inhibits another through nutrient
competition or the production of antimicrobial compounds [5] or positive, where one species enhances
the growth of another by increasing nutrient availability or creating new ecological niches [1].
Accurate prediction of these relationships becomes especially important in species-rich environments
or communities composed of metabolically fastidious organisms. Traditionally, such predictions
have relied on genome-scale metabolic and constraint-based modeling approaches [22] [14], which
use genomic information to estimate interactions by assessing overlaps and complementarities in
metabolic capabilities [[7,112].

Building on the work of Nestor et al.[[17], we leverage one of the largest data sets of experimentally
validated microbial interactions to evaluate how well graph neural networks can predict the sign
of microbial interactions (positive/negative) compared to other standard machine learning models.
Similar to [[17] we use the species’ phylogeny and their monoculture yield, which belong to each of
the 40 carbon environments, as features to build our models. All pairwise interactions between 20
distinct soil bacteria from two taxonomic groups that were cultivated in 40 different environments
[L7], each containing either a single carbon source or a combination of all carbon sources, are
included in this data set.

We propose using GNNG as a data-driven model of microbial communities and interactions (Figure[T])
as GNN s are able to leverage information across separate (but related) experimental conditions. We
build a graph that connects co-culture experiments through shared species or experimental conditions,
and use this structure to train Graph Neural Networks (GNNs) to predict interactions between
species in (experimentally) unknown combinations. In our graph structure, nodes represent a unique
combination of species and condition, and edges capture the interactions between two given species
under the same experimental condition. To directly encode relational information across experiments,
we construct an edge graph, where each interaction (edge) in the original graph is transformed into
a new node, now representing a combination of two species in a specific experimental condition.
Two nodes in the edge graph are now connected if their corresponding experiments share a common
species (and condition).

a) Microbial Interaction b) Feature Extraction ©) Node Graph

- ()

e) Edge Graph 1) Graph Neural Network
SAGEConv  Flatten SAGEConv

Figure 1: Illustration of leveraging graph neural networks to predict microbial interactions. This
approach enables accurate prediction of both one-way and two-way interactions. a) Experimental mea-
surements of microbial interaction; b) Feature creation; c) Construct graph based on microbe/condition
(nodes) and interactions measured by experiment (edges); d) Convert of the graph into a dual edge
graph; e) Edge graph representation; f) Prediction using a graph neural network.



2 Graph Neural Networks

2.1 Graph Neural Networks

The interactions among microbes inherently form a graph structure, enabling their representation
as a network of connections. We modeled these interactions using a graph neural network (GNN)
[26]. Graph Neural Networks (GNNs) extend traditional neural networks to work directly with
graph-structured data, where a graph is formally represented as G = (V, E), where V is the set
of vertices (nodes) and F is the set of edges. The neighborhood of a node v € V is defined as
N(w) = {u | {u,v} € E}, and each node i is associated with an attribute z; for ¢ € [1,|V]].
GNNs operate iteratively through message passing steps, where node attributes are updated based on
interactions with their neighbors. At each step, the update process is as follows: For each node i, the
features of its neighbors j € N (i) are retrieved. The node features x; are updated by aggregating
information from its neighbors:
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where g, and g. are the node and edge update functions that represent an aggregation operation. Here,
mean is used as the aggregation function over the features of neighboring nodes.

2.2 Edge-Graph Construction

As illustrated in Figure[I] our framework construct the relationships between different species and
their available features using an edge-graph representation. This approach focuses on relationships
between experiments (edges) rather than solely between individual species (nodes), allowing us to
explicitly encode dependencies between experimentally measured species interactions. The edge-
graph L(G) provides a structural representation of edge adjacencies, making it particularly suitable
for edge-centric tasks in Graph Neural Networks (GNNs).

We begin with the species interaction graph G = (V| E), where:

* V denotes the set of species recorded under a shared conditions;

» E edges denote a shared species and condition between experiments.
The transformation from G to its edge-graph L(G) = (V’, E’) is defined formally as follows:

* Node mapping: For each interaction e, = (u,v) € E, create a node v}, € V' in L(G).
Each vj, represents a single species interaction.

* Adjacency mapping: Two nodes v}, v; € V' are connected by an edge in £’ if and only
if their corresponding edges in G share at least one endpoint species and experimental
condition.

* Feature mapping: Any attributes originally associated with the interaction ej (e.g.,
monogrowth characteristics, phylogenetic tree—based distances, etc.) are assigned to the
corresponding node v}, in L(G).

This construction turns interaction—interaction dependencies into direct connections in L(G). It
allows message passing to operate over interactions themselves, capturing higher-order ecological
relationships.

2.3 Proposed Model

To classify microbial interactions, we implemented a two-layer GraphSAGE model using the Deep
Graph Library (DGL) [8]. Each node in the graph represents a microbial species, and edges capture
potential interactions. The task is to assign a binary label y; € {4+, —} to each node v;.



The two layers of the model apply GraphSAGE convolutions with mean aggregation, allowing each
node to iteratively incorporate feature information from its local neighborhood. In GraphSAGE, the
edge function e(3, j) outputs the attributes of a neighboring node j € N (i):

ge(Xi, Xj) = X, 3
and the node update function g, is defined as
x; = Wix; + Wa - meane n ;) X5, 4)
where W7 and W5 are learnable weight matrices.

The ReL.U activation function is applied after first layer to introduce non linearity. No explicit edge
features are used in the model learning is driven entirely by node attributes and graph connectivity.

The input feature size is 13 (see Table[A.1I}), and ReLU is used as the non-linear activation function:
ReLU(z) = max(0, x) 5)

We optimize the model using cross-entropy loss:

N
L(§y)=—>_ vilog(ii), (6)
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where ¢ is the predicted label and y is the ground-truth.

This configuration allows for inductive learning and generalization to unseen nodes or graphs, making
it well-suited for microbial community analysis.

3 MATERIALS

3.1 Dataset

The dataset comprises over 7,500 pairwise interactions among 20 species from two taxonomic groups
across 40 carbon environments. It is primarily based on the works of Nestor ef al. [17] and Kehe
et al. [11], which employ the kChip platform a high-throughput, nanodroplet-based system for
combinatorial screening to evaluate species growth in monoculture and coculture settings.

3.1.1 Features creation

By primarily focusing on the [[17]], to enhance the predictive power of our model, monoculture growth
yields for each species and supplementary features, such as the species’ phylogenetic relationships
and their metabolic profiles across the carbon environments, are incorporated. The phylogenetic
data was summarized using principal component analysis (PCA), where the first two principal
components captured 95% of the variance. Similarly, the metabolic profiles were represented using
the first four principal components, which accounted for 90% of the variation. These reduced-feature
phylogenetic data and metabolic profiles were used to construct a feature set that effectively captures
both the evolutionary and metabolic similarities between species. Additionally, the Euclidean distance
between the monoculture growth profiles of interacting species was computed to further describe
their metabolic relationship. This feature set, which is presented in (Table[A.T]in[A.T] Appendix),
allowed us to model and predict the sign effect of interactions, enabling better understanding of
species relationships in diverse carbon environments.

3.2 Model implementation

We evaluated our method using standard classification metrics, including accuracy (Acc), sensitivity
(Sen or Recall), precision (Prec), and F1 score (equations are provided in Appendix [A.2) We
implemented the proposed solution in Python (version 3) using the GraphSAGE model from the
PyTorch framework [19]. During training, we employed the Adam optimizer [[13] to perform first-
order gradient-based optimization on the stochastic objective function, with a learning rate set to
1 x 1072, The dataset was split into 80 % for training and 20 % for testing. The performance of the
GraphSAGE model was evaluated over 300 training epochs. All experiments were conducted on the
RAVEN HPC system, equipped with Intel Xeon IceLake-SP processors and NVIDIA A100 GPU
nodes interconnected via NVLink.



4 Results

We compare our method with the standard machine learning algorithms used in [[17] for predicting the
sign of one- and two-way growth yield effects. Specifically, we evaluated the predictive performance
of our approach against two baselines: k-Nearest Neighbors (kNN) and Extreme Gradient Boosting
(XGBoost). The Graph Neural Network achieved significantly higher accuracy in predicting the signs
of both one- and two-way effects. The results for one-way prediction of different models are reported
in Table[T] GraphSAGE learns these node embeddings in an end-to-end manner, optimizing them
specifically for the classification objective and explicitly models the connection across experiments.
Figure[2] shows the confusion matrix of the GraphSAGE model and XGBoost for one-sign prediction.
Our results show a class imabalance as positive interactions appear to be rare in both models for the
one-way interaction sign prediction. Thus, the F1-score ( harmonic mean of precision and recall)
is a more informative metrics for an imbalanced class distribution. Our edge-graph-based models
demonstrated strong performance, achieving an F1-score of 80.44%, which outperformed XGBoost
(72.76%) and k-NN (66.13%).

Table 1: Model performance metrics of one-way prediction on test dataset.

Model Accuracy Sensitivity Precision F1-Score

GraphSAGE 0.9528 0.7392 0.8822 0.8044

K-nearest neighbors [[17]] 0.8593 0.6613 0.6613 0.6613

XGBoost [17] 0.8835 0.8017 0.7276 0.7276
Confusion Matrix (%) Confusion Matrix (%)
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Figure 2: Comparison of the confusion matrices for XGBoost and GraphSAGE models of one-way
prediction.

We further implemented the GraphSAGE framework to predict two-way interactions between species:
mutualism (+,+), parasitism (+,-), and competition (-,-). This approach leverages the structural
properties of ecological networks to model complex interspecies relationships. By integrating both
direct and indirect effects of species on one another, the GNN facilitates accurate predictions of
interaction types.

In our study, we observed that mutualistic interactions (+,+) were particularly challenging to predict
accurately, often being misclassified as parasitic interactions (+,-). This challenge in predicting
positive one-way effects is consistent with ecological research, which suggests that mutualistic
interactions are complex and difficult to model because of their intricate dynamics. Table[2] sum-
marizes the results for different two-way interactions. Figure[3|shows the comparison of confusion
matrix of node classification of two-way interaction classes. The proposed edge-graph-based models
demonstrated good performance in two-way sign prediction, achieving an F1-score of of 43.1% and
68.4% slightly outperforming XGBoost in predicting mutualism and parasitism, while XGBoost is
slightly better at predicing competition. Among the two-way sign predictions, competition (-,-) is
the most frequently identified interaction type (57.39%). In contrast, mutualistic interactions (+,+)
are particularly challenging to predict. This difficulty likely arises from the inherent challenge of
detecting positive one-way effects, which may cause the model to misclassify them as parasitism



(+,-) (20.21%) or, less frequently, as mutualism itself (3.48%). These misclassifications may also
reflect the imbalance in class distributions, as mutualistic cases are relatively underrepresented in the
dataset.

Table 2: Classification performance for microbial two-way interactions using GraphSAGE and
XGBoost.

Class GraphSAGE XGBoost[17]
Precision Recall Fl-score Precision Recall F1-score
Mutualism 0.611 0.333 0.431 0.430 0.440 0.430
Competition 0.855 0.933 0.893 0.880 0.920 0.900
Parasitism 0.707 0.663 0.684 0.640 0.570 0.600
Accuracy 0.811 0.780
a): Confusion Matrix (%) — XGBoost b): Confusion Matrix (%) — GraphSAGE
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Figure 3: Comparison of confusion matrices for XGBoost [17] and GraphSAGE in predicting two-
way interaction signs.

5 Limitations

Microbial interactions offer important insights into community dynamics but are challenging to
measure. While our results show that microbial interactions can be predicted under controlled
laboratory conditions, it is unclear how well this generalizes to natural environments. The model
focuses on pairwise interactions and does not capture higher-order effects, which may be influenced
by additional species in complex communities. Performance also depends on the availability and
quality of input features, such as monoculture growth yield. Moreover, graph neural networks are
computationally intensive and require access to HPC resources, potentially limiting reproducibility.
‘We might also need to consider whether there are better ways to structure the graphs to encode the
experimental information more effectively. These limitations suggest directions for future work,
including testing on broader datasets, incorporating higher-order interactions through approaches
such as Topological Deep Learning (TDL), improving computational efficiency, and developing
lightweight methods for resource-limited settings.

6 Conclusion

In this work, we illustrate that an edge-focused graph learning approach can reveal both the structure
and direction of interactions in complex biological systems. By converting microbial networks into
edge-graphs and applying inductive GNNs like GraphSAGE, we capture the properties of interactions
directly, rather than only the traits of species. We tested this approach with data of bacterial
communities, where it outperforms XGBoost as a strong baseline. The method is generalizable and
could be applied to other ecological systems, epidemiological networks, or any network with diverse,



directional links. In the long run, by embedding biologically meaningful features at each edge,
geometric deep learning models can achieve high predictive accuracy while reflecting real-world
interaction patterns, bridging the gap between data-driven prediction and biological understanding.
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Technical Appendices and Supplementary Material

Features names information

Table summarizes the features used for microbial interaction prediction, including monoculture
growth measurements, metabolic dissimilarity, and principal components derived from carbon source
utilization and phylogenetic embeddings.

Table A.1: Features used for microbial interaction prediction.

Feature Description

Monoculture growth features

monoGrow_x Monoculture growth of species x
monoGrow_y Monoculture growth of species y
monoGrow24_x 24-hour monoculture growth of species x
monoGrow24_y 24-hour monoculture growth of species y
metDis Metabolic dissimilarity between species x and y
Carbon source PCA components (90% variance)

carbon_component_0 Principal component 0 of metabolic profiles
carbon_component_1 Principal component 1 of metabolic profiles
carbon_component_2 Principal component 2 of metabolic profiles
carbon_component_3 Principal component 3 of metabolic profiles

Phylogenetic PCA components (95% variance)

phy_strain_component_0_x  Principal component 0 of phylogenetic embedding (species x)
phy_strain_component_1_x  Principal component 1 of phylogenetic embedding (species x)
phy_strain_component_0_y Principal component O of phylogenetic embedding (species y)
phy_strain_component_1_y Principal component 1 of phylogenetic embedding (species y)




A.2 Assessment metrics

The evaluation metrics used in this study are defined as follows:

Ac c TP+ TN
curacy =
Y " TPYTN{FPtFN

S itivit e

ensitivity = —————

Y= TPy FN
Precision rp

recision = —————

TP+ FP

Fl — 2 x Precision x Recall

Precision + Recall

N

®)

®

(10)

Where True Positive (TP) denotes the positive instances correctly identified as positive, True Negative
(TN) indicates the negative instances correctly identified as negative, False Positive (FP) represents
the negative instances incorrectly identified as positive, and False Negative (FN) refers to the positive

instances incorrectly identified as negative.
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