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Abstract

Modeling the dynamics of complex real-world systems from temporal snapshot
data is crucial for understanding phenomena such as gene regulation, climate
change, and financial market fluctuations. Researchers have recently proposed
a few methods based either on the Schrödinger Bridge or Flow Matching to tackle
this problem, but these approaches remain limited in their ability to effectively
combine data from multiple time points and different experimental settings. This
integration is essential in real-world scenarios where observations from certain
combinations of time points and experimental conditions are missing, either be-
cause of experimental costs or sensory failure, and ultimately to uncover general
principles shared across different temporal processes. To address this challenge,
we propose a novel method named Multi-Marginal Flow Matching (MMFM).
MMFM first constructs a flow using smooth spline-based interpolation across time
points and conditions and regresses it with a neural network using the classifier-
free guided Flow Matching framework. This framework allows for the sharing
of contextual information about the dynamics across multiple trajectories. We
demonstrate the effectiveness of our method on both synthetic and real-world
datasets, including a recent single-cell genomics data set with around a hundred
chemical perturbations across time points. Our results show that MMFM signifi-
cantly outperforms existing methods at imputing data at missing time points.

1 Introduction

Understanding the dynamics governing complex systems is essential for modeling their underly-
ing mechanisms as well as for predicting future behavior, such as stock price fluctuations (Gontis
et al., 2010), climate change (Franzke et al., 2015), and gene regulation leading to cell differen-
tiation or response to drugs (Yeo et al., 2021; Schiebinger et al., 2019). In many real-world ap-
plications, measurements are collected at various time points and under diverse conditions, such
as different environmental factors or experimental settings. Additionally, measurements are often
unpaired across time and conditions. This may be attributed to the difficulty of matching patients
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across cohorts (Manton et al., 2008) in a clinical context or to the destructive nature of single-cell
genomics (Ding et al., 2022) in modern experimental assays. This results in an extensive yet frag-
mented view of the system, necessitating models that can effectively integrate these data.

Such data fragmentation is prevalent in the field of drug development. For example, researchers aim
to document the response of cells to various genetic and chemical perturbations in order to under-
stand mechanisms of action and predict responses to novel conditions (Rood et al., 2024). Histor-
ically, technological and budgetary constraints limited researchers’ ability to generate datasets that
captured cell profiles either across time for a single condition or across multiple conditions but at
a single time point. Existing methods reflect these limitations, either modeling conditions without
temporal components (Yu & Welch, 2022; Lotfollahi et al., 2023; Piran et al., 2024; Bunne et al.,
2022, 2023) or modeling dynamics without interventions (Schulz et al., 2012; Tong et al., 2020;
Wang et al., 2023). Recent advances in screening technologies enable cost-effective, large-scale
measurement of cell populations over time under multiple conditions. This advancement motivates
the development of new modeling strategies that can effectively leverage this combined complex-
ity. Moreover, even with such advances, the sheer scale of biology and chemical space makes it
prohibitive to experimentally characterize the entire temporal and perturbation space. When human
patient data are concerned, these abilities are further diminished. Thus, better models are essential
to generalize to unseen lab experiments and into human biology.

To leverage the rich and complex data now available and deliver better models, we propose framing
the problem of learning cell population dynamics as modeling the transport of the probability distri-
bution of cellular states across time and conditions. This approach allows us to capture changes over
time and across conditions, while accommodating unpaired samples. Recent advances in genera-
tive modeling, such as diffusion models (Ho et al., 2020) and Flow Matching (FM) (Lipman et al.,
2023), constitute effective methods for learning mappings between arbitrary distributions. This
makes them particularly suitable for our task. However, despite the popularity of these approaches,
they have been hitherto limited to transporting between two marginal distributions. Although multi-
ple time points could be naively modeled by decomposing the problem into a series of two-marginal
problems, such an approach would have significant limitations. It would fail to (1) leverage depen-
dencies between the dynamics of multiple (more than two) related conditions (i.e., similar conditions
are assumed to follow similar dynamics), and (2) incorporate prior knowledge or constraints on the
long-range dynamics of the system.

To address the aforementioned challenges, we introduce Multi-Marginal Flow Matching (MMFM),
a general Flow Matching framework that learns system dynamics from populations measured at
multiple time points and under various conditions. Notably, our model uniquely leverages dynamic
dependencies between conditions and enables both interpolation and extrapolation to unobserved
time points and/or conditions. Through extensive experiments, we demonstrate MMFM’s superior
performance and generality compared to existing methods. We apply our MMFM to a real-world
dataset of immune cells subjected to each of a hundred kinase inhibitor perturbations measured over
four time points. Our method successfully forecasts cellular trajectories for unobserved treatments
and time points.

2 Background

In this section, we introduce the concepts of vector fields and probability density paths and then pro-
vide an overview of the Flow Matching (FM) framework. Unless mentioned otherwise, X denotes
an Euclidean space (i.e., X = Rd).

Vector Fields We model the underlying dynamics of a system using a time-dependent1 vector field
u : [0, 1] × X → X . This vector field induces a time-dependent diffeomorphic map on X , called a
flow, ϕ : [0, 1]×X → X , defined by the Ordinary Differential Equation (ODE)

d

dt
ϕt(x) = ut(ϕt(x)), (1)

with the initial condition ϕ0(x) = x. Given an initial probability distribution p0 : X → R+, the
flow reshapes the distribution p0 into a probability density path pt(x) defined via the push-forward

1We use the subscript notation for the time parameter, e.g., ut(x).
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equation pt(x) = [ϕt]∗p0(x). The resulting density for each time t is then obtained via the change
of variable formula.

Flow Matching The original FM framework for generative modeling (Lipman et al., 2023) con-
siders two marginal distributions: the source distribution p0 (e.g., Gaussian random noise) and the
target distribution p1 (e.g., a set of images), both with support contained in X . The goal is to ap-
proximate the target vector field ut, defined by a chosen probability path pt with a trainable vector
field vt(. ; θ) parameterized by θ, leading to the Flow Matching objective:

LFM(θ) = Et,x∼pt(x) ∥vt(x; θ)− ut(x)∥22 , (2)

with t sampled from the uniform distribution t ∼ U([0, 1]). However, such an objective function is
not tractable, as both pt and ut are unknown. Lipman et al. therefore introduced Conditional Flow
Matching (CFM), a tractable yet equivalent objective that aims to approximate a conditional vector
field ut(x | z):

LCFM(θ) = Et,z∼q(z),x∼pt(x|z)

[
∥vt(x; θ)− ut(x | z)∥22

]
. (3)

The conditioning variable z and conditional probability paths pt(x | z) are chosen such that the
marginals match the boundary distributions p0 and p1. In general, one chooses z as a pair of samples
from the source and target distributions (x0, x1) according to a joint distribution q(z) = π(x0, x1)
with marginals p0 and p1. Remarkably, LFM(θ) and LCFM(θ) are equivalent objectives as they have
identical gradients with respect to θ (Theorem 2 of Lipman et al. (2023)).

Conditional Probability Paths A convenient choice for the form of conditional probability paths
is

pt(x | z) = N (x | µt(z), σt(z)
2I). (4)

where µ : [0, 1]×Z → X and σ : [0, 1]×Z → R+ represent the time-dependent mean and standard
deviation of a Gaussian distribution. Since the number of potential vector fields inducing a desired
path is infinite, a reasonable approach is to select a simple vector field, e.g., one that results in a flow
of the form:

ϕt(x | z) = µt(z) + σt(z)

(
x− µ0(z)

σ0(z)

)
. (5)

The above functional form leads to a unique inducing vector field (Theorem 3 in Lipman et al.
(2023)), defined as

ut(x | z) = σ′
t(z)

σt(z)
(xt − µt(z)) + µ′

t(z). (6)

Given this parameterization, different µt(z) and σt(z) are possible, as long as the marginals coincide
with the boundary conditions (i.e.,

∫
p0(x | z)q(z)dz ≈ p0(x) and

∫
p1(x | z)q(z)dz ≈ p1(x)).

The most natural is to consider a small variance function at the boundaries with an interpolation
function for µt(z), such that µ0(z) = x0 and µ1(z) = x1. For instance, Tong et al. (2024) consid-
ered a linear interpolation for the mean µt(z) = tx0 + (1 − t)x1, with a constant (small) variance
σt(z) = σ > 0, and q(z) = p0(x0)p1(x1), for their Independent-CFM (I-CFM) method.

Optimal Transport Tong et al. (2024) highlighted that sampling points x0 and x1 independently
(i.e., π(x0, x1) = p0(x0)p1(x1)) could lead to training instabilities and poor performance. Their
improved method, OT-CFM, instead sampled using the optimal transport coupling between p0 and
p1, π∗(x0, x1) and resulted in stabilized training and better performance.

3 Condition-aware Multi-Marginal Flow Matching

We first extend the Flow Matching framework to multiple temporal snapshots, and then present a
condition-aware variant that leverages information across various marginals and contexts.

3.1 Multi-Marginal Flow Matching

We consider a collection of K+1 discrete time stamps {t0, . . . , tK}. Without loss of generality, we
consider that the time stamps are distinct, ordered, and scaled so that 0 = t0 < t1 < · · · < tK = 1.
At each discrete time point tk, we observe samples from a data density ptk valued in X .
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Figure 1: Schematic overview of the data and our modeling approach. Left: Data are observed across multiple
time points and varying conditions, originating from a common source distribution (white), with “?” marking
an unmeasured point of interest. Middle: Learning process. We train a neural network to regress the derivative
(arrow) at points x (red) sampled around the interpolation path (equipped with time-dependent variance, dashed
gray lines). Right: Estimated trajectories after learning the underlying vector field – allowing the generation of
paths for novel samples, imputing missing time points, and generalizing to unseen domains.

Flow Matching Objective We define z := (x0, . . . , xK) ∈ Z = XK+1 and for now, define q
as the data distribution with independent samples from each marginal. q admits as density q(z) =
ΠK

k=0ptk(xk). Applying Equation 3 with the augmented vector z leads to the Multi-Marginal Flow
Matching (MMFM) objective:

LMMFM(θ) = Et,z∼q(z),x∼pt(x|z)

[
∥vt(x; θ)− ut(x | z)∥22

]
, (7)

for any probability density path pt(x | z) and conditional vector field ut(x | z). As demonstrated
below, this remains a valid surrogate objective function for Flow Matching across multiple time
points (the proof appears in Appendix A).

Proposition 1. Assuming that pt(x) > 0 for all x ∈ X and t ∈ [0, 1], then, up to a constant
independent of θ, LFM and LMMFM are equal. Hence, for all values of the parameters θ:

∇θLFM(θ) = ∇θLMMFM(θ). (8)

Conditional Probability Paths A key feature of MMFM is the specification of a Gaussian prob-
ability density path pt(x | z) that goes through all the time points (x0, . . . , xK). In contrast to
classical FM, the MMFM framework can naturally incorporate prior knowledge about the system’s
dynamics over multiple time steps. For physical systems, a meaningful prior for µt is defined as an
interpolating path of minimum energy or minimal curvature:

µt(z) = arg min
γ∈H2([t0,tK ])

∫ tK

t0

∥γ′′(t)∥22 dt s.t. xk = γ(tk) for all k ∈ {0, . . . ,K}, (9)

where H2([t0, tK ]) denotes the set of functions whose first derivative is absolutely continuous on
[t0, tK ] and admit a weak second derivative. The celebrated Holladay’s theorem (Holladay, 1957)
demonstrates that µ is the natural cubic spline interpolation between the points {(xk, tk)}Kk=0, whose
coefficients can be computed efficiently since they only require solving a tri-diagonal system of
linear equations.

Unlike the typical constant variance σt employed in CFM, we also use a time-dependent variance
function defined piece-wise on each time interval as σt(z) = 4(tk+1−t)(t−tk)

(tk+1−tk)2
for t ∈ [tk, tk+1].

Intuitively, this variance function adds noise to the vector field estimation in-between observed time
points and is a crucial component for sharing information across conditions.

Optimal Transport Following the enhancements proposed by Tong et al. (2024) in the case with
two marginals, we propose to sample data points across marginals using a joint distribution, com-
puted as the solution of a multi-marginal optimal transport (MMOT) problem (Pass, 2015). When
the cost structure is linear between each pair of marginals, the MMOT problem reduces to a set of
K independent OT problems (Appendix B). Throughout this work, we pre-compute the solution of
the OT problems on the training data using the squared Euclidean distance as a cost function and
provide the optimal coupling in place of q for Equation 7. When the dataset is too large, OT can be
approximated using mini-batches (Tong et al., 2024).
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Relationship with CFM MMFM is a generalization of CFM in the following sense. When the
conditional vector field is defined with a piece-wise linear interpolation function for the mean and
a constant variance, and in addition, the neural network vt is defined piece-wise on [t0, tK ], the
MMFM problem is equivalent to solving K distinct CFM problems between consecutive time points.

Proposition 2. Let us assume that for all z = (x0, . . . , xK) ∈ Z , µt(z) is defined as the
piecewise linear function going through all the points of z, and σt(z) = σ is constant for all
z. Additionally, let us assume that the vector field is learned separately on each time interval:
vt(z; θ) =

∑K
k=1 vt(z; θk)1[tk,tk+1)(t). Then, the MMFM problem is equivalent to solving K sepa-

rate CFM problems between each pair of consecutive marginals.

The proof appears in Appendix A. This result highlights a key advantage of MMFM over multiple
pairwise CFMs when the system’s behavior exhibits similarities across time periods (or conditions,
below). In such scenarios, MMFM can utilize a single set of parameters to model the dynamics
across all time points (or, different conditions, below). This approach allows MMFM to leverage
common patterns in the data that would be treated independently in separate pairwise CFM prob-
lems, leading to more efficient and robust modeling, and a deeper understanding of the underlying
phenomena (e.g., biological commonalities).

3.2 Conditional MMOT-based Multi-Marginal Flow Matching

We now extend our framework to consider cases where each observation xc
k from time point tk is

associated with a condition c ∈ {1, . . . , C}. We use the notation xc
k ∼ ptk(x

c
k | c) to indicate the

data density for condition c at time point tk. Additionally, we define zc = (xc
0, . . . , x

c
K). Impor-

tantly, our model can handle incomplete data scenarios, where not all conditions are observed at all
time points. This extension enables us to capture and analyze condition-specific dynamics, such as
the response of cells to different drugs in a chemical screen.

To incorporate this information, we first solve one optimal transport problem for each consecutive
pair of marginals within each condition. This approach allows us to capture condition-specific dy-
namics more accurately. The resulting conditional coupling distribution is given by:

qc(zc) = π∗
c (x

c
0, . . . , x

c
K). (10)

We then integrate the condition as an additional input to the neural network, modifying it to
vt(x, c; θ). Importantly, we learn a set of shared weights θ across all conditions, which enables the
model to generalize across different conditions and potentially improve performance on conditions
with limited data.

To train the conditional model, we employ classifier-free guidance as proposed by Zheng et al.
(2023). The objective for the condition-informed version of MMFM, termed C-MMFM, is defined
as:

LC-MMFM(θ) = Et,b∼Ber(pu),c∼Cat(C),zc∼π∗
c ,x∼pt

∥∥∥∥vt(x, (1− b)c+ bc∅; θ

)
− ut(x | zc)

∥∥∥∥2
2

,

(11)
where pu represents the probability of switching to the unconditional model, and c∅ represents the
null conditioning. This approach allows information sharing across conditions via joint training of
conditional vt(x, c; θ) and unconditional vt(x, c∅; θ) models.

At inference time, we use a weighted combination of the two vector fields (details about the sampling
appear in Appendix C):

ṽt(x, c;w, θ) = (1− w)vt(x, c∅; θ) + wvt(x, c; θ) (12)

and therefore can model the trajectory of a sample x0 in condition c as:

x̂T = x0 +

∫ T

0

ṽt(x, c;w, θ)dt. (13)

The parameters pu and w are selected based on the value of the objective function on held-out
validation data.
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4 Related Work

Flow Matching Flow-based generative models have gained significant attention in recent years
due to their ability to efficiently model generative processes for complex data distributions. Flow
Matching, introduced by Lipman et al. (2023), proposed a simulation-free approach to train neural
ODEs for generative modeling – a computationally attractive alternative to maximum likelihood
training of continuous normalizing flows (Chen et al., 2018). Building upon this, Tong et al. (2024)
extended FM by (1) allowing flows between arbitrary distributions (I-CFM), (2) proposing OT-
CFM coupling samples using optimal transport theory (linking FM to dynamic optimal transport),
and (3) introducing Schrödinger Bridge Conditional FM (SB-CFM), linking FM to Schrödinger
Bridges. Kapusniak et al. (2024) improved FM by estimating the data manifold to adjust the linear
interpolation path and ensuring it remains within high-density regions of the data. However, none
of these methods takes into account multiple (more than two) time points.

Label-Guided Flow Matching Zheng et al. (2023); Dao et al. (2023); Isobe et al. (2024) first
integrated conditional information into FM. Guided Flows (Zheng et al., 2023) extended the FM
framework to incorporate conditional information, allowing for more precise control over the gen-
eration process. At the same time, Dao et al. (2023) modeled the flows in a jointly learned latent
space, offering improved computational efficiency. Meta Flow Matching (Atanackovic et al., 2024)
extends traditional FM by modeling the flow over populations, e.g., a set of cells from a patient, by
embedding it using Graph Neural Networks. As with other Flow Matching studies, none of these
methods consider multiple time points.

Fast and Smooth Interpolation The approach in Chewi et al. (2021) shares similarities with
MMFM in its use of OT principles to guide the interpolation process but differs in its specific im-
plementation by directly using splines rather than neural network-based Flow Matching and cannot
handle multiple conditions. Therefore, it also has the disadvantage of not being able to make infer-
ences at test time using learned dynamics from other conditions.

Multi Marginal Schrödinger Bridges In contrast to Flow Matching, Schrödinger Bridge (SB)
models, which are based on Stochastic Differential Equations (SDEs) and therefore predominantly
estimated using Diffusion Models, have already been extended to make use of multiple marginals.
The Deep Multi-Marginal Momentum Schrödinger Bridge (DMSB), introduced by Chen et al.
(2023), extends the classical SB problem to scenarios with multiple marginal distributions by ad-
justing the Bregman iteration approach.

Modeling of biological single-cell time series data Understanding cellular mechanisms from
biological time series data or pseudo time series data is a popular research area, as it helps understand
fundamental dynamic processes in cells, from differentiation during development to pathogenesis
(Schiebinger et al., 2019; Weinreb et al., 2020; Setty et al., 2019; Yeo et al., 2021; Qiu et al., 2022;
Farrell et al., 2023; Bergen et al., 2020; Tong et al., 2020; Zhang et al., 2024). Advancements in
single-cell profiling have enabled researchers to capture temporal snapshots of individual cell states
across cell populations, from which computational methods can infer temporal trajectories and the
underlying gene regulatory networks that control them. Despite the fact that temporal processes both
span across multiple time points and are often shared across conditions, models to date have focused
on either a single condition monitored along multiple time points (through modeling consecutive
pairs) or on a series of conditions measured in a single time point.

5 Experiments

We assessed the performance of MMFM using synthetic data as well as a single-cell RNA-seq
dataset where each of multiple conditions (perturbations) was measured along multiple time points.
We compared the performance of MMFM to that of several other methods, first considering methods
explicitly designed to incorporate multiple time points. We considered FSI (Chewi et al., 2021), a
method interpolating data densities using OT and natural cubic splines, and as an ablation study,
we assessed the performance of a variant of MMFM with a piece-wise linear interpolation function
(L-MMFM). We also sought to report the performance of DMSB (Chen et al., 2023) but did not
see meaningful outputs after a long training time and, therefore, were not able to draw conclusions.
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Table 1: Sampling times and conditions for the synthetic experiments.

c
t 0 0.1 0.15 0.3 0.5 0.7 0.9 1.0

c3 ✓ ✓ ✓ ✓ ✓ ✓
c5 ✓ ✓ ✓ ✓ ✓ ✓
Rest ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Note: ✓ indicates that samples from that combination are available in the training set.

Figure 2: Assessment on synthetic data. (A) Ground truth vector field, which incorporates training samples for
ten distinct conditions, each represented by a different color. (B,C) Interpolated paths generated by FSI (B) and
MMFM (C) – illustrated for conditions c ∈ [3, 5, 9, 12].

We therefore considered more direct applications of the FM framework, applying OT-CFM (Tong
et al., 2024) across consecutive pairs of marginals, and applied separately per condition (PCFM).
Finally, we also compared to an OT-CFM model that would ignore all intermediate time points
(CFM). To ensure a fair comparison, we provided the condition-specific OT couplings as input to
all models. Additional details about these experiments, including hyperparameter search grids and
hold-out-based validation strategies, are provided in Appendix D.

5.1 Synthetic Experiments

To evaluate MMFM’s ability to estimate condition-specific vector fields from time course data, we
created two-dimensional synthetic datasets with a known ground truth vector field. Data were gen-
erated for 12 conditions, defined as cm = m for m ∈ {1, . . . , 12} using the vector field

ut(xt, cm) =

[
3

( cm2 + 1)7/4 cos(5πt)

]

x0(m) =

[
0,

cm − 2

4

]
.

(14)

We sampled from the time points and conditions described in Table 1. An overview of the data and
the actual underlying trajectories appear in Figure 2A. We generated 50 data points per condition
and time point according to the initial value problem above and included an additive Gaussian noise
with variance σ2

c . This scenario is similar to that in single-cell genomics, where the experimental
assay is destructive, so each cell (sample) can be measured at most once. We held-out time point
t = 0.15 during training for hyperparameter tuning of all FM-based models (but left it as input for
the FSI model).

For evaluation, we compared deviations from the ground truth at the mean-level, estimated with
the Mean-Square Error (MSE), and at the distribution-level, estimated by the Maximum Mean Dis-
crepancy (MMD) between predicted samples and samples from the ground-truth vector field at 21
equidistant-spaced time points (from t = 0 to t = 1, by increments of ∆t = 0.05).

The experimental results (Table 2) demonstrate the superior performance of MMFM on this time
course data, as it most effectively predicts trajectories for conditions c3 and c5, where measurements
are sparse and irregularly spaced. While FSI struggles to capture the right dynamics for the inferred
trajectories (Figure 2) and systematically underestimated the number of inflection points, MMFM
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accurately adjusted the trajectories and aligned them with the curvature profile of other conditions
(visualization of interpolation quality for other conditions and methods appear in Appendix E).

FSI and PCFM both cannot leverage information from other conditions, leading to incorrect trajec-
tories and much higher errors. By contrast, CFM and MMFM have access to multiple conditions.
However, CFM only considers the first and last time points, resulting in a higher loss than MMFM.
Finally, L-MMFM performs substantially worse than MMFM, suggesting that the cubic splines are
effective models for the dynamics of this dataset. Further results are provided in Appendix F, where
we also discuss the extrapolation properties of MMFM.

Together, these results validate that MMFM is beneficial in scenarios where one has access to mea-
surements taken at different time points and across different conditions.

5.2 Application to Single-Cell Perturbation Screening Data

We assessed the performance of MMFM on a real-world single-cell perturbation screen dataset. The
dataset records single-cell gene expression (18, 250 genes) profiles of T cells treated with kinase in-
hibitors and undergoing activation, measured at four time points (0h, 24h, 48h, and 72h). The dataset
includes 93 distinct inhibitors, each used at varying concentrations (100 nM, 1 µM, and 10 µM), as
well as negative control conditions (vehicle and non-activation). In each condition (combination of
inhibitor, concentration and time point), hundreds of cells have been profiled. We treated the non-
activation data as the t = 0h time point for all conditions. To focus on the most significant effects,
we filtered the data and retained M = 123 distinct treatments, each representing a unique combina-
tion of compound and concentration (Figure 3). We then randomly selected 60 of those treatments
for analysis. For evaluation purposes, we withheld ten non-overlapping random treatments for each
of the three time pointsz Standard single-cell data processing pipelines were used to normalize and
scale the features, with the first 25 principal components used as input features (details regarding
data preparation appear in Appendix G).

Because the ground-truth vector field is unknown in this setting, we evaluated the capacity of the
methods to generalize to held-out time points. We thus assessed model performance at the mean-
level, estimated with the Mean-Square Error (MSE), and at the distribution-level, estimated by the
Wasserstein distance W2 between predicted and hold-out samples. The training was conducted
with five random seeds, using one held-out treatment to select the best model for testing. For this
benchmark, the PCFM baseline was applied once using data from all conditions, as it otherwise
required training 150 individual models, which was prohibitively time-consuming.

Our experimental results (Table 3) demonstrate the superior performance of MMFM at imputing
missing data across multiple time points. Interestingly, MMFM and L-MMFM have similar per-
formance for the t = 24h and t = 48h, but MMFM significantly outperforms L-MMFM at the
t = 72h time point. This suggests that the cubic spline is a more desirable prior for this modeling
problem. In contrast, the reliance of PCFM on linear paths may introduce a bias towards straight-line
trajectories, limiting its flexibility in capturing complex dynamics. Overall, MMFM demonstrates
robust performance in handling complex datasets with missing temporal information, emphasizing
its potential for diverse applications in generative modeling.

Table 2: Results on synthetic data. We report the mean square error (MSE) and maximum mean discrepancy
(MMD), with lower values indicating better performance. Means and standard deviations are computed over
21 time points. Best-performing models are highlighted in bold.

cm = 3 cm = 5

MSE ↓ MMD ↓ MSE ↓ MMD ↓
FSI 0.72 ± 0.60 0.42 ± 0.37 0.72 ± 0.93 0.33 ± 0.45
CFM 0.46 ± 0.25 0.25 ± 0.15 0.93 ± 0.52 0.60 ± 0.33
PCFM 0.75 ± 0.49 0.45 ± 0.35 0.78 ± 0.73 0.43 ± 0.44
L-MMFM (ours) 0.39 ± 0.25 0.20 ± 0.17 0.36 ± 0.27 0.17 ± 0.19
MMFM (ours) 0.13 ± 0.08 0.04 ± 0.02 0.22 ± 0.15 0.12 ± 0.08
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Figure 3: UMAP embeddings of single-cell RNA sequencing data visualizing drug responses over time. (A)
Cells colored by time point (0h, 24h, 48h, 72h), highlighting the temporal progression of cellular states. (B)
The same embedding colored by individual drugs (93 distinct labels), showcasing response heterogeneity. (C)
Cells colored by drug categories, highlighting shared response patterns within drug classes. UMAP coordinates
were derived using scVI (single-cell Variational Inference) (Lopez et al., 2018).

Table 3: Results for the drug response imputation task. We report the mean-square error (MSE) between the
predicted and actual distributions’ means and Wasserstein distance (W2), where in both cases lower is better.
Means and standard deviations are computed over five folds. Best-performing models are highlighted in bold.

t = 24h t = 48h t = 72h

MSE ↓ W2 ↓ MSE ↓ W2 ↓ MSE ↓ W2 ↓
FSI 07.77 ± 01.49 56.13 ± 13.44 04.52 ± 01.14 38.93 ± 08.56 06.62 ± 01.65 78.46 ± 23.48
CFM 09.10 ± 01.59 60.86 ± 14.67 04.92 ± 01.88 33.28 ± 13.53
PCFM 08.88 ± 01.58 56.68 ± 12.12 04.13 ± 01.21 34.85 ± 08.01 06.07 ± 01.32 61.83 ± 16.74
L-MMFM (ours) 08.05 ± 01.29 50.82 ± 10.79 03.56 ± 01.50 26.07 ± 08.62 06.30 ± 01.92 47.97 ± 19.69
MMFM (ours) 07.54 ± 00.99 51.86 ± 07.84 03.38 ± 01.34 26.01 ± 07.72 04.92 ± 01.61 37.71 ± 12.24

6 Discussion

We introduced Multi-Marginal Flow Matching (MMFM), a novel method for modeling complex
system dynamics from temporal snapshot data across multiple conditions. We demonstrated that
MMFM effectively combines data from various time points and experimental settings, outperform-
ing existing methods in imputing missing time points. Our approach showed particular strength in
scenarios with sparse or irregularly spaced measurements, leveraging information across conditions
to adjust trajectories accurately.

An important parameter in the design of MMFM is the time-varying variance function σt, as well as
the sharing of parameters across conditions. One interesting direction for future work would be to
add a set of parameters to the probability density path used in Flow Matching and provide a princi-
pled way to learn those parameters while simultaneously solving the FM problem. For example, one
could use latent attentive neural processes (Kim et al., 2019) to construct meta-models across condi-
tions. This approach could alleviate the necessity to find the right set of hyperparameters, ensuring
that the conditioning network has sufficient, but not excessive, influence on the model parameters.
Another promising avenue for constructing flows on real-world data is to explore more complex cost
functions for multi-marginal optimal transport, (e.g., the energy landscape-based loss functions for
biological applications, Appendix H).

MMFM opens up new modeling opportunities for single-cell RNA-seq datasets. For example,
so-called cellular velocities can be estimated from data either using nascent (unspliced) RNA, or
metabolic labeling (La Manno et al., 2018; Bergen et al., 2020). Despite being inherently noisy,
this additional information could be a valuable addition to enhance and steer the synthetic gradient
flows based on interpolation paths, as previously demonstrated by Tong et al. (2020). Further-
more, constraining the model to satisfy specific stochastic differential equations, such as Ornstein-
Uhlenbeck processes (Wang et al., 2023), could help bring interpretability, as well as mechanistic
insights. Indeed, such models have analytical steady-state solutions and also accommodate for in-
terventions (Rohbeck et al., 2024) (e.g., modeling gene knock-outs). Lastly, biomedical data often
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includes various modalities providing multiple measurements on the same target (e.g., a cell’s gene
expression and chromatin accessibility). Access to these multi-view datasets can allow for modeling
coupled trajectories across different spaces (Somnath et al., 2023).

Code Availability Statement

We implemented MMFM based on the Conditional Flow Matching (CFM) code published at
https://github.com/atong01/conditional-flow-matching. Our open-source Python package allows
users to reproduce the figures and tables, run the model, and generate simulated data. It is avail-
able on GitHub at https://github.com/Genentech/MMFM.

Data Availability Statement

Input data used for the experiments in this manuscript are currently undergoing publication as a
separate manuscript. They will become publicly available upon acceptance.
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Appendices

The following list gives an overview of the structure of the Appendix:

• In Appendix A, we present the proofs for the theoretical results behind our Multi-Marginal
Flow Matching (MMFM) framework.

• In Appendix B, we go into the details of Multi-Marginal Optimal Transport (MMOT),
explaining how it reduces to a sequence of pairwise Optimal Transport problems in our
specific case.

• In Appendix C, we present the algorithm for sampling from the COT-MMFM model.

• In Appendix D, we outline our model training and evaluation approach, including hyper-
parameter tuning strategies.

• In Appendix E, we provide additional experimental details and visualizations for our syn-
thetic data experiments.

• In Appendix F, we showcase an additional synthetic experiment focused on the extrapola-
tion capabilities of our MMFM model.

• Appendix G describes the preprocessing steps and treatment selection criteria for the per-
turbation screening data used in our real-world experiments.

• Finally, in Appendix H, we offer a deeper motivation for using the minimum curvature
prior as a proxy for energy minimization along a trajectory.

A Proof of Propositions

Proposition 1. Assuming that pt(x) > 0 for all x ∈ X and t ∈ [0, 1], then, up to a constant
independent of θ, LFM and LMMFM are equal. Hence, for all values of the parameters θ:

∇θLFM(θ) = ∇θLMMFM(θ). (8)

Proof. Following Lipman et al. (2023), we begin by constructing the target probability path pt(x)
from the conditional probability path pt(x | z). Given a particular draw from the sample distribution
z = (x0, . . . , xK), we design the conditional probability path pt(x | z) such that it satisfies the
following conditions:

∀k ∈ {0, . . . ,K}, ptk(x | z) = Normal
(
xk, σ

2I
)
, (15)

where σ > 0 is small so that ptk(x | z) is well concentrated around xk. Marginalizing against the
distribution q(z), we obtain the marginal probability path:

pt(x) =

∫
pt(x | z)q(z)dz. (16)

For each time point tk, the marginal probability ptk closely approximates the k-th marginal:

ptk(x) =

∫
f

(
x′
k − xk

σ

)
qtk(x

′
k)dx

′
k −→

σ→0
qtk(xk), (17)

where f is the density of the d-dimensional isotropic Gaussian distribution.

Similarly to the concept of marginal probability paths, we can also introduce the marginal vector
field (assuming pt(x) > 0 for all x ∈ X ):

ut(x) =

∫
ut(x | z)pt(x | z)

pt(x)
q(z)dz, (18)

where ut(x | z) is the conditional vector field that generates pt(x | z). This is guaranteed by
applying the proof of Theorem 1 from Lipman et al. (2023).

With this proper setup, the remainder of the proof follows closely the one from Theorem 2 in Lipman
et al. (2023). We reformulate it below for completeness.
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We assume that q, pt(x | z) are decreasing to zero at sufficient speed as ∥x∥ → ∞ and that
ut, vt,∇θvt are bounded. We start to derive from the left-hand side:

∇θLFM(θ) = ∇θEpt(x)∥vt(x; θ)− ut(x)∥2

�
= ∇θEpt(x)

(
∥vt(x; θ)∥2 − 2⟨vt(x; θ), ut(x)⟩+ ∥ut(x)∥2

)
∗
= ∇θEpt(x)

(
∥vt(x; θ)∥2 − 2⟨vt(x; θ), ut(x)⟩

)
,

with ∥ · ∥ is the l2 norm, and ⟨·, ·⟩ the scalar product. Similarly, we rewrite the right-hand side:

∇θLMMFM(θ) = ∇θEq(z),pt(x|z)∥vt(x; θ)− ut(x | z)∥2

�
= ∇θEq(z),pt(x|z)

(
∥vt(x; θ)∥2 − 2⟨vt(x; θ), ut(x | z)⟩+ ∥ut(x | z)∥2

)
∗
= Eq(z),pt(x|z)∇θ

(
∥vt(x; θ)∥2 − 2⟨vt(x; θ), ut(x | z)⟩

)
,

where we drop all terms independent of θ (*) and use the bilinearity of the 2-norm (�).

First, we show that the first terms of both equations are equal.

Ept(x)∥vt(x; θ)∥
2 =

∫
∥vt(x; θ)∥2pt(x)dx

=

∫
∥vt(x; θ)∥2

(∫
pt(x | z)q(z)dz

)
dx

∗
=

∫ ∫
∥vt(x; θ)∥2pt(x | z)q(z)dzdx

�
= Eq(z),pt(x|z,hφ)∥vt(x; θ)∥2

Second, we show the equality of the latter parts using Eq.(9) in Tong et al. (2024)

ut(x) =

∫
ut(x | z)pt(x | z)

pt(x)
q(z)dz

leading to:

Ept(x)⟨vt(x; θ), ut(x)⟩ =
∫

⟨vt(x; θ),
∫

ut(x | z)pt(x | z)q(z)dz
pt(x)

⟩pt(x)dx

=

∫
⟨vt(x; θ),

∫
ut(x | z)pt(x | z)q(z)dz⟩dx

∗
=

∫ ∫
⟨vt(x; θ), ut(x | z)⟩pt(x | z)q(z)dzdx

�
= Eq(z),pt(x|z)⟨vt(x; θ), ut(x | z)⟩

where we use Fubini’s theorem to change the order of the integrals (*), and the law of total expecta-
tion (�).

Proposition 2. Let us assume that for all z = (x0, . . . , xK) ∈ Z , µt(z) is defined as the
piecewise linear function going through all the points of z, and σt(z) = σ is constant for all
z. Additionally, let us assume that the vector field is learned separately on each time interval:
vt(z; θ) =

∑K
k=1 vt(z; θk)1[tk,tk+1)(t). Then, the MMFM problem is equivalent to solving K sepa-

rate CFM problems between each pair of consecutive marginals.

Proof. We remind the reader of the expression of the MMFM optimization problem:

LMMFM(θ) = Et,z∼q(z),x∼pt(x|z)

[
∥vt(x; θ)− ut(x | z)∥22

]
. (19)
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We first notice that this time integral from 0 to 1 may be broken up into each of the segments in
between observed marginal distributions:

LMMFM(θ) =

K−1∑
k=0

Ik, (20)

where we define the integral Ik as:

Ik =

∫ tk+1

tk

Ez∼q(z),x∼pt(x|z)

[
∥vt(x; θ)− ut(x | z)∥22

]
dt. (21)

The main goal of this proof is to see whether the integrand of each Ik depends only on information
from the marginals qtk and qtk+1

and can be related to a Flow Matching problem.

Because µt(z) is the piecewise interpolation between all the points z = (x0, . . . , xK) at time
(t0, . . . , tK), it has the closed-form expression:

µt(z) =

K−1∑
k=0

(
xk +

t− tk
tk+1 − tk

(xk+1 − xk)

)
· 1[tk,tk+1)(t), (22)

where 1[tk,tk+1)(t) is the indicator function, which equals 1 when t ∈ [tk, tk+1) and 0 otherwise.

Using these, we may plug in the expressions for µt(z) and σt(z) into the formula for the conditional
vector field:

ut(x | z) =
K−1∑
k=0

xk+1 − xk

tk+1 − tk
1[tk,tk+1)(t). (23)

Finally, plugging in the piece-wise formula for vt, this is enough to identify that:

Ik =

∫ tk+1

tk

Ez∼π(xk,xk+1),x∼p̃t(x|xk,xk+1)

∥∥∥∥vt(x; θk)− xk+1 − xk

tk+1 − tk

∥∥∥∥2
2

dt, (24)

where π is the result of marginalizing q with respect to all variables, except xk and xk+1, and
p̃t(x | xk, xk+1) is a probability path linearly interpolating the means between xk and xk+1, and
with constant variance. Therefore, it is a CFM problem between two data distributions, as in Tong
et al. (2024).

Because each Ik does not depend on other marginals than at time k and k+1, and the neural network
vt(x; θk) is only learned on the interval [tk, tk+1], then optimizing the sum of each Ik becomes
equivalent to optimizing each Ik independently. Therefore, the MMFM problem is equivalent to K
separate CFM problems.

B Multi-Marginal Optimal Transport

Multi-marginal optimal transport (MMOT) (Pass, 2015) extends the classical Optimal Transport
(OT) problem to multiple probability measures, aiming to find a coupling that minimizes the total
cost associated with transporting mass between multiple marginals.

The optimization problem for K marginals can be expressed considering all potential couplings
between measures µ1, . . . , µK supported on the same metric space (X , ∥ · ∥2). For the cost function
c : XK → R, the MMOT objective is:

inf
π∈Π(µ1,...,µK)

∫
XK

c(x1, . . . , xK) dπ(x1, . . . , xK), (25)

where Π(µ1, . . . , µK) is the set of probability measures over XK with marginals equal to
µ1, . . . , µK . For K = 2, this reduces to the classical two-marginal optimal transport problem.

Potentially, this could be a great opportunity to constrain the matching across multiple time points
to be physically realistic, for example, by minimizing the curvature of the transport across time. In
the case of cellular biology, one might expect that cells strive to maintain homeostasis and minimize
changes across time.
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For the sake of simplicity, we focus on pairings between consecutive marginals (with respect to
time), and define a cost function that is linear across pairs of consecutive spaces. We demonstrate
that this approach reduces the MMOT problem to a sequence of pairwise OT problems. We refer
the reader to (Haasler et al., 2021) for the general case.

In our case, the MMOT problem becomes:

inf
π∈Π(µ1,...,µK)

∫
XK

[
K−1∑
k=1

ck(xk, xk+1)

]
dπ(x1, . . . , xK), (26)

which, after permutation of the integral and the discrete sum, yields:

inf
π∈Π(µ1,...,µK)

K−1∑
k=1

∫∫
X×X

ck(xk, xk+1)dπ(xk, xk+1). (27)

Let us now denote by π∗
k(xk, xk+1) the solution of the OT problem with cost ck for each k ∈

{1, . . . ,K − 1}. We consider the composite density:

π∗(x1, . . . , xK) =

∏K−1
k=1 π∗

k(xk, xk+1)∏K−1
k=2 µk(xk)

. (28)

Because π∗
k is an optimal transport plan for each of the k elements in the sum above, it must be that

for all π ∈ Π(µ1, . . . , µK):

K−1∑
k=1

∫∫
X×X

ck(xk, xk+1)dπ
∗
k(xk, xk+1) ≤

K−1∑
k=1

∫∫
X×X

ck(xk, xk+1)dπ(xk, xk+1). (29)

If we can show that (1) the marginals of π∗ correspond to the intended marginals, that is π∗ ∈
Π(µ1, . . . , µK) and (2) the pairwise marginals of π∗ correspond to the solution of the pairwise
OT, then the lower bound in Equation 29 is tight. Consequently, π∗ solves the MMOT problem;
therefore, the solution of MMOT can be achieved by solving a sequence of OT problems. These
steps of the proof rely on the specific assumption about the form of the marginals.

We present the example for K = 3 without loss of generality (the main proof can be written by
induction on K). We have that:

π∗(x1, x2, x3) =
π∗
1(x1, x2)π

∗
2(x2, x3)

µ2(x2)
(30)

In that case, the pairwise marginal of π∗(x2, x3) is evaluated as:

π∗(x2, x3) =
π∗
2(x2, x3)

µ2(x2)

[∫
X
π∗
1(x1, x2)dx1

]
= π∗

2(x2, x3), (31)

where the second equality holds because π∗
1 is an optimal transport map, we have that it satisfies

the marginal condition. Together, this verifies the equality between the pairwise marginals of π∗

and the solutions of pairwise OT by the symmetry of the roles played by x1, x2, and x3. Because
the pairwise marginals are the OT transport plan, we must have that π∗ ∈ Π(µ1, . . . , µK), which
completes the proof.

C Method Details

We present the detail for the sampling of trajectories from the MMFM model in Algorithm 1. To
generate test trajectories from the vector fields, we employed the fourth order Runge-Kutta method
(rk4). Note that the guidance strength w can be greater than 1 in this formulation.

D Model Training and Evaluation

To ensure a fair comparison across all models, we constructed the data sets for each model based
on the need for validation data and conducted each experiment at least three times with varying
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Algorithm 1 Pseudocode: Sampling from COT-MMFM

Require: Trained vt(x, c; θ), guidance parameter w, condition c, no. of steps T , sample xt=0

1: Set: t = 1/T
2: Define: ṽt(x, c; θ) = (1− w) · vt(x, c = ∅; θ) + w · vt(x, c; θ)
3: for k = 1 to T do
4: xk+1 = ODEIntegrator(xk, ṽt(x, c; θ), t)
5: end for
6: return xT

seeds. For models necessitating hyperparameter tuning, we employed a hold-out train-validation
split of the samples, selecting the model that achieved the best performance on the validation set.
In contrast, for FSI, where hyperparameter tuning was not required, we used the entire data set for
training, including the hold-out part. Tab. 4 provides an overview of the hyperparameters tuned for
each MMFM model.

We employ sinusoidal timestep embeddings (Vaswani et al., 2017) for the network’s temporal in-
put. The input x is transformed into a representation via a three-layer feedforward network using
LeakyReLU activations. Subsequently, the embeddings of x, t, and c are concatenated and pro-
cessed through an additional three-layer neural network. The model is optimized using the Adam
optimizer (Kingma & Ba, 2015).

We precomputed optimal couplings between samples of consecutive time steps in all synthetic ex-
periments. This approach eliminated the need for mini-batching in each iteration, thereby enhancing
computational efficiency.

Table 4: Hyperparameters for model training

Model Hyperparameters Values/Range
FSI - -
MMFM* learning rate [1e-2, 1e-3, 1e-4]

pu [0.0, 0.1, 0.2, 0.3]
latent dimensions (x,t,c) [16, 32, 64, 128, 256]
flow variance [0.01, 0.1, 1, adaptive]
guidance w [ k

10 ] for k ∈ {1, . . . , 10} ∪ {20, 30}

(*) Applicable to all variations Flow Matching models discussed in the paper.

We provide two distinct approaches for integrating conditional information into the neural network
model. The first approach was used throughout this study. This second approach is particularly ad-
vantageous when dealing with ordinal condition types, such as drug dosage, allowing to incorporate
relationships between embeddings into the model.

Learnable Embeddings: This approach learns separate embeddings for each condition and the
null condition ∅. While yielding superior results compared to the second approach (see below),
it does not allow for inter-/extrapolation to new conditions. However, when data for a previously
unseen condition becomes available, the model can be fine-tuned by fixing the weights of vt(x, c; θ)
and re-training only the new embedding. This approach generally necessitates a separate hold-out
distribution to select the most promising model for test scenarios.

Fixed Embeddings: This approach either (i) concatenates the value of the condition directly to
the input vectors x and t or (ii) before concatenating uses another neural network to compute em-
beddings for each condition, which are then concatenated to the input, e.g., e(c) : Rm → Rn.
The encoder weights are then learned during training, allowing the model to generalize to unseen
conditions without model retraining.

E Experimental Details on Synthetic Data

The following figures illustrate the condition-specific trajectory prediction of MMFM, L-MMFM,
and the FSI model. Fig. 5 indicates that linear interpolation generally leads to straighter paths.

18



However, the model can correct the paths for c3 and c5. Fig. 7 shows that FSI is able to match all
marginals perfectly, which leads to vastly incorrect trajectories for c3 and c5.

Figure 4: Visualization of MMFM interpolation results across all experimental conditions. The ground truth
vector field is shown in blue, with predicted test sample trajectories in black. Training samples are displayed in
the background using transparent, colored markers.

Figure 5: Visualization of L-MMFM interpolation results across all experimental conditions. The ground truth
vector field is shown in blue, with predicted test sample trajectories in black. Training samples are displayed in
the background using transparent, colored markers.

Figure 6: Visualization of FSI interpolation results across all experimental conditions. The ground truth vector
field is shown in blue, with predicted test sample trajectories in black. Training samples are displayed in the
background using transparent, colored markers.

Figure 7: Visualization of PCFM interpolation results across all experimental conditions. The ground truth
vector field is shown in blue, with predicted test sample trajectories in black. Training samples are displayed in
the background using transparent, colored markers.
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E.1 Extrapolation To Unseen Starting Points

We evaluate the extrapolation capabilities of our model by extending the estimated vector fields
to unseen regions for fixed conditions, as illustrated in Fig. 8. The results demonstrate that the
underlying vector fields exhibit smooth behavior in the neighborhoods surrounding the interpolated
paths (highlighted in blue). However, when initializing trajectories from unexplored regions, i.e.,
regions without training data being provided to the model beforehand, specifically where y < 0, we
observe a tendency for the trajectories to overshoot beyond x = 3. Furthermore, for condition c3,
we note that the trajectories are influenced by the probability path derived from the spline, which
was constrained to only five time points and followed a linear trajectory, and therefore divides the
vector field into two regions (above and below the linear, horizontal line). This highlights the impact
of the interpolation method on the model’s extrapolation performance.

Figure 8: Visualization of MMFM inter-/extrapolation using unseen starting points across three conditions. The
ground truth vector field is shown in blue, overlaid with the predicted test sample trajectories.

F Additional Synthetic Experiment: Extrapolation to unseen Time Points

Next, we evaluated the extrapolation capabilities of our MMFM model to unseen time points for
some conditions. Therefore, we generated data samples from a sinusoidal curve at time points
t = 0, 0.25, 0.5, 0.75, 1 across conditions c = 1, . . . , 10. For condition 5, the model was provided
with measurements only at t = 0, 0.25, 0.5. Figure 9 shows the interpolated trajectories for test
samples. The findings demonstrate that MMFM effectively extrapolates the time course data for
c5 by leveraging a smooth vector field constructed based on the other conditions. In contrast, as
expected, FSI fails to predict future behavior accurately despite having access to an additional data
point at t = 0.55 during training.

Figure 9: Overview of extrapolation to time points. (A) Visualization of training samples, (B) predicted trajec-
tories for FSI, and (C) predicted trajectories for MMFM. Trajectories are shown for c1, c5, c10. Here c5 is only
measured until t = 0.5.

G Details about the Perturbation Screening Data

Treatment selection We implemented a two-stage approach to eliminate treatments with minimal
effects. First, we trained an scVI model (Lopez et al., 2018) on the full count dataset using 50 latent
features and a negative binomial likelihood. We then calculated the energy distance between the
control group and each treatment in the latent space, keeping treatments with an energy distance
above a certain threshold, here τ = 1. As described in the main text, we randomly selected a subset
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of treatments and sampled the hold-out data for our experiments also at random. Non-stimulated
control and vehicle data were also preserved for the experiments.

Data Preprocessing To train the models, the mRNA count data was normalized for library size to
remove technical noise and log(x + 1)-transformed to stabilize the variance and reduce the impact
of extreme values. Following normalization and transformation, we applied Principal Component
Analysis (PCA) to reduce the dimensionality of the 18,500-dimensional gene feature space. We
retained the top 25 principal components, capturing most of the data’s variance.

H Priors for trajectories dynamics

In this section, we further motivate the minimum curvature prior as a proxy for energy minimization
along a trajectory. We consider the trajectories of a particle of initial mass m in an inertial frame,
following a path γ : [0, 1] → X . We assume constant velocity over the trajectory, i.e., ∥γ′(t)∥2 = v0.
From the law of conservation of momentum (no external forces), we have that the particle should
shed mass according to the Tsiolkovsky rocket equation Tsiolkovsky (1954):

−m
dγ′(t)

dt
= (vo(t)− γ′(t))

dm(t)

dt
(32)

= ve(t)
dm(t)

dt
, (33)

where vo(t) stands for the output velocity of the expelled mass and ve(t) is the output velocity in
the particle reference frame. Rearranging the above equation we obtain:

d log(m(t))

dt
ve(t) = −γ′′(t). (34)

This equation shows that ve(t) and γ′′(t) are parallel vectors with different magnitudes. The above
system of equations is thus equivalent to the following:

d log(m(t))

dt
∥ve(t)∥2 = −∥γ′′(t)∥2 . (35)

Assuming a constant relative norm for the output velocity ∥ve(t)∥2 = ve, and assuming no potential
function in the system, we finally get the difference in log-energy of the particle between time t = 0
and t = 1 as

log(E1)− log(E0) = log

(
m(1)

m(0)

)
= − 1

ve

∫ 1

0

∥γ′′(s)∥2 ds. (36)

The logarithm being a concave function, we obtain that minimizing the loss of energy along a path
γ amounts to minimizing the cumulative curvature along the path.

21


	Introduction
	Background
	Condition-aware Multi-Marginal Flow Matching
	Multi-Marginal Flow Matching
	Conditional MMOT-based Multi-Marginal Flow Matching

	Related Work
	Experiments
	Synthetic Experiments
	Application to Single-Cell Perturbation Screening Data

	Discussion
	Proof of Propositions
	Multi-Marginal Optimal Transport
	Method Details
	Model Training and Evaluation
	Experimental Details on Synthetic Data
	Extrapolation To Unseen Starting Points

	Additional Synthetic Experiment: Extrapolation to unseen Time Points
	Details about the Perturbation Screening Data
	Priors for trajectories dynamics

