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ABSTRACT
Crater mapping and counting are critical analyses in many plan-
etary science investigations, as the size-frequency distribution of
impact craters can be used to measure the age of a planet’s surface
and interpret its geologic history. Crater counting is extremely te-
dious — counting hundreds to thousands of small features in a small
region could take days to months for a trained planetary scientist.
Previous work has demonstrated the feasibility of using computer
vision techniques to automatically map and count craters in Mars
orbital images using semantic segmentation. We present an im-
proved approach for binary and multi-class semantic segmentation
of craters in THEMIS daytime thermal infrared images using U2-
Net and U-NetFormer with template matching. Our approach is the
first method to perform multi-class segmentation of craters using
computer vision. Our binary segmentation approach outperforms
previous approaches that used semantic segmentation and template
matching. A new global high-resolution image mosaic dataset of
Mars (CTX, 5 m/px) is now available, but to date, no studies have
benchmarked automated crater counting methods for this improved
dataset. Toward this goal, we applied the THEMIS-trained model to
out-of-domain CTX datasets and evaluated results quantitatively us-
ing the DoMars16 benchmark dataset and qualitatively using global
mosaic tiles. We show that the THEMIS-trained models effectively
segment craters in CTX images without additional fine-tuning. The
code can be found here.

CCS CONCEPTS
• Computing methodologies→ Image segmentation; Neural
networks.
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1 INTRODUCTION
In planetary science, crater detection is widely explored and an
essential task to understand the history and age of surfaces of
other planets. It can help to determine the relative ages of geologic
units (i.e., which surfaces are older than others) and can estimate
the absolute ages (e.g., 3.8 Ga) of surfaces based on the assumed
flux of impacts on each planet [1, 6, 13, 16, 27, 32]. Additionally, it
also helps with safe path analysis and hazard detection for rover
navigation and landing. Studies of Mars’ surface particularly rely on
crater counting, as regions can vary in age from > 4.0 Ga to present,
and the age bears strongly on the interpreted climate history and
formation process. In general, more craters and more large craters
indicate an older surface. Also, assessments of the size distribution
of craters and identifying types of craters can be quite informative.
A number of martian image and topographic datasets exist with
global coverage of the planet (from THEMIS - THermal EMission
Imaging System [8], MOLA - Mars Orbiter Laser Altimeter [25], and
CTX - ConTeXt camera [2], etc.) making crater detection possible
at various resolutions over the globe.

Despite the availability of large and diverse datasets, there are
several challenges in crater detection. Manual detection of craters is
extremely tedious and time-consuming because planetary scientists
map craters by a visual inspection for most studies, looking through
images rendered within geospatial software over a period of days
to years. Hence, although there are terabytes of data available from
various satellites, labeled data is scarce. Additionally, craters vary
substantially in their appearance: craters can be very small or very
large, are typically circular but might sometimes have a more el-
liptical shape due to the angle of impact, can be overlapping, and
can be partially buried by younger lava flows or landslides. Further-
more, the choice of which craters to map based on the type of crater
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observed may vary depending on the intended use case—for exam-
ple, certain crater morphologies (i.e., buried or secondary craters)
should not be included in crater counts used for age calculations
[18]. For this reason, multi-class crater detection can help scientists
categorize and filter by different types of craters that should be
considered in a given study.

In the early stages of automating the task of crater detection, re-
searchers employed classical methods like Support Vector Machines
[33], Continuously Scalable Template Matching [30], Feed-forward
Neural Networks, and Ensemble Methods [10]. These methods
showed promising results, however, they had several drawbacks
including complex frameworks and suffering from variations in
crater appearances due to different illumination conditions [7]. In
recent years, many deep learning (DL) based Crater Detection Al-
gorithms (CDAs) have been proposed but have some important
limitations. Previous methods are limited to binary classification or
segmentation and do not perform multi-class segmentation. Previ-
ous studies have also primarily used the THEMIS global thermal
image dataset [12, 28] for crater mapping instead of the newer,
higher-resolution CTX (5 m/pixel resolution) dataset [11] that is
now globally available andwould providemore detailed crater maps
and counts. To overcome these limitations, we created a pipeline
(shown in Figure 2a) that uses newer Deep Learning-based models
and template matching as a post-processing step. We performed
both binary and multi-class crater segmentation on the THEMIS
dataset. We compare our method with a recent study by DeLatte et
al. [9], our method outperforms theirs in terms of recall and f1-score
by about 10%. To the best of our knowledge, we are the first to pro-
pose an automated multi-class crater segmentation pipeline using
deep learning models. Multi-class segmentation maps would allow
planetary scientists to filter crater maps or counts according to the
relevant morphologies for a given study, for example, to ignore par-
tially or completely buried impact craters to enable a more precise
estimation of the surface age. Toward the ultimate goal of auto-
mated crater mapping in the newer, higher-resolution CTX global
image dataset, we applied the THEMIS-trained binary segmenta-
tion model to out-of-domain CTX images. We evaluated results
quantitatively using the DoMars16 benchmark dataset [34]. These
out-of-domain experiments show promising results for leveraging
THEMIS-trained models for crater mapping in higher-resolution
CTX images without additional training or fine-tuning.

2 RELATEDWORK
Planetary scientists largely developed the field of crater counting
in the Apollo era, as astronauts collected and returned samples
of rocks from different regions of the Moon which were used to
calibrate functions to estimate the absolute age of a surface based
on the size-frequency distribution of craters on the surface. Histor-
ically, counting craters in a region was a manual task, with domain
experts mapping the craters by eye and hand in images taken by
Earth-based telescopes, flyby missions, orbiters, and lander cam-
eras. The counted craters from a region were then plotted as a
size-frequency distribution and compared to other regions on the
Moon or other planets [16]. In the last decade, studies proposing au-
tomated pipelines for counting craters of different sizes in spacecraft
images have been published. Early methods relied on continuously

Figure 1: Train/val/test splits from THEMIS data. Green tiles
(T) for training, blue tiles (V) for validation, and red tiles (E)
for testing.

scalable template matching [30], support vector machines [33], deci-
sion trees [26], feed-forward neural networks, or ensemble methods
[10]. Some showed promising results for Mars and the Moon, how-
ever, their frameworks were complex, not scalable for global-scale
processing, and not robust to the diverse surface conditions that in-
fluence crater appearance such as illumination angle, crater shape,
or atmospheric perturbations. [20] and [24] were amongst the first
studies to propose an approach based on Convolution Neural Net-
works (CNNs), andmore specifically a U-Net-based approach. These
initial studies focused on automated crater mapping in lunar orbital
image datasets. Taking inspiration from the template matching al-
gorithm in [24], [9] proposed a U-Net-based model using the global
Mars THEMIS thermal image dataset, and modified the U-Net ar-
chitecture with 7x downsampling for semantic segmentation and
replaced max pooling with average pooling which led to a dramatic
reduction in training time. [17] proposed a Nested Attention-Aware
U-Net (NAU-Net) model based on the U-Net++ architecture for
lunar crater detection, which has a faster convergence rate than
U-Net. [14] introduced a new image cropping method, Pyramid
Cropping, which uses multi-scale crater segmentation for detecting
lunar craters, allowing craters as large as 200 km in diameter to be
counted. Most recently, [7] implemented a Martian Crater U-Net
(MC-UNet) approach for Martian craters using the THEMIS dataset,
which has the fastest convergence rate and better precision score
compared to prior methods. In addition, apart from U-Net-based
methods, YOLO-based methods have been also utilized to build
CDA [3, 35]. In terms of deep learning-based multi-class crater
detection, there has been no prior research conducted. The most
closely related work we found was presented by Lagain et al. [19]
wherein they introduced a Crater Detection Algorithm with cluster
analysis to identify secondary craters along with primary craters.
With respect to CTX, Benedix et al. [3] claimed that they found 60k
craters using their CDAs but there was no mention of a definite
data processing pipeline and evaluation. We opted to continue the
research with U-Net-based methodology as they have achieved
state-of-the-art results for crater counting. Hence, we have used
newer and more advanced architectures: U2-Net and U-NetFormer
for binary as well as multi-class semantic segmentation and defined
a pipeline for evaluation.
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3 DATASETS
The primary dataset used in this research is the THEMIS global
daytime infrared image map of Mars from 2006 [28]. In order to
train a model for crater segmentation, we used annotated labels of
Martian craters from the manually annotated catalog provided by
Robbins and Hynek [23]. Class labels for multi-class segmentation
were obtained from the catalog by Lagain et al. [18]. For out-of-
domain evaluation using CTX images, we used the global image
mosaic available at the Murray Lab site [5] and the DoMars16
benchmark dataset [34].

3.1 THEMIS
The THermal EMission Imaging System (THEMIS) global dataset
contains 30◦ by 30◦ tiles (7680 by 7680 pixels), ranging from −90◦
to 90◦ latitude and 0◦ to 360◦ longitude. In total, the dataset is
organized into 72 tiles covering the entire surface of Mars (Figure
1). We have used the tiles from the equatorial region of −30◦ to 30◦
latitude and 0◦ to 360◦ longitude (24 tiles in total) for this study
since this has been the region of interest of most previous studies
including [9] and tiles in this region have the fewest missing pixels.
The resolution of these images is 256 pixels per degree (ppd), or
231.55 meters per pixel (m/px). It must be noted that we have used
the older version of the THEMIS dataset to be consistent with the
work of [9] for fair comparison and since [23] had also provided
the annotations on the same version. As a separate experiment, we
trained and evaluated our models on the newer version of THEMIS
[29] as well, however, the results were very similar.

3.1.1 Binary Segmentation: In 2012, Robbins andHynek (RH2012)
[23] provided a global catalog of martian craters which were anno-
tated manually by experts on the THEMIS Daytime infrared (IR)
global mosaic. This catalog contains 384,343 crater annotations,
each having diameter ≥ 1 km, and other information if it could be
determined including position, morphology, ejectamorphology, and
modification state. In 2021, Lagain et al. [18] provided a modified
version of the RH2012 crater database to correct for the populations
of craters that were previously misclassified and identify those that
should be excluded for crater counting (e.g., buried craters).

3.1.2 Multi-class Segmentation: Lagain et al. [18] classified
craters into 4 categories: Other, Secondary, Layered, and Buried. An
example of each category is shown in Figure 3. Layered craters are
primary impact craters that have a continuous and circular or radial
layered ejecta morphology. Secondary craters are craters that are
formed as an after-effect from a larger primary impact crater, along
a radial direction of the primary impact crater, often having a more
elliptical or herringbone shape and being very small in size. Buried
craters are impact craters that are partially or completely filled with
sedimentary or volcanic materials. All other impact craters that
cannot be classified into either of the three categories are classified
as Other.

3.2 CTX
The ConTeXt Camera (CTX) has been operational since 2006 on
the Mars Reconnaissance Orbiter (MRO) and has collected high-
resolution images covering the entirety of the planet (≥ 99.5%). The
Murray Lab [5] Global CTX Mosaic dataset merges the best CTX

(a) Pipeline for binary segmentation and multi-class segmentation
of THEMIS images followed by crater counting and per class crater
counting.

(b) Illustration of out-of-domain dataset evaluation on CTX and
DoMars16.

Figure 2: Schematic representation of training and out-of-
domain evaluation pipeline.

images in each region to create a seamless global image mosaic
at 5 meters per pixel [21]. Each image is a 4◦ by 4◦ tile, having a
resolution of 47420 by 47420px.

3.3 DoMars16
DoMars16 is a publicly available dataset for geologic landform
classification based on CTX [34]. The dataset contains 16150 data
samples from 5 different thematic group classes which have 15
different sub-classes including crater and crater field. We employed
this dataset for binary classification, meaning that the model’s ob-
jective was to determine whether a given sample contained one or
more craters by segmenting the craters within the sample. From
all the classes of DoMars16, we designated two classes, “Crater“
and “Crater Field", as the positive class, while the remaining 13
classes were designated as the negative class for binary segmen-
tation. Notably, some data samples in DoMars16 have multiple
classes within one sample. For instance, a sample generated from
the B20_017281_2002_XN_20N118W CTX image might encompass
features like cliffs, craters, channels, and ridges simultaneously. To
ensure a fair evaluation of the model’s performance on the negative
class, we exclusively assessed samples that did not contain craters
or crater fields. Number of samples per class is reported in Appen-
dix Table 8. In other words, the model was expected to predict the
negative class correctly for these samples because they lacked any
craters.

4 METHOD
Wehave followed a 2-step approach: Segmentation of impact craters
using a Deep Learning semantic segmentation algorithm, followed



GeoAI ’23, November 13, 2023, Hamburg, Germany Malvi et al.

by instance-level counting of impact craters using template match-
ing. This approach is inspired by the work of DeLatte et al. [9],
which used a U-Net-based approach for semantic segmentation.
First, we improved the binary segmentation using recent and more
advanced Deep Learning architectures. Then, we modified the bi-
nary segmentation approach to perform multi-class segmentation.
Figure 2a represents an overview of our crater segmentation system.
Lastly, we used the trained models to predict and count the craters
from CTX images. Figure 2b shows the overall evaluation pipeline.

4.1 Semantic Segmentation
Semantic Segmentation is the task of assigning a class label to
every single pixel of an input image, such as classifying a pixel
as belonging to a particular object or background. In this study,
we employ Semantic Segmentation methods based on U2-Net and
U-NetFormer to determine whether a pixel belongs to a crater or
not (binary segmentation) and to also determine the crater class of
the pixel (multi-class segmentation).

4.1.1 Binary Segmentation. We used the U2-Net implementa-
tion for training the Semantic Segmentation model on the THEMIS
dataset images. U2-Net, with a deep architecture, is known to pro-
duce sharper and more refined masks compared to U-Net without
significantly increasing the computational cost [22]. We used the
same data processing steps given by DeLatte et al. to have a fair and
equal comparison of our methods with the previous ones. [9]. We
have used two types of prediction masks: filled and edge masks con-
taining craters from a range of 2 to 32 km in radius. The edge masks
are created with a radius of 8px thickness. We split the dataset (24
tiles) as 15 tiles for training, 8 tiles for validation, and, 1 tile for
testing shown in Figure 1. We divided each tile into 512 by 512px
crops which resulted in 225 images/crops per tile and fed each crop
as an input to the segmentation model. We obtained a 512 by 512px
semantic map as a result of the segmentation model and then recon-
structed the tile by stitching all the predicted semantic map crops
together followed by template matching for crater counting.

4.1.2 Multi-class Segmentation. U2-Net, being a CNN-based
method, possesses strong capability for capturing local information
by adopting hierarchical representation. However, the convolution
operation limits the model from capturing the long-range depen-
dencies or global context. U-NetFormer, which uses attention blocks
as backbone, has demonstrated the ability to extract global context
and obtained state-of-the-art results for image classification tasks
[31]. This global contextual information helps with a better or more
accurate classification of each pixel, thus helping with assigning a
proper class to the pixels and at large, to the craters. To validate the
performance of U-NetFormer for crater detection, we trained this
model for binary segmentation using the same data split mentioned
in the section 4.1.1. Then, we trained for the multi-class data using
the annotations provided by Lagain et al. [18]. Section 4.4 mentions
the data processing and implementation details for training the
multi-class segmentation model.

4.2 Template Matching and Crater Counting
Template Matching involves sliding a template (filled circles or cir-
cular rings in our case, depending on the annotations) over an entire

(a) Other (b) Buried (c) Layered (d) Secondary

Figure 3: Class-wise samples from Lagain annotations [18].

larger image and evaluating the similarity between the template
and each overlapping region of the image. We defined these tem-
plates for the range of 2-32 km, which corresponds to the range of
8.6px to 138.2px in the image. Then, we traverse the entire semantic
map with these templates, one at a time, and filter out the circles
with a cross-correlation coefficient value higher than 0.50 (template
threshold) in the case of circular rings and 0.65 in the case of filled
circles. We will discuss this disparity in the correlation coefficients
and the need for it in the results section. For further refinement, i.e.,
to remove duplicate or overlapping craters, we set the lat-lon-thresh:
minimum latitude and longitude distance between two candidate
craters and rad-thresh: minimum radius delta between candidate
craters to be considered as distinct craters. We have used the default
parameters for lat-lon-thresh and rad-thresh as given by Silburt et
al. [24]

4.3 Out-Of-Domain Evaluation Pipeline
4.3.1 CTX. The next big step in Martian studies, specifically crater
detection and surface age estimation, is using higher resolution
Mars orbital images, such as the ones taken through the Context
Camera (CTX). However, unlike the THEMIS dataset, there is no
global set of annotations available for the CTX images, which is
why one cannot train a Semantic Segmentation model using these
images at a similar scale as the THEMIS dataset, in terms of the geo-
graphical area covered. One can either create a set of annotations on
a smaller geographical region and train a model on it, or use a model
trained on similar data. To validate the effectiveness of our model,
we performed a Binary Segmentation on one CTX tile containing
the location of the MER Spirit rover mission in Gusev crater and
surrounding region MurrayLab_GlobalCTXMosaic_V01_E172_N-16.
For counting the craters, we used the HoughCircles method from
the OpenCV library [4], and removed all the duplicate craters using
Non-Max Suppression - this method is much faster as compared to
Template Matching albeit not as accurate, which is why we only
used it for this high-resolution CTX image

4.3.2 DoMars16. DoMars16 is evaluated using trained binary
segmentation models, U2-Net and U-NetFormer. For DoMars16, we
evaluate models based on their performance for binary classifica-
tion, specifically, determining whether a given image contains a
crater or not. For positive samples (crater and crater field), if the
model successfully segments the crater area (indicating the detec-
tion of a crater), we classify that sample as a True Positive. Con-
versely, for negative samples (other landforms), where the model
doesn’t segment (predicting the absence of a crater), we categorize
them as True Negatives. This approach helps in gauging the model’s
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effectiveness in correctly refraining from crater segmentation when
there are no craters in the samples.

4.4 Implementation Details
For binary segmentation, we trained three models U-Net, U2-Net
and U-NetFormer. We trained the U-Net model using the same set-
ting provided by DeLatte et al. [9] to use it as a baseline. In the case
of U2-Net, we trained the model using Dice Loss [15] instead of Bi-
nary Cross Entropy which resulted in faster convergence. The input
images were normalized in the range of -1 to 1 as a preprocessing
step and the model was trained for 40 epochs with a batch size of 8
and the learning rate was set to 1e-3. Whereas for U-NetFormer, we
opted for the same data preprocessing and training strategy as men-
tioned by [31] and used Dice Loss only on the output of the feature
refinement head from the model. As this model is a lightweight
implementation, we trained it for 100 epochs with a batch size of 16
and with an initial learning rate of 6e-4 and a cosine scheduler. All
models were trained with Adam optimizer with default parameters.

In the case of multi-class, we trained U2-Net and U-NetFormer
models. For both models, we replaced the last layer of the model
with ’softmax’ and defined the out channels = 5 (four for classes
and one additional channel for background). Figure 3 shows the
crater of each class represented by color mapping. We trained the
model using a categorical-cross-entropy loss function. The rest of
the parameters and settings have been kept the same as the binary
segmentation model.

We used the following system for this study: Intel(R) Xeon(R)
Gold 6148 CPU @ 2.40GHz and 16 GB Tesla V100-SXM2 GPU.

5 RESULTS AND ANALYSIS
5.1 Binary Segmentation
As mentioned in section 4.1.1, we trained binary segmentation
models for two types of predictions: i) filled masks, ii) and edge
masks. We used the dice coefficient as the metric for evaluating the
model training. Previous studies have used accuracy as a measure
for evaluating the models, however, it must be noted that this could
lead to misleading results. The predicted masks and ground truth
masks have a significantly larger number of black pixels (normal
terrain) as compared to white (craters) pixels, which is why, the
accuracy will always be high regardless of how good or bad the
model performed. Table 1 shows the dice coefficient for all three
models along with the number of epochs for which the models were
trained. From these results, we can say that the visual predictions
and the ultimate crater count for U2-Net and U-NetFormer will
outperform those of U-Net. Figure 4 and 5 show the qualitative
results, i.e., input crops of 512 by 512px, its ground truths, and the
predictions of all three models for filled masks and edge masks
respectively.

In Template Matching, we compare a crater prediction with cir-
cular templates of varying sizes as mentioned in 4.2, and determine
if the cross-correlation coefficient is greater than a certain thresh-
old to establish whether the prediction is actually a crater or not.
Generally, this threshold is set at 0.50. Theoretically, in terms of
circular rings, a partially detected crater might have just a semi-
circular arc as the semantic segmentation prediction. However, in
terms of a filled circle, a partially detected crater would be a little

Type Model Epochs Train Dice
Score

Validation Dice
Score

Test Dice
Score

Filled mask
U-Net 500 0.88 0.70 0.75
U2-Net 40 0.82 0.76 0.81

U-NetFormer 100 0.83 0.81 0.84

Edges
U-Net 500 0.59 0.59 0.60
U2-Net 40 0.76 0.72 0.68

U-NetFormer 40 0.73 0.74 0.68

Table 1: Binary segmentation performance on training, vali-
dation, and testing for filled and edge prediction.

Tile Id Model Crater Count Precision Recall F1-Score

13 (Test)
U-Net 1364 0.86 0.60 0.71
U2-Net 1644 0.92 0.72 0.81

U-NetFormer 1728 0.92 0.76 0.83

16 (Validation)
U-Net 442 0.88 0.69 0.77
U2-Net 538 0.92 0.84 0.88

U-NetFormer 534 0.92 0.836 0.87

21 (Validation)
U-Net 476 0.86 0.78 0.82
U2-Net 561 0.93 0.92 0.93

U-NetFormer 539 0.96 0.88 0.92

Table 2: Binary segmentation results for filled mask predic-
tion at template threshold = 0.65.

Tile Model Crater Count Precision Recall F1-Score

13 (Test)
U-Net 1581 0.96 0.70 0.81
U2-Net 1846 0.93 0.82 0.87

U-NetFormer 1917 0.92 0.85 0.88

16 (Validation)
U-Net 523 0.96 0.82 0.88
U2-Net 569 0.94 0.89 0.91

U-NetFormer 565 0.93 0.88 0.90

21 (Validation)
U-Net 548 0.97 0.90 0.94
U2-Net 566 0.96 0.93 0.95

U-NetFormer 556 0.95 0.92 0.93

Table 3: Binary segmentation results for edge mask predic-
tion at template threshold = 0.50.

bit more than a semi-circle, something like a gibbous moon. In that
case, taking a cross-correlation coefficient value of 0.5 (template
threshold) would lead to several duplicates, which might not get
removed even after de-duplication. To verify this, we carried out
a series of experiments, taking different cross-correlation coeffi-
cients in both cases. Through these experiments, we proved that
our hypothesis was true in the case of filled masks, and the best
result was obtained in the case of higher thresholds of 0.60 and
0.65. The detailed results from these experiments can be found in
the Appendix. The best crater-counting results for filled masks and
edge masks are presented in Table 3 and Table 2, respectively. Both
U2-Net and U-NetFormer have shown about 10% improvement in
terms of F1-Scores across all test and validation tiles. The detailed
results of all the experiments have been provided in the appendix.

5.2 Multi-class Segmentation
Through the binary segmentation experiments, we found out that
the edge masks perform better than the filled masks. So, for multi-
class segmentation, we trained the model using the edge masks.
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Figure 4: Binary segmentation results for filled mask predic-
tion on tile 13 (test).

Table 4 shows that the training loss was almost the same for both
models, but the difference starts to show in the validation loss. The
test loss for the U-NetFormer model is quite low as compared to
the U2-Net model. For crater counting, we modified the template
matching algorithm. Firstly, we converted the predicted mask to
single channel and performed template matching to find the craters
from which we obtained x, y, and radius information. Then, to
get class information of a particular crater, we took the maximum
color pixels from the bounding box of that crater and assigned the
class corresponding to that color. After performing the modified
template matching, we got the crater counts of each of the 4 classes
and evaluated the models’ performance. Table 5 shows that for tile
#13 (test), the f1-scores of all the 4 classes for the U-NetFormer
model were better than the corresponding scores for the U2-Net
model, thus proving the hypothesis we provided in 4.1.2. Figure 6
shows the qualitative comparison of both the models which also
validates that U-NetFormer generates better masks reliably.

5.3 Out-Of-Domain Evaluation
5.3.1 CTX. We evaluated both, U2-Net and U-NetFormer-based
models against the CTX tile as mentioned in section 4.3. The pre-
diction masks can be seen in Figure 7 for the 2 models. A higher-
resolution version of both predictions is available at link. From a

Figure 5: Binary segmentation results for edge mask predic-
tion on tile 13 (test).

Model Train Loss Validation Loss Test Loss

U2-Net 0.04 0.08 0.22

U-NetFormer 0.04 0.05 0.14

Table 4: Multi-class segmentation performance based on cate-
gorical cross-entropy loss on training, validation, and testing
for edge prediction.

visual inspection of the full-scale images, we can see that the U-
NetFormer model has predicted more craters than the U2-Net-based
model, however, the latter was able to predict craters of slightly
larger size in terms of radius. U-NetFormer with 24669 predicted
craters performs better as compared to U2-Net in terms of crater
count which only predicted 20698 craters of range 70m to 800m.

5.3.2 DoMars16. We evaluated both the models on data samples
belonging to the crater and non-crater classes as mentioned in
4.1.2. Both the models performed well in identifying craters and not
identifying non-craters. The overall class-wise results have been
mentioned in Table 6. The detailed results of each individual class
and their performance have been reported in the Appendix Table 8.

https://drive.google.com/drive/folders/1lGNBXU8zh3sbleMqYMmQBq03ANKxUJOe?usp=sharing
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Figure 6: Multi-class segmentation results for edge prediction
on tile 13 (test).

Model Crater Category Precision Recall F1-Score

U2-Net

Other 0.84 0.64 0.72
Layered 0.67 0.31 0.42
Buried 0.43 0.23 0.3

Secondary 0 0 0

U-NetFormer

Other 0.83 0.69 0.75
Layered 0.47 0.46 0.47
Buried 0.59 0.46 0.52

Secondary 0.14 0.13 0.13

Table 5: Multi-class segmentation results for edge mask pre-
diction at template threshold = 0.5 for tile 13 (test).

Region Accuracy F1-score
U2-Net U-NetFormer U2-Net U-NetFormer

Crater 92.5 95.12 96.1 97.49

Non-crater 93.33 91.99 96.8 95.69

Table 6: Average accuracy and average F1-Score on DoMars16
for Crater (positive) and Non-crater (negative) class.

Figure 7: (a) Crop of 1◦ by 1◦ of the CTX test tile. (b), (c), and
(d) represent the zoomed-in region of the crop and its corre-
sponding predicted filledmasks for U2-Net and U-NetFormer
models respectively.

Figure 8: Importance of context in multi-class: (a) Crop of a
small area from tile #13 (test) showing an actual image, (b)
U-NetFormer predicted mask, (c) U2-Net predicted mask.

6 DISCUSSION
6.1 Importance of Context
In the process of semantic segmentation, the context of a pixel refers
to the neighboring region of the pixel. As mentioned in Section
4.1.2, the surrounding region of a crater plays an important role
in determining the class of the crater. Figure 8 shows an example
from each class and it can be observed that there is an important
context in classifying the type of crater. In Figure 8, (a) is a crop
of a small area from tile #13 (test), and the 2 craters bounded by
boxes 1 and 2 belong to layered and buried categories respectively.
(b) and (c) are the predicted masks of the same crop from the U-
NetFormer and U2-Net models, respectively. As stated previously,
the U-NetFormer model takes into consideration the context of the
neighboring pixels before assigning them a semantic value. The
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Figure 9: Crop of a small area from tile #13 (test) showing
(a) the actual image, (b) ground truth annotations, (c) U-
NetFormer predicted masks

result of this is visible, as it was able to predict and categorize both
the craters in question correctly, whereas the U2-Net-based model
categorized crater 1 as belonging to the “Other" class instead of
the “Layered" class, and it could not predict either of the 3 buried
craters, let alone categorizing them.

6.2 Inconsistencies in Data
This is one other critical factor that affects the results of the multi-
class segmentation to a large extent. We have considered the catalog
proposed by Lagain et al. [18] as the ground truth in the case of
multi-class segmentation, but we did not take into consideration
the possibility that there might be erroneous class labels in the
catalog. One such example is shown in Figure 9, where (a) is a crop
of a small area from tile #13, (b) shows the ground truth provided
by Lagain et al. [18] in their catalog and (c) is the predicted mask
of the same region using the U-NetFormer model. In (a), the craters
bounded by boxes 1, 2, and 3 all match the definition of a layered
crater, and yet, they have been marked as belonging to the "Other"
crater class. On the other hand, our model predicted them to be
of the layered class, which in a general sense should be the right
prediction but is considered as an incorrect prediction as the catalog
says otherwise. There were 3 misclassified craters in such a small
region of just 1 tile — across the entire tile, there would be enough
such instances to have a notable effect on the crater counts of the
multi-class segmentation.

6.3 Limitations and Future Work
When we talk about tasks related to categorization or classification,
any model tends to do better when it has near-equal data points of
all the classes. However, that was not the case with this study. The
4 crater classes were severely unbalanced, with only 403 secondary
craters and 2475 layered craters in the training tiles, as compared
to 11362 craters of the "Other" class. This is one of the reasons
why the model did not have the best multi-class segmentation
results. To handle this issue, we can consider using a weighted
categorical loss entropy function, assigning weights to each class
inversely proportional to the number of instances of each class. We
can also fine-tune the binary segmentation model for multi-class
segmentation by initializing the model weights learned from the
binary segmentation task.

The craters we identified in the CTX tile belong to a range of
70m to 800m radius, whereas in reality, there would be craters of
all sizes. Since we have used the same model for this task, we had

to split the CTX tile into crops of size 512 by 512px and used a
similar range of 14 to 160 pixels for the maximum radius parameter.
We can generate crops of different sizes (1024 by 1024px, 2048 by
2048px, and so on) and scale them down to the 512 by 512px scale,
adjust the pixel range so as to cover craters of all sizes, and predict
the craters from each of these different scale crops. This approach
might help identify craters of a larger range of sizes and could lead
to an automated generation of ground truth crater annotations for
CTX images.

As mentioned in Section 4.3.1, there is no high-resolution (based
on CTX or HiRISE) annotated dataset available publicly for crater
detection or crater segmentation. Also, domain experts will take
a significant amount of time manually annotating the data, as the
data is in terabytes. However, automated CDAs can be helpful in
reducing human efforts and making it a less time-consuming task.
Predictions or outputs from CDAs can be considered as a starting
point and experts can use them to generate annotations by rectify-
ing the incorrect or mismatched predictions, which is a less tedious
task. Also, high-resolution satellite images are helpful in identify-
ing small craters (the ones which are undetectable in THEMIS or
low-resolution satellite images due to a lower meters/pixel resolu-
tion). As we proposed above, CTX data with different scales can be
used to detect craters of all sizes. Thus, space scientists can use our
model to generate a baseline set of annotations for high-resolution
data, as our results prove that our model is capable of detecting
craters on high-resolution data as well (shown in Figure 7).

7 CONCLUSION
Crater Counting is a critical part of larger studies related to surface
age estimation, safe path analysis, rover landing, and other plan-
etary research. Various Deep Learning-based models have been
used in the past for this specific purpose, but there was never a
definitive State-of-the-Art (SOTA) model. We achieved better per-
formance than the previous state-of-the-art U-Net-based model by
employing the U2-Net model for binary segmentation. However,
for multi-class segmentation, the U-NetFormer model surpassed
the U2-Net model. Both of these methods demonstrated approxi-
mately a 10% improvement in f1-score compared to the U-Net-based
model for binary segmentation. Moreover, none of the previous
methods addressed multi-class segmentation. Multi-class crater
segmentation is critical as it helps get a more accurate estimate
of the surface age. As per the authors’ knowledge, this is the first
attempt to perform an automated multi-class crater segmentation
and the results are promising given the challenges related to the
class imbalance. We further proved that our hypothesis regarding
the importance of context for multi-class crater segmentation was
true, which is the reason why U-NetFormer performs better than
U2-Net. Detecting craters on higher-resolution CTX images is also
something researchers have not explored in the past. We used the
same model on this Out-of-distribution data which is of a com-
pletely different scale, and yet, both our models were able to detect
craters pertaining to a similar range in terms of the pixel size. We
also performed a similar evaluation on the CTX-based DoMars16
dataset and our model had exceptional results in identifying craters
and not identifying non-craters, with an accuracy of 95.12%. We
hope that our work helps space scientists with the various space
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exploration tasks and that it inspires computer scientists to build
more robust models for Binary and Multi-class Segmentation of
not just craters, but other planetary surface features as well.
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A SUPPLEMENTARY RESULTS

Tile # Tile name Model Template
Threshold

Matched Craters
(TP)

Detected Craters
(TP + FP)

Craters in range
(TP + FN) Precision Recall F1-Score MaxR

13 thm_dir_N00_030_0_30_30_60_filled.png U-Net

0.5 1568 4656 2256 0.34 0.70 0.45 138
0.55 1525 2438 2256 0.63 0.68 0.65 134
0.6 1465 1878 2256 0.78 0.65 0.71 130
0.65 1364 1576 2256 0.87 0.60 0.71 128

13 thm_dir_N00_030_0_30_30_60_filled.png U2-Net

0.5 1749 4019 2256 0.44 0.78 0.56 138
0.55 1754 2102 2256 0.83 0.78 0.80 134
0.6 1705 1897 2256 0.90 0.76 0.82 129
0.65 1644 1774 2256 0.93 0.73 0.82 129

13 thm_dir_N00_030_0_30_30_60_filled.png U-NetFormer

0.5 1825 3895 2256 0.47 0.81 0.59 138
0.55 1832 2220 2256 0.83 0.81 0.82 137
0.6 1774 1976 2256 0.90 0.79 0.84 130
0.65 1728 1877 2256 0.92 0.77 0.84 133

16 thm_dir_N00_120_0_30_120_150_filled.png U-Net

0.5 470 901 638 0.52 0.74 0.61 99
0.55 462 618 638 0.75 0.72 0.74 100
0.6 451 539 638 0.84 0.71 0.77 101
0.65 442 499 638 0.89 0.69 0.78 102

16 thm_dir_N00_120_0_30_120_150_filled.png U2-Net

0.5 549 937 638 0.59 0.86 0.70 135
0.55 547 637 638 0.86 0.86 0.86 136
0.6 546 605 638 0.90 0.85 0.88 103
0.65 538 579 638 0.93 0.84 0.88 104

16 thm_dir_N00_120_0_30_120_150_filled.png U-NetFormer

0.5 547 894 638 0.61 0.86 0.71 138
0.55 546 628 638 0.87 0.85 0.86 102
0.6 546 604 638 0.90 0.85 0.88 122
0.65 534 578 638 0.92 0.84 0.88 123

21 thm_dir_N00_270_0_30_-90_-60_filled.png U-Net

0.5 516 1114 606 0.46 0.85 0.6 138
0.55 506 737 606 0.69 0.83 0.75 121
0.6 496 622 606 0.80 0.82 0.81 103
0.65 476 549 606 0.87 0.79 0.82 103

21 thm_dir_N00_270_0_30_-90_-60_filled.png U2-Net

0.5 574 1014 606 0.57 0.95 0.71 135
0.55 574 679 606 0.85 0.95 0.89 115
0.6 569 632 606 0.90 0.94 0.92 110
0.65 561 599 606 0.94 0.93 0.93 110

21 thm_dir_N00_270_0_30_-90_-60_filled.png U-NetFormer

0.5 550 750 606 0.73 0.91 0.81 133
0.55 548 598 606 0.92 0.90 0.91 112
0.6 544 575 606 0.95 0.90 0.92 97
0.65 539 562 606 0.96 0.89 0.92 98

Table 7: Quantative comparison of three models for different template thresholds using tile 13 (test), tile 16(validation), and
21(validation) on binary segmentation. "Tile name" represents the corresponding name of the file given in the dataset by [9]
and "MaxR" represents the maximum radius crater found (pixels).
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Object Class Feature Total # of samples Accuracy F1-Score
U2-Net U-NetFormer U2-Net U-NetFormer

Crater Crater 1164 95.27 97.16 0.97 0.98
Crater Field 1342 89.71 93.07 0.94 0.96

Non-crater

Aeolian Curved 632 90.03 86.55 0.95 0.93
Aeolian Straight 475 97.68 97.05 0.99 0.99
Channel 112 91.96 88.39 0.96 0.94
Cliff 266 95.86 80.45 0.98 0.89
Gullies 493 96.96 98.58 0.98 0.99
Mass Wasting 263 98.48 95.82 0.99 0.98
Mixed Terrain 45 88.89 93.33 0.94 0.97
Mounds 514 80.93 77.82 0.89 0.88
Ridge 186 95.16 95.70 0.97 0.98
Rough Terrain 33 93.94 90.91 0.97 0.95
Slope Streaks 49 100 100 100 100
Smooth Terrain 88 100 100 100 100
Textured Terrain 23 91.30 91.30 0.95 0.95

Table 8: Total number of samples for Crater (positive) and Non-crater (negative) classes and performance in terms of accuracy
and F1-Score on DoMars16.
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