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ABSTRACT

Diffusion and flow matching models have recently driven significant break-
throughs in generative modeling. While state-of-the-art models produce
high-quality samples on average, individual samples can still be low quality.
Detecting such samples without human inspection remains a challenging task.
To address this, we propose a Bayesian framework for estimating the generative
uncertainty of synthetic samples. We outline how to make Bayesian inference
practical for large, modern generative models and introduce a new semantic
likelihood to address the challenges posed by high-dimensional sample spaces.
Through our experiments, we demonstrate that the proposed generative uncer-
tainty effectively identifies poor-quality samples and significantly outperforms
existing uncertainty-based methods. Notably, our Bayesian framework can be
applied post-hoc to any pretrained diffusion or flow matching model (via the
Laplace approximation), and we propose simple yet effective techniques to
minimize its computational overhead during sampling.

1 INTRODUCTION

Diffusion and flow-matching models (Sohl-Dickstein et al., 2015; Song et al., 2020a;b; Lipman
et al., 2022) have recently pushed the boundaries of generative modeling due to their strong
theoretical underpinnings and easy-to-scale nature. Across various domains, they have enabled
the generation of increasingly realistic samples (Rombach et al., 2022; Esser et al., 2024; Li et al.,
2024). Despite impressive progress, state-of-the-art models can still generate low-quality images
that contain artifacts or fail to align with the provided conditioning information. As a result, users
deploying these models may need multiple generations to manually find a high-quality sample.
This raises a key question: how can we detect poor generations?

Bayesian inference has long been applied to detect poor-quality predictions in predictive models
(Gal et al., 2016; Wilson, 2020; Arbel et al., 2023). By capturing the uncertainty of the model
parameters due to limited training data, each prediction can be assigned a predictive uncertainty,
which, when high, serves as a warning that the prediction may be unreliable. Despite its widespread
use for principled uncertainty quantification in predictive models, Bayesian methodology has been
far less commonly applied to detecting poor generations in generative modeling. One notable
exception is BayesDiff (Kou et al., 2024), which uses Bayesian uncertainty to filter out low-quality
samples in diffusion models for natural images. However, BayesDiff’s uncertainty estimates are
not particularly indicative of a sample’s actual quality and instead serve primarily as a detector of
images with ‘cluttered’ backgrounds (Fig. 5).

In this work, we propose a Bayesian framework for estimating generative uncertainty in modern
generative models, such as diffusion. To scale Bayesian inference for large diffusion models, we
employ the (last-layer) Laplace approximation (Daxberger et al., 2021a). Additionally, to address
the challenge posed by the high-dimensional sample spaces of data such as natural images, we
introduce a semantic likelihood, where we leverage pretrained image encoders (such as CLIP
(Radford et al., 2021)) to compute variability in a latent, semantic space instead. Through our ex-
periments, we demonstrate that generative uncertainty is an effective tool for detecting low-quality
samples and propose simple strategies to minimize the sampling overhead introduced by Bayesian
inference. In particular, we make the following contributions:

1. We formalize the notion of generative uncertainty and propose a method to estimate it
for modern generative models (Section 3). Analogous to how predictive uncertainty helps
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identify unreliable predictions in predictive models, generative uncertainty can be used to
detect low-quality generations in generative models.

2. We show that our generative uncertainty strongly outperforms previous uncertainty-based
approaches for filtering out poor samples (Kou et al., 2024; De Vita & Belagiannis, 2025).
Additionally, we achieve competitive performance with non-uncertainty-based methods,
such as realism scores (Kynkäänniemi et al., 2019) and rarity scores (Han et al., 2023)
(Section 4.1).

3. We propose effective strategies to reduce the sampling overhead of Bayesian uncertainty
(Section 4.2) and demonstrate the applicability of our framework beyond diffusion models
by applying it to a (latent) flow matching model (Section D.7).

2 BACKGROUND

2.1 GENERATIVE MODELING

Sampling in Generative Models Modern deep generative models like variational autoencoders
(VAEs), generative adversarial networks (GANs), and diffusion models differ in their exact
probabilistic frameworks and training schemes, yet share a common sampling recipe: start with
random noise and transform it into a new data sample (Tomczak, 2022). Specifically, let x ∈ X
denote a data sample and z ∈ Z an initial noise. A new sample is generated by:

z ∼ p(z) , x̂ = gθ(z) ,

where p(z) is an initial noise (prior) distribution, typically a standard Gaussian N (0, I), and
gθ : Z → X is a generator function with model parameters θ ∈ RP .

Diffusion Models The primary focus of this work is on diffusion models (Sohl-Dickstein et al.,
2015; Ho et al., 2020; Song et al., 2020b).1 These models operate by progressively corrupting data
into Gaussian noise and learning to reverse this process. For a data sample x0 ∼ q(x), the forward
(noising) process is defined as

xt =
√
ᾱtx0 +

√
1− ᾱtϵ, ϵ ∼ N (0, I)

where ᾱt =
∏t
s=1(1−βs) and {βs}Ts=1 is a noise schedule chosen such that xT ∼ N (0, I) (approx-

imately). In the backward process, a denoising network, fθ, is learned via a simplified regression
objective (among various possible parameterizations, see Song et al. (2020b) or Karras et al. (2022)):

L(θ;D) = Et,x0,ϵ

[∣∣fθ(√ᾱtx0 +
√
1− ᾱtϵ, t)− ϵ

∣∣∣∣∣∣2
2

]
(1)

where D = {xn}Nn=1 denotes a training dataset of images. After training, diffusion models generate
new samples via a generator function, gθ̂, which consists of sequentially applying the learned
denoiser, fθ̂, and following specific transition rules from samplers such as DDPM (Ho et al., 2020)
or DDIM (Song et al., 2020a).

2.2 BAYESIAN DEEP LEARNING

Bayesian neural networks (BNNs) go beyond point predictions and allow for principled uncertainty
quantification (MacKay, 1995; Kendall & Gal, 2017; Jospin et al., 2022). Let hψ : X → Y denote
a predictive model with parameters ψ ∈ RO and D = {(xn,yn)}Ni=1 denote training data. A
point-prediction model would find a single fixed set of parameters, ψ̂ = argmaxL(ψ;D), that
maximizes an objective function, L. Meanwhile, a Bayesian Neural Network (BNN) specifies a
prior, p(ψ), over model parameters and defines a likelihood, p(y|hψ(x)), which together yield a
posterior distribution via Bayes’ rule: p(ψ|D) ∝ p(ψ)

∏N
n=1 p(yn|hψ(xn)). Under this Bayesian

view, a predictive model for a new test point x∗ is then obtained via the posterior predictive
distribution (Murphy, 2022):

p(y|x∗,D) = Ep(ψ|D)

[
p(y|hψ(x∗))

]
.

1Our framework extends beyond diffusion models and can be applied to other generative model families.
See Figure TODO for a demonstration on flow matching models (Lipman et al., 2022).
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For large models, finding the exact posterior distribution is computationally intractable, hence an
approximate posterior q(ψ|D) is used instead. Popular approaches for approximate inference in-
clude deep ensembles (Lakshminarayanan et al., 2017), variational inference (Blundell et al., 2015;
Zhang et al., 2018), SWAG (Mandt et al., 2017; Maddox et al., 2019), and Laplace approximation
Daxberger et al. (2021a). Moreover, to alleviate computational overhead, it is common to give
a ”Bayesian treatment” only to a subset of parameters (Kristiadi et al., 2020; Daxberger et al.,
2021b; Sharma et al., 2023). Finally, the intractable expectation integral in the posterior predictive
is approximated via Monte-Carlo (MC) sampling:

p(y|x∗,D) ≈ 1

M

M∑
m=1

p(y|hψm
(x∗)), ψm ∼ q(ψ|D), (2)

with M denoting the number of MC samples. By measuring the variability of the posterior
predictive distribution, e.g., its entropy, one can obtain an estimate of the model’s predictive
uncertainty for a given test point u(x∗). The utility of such uncertainties has been demonstrated on
a wide range of tasks like out-of-distribution (OOD) detection (Daxberger et al., 2021a) and active
learning (Gal et al., 2017).

3 GENERATIVE UNCERTAINTY VIA BAYESIAN INFERENCE

While Bayesian neural networks (BNNs) have traditionally been applied to predictive models
to estimate predictive uncertainty, we demonstrate how to apply them to diffusion to estimate
generative uncertainty in this section (see Figure 4 for an overview of our method). Later in Section
4, we show that generative uncertainty can be used to detect poor-quality samples. Our focus is on
generative models for natural images, where x ∈ RH×W×C . For ease of exposition, we consider
unconditional generation in this section, though our methodology can also be applied directly to
conditional models.

3.1 BAYESIAN DIFFUSION

As in traditional Bayesian predictive models (cf. Section 2.2), the central principle for obtaining a
Bayesian notion of uncertainty in diffusion models is the posterior predictive distribution:

p(x|z,D) = Ep(θ|D)

[
p(x|gθ(z))

]
. (3)

Here, we use z (with a slight abuse of notation) to denote the entire randomness involved in the
diffusion sampling process.2 Generative uncertainty is then defined as the variability of the posterior
predictive:

u(z) := H(p(x|z,D)) (4)

where H(·) denotes the entropy. We propose a tractable estimator of entropy later in Eq. 8.
We choose entropy as the variability measure due to its simplicity and widespread use in quan-
tifying predictive uncertainty. However, we note that alternative measures of variability, such as
pairwise-distance estimators (PAiDEs) (Berry & Meger, 2023), can also be employed.

In the same way that the predictive uncertainty u(x∗), of a predictive model hψ provides insight
into the quality of its prediction for a new test point x∗, the generative uncertainty u(z) of a
diffusion model gθ should offer information about the quality of the generation gθ(z) for a ”new”
random noise sample z. We demonstrate this relationship experimentally in Section 4. Next, we
discuss how to make Bayesian inference on (large) diffusion models computationally tractable.

3.2 LAST-LAYER LAPLACE APPROXIMATION

State-of-the-art diffusion models are extremely large (100M to 1B+ parameters) and can take weeks
to train. Consequently, the computational overhead of performing Bayesian inference on such large
models is a significant concern. To address this, we adopt the Laplace approximation (MacKay,

2For example, in DDIM (Song et al., 2020a) and ODE sampling (Song et al., 2020b), z = ϵT , whereas in
DDPM (Ho et al., 2020) and SDE sampling (Song et al., 2020b), z = {ϵT , . . . , ϵ1} with ϵt ∼ N (0, I).
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1992; Shun & McCullagh, 1995) to approximate the posterior q(θ|D). The Laplace approxima-
tion is among the most computationally efficient approximate inference methods while still offering
competitive performance (Daxberger et al., 2021a). Moreover, a particularly appealing feature of the
Laplace approximation is that it can be applied post-hoc to any diffusion model. We leverage this
property in Section 4, where we apply it to a variety of popular diffusion and flow-matching models.

The Laplace approximation of the posterior is given by:

q(θ|D) = N (θ|θ̂,Σ), Σ =
(
∇2
θL(θ;D)

∣∣
θ̂

)−1
, (5)

where θ̂ represents the parameters of a pre-trained diffusion model, and Σ is the inverse Hessian
of the diffusion (regression) loss from Eq. 1. To reduce the computational cost further, we apply a
”Bayesian” treatment only to the last layer of the denoising network fθ.

We note that the use of last-layer Laplace approximation for diffusion models has been previously
proposed in BayesDiff (Kou et al., 2024). While our implementation of the Laplace approximation
closely follows theirs, there are significant differences in how we utilize the approximate posterior,
q(θ|D). Specifically, in our approach, we use it within the traditional Bayesian framework (Eq. 3) to
sample new diffusion model parameters, leaving the diffusion sampling process, gθ, unchanged. In
contrast, BayesDiff resamples new weights from q(θ|D) at every diffusion sampling step t, which
necessitates substantial modifications to the diffusion sampling process through their variance
propagation approach. We later demonstrate in Section 4 that modifications such as variance
propagation are unnecessary for obtaining Bayesian generative uncertainty and staying closer to the
traditional Bayesian setting leads to the best empirical performance.

3.3 SEMANTIC LIKELIHOOD

We next discuss the choice of likelihood for estimating generative uncertainty in diffusion models.
Since the denoising problem in diffusion is modeled as a (multi-output) regression problem, the
most straightforward approach is to place a simple Gaussian distribution over the generated sample:

p(x|gθ(z)) = N (x|gθ(z), σ2I), (6)

where σ2 represents the observation noise.

However, as we will demonstrate in Section 4, this likelihood leads to non-informative estimates
of generative uncertainty (Eq. 4). The primary issue is that the sample space of natural images
is high-dimensional (i.e., |X | = HWC). Consequently, placing the likelihood directly in the
sample space causes the variability of the posterior predictive distribution to be based on pixel-level
differences. This is problematic because it is well-known that two images can appear nearly
identical to the human eye while exhibiting a large L2-norm difference in pixel space X (see, for
example, the literature on adversarial examples (Szegedy, 2013)). To get around this, we propose
to map the generated samples to a ”semantic” latent space, S, via a pre-trained feature extractor,
cϕ : X → S (e.g., an inception-net (Szegedy et al., 2016) or a CLIP encoder (Radford et al., 2021)).
The resulting semantic likelihood has the form

p(x|gθ(z);ϕ) = N (e(x)|cϕ
(
gθ(z)

)
, σ2I) (7)

where e(x) ∈ S is the vector of extracted semantic features.

By combining the (last-layer) Laplace approximate posterior and the semantic likelihood, we can
now approximate the posterior predictive (Eq. 3) as

p(x|z,D) ≈ N
(
e(x)

∣∣ ē, Diag
( 1

M

M∑
m=1

e2m − ē2
)
+ σ2

)
,

ē =
1

M

M∑
m=1

em, em = cϕ
(
gθm(z)

)
, θm ∼ q(θ|D) , (8)

where M denotes the number of Monte Carlo samples. Additionally, we approximate the posterior
predictive with a single Gaussian via moment matching here, a common practice in Bayesian neural
networks for regression problems (Lakshminarayanan et al., 2017; Antorán et al., 2020).
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Unlike in the posterior predictive for predictive models (Eq. 2), where it is used to obtain both the
prediction and the associated uncertainty, the generative posterior predictive (Eq. 8) is used solely
to estimate the generative uncertainty u(z). The actual samples x̂ are still generated using the
pre-trained diffusion model gθ̂ (see Algorithm 1).

3.4 EPISTEMIC UNCERTAINTY

Bayesian uncertainty is commonly decomposed into two components: aleatoric and epistemic
uncertainty (Hüllermeier & Waegeman, 2021; Smith et al., 2024). Aleatoric uncertainty represents
the irreducible uncertainty inherent in the data-generating process, while epistemic uncertainty
arises from observing only a limited amount of training data. In our framework, we fix the
observation noise in the semantic likelihood (Eq. 7) to a small constant value (e.g., σ = 0.001). As
a result, the generative uncertainty we capture is primarily epistemic in nature, reflecting uncertainty
about the model parameters θ due to limited training data via q(θ|D). Extending our framework to
additionally capture the aleatoric uncertainty of a generative process presents an interesting avenue
for future research. Furthermore, since the parameters ϕ of the semantic feature extractor cϕ are
kept fixed in the semantic likelihood, the resulting generative uncertainty u(z) continues to reflect
the epistemic uncertainty of the diffusion model parameters θ.

4 EXPERIMENTS

In our experiments, we demonstrate that generative uncertainty is an effective method for detecting
poor samples in diffusion models (Section 4.1). We also discuss the sampling overhead introduced
by our Bayesian approach and show that it can be effectively minimized (Section 4.2). Finally, we
extend our Bayesian framework beyond diffusion by applying it to detect low-quality samples in a
(latent) flow matching model (Appendix D.7). Code to replicate all our experiments and figures is
publicly available at GITHUB REPO.

4.1 DETECTING POOR GENERATIONS

Table 1: Image generation results for 10K filtered samples (out of 12K) based on various metrics.
Our generative uncertainty outperforms previously proposed uncertainty-based approaches in terms
of image quality (AU (De Vita & Belagiannis, 2025), BayesDiff (Kou et al., 2024)), as indicated
by higher FID and precision scores, and is competitive with non-uncertainty methods (Realism
(Kynkäänniemi et al., 2019), Rarity (Han et al., 2023)). We report mean values along with standard
deviations over 3 runs with different random seeds.

ADM (DDIM), ImageNet 128×128 UViT (DPM), ImageNet 256×256

FID (↓) Precision (↑) Recall (↑) FID (↓) Precision (↑) Recall (↑)
Random 11.31± 0.07 58.90± 0.36 70.68± 0.38 9.46± 0.12 60.94± 0.24 73.82± 0.33
BayesDiff 11.20± 0.05 58.80± 0.05 70.62± 0.32 9.16± 0.17 61.77± 0.19 73.72± 0.38
AU 11.39± 0.05 58.82± 0.42 70.70± 0.38 9.20± 0.12 61.80± 0.33 73.46± 0.24
Ours 10.14± 0.08 61.26± 0.26 69.60± 0.49 7.89± 0.12 64.14± 0.17 71.92± 0.35

Realism 9.76± 0.04 67.95± 0.19 66.32± 0.40 8.24± 0.09 70.29± 0.15 69.12± 0.32
Rarity 10.09± 0.02 64.99± 0.16 67.73± 0.47 8.37± 0.11 67.21± 0.10 67.76± 0.48

To evaluate whether our newly introduced generative uncertainty can be used to detect low-quality
generations, we follow the experimental setup from prior work on uncertainty-based filtering (Kou
et al., 2024; De Vita & Belagiannis, 2025). Specifically, we generate 12K samples using a given
diffusion model and compute the uncertainty estimate for each sample. We then select the 10K
samples with the lowest uncertainty. If uncertainty reliably reflects the visual quality of generated
samples, filtering based on it should yield greater improvements in population-level metrics (such
as FID) compared to selecting a random subset of 10K images.

Implementation Details To ensure a fair comparison with BayesDiff (Kou et al., 2024), we
adopt their proposed implementation of the last-layer Laplace approximation. Specifically, we use

5
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Figure 1: Images with the highest (left) and the lowest (right) generative uncertainty (Eq. 8) among
12K generations using a UViT diffusion model (Bao et al., 2023). Generative uncertainty correlates
with visual quality, as high-uncertainty samples exhibit numerous artefacts, whereas low-uncertainty
samples resemble canonical images of their respective conditioning class.

Figure 2: Images with the highest (bottom) and the lowest (top) generative uncertainty among 128
generations using a UViT diffusion model (Bao et al., 2023) for 2 classes: black swan (left) and
Tibetan terrier (right).

an Empirical Fisher approximation of the Hessian with a diagonal factorization (Daxberger et al.,
2021a). When computing the posterior predictive distribution (Eq. 8), we use M = 5 Monte Carlo
samples. For the semantic feature extractor cϕ, we leverage a pretrained CLIP encoder (Radford
et al., 2021). Additional implementation details are provided in Appendix E.

Baselines We first compare our proposed generative uncertainty to existing uncertainty-based
approaches for detecting low-quality samples: BayesDiff (Kou et al., 2024) and the aleatoric
uncertainty (AU) approach proposed by De Vita & Belagiannis (2025). BayesDiff estimates
epistemic uncertainty in diffusion models using a last-layer Laplace approximation and tracks
this uncertainty throughout the entire sampling process via their variance propagation method. In
contrast, De Vita & Belagiannis (2025) computes aleatoric uncertainty by measuring the sensitivity
of intermediate diffusion scores to random perturbations. Unlike our approach, both methods
estimate uncertainty directly in pixel space.

Importantly, we also compare our method against non-uncertainty-based sample-level metrics, such
as the realism score (Kynkäänniemi et al., 2019) and the rarity score (Han et al., 2023). These met-
rics work by measuring the distance of a generated sample from the data manifold (derived from a
reference dataset) in a semantic space spanned by the inception-net features (Szegedy et al., 2016).
Notably, prior work (Kou et al., 2024; De Vita & Belagiannis, 2025) has not considered such compar-
isons, which we believe are essential for assessing the practical utility of uncertainty-based filtering.
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Evaluation Metrics In addition to the widely used Fréchet Inception Distance (FID) (Heusel
et al., 2017) for evaluating the quality of a filtered set of images, we also report precision and
recall metrics (Sajjadi et al., 2018; Kynkäänniemi et al., 2019). To compute these quantities we
fit two manifolds in feature space: one for the generated images and another for the reference
(training) images. Precision is the proportion of generated images that lie in the reference image
manifold while recall is the proportion of reference images that lie in the generated image manifold.
Precision measures the quality (or fidelity) of generated samples, whereas recall quantifies their
diversity (or coverage over the reference distribution).

Results We present our main results on the ImageNet dataset in Table 1. We first observe that
existing uncertainty-based approaches (BayesDiff and AU) result in little to no improvement in
metrics that assess sample quality (FID and precision). In contrast, our generative uncertainty
method leads to significant improvements in terms of both FID and precision. For example, on
the UViT model (Bao et al., 2023), a subset of images selected based on our uncertainty measure
achieves an FID of 7.89, significantly outperforming both the Random baseline (9.45) and existing
uncertainty-based methods (BayesDiff 9.16, AU 9.20).

Next, in order to qualitatively demonstrate the effectiveness of our approach, we show 25 samples
with the highest and lowest generative uncertainty (out of the original 12K samples) according to
our method in Figure 1. High-uncertainty samples exhibit numerous artefacts, and in most cases,
it is difficult to determine what exactly they depict. Combined with the quantitative results in Table
1, this supports our hypothesis that (Bayesian) generative uncertainty is an effective metric for
identifying low-quality samples. Conversely, the lowest-uncertainty samples are of high quality,
with most appearing as ‘canonical’ examples of their respective (conditioning) class.

For comparison, in Figure 5 we also depict the 25 ”worst” and ”best” samples according to the
uncertainty estimate from BayesDiff (Kou et al., 2024). It is evident that their uncertainty is less
informative for sample quality than ours. Moreover, their uncertainty measure appears to be very
sensitive to the background pixels. Most images with the highest uncertainty have a ‘cluttered’
background, whereas most images with the lowest uncertainty have a ‘clear’ background. We
attribute this issue to the fact that in BayesDiff the uncertainty is computed directly in the pixel
space, unlike in our approach where we use the semantic likelihood (Section 3.3) to move away
from the (high-dimensional) sample space. To further verify the importance of the semantic
likelihood, in Figure 7 we perform an ablation where we compute our generative uncertainty
directly in the pixel-space. It is clear that without semantic likelihood, our uncertainty becomes
overly sensitive to the background pixels in the same way as in BayesDiff.

Returning to Table 1, we observe that filtering based on our generative uncertainty results in some
loss of sample diversity, as evidenced by lower recall scores (e.g., 73.82 for Random vs. 71.92 for
our method on the UViT model). We attribute this to the fact that, in our main experiment, 12K
images are generated unconditionally.3 As a result, all 1000 ImageNet classes are represented. Since
certain classes produce images with higher uncertainty (see Appendix D.6 for a detailed analysis),
filtering based on uncertainty inevitably alters the class distribution among the selected samples.
We expect this issue to be less pronounced in conditional generation (see Figure 2). Moreover, the
trade-off between improving sample quality (precision) and reducing diversity (recall) has been
observed before, see for example the literature on classifier-free guidance (Ho & Salimans, 2022).

Lastly, we compare our proposed method with non-uncertainty-based approaches—a compar-
ison missing in prior literature (Kou et al., 2024; De Vita & Belagiannis, 2025). For realism
(Kynkäänniemi et al., 2019), we retain the 10K images with the highest scores, whereas for rarity
(Han et al., 2023), we keep those with the lowest scores. As shown in Table 1, our generative
uncertainty is the only uncertainty-based method that approaches realism and rarity in terms of FID
(e.g., 7.89 for ours vs. 8.24 for realism and 8.37 for rarity on UViT). However, a large gap remains
in precision (e.g., 64.14 for ours vs. 70.29 for realism and 67.21 for rarity on UViT). Notably,
realism and rarity sacrifice the most sample diversity, as indicated by their lowest recall scores (e.g.,
69.12 for realism and 67.76 for rarity on UViT).

3Following Kou et al. (2024), we actually still use class-conditional diffusion models but randomly sample
a class for each of the 12K generated samples.
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Furthermore, Table 2 shows that our score can be effectively combined with realism or rarity scores.
Specifically, combining our score with realism yields an FID of 7.60 on UViT, compared to 8.26
when combining realism and rarity. We attribute higher benefits from ensembling our score to
the fact that, while realism and rarity exhibit a strong negative Spearman correlation (-0.85), our
uncertainty measure is less correlated with them (-0.27 with realism, 0.38 with rarity), as shown in
Figure 10.

4.2 IMPROVING SAMPLING EFFICIENCY

Figure 3: FID results for 10K ImageNet-filtered
images using our generative uncertainty on ADM
model (Dhariwal & Nichol, 2021). We vary the
number of Monte Carlo samples M and diffusion
sampling steps T (see Algorithm 1). By default,
we use M = 5 with T = 50, incurring an addi-
tional 250 NFEs for uncertainty estimation. En-
couragingly, setting M = 1 and T = 25 still
achieves competitive performance while reducing
the sampling overhead by 10x.

We next examine the sampling costs associ-
ated with Bayesian inference in diffusion sam-
pling. As shown in Algorithm 1, obtaining an
uncertainty estimate u(z) for a generated sam-
ple x̂0 = gθ(z) requires generating M addi-
tional samples, resulting in MT additional net-
work function evaluations (NFEs). For the re-
sults presented in Table 1, we use M = 5 and
the default number of sampling steps T = 50,
leading to an additional 250 NFEs for uncer-
tainty estimation—on top of the 50 NFEs re-
quired to generate the original sample. Since
this overhead may be prohibitively expensive in
certain deployment scenarios, we next explore
strategies to reduce the sampling cost associ-
ated with our generative uncertainty.

The most straightforward approach is to reduce
the number of Monte Carlo samples M . En-
couragingly, reducing M to as low as 1 still
achieves highly competitive performance (see
Figure 3). Further efficiency gains can be
achieved by reducing the number of sampling steps T , leveraging the flexibility of diffusion mod-
els to adjust T on the fly. Importantly, we lower T only for the additional M samples used for
uncertainty assessment while keeping the default T for the original sample x̂0 to ensure that the
generation quality is not compromised. Taken together, reducing M and T significantly improves
the efficiency of our generative uncertainty. Concretely, using the ADM model (Dhariwal & Nichol,
2021), our generative uncertainty method with M = 1 and T = 25 achieves an FID of 10.36, which
still strongly outperforms both the Random (11.31) and BayesDiff (11.20) baselines while requiring
only 25 additional NFEs.

5 CONCLUSION

We introduced generative uncertainty and demonstrated how to estimate it in modern generative
models such as diffusion. Our experiments showed the effectiveness of generative uncertainty in
filtering out low-quality samples. For future work, it would be interesting to explore broader ap-
plications of Bayesian principles in generative modeling beyond detecting poor-quality generations.
Promising directions include guiding synthetic data generation and optimizing diffusion hyperpa-
rameters via marginal likelihood using the Laplace approximation.
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Eyke Hüllermeier and Willem Waegeman. Aleatoric and epistemic uncertainty in machine learning:
An introduction to concepts and methods. Machine learning, 110(3):457–506, 2021.

Jaehui Hwang, Junghyuk Lee, and Jong-Seok Lee. Anomaly score: Evaluating generative models
and individual generated images based on complexity and vulnerability. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8754–8763, 2024.

Alexander Immer, Matthias Bauer, Vincent Fortuin, Gunnar Rätsch, and Khan Mohammad Emtiyaz.
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APPENDIX

The supplementary material is organized as follows:

• In Appendix A, we supplement our methods (Section 3) with an algorithm and a diagram
explaining our generative uncertainty.

• In Appendix B, we describe related literature.
• In Appendix C, we point out limitations of our work.
• In Appendix D.1, we qualitatively compare our method with BayesDiff (Kou et al., 2024).
• In Appendix D.2, we perform ablations on our semantic likelihood (Section 3.3).
• In Appendix D.3, we demonstrate how to use our generative uncertainty for pixel-wise

uncertainty.
• In Appendix D.4, we show that diffusion’s own likelihood is not useful for filtering out

poor samples.
• In Appendix D.5, we further compare our generative uncertainty to realism (Kynkäänniemi

et al., 2019) and rarity (Han et al., 2023) scores.
• In Appendix D.6, we investigate the drop in sample diversity by looking at the average

generative uncertainty per conditioning class.
• In Appendix D.7, we apply our generative uncertainty to detect low-quality samples in a

latent flow matching model (Dao et al., 2023).
• In Appendix E, we provide implementation and experimental details.
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A GENERATIVE UNCERTAINTY: METHOD AND ALGORITHM

… …

θi ∼ q(θ |𝒟)

gθ1 gθm
gθM

cϕ cϕ cϕ

Low u(z1)

… …

z1 ∼ p(z)

… …
cϕ cϕ cϕ

… …

High u(z2)

gθ1 gθm
gθM

z2 ∼ p(z)

u(z) := H(p(x |z, 𝒟)

Figure 4: Demonstration of how we compute generative uncertainty for each random noise z. We
sample M sets of model parameters from our posterior distribution q(θ|D) and generate M im-
ages. Then, we evaluate the semantic likelihood for each by computing feature embeddings with a
pretrained encoder cϕ (e.g., CLIP) and take the uncertainty (e.g. entropy) over these embeddings.
Random noises z with low uncertainty (left) tend to lead to consistent, high quality generations
while random noises with high uncertainty (right) lead to poor, discordant generations.

Algorithm 1: Diffusion Sampling with Generative Uncertainty
Input : random noise z, pretrained diffusion model gθ̂, Laplace posterior q(θ|D) (Eq. 5),

number of MC samples M , semantic feature extractor cϕ, semantic likelihood noise σ
Output: generated sample x̂0, generative uncertainty estimate u(z)

1 Generate a sample x̂0 = gθ̂(z)
2 Get semantic features e0 = cϕ(x̂0)
3 for m = 1 →M do
4 θm ∼ q(θ|D)
5 x̂m = gθm(z)
6 em = cϕ(x̂m)
7 end
8 Compute p(x|z,D) using {em}Mm=0 (Eq. 7)
9 Compute the entropy u(z) = H(p(x|z,D))

10 return x̂0, u(z)

B RELATED WORK

Uncertainty quantification in diffusion models has recently gained significant attention. Most
related to our work are BayesDiff (Kou et al., 2024), which uses a Laplace approximation to track
epistemic uncertainty throughout the sampling process, and De Vita & Belagiannis (2025), which
captures aleatoric uncertainty via the sensitivity of diffusion score estimates. Our work extends both
by proposing a more general (applicable beyond diffusion), simpler approach (requiring no sampling
modifications), and a more effective (see Section 4.1) uncertainty framework.

Also related is DECU (Berry et al., 2024), which employs an efficient variant of deep ensembles
(Lakshminarayanan et al., 2017) to capture the epistemic uncertainty of conditional diffusion mod-
els. However, DECU does not consider using uncertainty to detect poor-quality generations, as its
framework provides uncertainty estimates at the level of the conditioning variable, whereas ours
estimates uncertainty at the level of initial random noise. Similarly, in Chan et al. (2024) the use
of hyper-ensembles is proposed to capture epistemic uncertainty in diffusion models for inverse
problems such as super-resolution, but, as in DECU, their approach does not provide uncertainty es-
timates in unconditional settings or in conditional settings with low-dimensional conditioning (such
as class-conditional generation). Moreover, both DECU (Berry et al., 2024) and Chan et al. (2024)
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require modifying and retraining diffusion model components, whereas our approach operates post-
hoc with any pretrained diffusion model via the Laplace approximation (Daxberger et al., 2021a).
A recent approach, PUNC (Franchi et al., 2024), focuses specifically on text-to-image models. The
uncertainty of image generation with respect to text conditioning is measured through the alignment
between a caption generated from a generated image and the original prompt used to generate said
image.

Additionally, a large body of work explores conformal prediction for uncertainty quantification in
diffusion models (Angelopoulos et al., 2022; Sankaranarayanan et al., 2022; Teneggi et al., 2023;
Belhasin et al., 2023). However, these approaches are primarily designed for inverse problems
(e.g., deblurring), and cannot be directly applied to detect low-quality samples in unconditional
generation.

Bayesian inference in generative models has been explored previously outside the domain of dif-
fusion models. Prominent examples include Saatci & Wilson (2017) where a Bayesian version
of a GAN is proposed, showing improvements for semi-supervised learning, and Daxberger &
Hernández-Lobato (2019), where a Bayesian VAE (Tran et al., 2023) is shown to provide more
informative likelihood estimates for the unsupervised out-of-distribution detection compared to the
non-Bayesian counterparts (Nalisnick et al., 2018). Since diffusion models can be interpreted as neu-
ral ODEs (Song et al., 2020b), another relevant work is Ott et al. (2023), which employs a Laplace
approximation to quantify uncertainty when solving neural ODEs (Chen et al., 2018). However, Ott
et al. (2023) focuses solely on low-dimensional regression problems.

Non-uncertainty based approaches for filtering out poor generations include the realism
(Kynkäänniemi et al., 2019), rarity (Han et al., 2023), and anomaly scores (Hwang et al., 2024).
Our work is the first to establish a connection between these scores and uncertainty-based meth-
ods, which we hope will inspire the development of even better sample-level metrics in the future.
Additionally, a large body of work focuses on specially designed sample-quality scoring models
(Gu et al., 2020; Zhao et al., 2024) or, alternatively, on leveraging large pretrained vision-language
models (VLMs) (Zhang et al., 2024) for scoring generated images. However, these approaches re-
quire either access to sample-quality labels or rely on (expensive) external VLMs. In contrast, our
uncertainty-based method requires neither, making it a more accessible and scalable alternative.

C LIMITATIONS

While we have demonstrated in Section 4 that semantic likelihood is essential for addressing the
over-sensitivity of prior work to background pixels (Kou et al., 2024), our reliance on a pretrained
image encoder like CLIP (Radford et al., 2021) limits the applicability of our diffusion uncertainty
framework to natural images. Removing the dependence on such encoders would unlock the ap-
plication our Bayesian framework to other modalities where diffusion models are used, such as
molecules (Hoogeboom et al., 2022; Cornet et al., 2024) or text (Gong et al., 2022; Yi et al., 2024).
Exploring whether insights from the literature on uncovering semantic features in diffusion models
(Kwon et al., 2022; Luo et al., 2024; Namekata et al., 2024) could help achieve this represents a
promising direction for future work.

Moreover, the large size of modern diffusion models necessitates the use of cheap and scalable
Bayesian approximate inference techniques, such as the (diagonal) last-layer Laplace approxima-
tion employed in our work (following (Kou et al., 2024)). A more comprehensive comparison of
available approximate inference methods could be valuable, as improving the quality of the pos-
terior approximation may further enhance the detection of low-quality samples based on Bayesian
generative uncertainty.

D ADDITIONAL RESULTS

D.1 QUALITATIVE COMPARISON WITH BAYESDIFF

To further highlight the differences between our generative uncertainty and BayesDiff (Kou et al.,
2024), we present samples with the highest and lowest uncertainty according to BayesDiff in Figure
5. These samples are drawn from the same set of 12K ImageNet ”unconditional” images generated
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using the UViT model (Bao et al., 2023) as in Figure 1. Notably, BayesDiff’s uncertainty score
appears highly sensitive to background pixels—images with high uncertainty tend to have cluttered
backgrounds, while those with low uncertainty typically feature clear backgrounds. Furthermore,
as reflected in BayesDiff’s poor performance in terms of FID and precision (see Table 1), some
low-uncertainty examples exhibit noticeable artefacts, whereas certain high-uncertainty samples are
of rather high-quality. For example, the image of a dog in the bottom-right corner of the high-
uncertainty grid in Figure 5 looks quite good despite being assigned (very) high uncertainty.

Similarly, in Figure 6, we show low- and high-uncertainty samples according to BayesDiff for the
same set of 128 images per class as in Figure 2. Once again, we observe that BayesDiff’s uncertainty
metric is less informative regarding a sample’s visual quality compared to our generative uncertainty.

Figure 5: Images with the highest (left) and the lowest (right) BayesDiff uncertainty (Kou et al.,
2024) among 12K generations using a UViT diffusion model (Bao et al., 2023). BayesDiff uncer-
tainty correlates poorly with visual quality and is overly sensitive to the background pixels. Same
set of 12K generated images is used as in Figure 1 to ensure a fair comparison.

Figure 6: Images with the highest (bottom) and the lowest (top) BayesDiff uncertainty (Kou et al.,
2024) among 128 generations using a UViT diffusion model (Bao et al., 2023) for 2 classes: black
swan (left) and Tibetan terrier (right). Same set of 128 generated images per class is used
as in Figure 2 to ensure a fair comparison.

D.2 ABLATION ON SEMANTIC LIKELIHOOD

To highlight the importance of using a semantic likelihood (Section 3.3) when leveraging uncer-
tainty to detect low-quality generations, we conduct an ablation study in which we replace it with a
standard Gaussian likelihood applied directly in pixel space (Eq. 6). Figure 7 presents the highest
and lowest uncertainty images according to this ‘pixel-space’ generative uncertainty. Notably, pixel-
space uncertainty is overly sensitive to background pixels, mirroring the issue observed in BayesDiff
(Kou et al., 2024) (see Appendix D.1). This highlights the necessity of using semantic likelihood to
obtain uncertainty estimates that are truly informative about the visual quality of generated samples.
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Figure 7: Images with the highest (left) and the lowest (right) ‘pixel-space’ generative uncertainty
among 12K generations using a UViT diffusion model (Bao et al., 2023). Pixel-space uncertainty
correlates poorly with visual quality and is overly sensitive to the background pixels. Same set of
12K generated images is used as in Figure 1 to ensure a fair comparison.

Figure 8: Pixel-wise uncertainty based on our generative uncertainty for 5 generated samples using
UViT (Bao et al., 2023).

D.3 PIXEL-WISE UNCERTAINTY

While not the primary focus of our work, we demonstrate how our generative uncertainty frame-
work (Algorithm 1) can be adapted to obtain pixel-wise uncertainty estimates. This is achieved by
replacing our proposed semantic likelihood (Eq. 7) with a standard ‘pixel-space’ likelihood (Eq. 6).
Figure 8 illustrates pixel-wise uncertainty estimates for 5 generated samples.

Although pixel-wise uncertainty received significant attention in past work (Kou et al., 2024; Chan
et al., 2024; De Vita & Belagiannis, 2025), there is currently no principled method for evaluating its
quality. Most existing approaches rely on qualitative inspection, visualizing pixel-wise uncertainty
for a few generated samples (as we do in Figure 8). This further motivates our focus on sample-
wise uncertainty estimates, where more rigorous evaluation frameworks—such as improvements in
FID and precision on a set of filtered images (see Table 1)—enable more meaningful comparisons
between different approaches.

D.4 COMPARISON WITH LIKELIHOOD

We compare our generative uncertainty filtering criterion with a likelihood selection approach on
the 12K images generated by ADM trained on ImageNet 128x128. In the same way as in our
other comparisons, we retain the 10K generated images with highest likelihood. We utilize the
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implementation in Dhariwal & Nichol (2021) to compute the bits-per-dimension of each sample
(one-to-one with likelihood). The 25 samples with lowest and highest likelihood are shown in Figure
9. Visually, the likelihood objective heavily prefers simple images with clean backgrounds and not
necessarily image quality. Note that this is consistent with other works that have reported likelihood
to be an inconsistent identifier of image quality (Theis et al., 2016).

Figure 9: The 25 ”Worst” (left) and ”Best” (right) samples generated by ADM trained on ImageNet
128x128 selected by lowest and highest likelihood among 12K generations.

D.5 COMPARISON WITH REALISM & RARITY

To better understand the relationship between our generative uncertainty and non-uncertainty-based
approaches such as realism (Kynkäänniemi et al., 2019) and rarity (Han et al., 2023) scores, we
compute the Spearman correlation coefficient between different sample-level metrics on a set of
12K generated images from the experiment in Section 4.1. As shown in Figure 10, realism and
rarity scores exhibit a strong correlation (< −0.8). This is unsurprising, as both scores are derived
from the distance of a generated sample to a data manifold obtained using a reference dataset (e.g.,
a subset of training data or a separate validation dataset).4

In contrast, our generative uncertainty exhibits a weaker correlation (< 0.4) with both realism and
rarity scores. We attribute this to the fact that our uncertainty primarily reflects the limited training
data used in training diffusion models (i.e., epistemic uncertainty, see Section 3.4), rather than the
distance to a reference dataset, as is the case for realism and rarity scores.

Next, we investigate whether combining different scores can improve the detection of low-quality
generations. When combining two scores, we first rank the 12K images based on each score individ-
ually, then compute the combined ranking by summing the two rankings and re-ranking accordingly.
The results, shown in Table 2, indicate that combining realism and rarity leads to minor or no im-
provements in FID (9.81 compared to 9.76 for realism alone on ADM (Dhariwal & Nichol, 2021)).
However, combining our generative uncertainty with either realism or rarity achieves the best FID
performance (9.54 on ADM). These results suggest that ensembling scores that capture different
aspects of generated sample quality is a promising direction for future research.

D.6 CLASS-AVERAGED GENERATIVE UNCERTAINTY

To better understand the drop in sample diversity (recall) when using our generative uncertainty to
filter low-quality samples in Table 1, we analyze the distribution of average entropy per conditioning
class. Specifically, for each of the 12K generated images, we randomly sample a conditioning class

4Such distance-based approaches are also commonly used to estimate prediction’s quality in predictive
models; see, for example, Van Amersfoort et al. (2020).
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Figure 10: Spearman correlation coefficient between different sample quality metrics for 12K Ima-
geNet images generated using ADM (Dhariwal & Nichol, 2021) (left) and UViT (Bao et al., 2023)
(right).

Table 2: Image generation results for 10K filtered samples (out of 12K) based on combined metrics.
Combining our generative uncertainty outperforms combining realism and recall in terms of FID.
We report mean values along with standard deviation over 3 runs with different random seeds.

ADM (DDIM), ImageNet 128×128 UViT (DPM), ImageNet 256×256

FID (↓) Precision (↑) Recall (↑) FID (↓) Precision (↑) Recall (↑)
Realism + Rarity 9.81± 0.06 67.06± 0.29 66.73± 0.37 8.26± 0.07 69.01± 0.33 69.86± 0.36
Ours + Realism 9.54± 0.04 66.41± 0.15 67.04± 0.47 7.60± 0.10 68.33± 0.09 69.75± 0.42
Ours + Rarity 9.56± 0.06 65.44± 0.26 67.36± 0.54 7.56± 0.12 67.48± 0.18 70.18± 0.40

to mimic unconditional generation. As a result, all 1,000 ImageNet classes are represented among
the 12K generated samples. Next, we compute our generative uncertainty (i.e., entropy; see Eq. 8)
for each sample and then average the uncertainties within each class. A plot of class-averaged un-
certainties is shown in Figure 11. Since class-averaged uncertainties exhibit considerable variance,
the class distribution in the 10K filtered samples deviates somewhat from that of the original 12K
images, thereby explaining the reduction in diversity (recall).

While our primary focus in this work is on providing per-sample uncertainty estimates u(z), we can
also obtain uncertainty estimates for the conditioning variable u(y) (e.g., a class label), by averaging
over all samples corresponding to a particular y ∈ Y as done in Figure 11. These estimates resemble
the epistemic uncertainty scores proposed in DECU (Berry et al., 2024) and could be used to identify
conditioning variables for which generated samples are likely to be of poor quality. We leave further
exploration of generative uncertainty at the level of conditioning variables for future work.

D.7 FLOW MATCHING

Figure 11: A histogram of class-averaged genera-
tive uncertainties for 12K generated samples using
UViT (Bao et al., 2023).

To demonstrate that our generative uncertainty
framework (Section 3) extends beyond diffu-
sion models, we apply it here to the recently
popularized flow matching approach (Lipman
et al., 2022; Liu et al., 2022; Albergo et al.,
2023). Specifically, we consider a latent flow
matching formulation (Dao et al., 2023) with
a DiT backbone (Peebles & Xie, 2023). For
sampling, we employ a fifth-order Runge-Kutta
ODE solver (dopri5). In Figure 12, we il-
lustrate the samples with the highest and low-
est generative uncertainty among 12K gener-
ated samples. On a filtered set of 10K images,
our generative uncertainty framework achieves
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an FID of 10.48 and a precision of 64.71, significantly outperforming a random baseline, which
yields an FID of 11.80 and a precision of 61.04.

Figure 12: Images with the highest (left) and the lowest (right) generative uncertainty (Eq. 8) among
12K generations using a latent flow matching model (Dao et al., 2023). Generative uncertainty
correlates with visual quality, as high-uncertainty samples exhibit numerous artefacts, whereas low-
uncertainty samples resemble canonical images of their respective conditioning class.

E IMPLEMENTATION DETAILS

All our experiments can be conducted on a single A100 GPU, including the fitting of the Laplace
posterior (Section 3.2). Code for reproducing our experiments is publicly available at GITHUB
REPO.

All Params. LL Params. LL Name

ADM ∼ 421× 106 ∼ 14× 103 out.2
UViT ∼ 500× 106 ∼ 18× 103 decoder pred
DiT ∼ 131× 106 ∼ 1.2× 106 final layer

Table 3: Details of our last-layer (LL) Laplace approxima-
tion. The first column presents the total number of model
parameters, while the second and third columns indicate the
number of parameters in the last layer and its name, respec-
tively

Laplace Approximation When fit-
ting a last-layer Laplace approxima-
tion (Section 3.2), we closely fol-
low the implementation from Bayes-
Diff (Kou et al., 2024). Specifically,
we use the empirical Fisher approxi-
mation with a diagonal factorization
for Hessian computation. The prior
precision parameter and observation
noise are fixed at γ = 1 and σ = 1,
respectively. For Hessian computa-
tion, we utilize 1% of the training
data for ImageNet 128×128 and 2%
for ImageNet 256×256. Further details about the last layer of each diffusion model are provided in
Table 3, where we observe that fewer than 1% of the parameters receive a ‘Bayesian treatment’. For
code implementation, we rely on the laplace5 library (Daxberger et al., 2021a).

As discussed in Section C, improving the quality of the Laplace approximation—such as incorpo-
rating both first and last layers instead of only the last layer (Daxberger et al., 2021b; Sharma et al.,
2023) or optimizing Laplace hyperparameters (e.g., prior precision and observation noise) (Immer
et al., 2021)—could further enhance the quality of generative uncertainty and represents a promising
direction for future work.

Sampling with Generative Uncertainty For our main experiment in Section 4.1, we generate
12K images using the pretrained ADM model (Dhariwal & Nichol, 2021) for ImageNet 128×128

5https://github.com/aleximmer/Laplace
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and the UViT model (Bao et al., 2023) for ImageNet 256×256. Following BayesDiff (Kou et al.,
2024), we use a DDIM sampler (Song et al., 2020a) for the ADM model and a DPM-2 sampler (Lu
et al., 2022) for the UViT model, both with T = 50 sampling steps.

To compute generative uncertainty (Algorithm 1), we first sample M = 5 sets of weights from the
posterior q(θ|D). Then, for each of the initial 12K random seeds, we generateM additional samples.
The same set of model weights {θm}Mm=1 is used for all 12K samples for efficiency reasons. For
semantic likelihood (Eq. 7), we use a pretrained CLIP encoder (Radford et al., 2021) and set the
semantic noise to σ2 = 0.001 .

Baselines For all baselines, we use the original implementation provided by the respective papers,
except for (De Vita & Belagiannis, 2025), which we reimplemented ourselves since we were unable
to get their code to run. Moreover, we use the default settings (e.g., hyperparameters) recommended
by the authors for all baselines. For realism (Kynkäänniemi et al., 2019) and rarity (Han et al., 2023)
we use InceptionNet (Szegedy et al., 2016) as a feature extractor and a subset of 50K ImageNet
training images as the reference dataset. For samples where the rarity score is undefined (i.e., those
that lie outside the estimated data manifold), we set it to inf.

22


	Introduction
	Background
	Generative Modeling
	Bayesian Deep Learning

	Generative Uncertainty via Bayesian Inference
	Bayesian Diffusion
	Last-Layer Laplace Approximation
	Semantic Likelihood
	Epistemic Uncertainty

	Experiments
	Detecting Poor Generations
	Improving Sampling Efficiency

	Conclusion
	Generative uncertainty: method and algorithm
	Related Work
	Limitations
	Additional Results
	Qualitative Comparison with BayesDiff
	Ablation on Semantic Likelihood
	Pixel-Wise Uncertainty
	Comparison with Likelihood
	Comparison with Realism & Rarity
	Class-averaged generative uncertainty
	Flow Matching

	Implementation Details

