
Published in Transactions on Machine Learning Research (December/2024)

Adaptive Self-Distillation for Minimizing Client Drift in
Heterogeneous Federated Learning

M.Yashwanth yashwanthm@iisc.ac.in
Indian Institute of Science

Gaurav Kumar Nayak gauravkumar.nayak@mfs.iitr.ac.in
Indian Institute of Technology (IIT) Roorkee

Arya Singh f20180762g@alumni.bits-pilani.ac.in
Indian Institute of Science

Yogesh Simmhan simmhan@iisc.ac.in
Indian Institute of Science

Anirban Chakraborty anirban@iisc.ac.in
Indian Institute of Science

Reviewed on OpenReview: https: // openreview. net/ forum? id= K58n87DE4s

Abstract

Federated Learning (FL) is a machine learning paradigm that enables clients to jointly train a
global model by aggregating the locally trained models without sharing any local training data.
In practice, there can often be substantial heterogeneity (e.g., class imbalance) across the local
data distributions observed by each of these clients. Under such non-iid label distributions
across clients, FL suffers from the ‘client-drift’ problem where every client drifts to its own local
optimum. This results in slower convergence and poor performance of the aggregated model.
To address this limitation, we propose a novel regularization technique based on adaptive
self-distillation (ASD) for training models on the client side. Our regularization scheme
adaptively adjusts to each client’s training data based on the global model’s prediction entropy
and the client-data label distribution. We show in this paper that our proposed regularization
(ASD) can be easily integrated atop existing, state-of-the-art FL algorithms, leading to a
further boost in the performance of these off-the-shelf methods. We theoretically explain
how incorporation of ASD regularizer leads to reduction in client-drift and empirically justify
the generalization ability of the trained model. We demonstrate the efficacy of our approach
through extensive experiments on multiple real-world benchmarks and show substantial gains
in performance when the proposed regularizer is combined with popular FL methods. The
link to the code is https://github.com/vcl-iisc/fed-adaptive-self-distillation.

1 Introduction

Federated Learning (FL) is a machine learning paradigm where the clients collaboratively learn a shared model
under the orchestration of the server without sharing any of their local training data with other clients or the
server. Due to the privacy-preserving nature of FL, it has found many applications in smartphones (Hard
et al., 2018; Ramaswamy et al., 2019), the Internet of Things (IoT), healthcare organizations (Rieke et al.,
2020; Xu et al., 2021), where training data is generated at edge devices or from privacy-sensitive domains. As
originally introduced in (McMahan et al., 2017), FL involves model training across an architecture consisting

1

https://openreview.net/forum?id=K58n87DE4s
https://github.com/vcl-iisc/fed-adaptive-self-distillation

Published in Transactions on Machine Learning Research (December/2024)

0 1 2 3 4 5 6 7 8 9
class index

60

40

20

0

20

40

60

80

100

Te
st

 A
cc

ur
ac

y
D

iff
er

en
ce

 (
lin

e)

FedAvg
FedAvg+ASD (ours)
FedNTD
FedNTD+ASD (ours)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

La
be

l P
ro

ba
bi

lit
y

(b
ar

)

label prob

(a) client 1

0 1 2 3 4 5 6 7 8 9
class index

100

75

50

25

0

25

50

75

100

Te
st

 A
cc

ur
ac

y
D

iff
er

en
ce

 (
lin

e)

FedAvg
FedAvg+ASD (ours)
FedNTD
FedNTD+ASD (ours)

0.0

0.1

0.2

0.3

0.4

0.5

La
be

l P
ro

ba
bi

lit
y

(b
ar

)

label prob

(b) client 2

Figure 1: Impact of one round of local training on the test accuracy of two clients with different label
distribution sampled from CIFAR-10 dataset: The effect of local learning on test accuracy is analyzed by
measuring the change in accuracy before and after local training, with positive values indicating improved
model performance. Interestingly, in scenarios where classes with low probability of occurrence or under-
represented, models trained using FedAvg frequently exhibit a decline in accuracy post-training. In contrast,
incorporating our proposed adaptive self-distillation regularizer (ASD) into FedAvg (FedAvg+ASD) not only
effectively captures knowledge from well-represented classes but also preserves information about under-
represented classes. A similar pattern is observed with FedNTD and FedNTD+ASD.

of one server and multiple clients. In traditional FL, each client securely holds its training data due to privacy
concerns as well as to avoid large communication overheads while transmitting the same. At the same time,
these clients aim to collaboratively train a generalized model that can leverage the entirety of the training
data disjointly distributed across clients.

Data ingested at the edge/client devices are often highly heterogeneous as a consequence of the data generation
process. They can differ in terms of quantity imbalance (the number of samples at each client are different),
label imbalance (empirical label distribution across the clients widely vary), and feature imbalance (features
of the data across the clients are non-iid). When there exists a label or feature imbalance, the objective
for every client becomes different as the local minimum for every client objective will be different. In such
settings, during the local training, the client’s model starts to drift towards its local minimum and farther
away from the global objective. This is undesirable as the goal of FL is to converge to a global model that
generalizes well across all the clients. This phenomenon, known as ‘client-drift’, is introduced and explored
in earlier works (Karimireddy et al., 2020; Acar et al., 2021; Wang et al., 2021). In this work, we will be
considering only the label heterogeneity. In any given FL round, the client initializes its model with global
model weights and then starts training its model using the local data. Due to this, the client training often
leads to overfitting the local data and cannot retain the knowledge acquired from the global model in an
earlier FL round.

Recently (He et al., 2022b) introduced a class-wise adaptive weighting scheme (FedCAD) at the server side.
The major drawback of FedCAD is that it assumes the presence of related auxiliary data and reliability on the
server to compute the weights for the clients. Dependency on the server for computing the adaptive class-wise
weights necessitates the availability of auxiliary data at the server. Another work (Lee et al., 2022) proposes
FedNTD which poses the client-drift as a local forgetting problem. It cannot mitigate client-drift effectively
since it assigns uniform weights to regularization loss for all samples, independent of label distribution.
Consequently, it treats high and low probability samples similarly, biasing the client model towards those
with higher probability of occurrence, thus degrading performance. To address these issues and motivated by
client model regularization in mitigating client drift and to remove the server’s dependency on computing
client-side weights, we introduce a computationally efficient strategy known as Adaptive Self-Distillation
(ASD) for Federated Learning. Importantly, ASD does not require any auxiliary data. We use the KL
divergence between the global and local models as the regularizer. For every sample, the weight assigned
to the regularization loss is adaptively adjusted based on the global model’s prediction entropy and the

2

Published in Transactions on Machine Learning Research (December/2024)

empirical label distribution of the client’s data. Specifically, when the server model encounters samples with
high entropy, we reduce the weighting on the regularization loss, whereas, for samples with a low probability
of occurrence, we prioritize the learning from the global model. This adaptive approach enables local models
to effectively learn from the cross-entropy loss for more frequent labels while leveraging the global model’s
guidance for less frequent labels. The adaptive weights are computed without relying on external or proxy
data, unlike methods such as FedCAD which relies on external data. Moreover, the additional computational
burden on clients is minimal, involving only a single forward pass of the training data.

In Fig 1, we explain how the ASD regularization with adaptive weights helps mitigate the client-drift. We
analyze the impact of client-drift by observing one round of local training on a particular client model with
the CIFAR-10 dataset. We see that FedAvg substantially deteriorates the performance on the labels that have
sparse or no representation in the client’s local data. After adding the ASD loss, the impact is reduced. The
ASD with (adaptive weights) performs the best in terms of local learning and preserving the global model
knowledge on the sparse classes. We theoretically explain the client-drift reduction through our proposed
ASD regularizer. In addition, we also provide justification on how ASD leads to improved generalization of
the global model. This novel design of our proposed method allows the regularizer to be easily integrated
atop any existing FL methods, and this results in substantial performance gains, making it an attractive and
compelling solution to the federated learning problem. To the best of our knowledge, this is the first work
where the adaptive weights are used for the distillation loss in the FL framework without requiring access to
auxiliary data and without the assistance of the server. We would like to clearly point out that the goal of
this work is not to directly compete against any particular regularization method used in FL. Our proposed
ASD regularizer is of a true plug-and-play nature. With a very negligible computational overhead (discussed
in Sec. 6), ASD can be used as an additional regularization on top of any off-the-shelf FL method (either with
regularized FL methods such as FedProx, FedDyn or FL methods without regularization such as FedSAM,
FedAvg etc.) and further boost their performance across the benchmark datasets such as CIFAR-100/10 and
Tiny-ImageNet for both IID and non-IID settings. As a validation, we combine our proposed method with
some of the popular off-the-shelf FL methods such as FedAvg (McMahan et al., 2017), FedProx (Li et al.,
2020), FedDyn (Acar et al., 2021) FedSpeed (Sun et al., 2023), FedNTD (Lee et al., 2022), FedSAM (Caldarola
et al., 2022) and FedDisco (Ye et al., 2023) and consistently observe performance improvement.

In summary, the key contributions of this work are:

• We introduced a novel computationally efficient regularization method ASD in the context of Federated
Learning that alleviates the client drift problem by adaptively weighting the regularization loss for
each sample based on the global model’s prediction entropy and the label distribution of client data.

• We demonstrate the efficiency of our method by extensive experiments on datasets such as CIFAR-10,
CIFAR-100, and Tiny-ImageNet datasets by combining our proposed ASD regularizer with the
popular FL methods and improving their performance.

• We present a theoretical analysis of the client-drift and show that our regularizer minimizes the
client-drift. We also empirically show that ASD promotes better generalization by converging to a
flat minimum.

2 Related Work

2.1 Federated Learning (FL)

In recent times, addressing heterogeneity in Federated Learning has become an active area of research, and
the field is developing rapidly. For brevity, we discuss a few related works here. In FedAvg (McMahan et al.,
2017), the two main challenges explored are reducing communication costs (Yadav & Yadav, 2016) and
ensuring privacy by avoiding having to share the data. There are some studies based on gradient inversion
(Geiping et al., 2020) raising privacy concerns owing to gradient sharing while some studies have proposed in
defense of sharing the gradients (Kairouz et al., 2021; Huang et al., 2021). FedAvg is the generalization of
local SGD (Stich, 2018) by increasing the number of local updates, significantly reducing communication
costs for an iid setting, but does not give similar improvements for non-iid data. Several works perform

3

Published in Transactions on Machine Learning Research (December/2024)

an SGD-type analysis that involves the full device participation, and this breaks the important constraint
in FL setup of partial device participation. Some of these attempt to compress the models to reduce the
communication cost (Mishchenko et al., 2019). A few works include regularization methods on the client
side (Zhu et al., 2021), and one-shot methods where clients send the condensed data and the server trains on
the condensed data (Zhou et al., 2020). In (Hsu et al., 2020), an adaptive weighting scheme is considered on
task-specific loss to minimize the learning from samples whose representation is negligible. Flatness-based
methods based on SAM called as FedSAM is introduced in (Qu et al., 2022; Caldarola et al., 2022).

2.2 Client-Drift in FL

Due to data heterogeneity, federated training suffers from client drift. To address this, momentum-based
server aggregation was proposed in (Wang et al.; Hsu et al., 2019), which was later extended to handle any
client and server updates in (Reddi et al.) FedProx (Li et al., 2020) introduced a proximal term to penalize
deviations of client weights from the globally initialized model. SCAFFOLD (Karimireddy et al., 2020)
tackled the issue as one of objective inconsistency, introducing a gradient correction term as a regularizer.
Subsequently, FedDyn (Acar et al., 2021) enhanced this with a dynamic regularization term. In (Kim et al.,
2024), a proximal term was introduced in the client’s optimization based on the accelerated global model,
and momentum was applied on the server to track its updates.

2.3 Federated Learning Using Knowledge Distillation

Knowledge Distillation (KD) introduced by (Hinton et al., 2015) is a technique to transfer the knowledge from
a pre-trained teacher model to the student model by matching the predicted probabilities. Self-distillation
was introduced in (Zhang et al., 2019) where the student distills from the same model to the sub-networks
of the model. The teacher model predictions are updated every batch. In our method, distillation happens
with the full network, and the teacher’s predictions are updated after every communication round. Adaptive
distillation was used in (Tang et al., 2019). The server-side KD methods such as FedGen (Seo et al., 2022)
use KD to train the generator at the server and the generator is broadcasted to the clients in the subsequent
round. The clients use the generator to generate the data to provide the inductive bias. This method incurs
extra communication of generator parameters along the model and training of the generator in general is
difficult. In FedDF (Lin et al., 2020) KD is used at the server that relies on the external data. The KD is
performed on an ensemble of client models, especially client models acts as a separate teacher model and
then the knowledge is distilled into a single student model (global model). In FedNTD (Lee et al., 2022)
the non-true class logits are used for distillation. This method gives uniform weights to all the samples. In
FedCAD (He et al., 2022b) and FedSSD (He et al., 2022a), the client-drift problem is posed as a forgetting
problem, and a weighting scheme has been proposed. Importantly, the computation of adaptive weights of the
client samples is done with the help of the server with the assumption that the server has access to auxiliary
data. One shortcoming of this method is the assumption of the availability of auxiliary data on the server,
which is impractical. In (Zhang et al., 2022) logits were calibrated based on the label distribution. This is
totally different from our approach as we are adjusting the weights of the distillation loss. Unlike all of these
approaches, we propose a novel ASD strategy that aims to mitigate the challenge of client drift due to non-iid
data without relying on the server and access to any form of auxiliary data to compute the adaptive weights.

3 Method

We first describe the traditional federated optimization problem, then explain the proposed method of
adaptive self-distillation (ASD) in section 3.2. We provide the theoretical and empirical analysis in the
sections 3.3 and 3.4 respectively.

3.1 Problem Setup

We assume there is a single server/cloud and m clients/edge devices. We further assume that client k has
its own training dataset Dk with nk training samples drawn iid from the data distribution Pk(x, y). The
data distributions {Pk(x, y)}K

k=1 across the clients are assumed to be non-iid. In this setup, we perform the

4

Published in Transactions on Machine Learning Research (December/2024)

Local
Dataset

Server

Step 2: Clients train their local models with the starting point,

Step 1: Broadcast

Step 3: Aggregate

Figure 2: Federated Learning with Adaptive Self-Distillation: The figure describes the overview of the
proposed approach based on Adaptive distillation. In Step 1. The server broadcasts the model parameters,
In Step 2. clients train their models by minimizing both the cross entropy loss and predicted probability
distribution over the classes between the global model and the client model by minimizing the KL divergence,
the importance of each sample in the batch is decided by the proposed adaptive scheme as a function of label
distribution and the KL term. The server model is fixed while training the client. In Step 3. The server
aggregates the client models based on FedAvg aggregation. The process repeats till convergence.

following optimization. (Acar et al., 2021; McMahan et al., 2017)

arg min
w∈Rd

f(w) ≜ 1
K

∑
k∈[K]

fk(w)

 (1)

where fk(w) is the client specific objective function and w denotes model parameters. The overall FL
framework is described in detail in figure 2.

3.2 Adaptive Self-Distillation (ASD) in FL

We now describe the proposed method where each client k minimizes the fk(w) as defined below Eq. (2).

fk(w) ≜ Lk(w) + λLASD
k (w) (2)

Lk(w) is given below.
Lk(w) = E

x,y∈Pk(x,y)
[lk(w; (x, y))] (3)

Here, lk is cross-entropy loss. The expectation is computed over training samples drawn from Pk(x, y) of
a client k. This is approximated as the empirical average of the losses corresponding to samples from the
Dataset Dk. LASD

k (w) in Eq. 2 denotes our proposed Adaptive Self-Distillation loss (ASD) term which
considers label imbalance and quantifies how easily the predictions of the local model can drift from the
global model. ASD loss is designed so that client models learn from the local data and at the same time not
drift too much from the global model. We define (ASD) Loss as follows.

LASD
k (w) ≜ E[αk(x, y)DKL(qg(x, wt)||qk(x, w))] (4)

In the above Eq. 4 wt represents the global model parameters at FL round t and w represents the trainable
model parameters of client k, initialized with wt at round t. αk(x, y) denotes the weight for the sample x
with label ground truth label y. For simplicity, we denote the global model softmax predictions qg(x, wt) as
qg(x) and client model softmax predictions qk(x, w) as qk(x). DKL is the KL divergence. The Eq. 4 can be
approximated by the following equation for a mini-batch.

LASD
k (w) = 1

B

∑
i∈[B]

αk(xi, yi)DKL(qg(xi)||qk(xi)) (5)

5

Published in Transactions on Machine Learning Research (December/2024)

where B is the batch size, (xi, yi) ∈ Dk, qg and qk are softmax probabilities on the temperature (τ) scaled
logits of the global model and client model k respectively. For a class c below Eq. 6 and Eq. 7 holds.

qc
g(xi) =

exp
(
zc

g(xi)/τ
)∑

m∈C exp
(
zm

g (xi)/τ
) (6)

qc
k(xi) = exp(zc

k(xi)/τ)∑
m∈C exp (zm

k (xi)/τ) (7)

where zg(xi), zk(xi) are the logits predicted on the input xi by the global model and client model k respectively.
The index i denotes the ith sample of the batch. The DKL(qg(xi)||qk(xi)) is given in Eq. (8).

DKL(qg(xi)||qk(xi)) =
C∑

c=1
qc

g(xi)log(qc
g(xi)/qc

k(xi)) (8)

where C is the number of classes. We use the simplified notation αi
k for distillation weights αk(xi, yi) and it

is given in below Eq.9.

αi
k = α̂k

i∑
i∈B α̂k

i
(9)

and α̂k
i is defined as below Eq. 10

α̂k
i ≜

exp(−H(xi))
pyi

k

(10)

where H(xi) is the entropy of the global model predictions and is given by (11).

H(xi) =
C∑

c=1
−qc

g(xi)log(qc
g(xi)) (11)

DKL in Eq. 8 captures how close the local model’s predictions are to the global model for any given sample xi.
Our weighting scheme in Eq. 11 decides how much to learn from the global model for that sample based on
the entropy H(xi) of the server model predictions and the label distribution of the client data (pyi

k). H(xi)
captures the confidence of global model predictions, higher value implies the server predictions are noisy so
we tend to reduce the weight, i.e, we give less importance to the global model if its entropy is high. The pyi

k is
the probability that the sample belong to a particular class. We give more weight to the sample if it belongs
to the minority class. This promotes learning from the local data for the classes where the representation
is sufficient enough and for the minority classes we encourage them to stay closer to the global model. In
summary, the choice of alpha is designed to ensure that, when the global model encounters samples with high
prediction entropy, we decrease the weighting on the regularization loss. Conversely, for samples with a low
probability of occurrence, we prioritize learning from the global model. This adaptive approach enables local
models to effectively learn from the cross-entropy loss for more frequent labels while leveraging the global
model’s guidance for less frequent labels. In Table 3, we highlight the importance of adaptive weights, where
we clearly show that ASD with adaptive weights consistently improves performance when combined with
off-the-shelf FL methods. We approximate the label distribution pyi

k with the empirical label distribution, it
is computed as Eq.12.

pyi=c
k =

∑
i∈|Dk| Iyi=c

|Dk|
(12)

where Iyi=c denotes the indicator function and its value is 1 if the label of the ith training sample belongs to
class c else it is 0. To simplify notation, we use pc

k for pyi=c
k as it depends only on the class c for a client k.

Finally we use Eq.12 and Eq. 11 to compute the LASD
k (w) defined in Eq.5. The choice of KL divergence in

the Eq. 8 is motivated by the seminal work of Hinton et.al., which aims to match the temperature-raised
softmax values between the pre-trained teacher model and student model for effective knowledge transfer.
We also analyzed the other statistical divergences such as reverse KL and Jenson-shannon divergence and
empirically found that KL divergence is better. More details are presented in the Sec. A.13 of the Appendix.

6

Published in Transactions on Machine Learning Research (December/2024)

3.3 Theoretical Analysis of Gradient Dissimilarity

In this section, we perform the theoretical analysis of the client drift. We now introduce the Gradient
dissimilarity Gd based on the works of (Li et al., 2020; Lee et al., 2022) as a way to measure the extent of
client-drift as below.

Gd(w, λ) =
1
K

∑
k ∥∇fk(w)∥2

∥∇f(w)∥2 (13)

Gd(w, λ) is function of both the w and λ. For convenience, we simply write Gd and mention arguments
explicitly when required. fk(w) in the above Eq. 13 is same as Eq. 2.
With this, we now establish a series of propositions to show that ASD regularization reduces the Gradient
dissimilarity, which as a result, leads to lower client drift.
Proposition 3.1. infw∈Rd Gd(w, λ) is 1, ∀ λ

The above proposition implies that if all the client’s gradients are progressing in the same direction, which
means there is no drift Gd = 1. The result follows from Jensen’s inequality. The lower value of Gd is desirable
and ideally 1. To analyze the Gd, we need ∇fk(w) which is given in the below proposition.
Proposition 3.2. When the class conditional distribution across the clients is identical, i.e., Pk(x |
y) = P(x | y) then ∇fk(w) =

∑
c pc

k(gc + λγc
kg̃c), where gc = ∇E[l(w; x, y) | y = c], g̃c =

∇E[exp(−H(x))DKL(qg(x)||qk(x)) | y = c] and γc
k = 1

pc
k
.

The result follows from the tower property of expectation and the assumption that class conditional distribution
is the same for all the clients. From the above proposition, we can see that the gradients ∇fk(w) only differ
due to pc

k which captures the data heterogeneity due to label imbalance. The proof is given in Sec. A.15 of
the appendix.
Assumption 3.3. Class-wise gradients are weakly correlated and similar magnitude g⊺

c gc ≪ g⊺
c gm, g̃⊺

c g̃c ≪
g̃⊺

c g̃m and for c ̸= m

The assumption on weakly correlated class-wise gradients intuitively implies that gradients of loss for a
specific class cannot give any significant information on the gradients of the other class.
Proposition 3.4. When the class-conditional distribution across the clients is the same, and the As-
sumption 3.3 holds then ∃ a range of values for λ such that whenever λ ≥ λc we have dGd

dλ < 0 and
Gd(w, λ) < Gd(w, 0).

The proposition implies that there is a value of λ ≥ λc such that the derivative of Gd w.r.t λ is negative.
The proof is given in Sec. A.15 of the appendix. This indicates that by appropriately selecting the value
of λ we can make the Gd lower which in turn reduces the client drift. One of the key assumptions on the
heterogeneity is the existence of the below quantity.

B2(λ) := sup
w∈Rd

Gd(w, λ) (14)

which leads to the following assumption
Assumption 3.5. 1

K

∑
k ∥∇fk(w)∥2 ≤ B2(λ)∥∇f(w)∥2

This is the bounded gradient dissimilarity assumption used in (Li et al., 2020). In the following proposition,
we show the existence of λ such that B2(λ) < B2(0), which means that with regularizer we can tightly bound
the gradient dissimilarity compared to the case without the regularizer i.e., (λ = 0).
Proposition 3.6. Suppose the functions fk satisfy Assumption 3.5 above then we have B2(λ) < B2(0).

Proof. From 14 we have
B2(λ) = sup

w∈Rd

Gd(w, λ) (15)

7

Published in Transactions on Machine Learning Research (December/2024)

For a fixed λ as per proposition 3.4 we have the following.

sup
w∈Rd

Gd(w, λ) < sup
w∈Rd

Gd(w, 0) (16)

The above inequality 16 is true as proposition 3.4 guarantees that the value of Gd(w, λ) < Gd(w, 0) for all
w when λ ≥ λc. If inequality 16 is not true, one can find a w that contradicts the proposition 3.4 which is
impossible. This means for some value of λ ≥ λc we have B2(λ) < B2(0) from Eq. 14 and Eq. 16.

The key takeaway from the analysis is that by introducing the regularizer we can tightly bound the heterogeneity
when compared to the case without the regularizer. Based on the works (Karimireddy et al., 2020; Li et al.,
2020) we explain that lower B2(λ) implies better convergence, which is also supported by empirical evidence.
These details are provided in the Sec. A.16 of the Appendix.

3.4 Discussison on the Generalization of ASD

Table 1: The table shows the impact of ASD on the algorithms on CIFAR-100 Dataset using the non-iid
partition of δ = 0.3. We consistently see that the top eigenvalue and the trace of the Hessian of the loss of
the global model decrease and the accuracy improves when ASD is used. This suggests that by using ASD
we can make global model reach a flat minimum towards better generalization.

Algorithm Top Eigenvalue ↓ Trace ↓ Accuracy ↑
FedAvg 53.6 8516 38.67

FedAvg + ASD 12.3 2269 42.77
FedDyn 49.4 6675 47.56

FedDyn + ASD 14.2 2241 49.03
FedSpeed 51.9 6937 47.39

FedSpeed + ASD 14.6 2063 49.16

0 10 20 30 40 50
Eigenvalue

10 6

10 4

10 2

100

De
ns

ity
 (L

og
 sc

al
e)

FedAvg
FedAvg+ASD (ours)

Figure 3: Eigen spectrum with and without the ASD regularizer. It is evident that ASD regularizer not only
minimizes the top eigenvalue but most of the eigenvalues and attains the flatness.

The key reason for better generalization is the adaptive self-distillation loss. It has been shown in (Mobahi
et al., 2020) that self-distillation improves the generalization in centralized settings. It’s been empirically
shown in (Zhang et al., 2019) that self-distillation helps the model to converge to flat-minimum. Generally,
converging to flat minima is indicative of improved generalization, a concept explored in prior studies such
as (Keskar et al., 2017) and (Yao et al., 2020). The top eigenvalue and the trace of the Hessian computed from
the training loss are typical measures of ‘flatness’ of the minimum to which the training converges, i.e., lower
values of these measures indicate the presence of a flat minimum. To gain a deeper understanding of this
phenomenon in a federated learning setting, we analyzed the top eigenvalue and the trace of the Hessian of the
cross-entropy loss for global models obtained with and without the ASD regularizer. The following argument
establishes that if the client models converge to flat minima, it would also ensure convergence of the resultant
global model to a flat minimum. We assume the Hessians of the functions fk (kth client’s local objective),

8

Published in Transactions on Machine Learning Research (December/2024)

f (resultant global objective) exist and are continuous almost everywhere. Since f = 1
K

∑K
i=1 fi, we have

H(f) = 1
K

∑K
i=1 H(fi) (H(g) denotes the Hessian of function g). This implies µ1(H(f)) ≤ 1

K

∑K
i=1µ1(H(fi))

(µ1(A) denotes top eigenvalue of matrix A). Thus when the local models converge to a flat minimum, it
will ensure the convergence of the global model to a flat minimum. Following the method of (Yao et al.,
2020), we computed the top eigenvalue and trace of the Hessian. In Table 1, we observe that FedAvg+ASD
attains lower values for the top eigenvalue and trace compared to FedAvg, suggesting convergence to flat
minimum. The Eigen density plot in the figure 3 also confirms the same. We use the CIFAR-100 dataset
with non-iid data partitioning of δ = 0.3 (refer to Sec. 4). In Table 1 we have presented our analysis when
ASD is combined with FedAvg, FedDyn and FedSpeed. The results for other algorithms are presented in
Sec. A.8 of appendix. A similar concept has been explored in FedSAM (Qu et al., 2022; Caldarola et al.,
2022); the issue with SAM-based methods is they require an extra forward and backward pass, which doubles
the computational cost on the resource constrained edge devices. However, our method can be applied to
SAM-based methods and further improve its performance. ASD consistently attains the flatness with the
other FL algorithms and enhances their generalization.

4 Experiments

We perform the experiments on CIFAR-10, CIFAR-100 (Krizhevsky & Hinton, 2009), Tiny-ImageNet (Le &
Yang, 2015) datasets with different degrees of heterogeneity in the balanced settings (i.e., the same number
of samples per client but the class label distribution of each varies). We set the total number of clients to 100
in all our experiments. We set the client participation rate to 0.1, i.e., 10 percent of clients are sampled on
an average per communication round, similar to the protocol followed in (Acar et al., 2021). We build our
experiments using publicly available codebase by (Acar et al., 2021).For generating non-iid data, Dirichlet
distribution is used. To simulate the effect of label imbalance, for every client we sample the ’probability
distribution’ over the classes from the aforementioned Dirichlet distribution pdir

k = Dir(δ, C). Every sample
of pDir

k is a vector of length C and all the elements of this vector are non-negative and sum to 1. This vector
represents the label distribution for the client. The parameter δ known as the ’concentration parameter’,
captures the degree of label heterogeneity. Lower values of δ capture high heterogeneity and as the value
of δ increases, the label distribution becomes more uniform. Another parameter of Dirichlet distribution
(i.e., C), its value can be interpreted from the training dataset (C = 100 for CIFAR-100). For notational
convenience, we omit C from Dir(δ, C) by simply re-writing as Dir(δ). By configuring the concentration
parameter δ to 0.6 and 0.3, we sample the data using the Dirichlet distribution across the labels for each
client from moderate to high heterogeneity by controlling δ. This is in line with the approach followed in
(Acar et al., 2021) and (Yurochkin et al., 2019).

100 200 300 400 500
Communication Round

25

30

35

40

45

50

Ac
cu

ra
cy

FedAvg
FedAvg+ASD
FedDyn
FedDyn+ASD
FedSpeed
FedSpeed+ASD

(a) CIFAR-100 (δ = 0.3)

100 200 300 400 500
Communication Round

16

18

20

22

24

26

28

30

32

Ac
cu

ra
cy

FedAvg
FedAvg+ASD
FedDyn
FedDyn+ASD
FedSpeed
FedSpeed+ASD

(b) Tiny-ImageNet (δ = 0.3)

Figure 4: Test Accuracy vs Communication rounds: Comparison of algorithms with δ = 0.3 partitions on
CIFAR-100 and Tiny-ImageNet datasets. All the algorithms augmented with proposed regularization (ASD)
outperform compared to their original form. FedSpeed+ASD outperforms all the other algorithms.

9

Published in Transactions on Machine Learning Research (December/2024)

Table 2: Comparison of Accuracy(%): We show the accuracy attained by the algorithms across the datasets
(CIFAR-100/Tiny-ImageNet) at the end of 500 communication rounds. It can be seen that by combining the
proposed approach the performance of all the algorithms can be significantly improved.

Algorithm
CIFAR-100 TinyImageNet

δ = 0.3 δ = 0.6 IID δ = 0.3 δ = 0.6 IID
FedAvg (McMahan et al., 2017) 38.67 ±0.66 38.53 ±0.32 37.68 ±0.41 23.89 ±0.84 23.95 ±0.72 23.48 ±0.61
FedAvg+ASD (Ours) 42.77 ±0.22 42.54 ±0.51 43.00 ±0.60 25.31 ±0.25 26.38 ±0.21 26.67 ±0.10

FedProx (Li et al., 2020) 37.79 ±0.97 37.92 ±0.55 37.94±0.22 24.61 ±1.24 23.57 ±0.44 23.27 ±0.11
FedProx+ASD (Ours) 41.31 ±0.90 41.67 ±0.12 42.30 ±0.37 25.49 ±0.45 25.62 ±0.05 25.58 ±0.18

FedNTD (Lee et al., 2022) 40.40 ±1.52 40.50 ±0.54 41.23 ±0.44 23.71 ±0.65 23.28 ±0.29 22.95 ±0.22
FedNTD+ASD (Ours) 43.01 ±0.34 43.61 ±0.33 43.25 ±0.41 27.34 ±0.73 27.39 ±0.39 27.41 ±0.11

FedDyn (Acar et al., 2021) 47.56 ±0.41 48.60 ±0.09 48.87 ±0.51 27.62 ±0.21 28.58 ±0.61 28.37 ±0.20
FedDyn+ASD (Ours) 49.03 ±0.24 50.23 ±0.25 51.44 ±0.48 29.94 ±0.67 30.05 ±0.24 30.76 ±0.44

FedSAM (Caldarola et al., 2022) 40.89 ±0.30 41.41 ±0.34 40.81 ±0.26 24.72 ±0.64 25.42 ±0.49 23.50 ±0.94
FedSAM+ASD (Ours) 43.99 ±0.14 44.54 ±0.30 44.77 ±0.11 26.26 ±0.47 26.80 ±0.17 25.37 ±0.26

FedDisco (Ye et al., 2023) 38.97 ±1.38 38.87 ±1.37 37.85 ±0.57 24.35 ±0.42 24.03 ±0.78 23.49 ±0.31
FedDisco+ASD (Ours) 41.55 ±1.06 41.94 ±0.30 43.09 ±0.47 25.43 ±0.46 26.03 ±0.26 26.56 ±0.9

FedSpeed (Sun et al., 2023) 47.39 ±0.82 48.27 ±0.13 49.01 ±0.46 28.60 ±0.15 29.33 ±0.3 29.62 ±0.31
FedSpeed+ASD (Ours) 49.16 ±0.40 49.76 ±0.27 51.99 ±0.32 30.97 ±0.25 30.05 ±0.24 32.68 ±0.53

100 200 300 400 500
Communication Round

25

30

35

40

45

50

Ac
cu

ra
cy

FedAvg
FedAvg+ASD
FedDyn
FedDyn+ASD
FedSpeed
FedSpeed+ASD

(a) CIFAR-100 (δ = 0.6)

100 200 300 400 500
Communication Round

15.0

17.5

20.0

22.5

25.0

27.5

30.0

32.5

Ac
cu

ra
cy

FedAvg
FedAvg+ASD
FedDyn
FedDyn+ASD
FedSpeed
FedSpeed+ASD

(b) Tiny-ImageNet (δ = 0.6)

Figure 5: Test Accuracy vs Communication rounds: Comparison of algorithms with δ = 0.6 data partitions
on CIFAR-100 and Tiny-ImageNet dataset. All the algorithms augmented with proposed regularization
(ASD) outperform compared to their original form. FedSpeed+ASD outperforms all the other algorithms.

100 200 300 400 500
Communication Round

25

30

35

40

45

50

Ac
cu

ra
cy

FedAvg
FedAvg+ASD
FedDyn
FedDyn+ASD
FedSpeed
FedSpeed+ASD

(a) CIFAR-100 (iid)

100 200 300 400 500
Communication Round

15.0

17.5

20.0

22.5

25.0

27.5

30.0

32.5

Ac
cu

ra
cy

FedAvg
FedAvg+ASD
FedDyn
FedDyn+ASD
FedSpeed
FedSpeed+ASD

(b) Tiny-ImageNet (iid)

Figure 6: Test Accuracy vs Communication rounds: Comparison of algorithms with iid data partitions on
CIFAR-100 and Tiny-ImageNet datasets. All the algorithms augmented with proposed regularization (ASD)
outperform compared to their original form. FedSpeed+ASD outperforms all the other algorithms.

10

Published in Transactions on Machine Learning Research (December/2024)

5 Results and Discussion

For evaluation, we report accuracy on the test dataset as our performance metric and the number of
communication rounds required to attain the desired accuracy as a metric to quantify the communication cost.
Specifically, we evaluate the global model on the test set and report its accuracy after every communication
round. For comparison, we consider the popular methods for federated learning, such as FedAvg, FedProx,
FedDyn, FedSpeed FedNTD, FedSAM and FedDisco. We augment each of these methods with our approach
(ASD) and observe a significant boost in performance. For a fair comparison, we consider the same models
used in Fedavg (McMahan et al., 2017), and FedDyn (Acar et al., 2021), for CIFAR-10 and CIFAR-100
classification tasks. The model architecture used for CIFAR-100 contains 2 convolution layers followed by 3
fully connected layers. For Tiny-ImageNet, we use 3 convolution followed by 3 fully connected layers. The
detailed architectures are given in Sec A.2 of the appendix. Hyperparameters: SGD algorithm with a learning
rate of 0.1 and decay the learning rate per round of 0.998 is used to train the client models. Temperature τ
is set to 2.0. We only tune the hyper-parameter λ. More hyperparameter setting details and impact of λ, τ
are provided in Sec. A.3 and A.6 of the appendix, respectively. The impact of client participation rate and
the number of clients on ASD are shown in Sec. A.7 of the appendix. Implementation of ASD with other FL
methods is discussed in Sec. A.12 of appendix. We compare the convergence of different schemes for 500
communication rounds. Following the testing protocol of (Acar et al., 2021), we average across all the client
models and compute the test accuracy on the averaged model, which is reported in our results. In all the
tables, we report the test accuracy of the global model in % at the end of 500 communication rounds. All the
experiments in the tables are performed over three different initializations, mean and standard deviations of
accuracy over the three experiments are reported. We also demonstrate the efficacy of our proposed method
with deeper architectures such as ResNet-20 and Vision Transformer (ViT) models in Sec A.4 and Sec A.5 of
the appendix respectively.

5.1 Performance of ASD on CIFAR-10/100 and Tiny-Imagenet

In Table 2, we report the performance of CIFAR-100 and Tiny-ImageNet datasets with various algorithms for
non-iid (Dir(δ = 0.3) and Dir(δ = 0.6)) as well as the iid settings. Each experiment is performed over three
different initializations, and the mean and standard deviation of the accuracy are reported. On CIFAR-100,
we observe that our proposed ASD applied on FedDyn improves its performance by ≈ 1.45% for Dir(δ = 0.3)
and ≈ 1.6% Dir(δ = 0.6). Similarly, for Tiny-ImageNet we observe that FedDyn+ASD improves FedDyn by
≈ 2.4% for Dir(δ = 0.3) and by ≈ 1.4% for Dir(δ = 0.6). The test accuracy vs communication rounds plot on
CIFAR-100 and Tiny-ImageNet datasets is shown in Figures 4, 5 6 across non-iid and iid partitions. We can
see that adding ASD gives consistent improvement across the rounds1. We obtain significant improvements
for FedAvg+ASD against FedAvg, FedProx+ASD against FedProx, FedSpeed+ASD against FedSpeed, etc.
In Sec A.9 of the appendix we present the CIFAR-10 results where we observe that adding ASD consistently
gives an improvement of ≈ 0.4% − 1.99% improvement across the algorithms.

5.2 Comparison with adaptive vs uniform weights

Table 3: Comparison with adaptive weights vs uniform weights on CIFAR-100 dataset with Dirichlet δ = 0.3

Algorithm
Distillation with
Uniform weights

Distillation with
Adaptive weights

FedAvg+ASD 41.75 ±0.12 42.77 ±0.22
FedNTD+ASD 40.40 ±1.52 43.01 ±0.34
FedDisco+ASD 40.21 ±0.57 41.55 ±1.06
FedDyn+ASD 47.90 ±0.35 49.03 ±0.24

We analyze the impact of the proposed adaptive weighting scheme. We compare by making all the α̂k
i in

Eq 10 to 1 i.e, by giving equal weights to all the samples in the mini-batch. We can see from Table 3 that the
1In the figures we only compare FedAvg, FedDyn and FedSpeed for better readability. For others, please refer to Sec A.10 of

the appendix

11

Published in Transactions on Machine Learning Research (December/2024)

proposed adaptive weighting scheme yields much better performance than assigning uniform weights, thus
establishing the impact of proposed adaptive weights.

5.3 Performance with increased clients and lower client participation

Table 4: Experiments with 500 clients

Method Accuracy (in %)
FedAvg 27.92

FedAvg+ASD (ours) 31.28
FedProx 28.09

FedProx+ASD 32.13
FedNTD 30.99

FedNTD+ASD 33.65
FedDyn 31.0

FedDyn+ASD (ours) 33.12
FedSpeed 34.08

FedSpeed+ASD (ours) 36.59

In this section, we analyze the impact of our ASD regularizer to mimic the cross-device setting. We increase
the client participation to 500 clients and only 1% of the clients participate in every round. We consider
the CIFAR-100 dataset and the non-iid data partition of δ = 0.3. In the Table 4, we observe that ASD
consistently improves the performance of the algorithms. The accuracies are reported after averaging over
three different initializations at the end of 1000 communication rounds. Even in this challenging setting ASD
consistently improves the performance of the FL algorithms.

6 Computation Cost
The major computation for the distillation scheme comes from the teacher forward pass, student forward pass,
and the student backward pass (Xu et al., 2020). We assume Cs as the total computational cost of server
model forward pass and Ck be the total computation cost of client model k the forward pass per epoch. We
do not need Cs computations every epoch, we only need to compute once and store the values of H(x) while
keeping the same backward computation. Specifically, for the computation of distillation regularizer we only
need E ∗ Ck + Cs local computations compared to E ∗ Ck computations without regularizer. Here E denotes
the local epochs of the client. Since Cs = Ck, we have (E + 1) ∗ Ck local computations. Thus, our regularizer
introduces minimal forward computation on the edge devices, which typically have low computation. In
Sec. A.14 of appendix we discuss the computation vs accuracy of ASD.

7 Conclusion
In this work, we presented an efficient and effective method for addressing client data heterogeneity due to
label imbalance in federated learning using our proposed Adaptive Self-Distillation (ASD), which does not
require any auxiliary data and no extra communication cost. We also theoretically showed that ASD has
lower client-drift leading to better convergence. Moreover, we performed analysis to show that ASD has
better generalization by analyzing the top eigenvalue and trace of the Hessian of the global model’s loss.
The effectiveness of our approach is shown via extensive experiments across datasets such as CIFAR-10,
CIFAR-100 and Tiny-ImageNet with different degrees of heterogeneity. Our proposed regularizer (ASD) can
be integrated easily atop any of the FL frameworks. We evaluated this efficacy by showing improvement in
the performance when combined with FedAvg, FedProx, FedDyn, FedSAM, FedDisco, FedNTD and FedSpeed.
We have also shown that the computation required to implement ASD is simply an additional forward pass
on the client-side training, i.e, all the gains we obtain with ASD requires minimal compute. Our research can
inspire the designing of the computationally efficient regularizers that concurrently reduce client-drift and
improve the generalization.

12

Published in Transactions on Machine Learning Research (December/2024)

References
Durmus Alp Emre Acar, Yue Zhao, Ramon Matas Navarro, Matthew Mattina, Paul N Whatmough, and

Venkatesh Saligrama. Federated learning based on dynamic regularization. arXiv preprint arXiv:2111.04263,
2021.

Debora Caldarola, Barbara Caputo, and Marco Ciccone. Improving generalization in federated learning by
seeking flat minima. In European Conference on Computer Vision, pp. 654–672. Springer, 2022.

Jonas Geiping, Hartmut Bauermeister, Hannah Dröge, and Michael Moeller. Inverting gradients-how easy
is it to break privacy in federated learning? Advances in Neural Information Processing Systems, 33:
16937–16947, 2020.

Andrew Hard, Chloé M Kiddon, Daniel Ramage, Francoise Beaufays, Hubert Eichner, Kanishka Rao,
Rajiv Mathews, and Sean Augenstein. Federated learning for mobile keyboard prediction, 2018. URL
https://arxiv.org/abs/1811.03604.

Yuting He, Yiqiang Chen, XiaoDong Yang, Hanchao Yu, Yi-Hua Huang, and Yang Gu. Learning critically:
Selective self-distillation in federated learning on non-iid data. IEEE Transactions on Big Data, pp. 1–12,
2022a. doi: 10.1109/TBDATA.2022.3189703.

Yuting He, Yiqiang Chen, Xiaodong Yang, Yingwei Zhang, and Bixiao Zeng. Class-wise adaptive self
distillation for heterogeneous federated learning. 2022b.

Geoffrey Hinton, Oriol Vinyals, Jeff Dean, et al. Distilling the knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2(7), 2015.

Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown. Measuring the effects of non-identical data distribution
for federated visual classification. arXiv preprint arXiv:1909.06335, 2019.

Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown. Federated visual classification with real-world data
distribution. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28,
2020, Proceedings, Part X 16, pp. 76–92. Springer, 2020.

Yangsibo Huang, Samyak Gupta, Zhao Song, Kai Li, and Sanjeev Arora. Evaluating gradient inversion attacks
and defenses in federated learning. Advances in Neural Information Processing Systems, 34:7232–7241,
2021.

Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin Bhagoji,
Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, et al. Advances and open
problems in federated learning. Foundations and Trends® in Machine Learning, 14(1–2):1–210, 2021.

Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and
Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for federated learning. In Inter-
national Conference on Machine Learning, pp. 5132–5143. PMLR, 2020.

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Peter Tang. On
large-batch training for deep learning: Generalization gap and sharp minima. In International Conference
on Learning Representations, 2017. URL https://openreview.net/forum?id=H1oyRlYgg.

Geeho Kim, Jinkyu Kim, and Bohyung Han. Communication-efficient federated learning with accelerated
client gradient. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 12385–12394, 2024.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images. Technical report,
Canadian Institute for Advanced Research, 2009.

Ya Le and Xuan Yang. Tiny imagenet visual recognition challenge. CS 231N, 7(7):3, 2015.

13

https://arxiv.org/abs/1811.03604
https://openreview.net/forum?id=H1oyRlYgg

Published in Transactions on Machine Learning Research (December/2024)

Gihun Lee, Minchan Jeong, Yongjin Shin, Sangmin Bae, and Se-Young Yun. Preservation of the global
knowledge by not-true distillation in federated learning. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave,
and Kyunghyun Cho (eds.), Advances in Neural Information Processing Systems, 2022. URL https:
//openreview.net/forum?id=qw3MZb1Juo.

Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith. Federated
optimization in heterogeneous networks. Proceedings of Machine Learning and Systems, 2:429–450, 2020.

Tao Lin, Lingjing Kong, Sebastian U Stich, and Martin Jaggi. Ensemble distillation for robust model fusion
in federated learning. Advances in Neural Information Processing Systems, 33:2351–2363, 2020.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas. Communication-
efficient learning of deep networks from decentralized data. In Artificial intelligence and statistics, pp.
1273–1282. PMLR, 2017.

Konstantin Mishchenko, Eduard Gorbunov, Martin Takáč, and Peter Richtárik. Distributed learning with
compressed gradient differences. arXiv preprint arXiv:1901.09269, 2019.

Hossein Mobahi, Mehrdad Farajtabar, and Peter Bartlett. Self-distillation amplifies regularization in hilbert
space. Advances in Neural Information Processing Systems, 33:3351–3361, 2020.

Zhe Qu, Xingyu Li, Rui Duan, Yao Liu, Bo Tang, and Zhuo Lu. Generalized federated learning via sharpness
aware minimization. In International Conference on Machine Learning, pp. 18250–18280. PMLR, 2022.

Swaroop Ramaswamy, Rajiv Mathews, Kanishka Rao, and Françoise Beaufays. Federated learning for emoji
prediction in a mobile keyboard. arXiv preprint arXiv:1906.04329, 2019.

Sashank J Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith Rush, Jakub Konečnỳ, Sanjiv
Kumar, and Hugh Brendan McMahan. Adaptive federated optimization. In International Conference on
Learning Representations.

Nicola Rieke, Jonny Hancox, Wenqi Li, Fausto Milletari, Holger R Roth, Shadi Albarqouni, Spyridon Bakas,
Mathieu N Galtier, Bennett A Landman, Klaus Maier-Hein, et al. The future of digital health with
federated learning. NPJ digital medicine, 3(1):1–7, 2020.

Hyowoon Seo, Jihong Park, Seungeun Oh, Mehdi Bennis, and Seong-Lyun Kim. 16 federated knowledge
distillation. Machine Learning and Wireless Communications, pp. 457, 2022.

Sebastian U Stich. Local sgd converges fast and communicates little. arXiv preprint arXiv:1805.09767, 2018.

Yan Sun, Li Shen, Tiansheng Huang, Liang Ding, and Dacheng Tao. Fedspeed: Larger local interval, less
communication round, and higher generalization accuracy. In The Eleventh International Conference on
Learning Representations, 2023. URL https://openreview.net/forum?id=bZjxxYURKT.

Shitao Tang, Litong Feng, Wenqi Shao, Zhanghui Kuang, Wei Zhang, and Yimin Chen. Learning efficient
detector with semi-supervised adaptive distillation. arXiv preprint arXiv:1901.00366, 2019.

Jianyu Wang, Vinayak Tantia, Nicolas Ballas, and Michael Rabbat. Slowmo: Improving communication-
efficient distributed sgd with slow momentum. In International Conference on Learning Representations.

Jianyu Wang, Zachary Charles, Zheng Xu, Gauri Joshi, H Brendan McMahan, Maruan Al-Shedivat, Galen
Andrew, Salman Avestimehr, Katharine Daly, Deepesh Data, et al. A field guide to federated optimization.
arXiv preprint arXiv:2107.06917, 2021.

Kan Wu, Jinnian Zhang, Houwen Peng, Mengchen Liu, Bin Xiao, Jianlong Fu, and Lu Yuan. Tinyvit: Fast
pretraining distillation for small vision transformers. In European conference on computer vision, pp. 68–85.
Springer, 2022.

Guodong Xu, Ziwei Liu, and Chen Change Loy. Computation-efficient knowledge distillation via uncertainty-
aware mixup. arXiv preprint arXiv:2012.09413, 2020.

14

https://openreview.net/forum?id=qw3MZb1Juo
https://openreview.net/forum?id=qw3MZb1Juo
https://openreview.net/forum?id=bZjxxYURKT

Published in Transactions on Machine Learning Research (December/2024)

Jie Xu, Benjamin S Glicksberg, Chang Su, Peter Walker, Jiang Bian, and Fei Wang. Federated learning for
healthcare informatics. Journal of Healthcare Informatics Research, 5:1–19, 2021.

Sarika Yadav and Rama Shankar Yadav. A review on energy efficient protocols in wireless sensor networks.
Wireless Networks, 22(1):335–350, 2016.

Zhewei Yao, Amir Gholami, Kurt Keutzer, and Michael W Mahoney. Pyhessian: Neural networks through
the lens of the hessian. In 2020 IEEE international conference on big data (Big data), pp. 581–590. IEEE,
2020.

Rui Ye, Mingkai Xu, Jianyu Wang, Chenxin Xu, Siheng Chen, and Yanfeng Wang. Feddisco: Federated
learning with discrepancy-aware collaboration. 2023.

Mikhail Yurochkin, Mayank Agarwal, Soumya Ghosh, Kristjan Greenewald, Nghia Hoang, and Yasaman
Khazaeni. Bayesian nonparametric federated learning of neural networks. In International Conference on
Machine Learning, pp. 7252–7261. PMLR, 2019.

Zelin Zang, Siyuan Li, Di Wu, Ge Wang, Kai Wang, Lei Shang, Baigui Sun, Hao Li, and Stan Z Li. Dlme:
Deep local-flatness manifold embedding. In European Conference on Computer Vision, pp. 576–592.
Springer, 2022.

Jie Zhang, Zhiqi Li, Bo Li, Jianghe Xu, Shuang Wu, Shouhong Ding, and Chao Wu. Federated learning
with label distribution skew via logits calibration. In International Conference on Machine Learning, pp.
26311–26329. PMLR, 2022.

Linfeng Zhang, Jiebo Song, Anni Gao, Jingwei Chen, Chenglong Bao, and Kaisheng Ma. Be your own
teacher: Improve the performance of convolutional neural networks via self distillation. In Proceedings of
the IEEE/CVF international conference on computer vision, pp. 3713–3722, 2019.

Yanlin Zhou, George Pu, Xiyao Ma, Xiaolin Li, and Dapeng Wu. Distilled one-shot federated learning. arXiv
preprint arXiv:2009.07999, 2020.

Zhuangdi Zhu, Junyuan Hong, and Jiayu Zhou. Data-free knowledge distillation for heterogeneous federated
learning. In International Conference on Machine Learning, pp. 12878–12889. PMLR, 2021.

A Appendix

A.1 Notations and Definitions

• H(x) denotes the entropy of the model under consideration for input x.

• pyi=c
k denotes the probability that the client k has the input i belonging to class c.

• H(g) denotes the Hessian of the function g.

• µ1(A) denotes the top eigenvalue of matrix A.

• DKL denotes the KL divergence.

• inf denotes the infimum and sup denotes the supremum.

• δ is used for denoting the heterogeneity generated based on Dirichlet distribution.

• λ denotes the ASD regularizer strength.

• Gd(w, λ) denotes the gradient dissimilarity.

• E(.) denotes the expectation.

• Lk(w) is the loss of client k (cross-entropy loss).

15

Published in Transactions on Machine Learning Research (December/2024)

• Lk(w)ASD is the Adaptive Self-Distillation loss for client k.

• Dk represents the dataset of client k.

• Pk(x, y) represents the data distribution of the client k.

A.2 Model Architectures

In Table 5, the model architecture is shown. We use PyTorch style representation. For example conv
layer(3,64,5) means 3 input channels, 64 output channels and the kernel size is 5. Maxpool(2,2) represents
the kernel size of 2 and a stride of 2. FullyConnected(384,200) represents an input dimension of 384 and an
output dimension of 200. The architecture for CIFAR-100 is exactly the same as used in (Acar et al., 2021).

Table 5: Models used for Tiny-ImageNet and CIFAR-100 datasets.

CIFAR-10/100 Model

Tiny-ImageNet Model
ConvLayer(3,64,3)
GroupNorm(4,64)

Relu
MaxPool(2,2)

ConvLayer(64,64,3)
GroupNorm(4,64)

ConvLayer(3,64,5) Relu
Relu MaxPool(2,2)

MaxPool(2,2) ConvLayer(64,64,3)
ConvLayer(64,64,5) GroupNorm(4,64)

Relu Relu
MaxPool(2,2) MaxPool(2,2)

Flatten Flatten
FullyConnected(1600,384) FullyConnected(4096,512)

Relu Relu
FullyConnected(384,192) FullyConnected(512,384)

Relu Relu
FullyConnected(192,100) FullyConnected(384,200)

A.3 Hyper-Parameter Settings

The value of λ is specified in units of batch-size B. We chose λ from {10, 20, 30}. We set λ = 20 for all the
Tiny-ImageNet experiments. For CIFAR-10/100 we chose λ to be 10 and 30 respectively. The batch-size (B)
of 50 and learning rate of 0.1 with decay of 0.998 is employed for all the experiments unless specified. All the
experiments are carried out with 100 clients and with 10% client participation.

A.4 Experiments with Deeper Models (CNN’s)

In this section, we perform experiments with the deep models such as ResNet-20 on CIFAR-100 dataset with
Dirichlet δ = 0.3. For this experiment we have used 300 communication rounds, the number of clients as 30,
and the client participation rate is set to 20%. In the table 6, we report the numbers averaged over 3 different
trials. We observe that the addition of our proposed regularizer ASD atop mutiple popular FL methods leads
to consistent improvements, thereby further justifying the efficacy of our proposed method.

Table 6: Experiments on ResNet-20

Method Accuracy (in %)
FedAvg 46.35

FedAvg+ASD (ours) 47.90
FedDyn 53.60

FedDyn+ASD (ours) 55.15
FedSpeed 54.42

FedSpeed+ASD (ours) 55.82

16

Published in Transactions on Machine Learning Research (December/2024)

A.5 Experiments with Deeper Models (ViT)

We perform experiments with ViT architecture using the Tiny-ViT (Wu et al., 2022) as client models on
ImageNet-100 dataset (Zang et al., 2022) with non-iid data partitioning of Dirichlet δ = 0.3. The choice of
Tiny-ViT is motivated by the fact that edge devices are traditionally computational resource-constrained and
Tiny-ViT is designed for such applications. For this experiment, the number of clients is set to 200, and the
client participation rate is set to 5%. We have used 300 communication rounds. In the Table 7, we report the
numbers averaged over 3 different trials. We observe that the addition of our proposed regularizer ASD atop
FedAvg and FedDyn leads to consistent improvements, thereby further justifying the efficacy of our proposed
method on the deeper architectures.

Table 7: Experiments using Tiny-ViT on ImageNet-100 dataset with the non-iid partitioning of δ = 0.3

Method Accuracy (in %)
FedAvg 18.12

FedAvg+ASD (ours) 22.10
FedDyn 28.02

FedDyn+ASD (ours) 36.70

In Table 8, we performed an experiment on ViT-Small architecture on CIFAR-100. We observe that adding
our ASD regularizer improves the baseline FedAvg by 1.4% and 1.7% for δ = 0.3 and δ = 0.6, respectively.
In this setup we consider 100 clients with 10% participation and the accuracy is reported at the end of 300
rounds.

Table 8: Experiments using ViT-Small with CIFAR-100 with the non-iid data partitioning of δ = 0.3 and
δ = 0.6.

Method Accuracy(%)
δ = 0.3 δ = 0.6

FedAvg 53.22 52.63
FedAvg+ASD (Ours) 54.67 54.34

A.6 Impact on the choice of hyperparameters λ and τ

2 4 6 8 10
Temperature ()

37

38

39

40

41

42

43

Ac
cu

ra
cy

(%
)

= 10
= 20
= 30
= 40
= 60

Figure 7: Impact of λ and τ on CIFAR-100 dataset with non-iid partitioning of δ = 0.3 with FedAvg+ASD.

We study the impact of changing the hyper-parameters λ and τ on the CIFAR-100 dataset with the Dirichlet
non-iid partition of δ = 0.3. We report the accuracy at the end of 500 rounds. When using FedAvg+ASD
algorithm. In Figure 7 we see that the accuracy of the model increases with λ and then slightly drops after a
critical point. This is expected as too less value of λ is similar to FedAvg and very high value of λ will ignore
the local learning. It can also be seen that for all the values of λ the Accuracy peaks at τ = 2. In all of our
experiments we set the temperature parameter τ set to 2.0.

17

Published in Transactions on Machine Learning Research (December/2024)

A.7 Impact of client participation / number of clients on ASD

We fix the client participation to 2% and vary the number of clients from 100 to 500. We perform this
ablation using the CIFAR-100 dataset with a non-iid Dirichlet data partitioning of δ = 0.3. We summarize
our observations in the Tables 9 and 10 below. It can be seen that ASD improves the performance of the
baselines FedAvg and FedDyn in all the settings. In particular, we would like to highlight the point here
that despite increasing the number of clients, the total number of training data samples across all the clients
remains constant (for CIFAR-100). Thus as the number of clients increases, the number of data samples
per client decreases. This further aggravates the adverse impact of label heterogeneity across clients, and
hence accuracy degrades in general. However, we are happy to observe and report that, even under such a
challenging setup, our proposed adaptive self-distillation-based strategy consistently improves the accuracy
when combined on top of the existing baseline algorithms.

Table 9: Impact of increasing the number of clients on the Accuracy (%) when the participation rate is fixed
to 2% and non-iid partitioning of δ = 0.3.

Number of ClientsMethod 100 200 300 400 500
FedAvg 31.15 31.86 30.05 28.70 26.12
FedAvg+ASD (ours) 37.67 35.56 32.86 29.98 27.16
FedDyn 39.17 36.11 34.24 31.09 26.87
FedDyn+ASD (ours) 39.34 40.08 36.83 33.61 28.05

Table 10: Impact of increasing the number of clients on the Accuracy (%) when the participation rate is fixed
to 2% and non-iid partitioning of δ = 0.6.

Number of ClientsMethod 100 200 300 400 500
FedAvg 35.17 32.06 30.12 28.31 25.71
FedAvg+ASD (ours) 39.61 35.49 32.16 29.43 27.61
FedDyn 37.96 36.56 34.71 30.37 26.45
FedDyn+ASD (ours) 39.40 40.49 37.48 33.23 28.60

In Table 11, unlike the previous ablation, here we fix the number of clients to 100 and vary the client
participation rate from 5%, 10% and 15%. We consider the CIFAR-100 dataset with non-iid partitioning
of (δ = 0.3). As expected, the accuracy of the FL-trained models improve with an increase in the client
participation rate. We would also like to highlight here that, by adding our proposed ASD strategy consistently
improves the accuracy when combined on top of the existing baseline algorithms such as FedAvg and FedDyn.

Table 11: Impact of increasing the client participation rate on the Accuracy (%) with number of clients fixed
to 100.

Method
non iid partition (δ = 0.3) non-iid partition (δ = 0.6)

client paticipation client participation
5% 10% 15% 5% 10% 15%

FedAvg 38.22 38.67 38.85 39.04 38.53 38.00
FedAvg+ASD (Ours) 43.04 42.77 43.59 43.51 42.54 42.90
FedDyn 44.68 47.56 47.87 45.18 48.60 48.74
FedDyn+ASD (Ours) 47.51 49.03 50.32 47.81 50.23 51.48

A.8 Hessian Analysis

In the Table 12 we analyze the top eigenvalue and the trace of the Hessian of the global model when ASD is
applied to methods such as FEdProx, FedNTD, FedSAM and FedDisco.

18

Published in Transactions on Machine Learning Research (December/2024)

Table 12: The table shows the impact of ASD on the algorithms on CIFAR-100 Dataset. We consistently see
that the top eigenvalue and the trace of the Hessian decrease and the Accuracy improves when ASD is used.
This suggests that using ASD makes the global model reach to a flat minimum for better generalization.

Algorithm Top Eigenvalue ↓ Trace ↓ Accuracy ↑
FedProx 45.2 8683 37.79

FedProx + ASD 11.9 2663 41.31
FedNTD 16.3 3517 40.40

FedNTD + ASD 17.5 2840 43.01
FedSAM 19.04 4022 40.89

FedSAM + ASD 6.0 1339 43.99
FedDisco 46.7 8771 38.97

FedDisco + ASD 12.2 2334 41.55

A.9 Performance on CIFAR-10 dataset

In Table 13, we show the results for the CIFAR-10 dataset, we find that applying the ASD improves the
performance of all the algorithms consistently.

Table 13: We show the accuracy attained by the algorithms on CIFAR-10 at the end of 500 communication
rounds. It can be seen that by combining the proposed approach the performance of all the algorithms is
improved.

Algorithm δ = 0.3 δ = 0.6 iid
FedAvg 78.15 ±0.78 78.66 ±0.10 80.99 ±0.09

FedAvg+ASD (Ours) 79.01 ±0.33 79.93 ±0.21 81.83 ±0.19
FedProx 78.25 ±0.68 78.81 ±0.69 81.04 ±0.34

FedProx+ASD (Ours) 78.77 ±0.49 79.91 ±0.12 81.74 ±0.06
FedNTD 76.79 ±0.37 78.55 ±0.31 80.98 ±0.21

FedNTD+ASD (Ours) 78.78 ±0.86 80.13 ±0.49 81.80 ±0.11
FedDyn 81.08 ±0.52 81.48 ±0.35 83.51 ±0.27

FedDyn+ASD (Ours) 81.82 ±0.56 82.33 ±0.39 84.09 ±0.15
FedDisco 78.21 ±0.45 78.76 ±0.32 81.04 ±0.30

FedDisco+ASD (Ours) 78.97 ±0.01 79.98 ±0.35 81.71 ±0.21
FedSpeed 81.28 ±0.32 81.83 ±0.36 83.67 ±0.14

FedSpeed+ASD (Ours) 81.70 ±0.20 82.62 ±0.26 84.57 ±0.24

A.10 Accuracy vs Communication rounds

In the below figures 8 9 and 10, we present how the accuracy is evolving across the communication rounds
for the FL methods FedNTD, FedProx, FedDisco with and without the ASD regularizer. We present these
results for non-iid (δ = 0.3 and δ = 0.6) and with the iid data partitions for both the CIFAR-100 and
Tiny-ImageNet datasets. It can be seen that adding ASD to these off-the-shelf FL methods consistently
improves the performance.

A.11 Privacy of Proposed Method

In our method, which is ASD regularizer, the adaptive weights are computed by the client without depending
on the server and it does not assume access to any auxiliary data at the server as assumed in methods such
as FedCAD (He et al., 2022b) and FedDF (Lin et al., 2020). In our method, only model parameters are
communicated with the server similar to FedAvg (McMahan et al., 2017). Thus our privacy is similar to the
FedAvg method at the same time obtaining significant improvements in the performance.

19

Published in Transactions on Machine Learning Research (December/2024)

100 200 300 400 500
Communication Round

25

30

35

40

45

50

Ac
cu

ra
cy

FedNTD
FedNTD+ASD
FedProx
FedProx+ASD
FedDisco
FedDisco+ASD

(a) CIFAR-100 (δ = 0.3)

100 200 300 400 500
Communication Round

16

18

20

22

24

26

28

30

Ac
cu

ra
cy

FedNTD
FedNTD+ASD
FedProx
FedProx+ASD
FedDisco
FedDisco+ASD

(b) Tiny-ImageNet (δ = 0.3)

Figure 8: Test Accuracy vs Communication rounds: Comparison of algorithms with δ = 0.3, data partition
on CIFAR-100 and Tiny-ImageNet datasets. All the algorithms augmented with proposed regularization
(ASD) outperform compared to their original form.

100 200 300 400 500
Communication Round

25

30

35

40

45

50

Ac
cu

ra
cy

FedNTD
FedNTD+ASD
FedProx
FedProx+ASD
FedDisco
FedDisco+ASD

(a) CIFAR-100 (δ = 0.6)

100 200 300 400 500
Communication Round

15.0

17.5

20.0

22.5

25.0

27.5

30.0

32.5

Ac
cu

ra
cy

FedNTD
FedNTD+ASD
FedProx
FedProx+ASD
FedDisco
FedDisco+ASD

(b) Tiny-ImageNet (δ = 0.6)

Figure 9: Test Accuracy vs Communication rounds: Comparison of algorithms with δ = 0.6 data partition on
CIFAR-100 and Tiny-ImageNet datasets. All the algorithms augmented with proposed regularization (ASD)
outperform compared to their original form.

100 200 300 400 500
Communication Round

25

30

35

40

45

50

Ac
cu

ra
cy

FedNTD
FedNTD+ASD
FedProx
FedProx+ASD
FedDisco
FedDisco+ASD

(a) CIFAR-100 (iid)

100 200 300 400 500
Communication Round

15.0

17.5

20.0

22.5

25.0

27.5

30.0

32.5

Ac
cu

ra
cy

FedNTD
FedNTD+ASD
FedProx
FedProx+ASD
FedDisco
FedDisco+ASD

(b) Tiny-ImageNet (iid)

Figure 10: Test Accuracy vs Communication rounds: Comparison of algorithms with iid data partitions on
CIFAR-100 and Tiny-ImageNet datasets. All the algorithms augmented with proposed regularization (ASD)
outperform compared to their original form.

20

Published in Transactions on Machine Learning Research (December/2024)

A.12 Implementation of ASD with the FL Methods

. We now present the integration of ASD loss with the existing FL methods. For all the methods FedAvg,
FedDyn, FedSpeed, FedProx, FedDisco and FedSAM, we augment the client loss of each of these methods
with our proposed ASD loss in the Eq 5. FedNTD (Lee et al., 2022) uses the non-true distillation loss, it
distills the knowledge only from the non-true classes.

DNTD(qg(xi)||qk(xi)) =
C∑

c̸=y

qc
g(xi)log(qc

g(xi)/qc
k(xi)) (17)

The above equation represents the FedNTD loss on the sample i, when the true class label is y. We now use
the adaptive weights as defined in Eq. 20, to update the FedNTD loss as below.

Lasd−ntd
k (w) ≜

∑
i∈[B]

αk
i DNTD(qg(xi)||qk(xi)) (18)

So the final loss used for optimizing FedNTD with adaptive self-distillation is given below.

fk(w) ≜ Lk(w) + λLasd−ntd
k (w) (19)

where Lk(w) is defined as in Eq. 3 of the main paper.

A.13 On the choice of KL divergence

The distillation loss introduced by the seminal work of (Hinton et al., 2015) matches the temperature-raised
softmax values between the pre-trained teacher model and student model for effective knowledge transfer.
It is essentially cross entropy between two softmax vectors. KL divergence differs from cross entropy by a
constant and hence achieves the same optimization objective. In our context, we treat the server model as
the teacher model and the client model as the student model. Other divergence measures such as reverse KL
and JS can also be considered, but we did not see any significant performance difference empirically. In fact
KL divergence performed better compared to reverse-KL and JS divergence as shown in Table below. For
this experiment we used the CIFAR-100 dataset with 100 clients and 10% client participation rate.

Table 14: Comparison of Statistical Divergences

Method Accuracy (in %)
KL (ours) 42.77
reverse-KL 42.04

Jensen-Shannon 42.21

500 1000 1500 2000 2500 3000
Computation Units

25.0

27.5

30.0

32.5

35.0

37.5

40.0

42.5

Ac
cu

ra
cy

FedAvg
FedAvg+ASD

Figure 11: Comparison of the Communication vs Computation for FedAvg and FedAvg+ASD. It can be
seen that over the communication rounds for a given amount of computation, FedAvg+ASD attains better
accuracy compared to FedAvg.

21

Published in Transactions on Machine Learning Research (December/2024)

A.14 Computation vs Accuracy

In the Figure 11 we have compared the computation with the accuracy for FedAvg and FedAvg+ASD methods.
In particular, we observe that at a fixed cumulative computation cost of 2500 units FedAvg attains 38.67 %
Accuracy while FedAvg+ASD attains 42.3% accuracy. Here the one unit denotes the computation required
for the single forward pass.

A.15 Proofs of Propositions:

We rewrite the adaptive weighting equations for convenience as below.

αi
k = α̂k

i∑
i∈B α̂k

i
(20)

and α̂k
i is defined as below Eq. 21

α̂k
i ≜

exp(−H(xi))
pyi

k

(21)

Proposition A.1. infw∈Rd Gd(w, λ) is 1, ∀ λ

Proof.

Gd =
1
K

∑
k ∥∇fk∥2

∥∇f∥2 (22)

∥∇f∥2 = ∥ 1
K

∑
k

∇fk∥
2

(23)

We observe that the function ∥.∥2 is Convex. By applying Jensen’s inequality, we get the desired result. The
expectation is taken over the discrete probability measure.

∥∇f∥2 ≤ 1
K

∑
k

∥∇fk∥2 (24)

Lemma A.2. For any function of the form ζ(x) = ax2+bx+cn

ax2+bx+cd
satisfying cn > cd , ∃ xc ≥ 0 such that

dζ(x)
dx < 0 ∀ x ≥ xc

Proof.

(25)dζ(x)
dx

= (2ax + b)(ax2 + bx + cd) − (2ax + b)(ax2 + bx + cn)
(ax2 + bx + cd)2

By re-arranging and simplifying the above we get the following

dζ(x)
dx

= 2x(acd − acn) + b(cd − cn)
(adx2 + bx + cd)2 (26)

We are interested in knowing when the numerator is negative.

x2a(cd − cn) ≤ b(cn − cd) (27)

Since cn > cd, we have
x2a(cn − cd) ≥ −b(cn − cd) =⇒ x ≥ −b

2a
(28)

22

Published in Transactions on Machine Learning Research (December/2024)

assuming xc = | −b
2a |

We have the desired condition for x ≥ xc

This concludes the proof.

Proposition A.3. When the class conditional distribution across the clients is identical, i.e., Pk(x |
y) = P(x | y) then ∇fk(w) =

∑
c pc

k(gc + λγc
kg̃c), where gc = ∇E[l(w; x, y) | y = c], and g̃c =

∇E[exp(−H(x))DKL(qg(x)||qk(x)) | y = c] where γc
k = 1

pc
k
.

Proof. We re-write the equations for fk(w) from Sec 3.3 of main paper, Lk(w) and LASD
k (w) from the Sec

3.2 of main paper for convenience.

fk(w) = Lk(w) + λLASD
k (w) (29)

Lk(w) = E
x,y∈Dk

[lk(w; (x, y))] (30)

LASD
k (w) ≜ E[αk(x, y)DKL(qg(x)||qk(x))] (31)

By applying the tower property of expectation, we expand Eq. 30 as below

Lk(w) =
∑

c

pc
kE[lk(w; x, y) | y = c] (32)

If we assume the class-conditional distribution across the clients to be identical the value of E[lk(w; x, y) | y = c]
is same for all the clients. Under such assumptions, we can drop the client index k and rewrite the Eq. 32 as
follows

Lk(w) =
∑

c

pc
kE[l(w; x, y) | y = c] (33)

∇Lk(w) =
∑

c

pc
k∇E[l(w; x, y) | y = c] (34)

We further simplify the notation by denoting gc = ∇E[l(w; x, y) | y = c].

∇Lk(w) =
∑

c

pc
kgc (35)

To make the analysis tractable, In Eq. 21, we use the un-normalized weighting scheme as the constant can be
absorbed into λ. we can re-write Eq. 21 as below

α̂i
k = γy

k exp(H(x)) (36)

where γy
k = 1

py
k

With the above assumptions we can interpret the Eq. 31 as follows.

LASD
k = E

x,y∈Dk

[ldist
k (w; (x, y))] (37)

where ldist
k (w; (x, y)) = γy

k exp(−H(x))DKL(qg(x)||qk(x)).

By following the similar line of arguments from Eq. 32 to Eq. 34 we can write the following

∇LASD
k (w) =

∑
c

pc
kg̃cγc

k (38)

23

Published in Transactions on Machine Learning Research (December/2024)

∇fk(w) =
∑

c

pc
k(gc + λγc

kg̃c) (39)

Lemma A.4. If cn = K
∑K

k=1
∑C

c=1(pc
k)2, cd =

∑K
k1=1

∑K
k2=1

∑C
c=1(pc

k1pc
k2). where pc

k ≥ 0 ∀k, c, and∑C
c=1 pc

k = 1, then cn

cd
≥ 1.

Proof. We need to show that ∑K
k=1

∑C
c=1(pc

k)2∑K
k1=1

∑K
k2=1

∑C
c=1(pc

k1pc
k2)

≥ 1
K

(40)

By rewriting the denominator we get ∑K
k=1

∑C
c=1(pc

k)2∑C
c=1(

∑K
k=1(pc

k))2
≥ 1

K
(41)

Consider rewriting the denominator of the L.H.S of above equation.

C∑
c=1

(
K∑

k=1
(pc

k))2 =
C∑

c=1
((pc)⊺1)2 (42)

where pc = [pc
1pc

2...pc
K]⊺ and 1 is the all one vector of size K

Applying the Cauchy Schwartz inequality to the R.H.S of the Eq. 42 we get the following.

C∑
c=1

((pc)⊺1)2 ≤
C∑

c=1

K∑
k=1

(pc
k)2K (43)

By combining the Eq. 42 and Eq. 43 the result follows.

Proposition A.5. When the class-conditional distribution across the clients is the same, and the As-
sumption 3.3 holds then ∃ a range of values for λ such that whenever λ ≥ λc we have dGd

dλ < 0 and
Gd(w, λ) < Gd(w, 0).

Proof.

Gd =
1
K

∑K
k=1 ∥∇fk∥2

∥∇f∥2 (44)

From Sec 3.2 of the main paper we have the following, We drop the argument w for the functions fk to
simplify the notation

∇fk =
C∑

c=1
pc

k(gc + λγc
kg̃c) (45)

24

Published in Transactions on Machine Learning Research (December/2024)

(46)

∥∇fk∥2 =
C∑

c1=1

C∑
c2=1

pc1
k pc2

k (g⊺
c1 + λγc1

k g̃⊺
c1)(gc2 + λγc2

k g̃c2)

=
C∑

c1=1

C∑
c2=1

pc1
k pc2

k (g⊺
c1gc2 + λγc2

k g⊺
c1g̃c2 + λγc1

k g̃⊺
c1gc2 + λ2γc2

k γc1
k g̃⊺

c1g̃c2)

≈
C∑

c=1
(pc

k)2(g⊺
c gc) + λ

C∑
c1=1

C∑
c2=1

pc1
k g⊺

c1g̃c2 + λ

C∑
c1=1

C∑
c2=1

pc2
k g̃⊺

c1gc2 + λ2
C∑

c=1
(pc

k)2γc
kγc

kg̃⊺
c g̃c

=
C∑

c=1
(pc

k)2 + 2λ

C∑
c1=1

C∑
c2=1

pc1
k g⊺

c1g̃c2 + λ2C

In the above equation the second equality is obtained by simply expanding the product, the third approximation
by weakly correlated assumption of the gradients. The last two equalities used the fact that γc

k = 1
pc

k
. We

also assume that gradients are normalized to unit magnitude.

Finally, we have the following

(47)
1
K

K∑
k =1

∥∇fk∥2 = 1
K

(
K∑

k=1

C∑
c=1

(pc
k)2 + 2λ

K∑
k=1

C∑
c1=1

C∑
c2=1

pc1
k g⊺

c1g̃c2 + λ2KC)

= 1
K2 (anλ2 + bnλ + cn)

where
an := K2C (48)

bn := 2K

K∑
k=1

C∑
c1=1

C∑
c2=1

pc1
k g⊺

c1g̃c2

cn := K

K∑
k=1

C∑
c=1

(pc
k)2 (49)

∥∇f∥2 = (∥ 1
K

K∑
k=1

C∑
c=1

pc
k(gc + λγc

kg̃c)∥)2

= 1
K2

K∑
k1=1

K∑
k2=1

C∑
c1=1

C∑
c2=1

pc1
k1(g⊺

c1 + λγc1
k1g̃⊺

c1)pc2
k2(gc2 + λγc2

k2g̃c2)

≈ 1
K2

K∑
k1=1

K∑
k2=1

(
C∑

c=1
pc

k1pc
k2(g⊺

c gc)

+
C∑

c1=1

C∑
c2=1

(
λpc1

k1pc2
k2γc2

k2g⊺
c1g̃c2 + λpc1

k1pc2
k2γc

k2g̃⊺
c1gc2 + λ2pc1

k1pc2
k2γc

k1γc
k2g̃⊺

c g̃c

))

= 1
K2

K∑
k1=1

K∑
k2=1

C∑
c=1

(pc
k1pc

k2)+λ

K∑
k1=1

K∑
k2=1

C∑
c1=1

C∑
c2=1

pc1
k1g⊺

c1g̃c2 +λ

K∑
k1=1

K∑
k2=1

C∑
c1=1

C∑
c2=1

pc2
k2g̃⊺

c1gc2 +λ2K2C

= 1
K2 (

K∑
k1=1

K∑
k2=1

C∑
c=1

(pc
k1pc

k2) + 2λK

K∑
k=1

C∑
c1=1

C∑
c2=1

pc1
k g⊺

c1g̃c2 + λ2K2C)

= 1
K2 (adλ2 + bλ + cd)

(50)

25

Published in Transactions on Machine Learning Research (December/2024)

By defining
ad := K2C (51)

bd := 2K

K∑
k=1

C∑
c1=1

C∑
c2=1

pc1
k g⊺

c1g̃c2

cd :=
K∑

k1=1

K∑
k2=1

C∑
c=1

(pc
k1pc

k2) (52)

By substituting Eq. 47 and Eq. 50 in Eq. 44 we get

Gd(w, λ) = anλ2 + bnλ + cn

adλ2 + bdλ + cd
(53)

Comparing Eq. 48 and Eq. 51 we see that a := an = ad, b := bn = bd.

Also cn > cd assuming pc
k is non-degenerate.

Using the Lemma A.2 on Eq. 53 we get the value of λb such that Gd(w, λ) is reduced.

We also get λ ≥ | −b
a | by analyzing the values of λ for which Gd(w, λ) < Gd(w, 0) holds.

Thus choosing the λ > λc = supb:−k2C≤b≤k2C max(λb, | −b
a |) guarantees Gd(w, λ) < Gd(w, 0), for all w.

This concludes the proof.

A.16 Discussion on Impact of Gradient Dissimilarity on the Convergence

We now study how the gradient diversity impacts the convergence of the FL algorithms such as FedProx and
FedAvg. We omit the dependence of λ on B. (for these algorithms λ = 0 so B is nothing but B(0) in our
notation) We have the gradient dissimilarity assumption below

Assumption A.6. 1
K

∑
k ∥∇fk(w)∥2 ≤ B2∥∇f(w)∥2

A.16.1 FedProx

Suppose the functions fk are lipschiltz smooth and their exists L− > 0 such that Hfk ⪰ L−I. With µ̄−L > 0,
where µ is FedProx regularization. If fk satisfies the assumption A.6 then acccording to Theorem 6 of (Li
et al., 2020) the FedProx, after T = O(∆

ρϵ). We have the gradient contraction as 1
T

∑T −1
t=0 E∥f(wt)∥2 ≤ ϵ.

The value of ρ is given below.

ρ = 1
µ

− γB

µ
−

B(1 + γ)
√

(2)
µ̄µ

− L(1 + γ)2B2

2µ̄2 − L(1 + γ)2B2

Kµ̄2 (2
√

2K + 2) > 0 (54)

for some γ > 0 and ∆ = f(w0) − f(w∗), f(w∗ is the local minimum.
It can be seen that the convergence is inversely related to ρ. High value of ρ leads to faster convergence.
From Eq. 54 we can see that ρ can be increased by decreasing the value of B. Thus reducing the value of B
helps in better convergence.

26

Published in Transactions on Machine Learning Research (December/2024)

A.16.2 FedAvg

Assumption A.7. We now analyze the convergence of FedAvg, we consider the following assumptions
∥∇fk(x) − fk(x)∥ = β∥x − y∥ (β smoothness)
Assumption A.8. Gradients have bounded Variance.

Suppose that f(w) and fk(w), satisfies Assumptions A.6, A.7 and A.8. Let w∗ = arg min
w

f(w) the

local step-size be αl. The theorem V in (Karimireddy et al., 2020) shows that FedAvg algorithm will have
contracting gradients. If Initial model is w0, F = f(w0) − f(w∗) and for constant M , then in R rounds, the
model wR satisfies E[∥∇f(wR)∥2] ≤ O(βM

√
F√

RLS
+ βB2F

R).

We see the convergence rate is O(βM
√

F√
RLS

+ βB2F
R). We can see that convergence has a direct dependence on

B2. This is the only term that is linked to heterogeneity assumption. So the lower value of B implies faster
convergence. This motivates to have a tighter bound on heterogeneity. ASD achieves this by introducing the
regularizer and choosing the appropriate value of λ. In the figure 12 we empirically we verify the impact of
ASD on the convergence. We plot the smoothed estimates of the norm of the difference of the global model
parameters between the successive communication rounds i.e ∥wt − wt−1∥.

0 200 400 600 800 1000 1200 1400
communication round

0.2

0.4

0.6

0.8

1.0

1.2

||w
t

w
t

1 ||

FedAvg
FedAvg+ASD

(a) FedAvg

0 200 400 600 800 1000 1200 1400
communication round

0.2

0.4

0.6

0.8

1.0

1.2

||w
t

w
t

1 ||

FedProx
FedProx+asd

(b) FedProx

Figure 12: Impact of ASD on the convergence on CIFAR-100 dataset with non-iid partition of δ = 0.3

27

