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ABSTRACT

Large Reasoning Models (LRMs) have demonstrated impressive capabilities but
suffer from cognitive inefficiencies like “overthinking” simple problems and “un-
derthinking” complex ones. While existing methods that use supervised fine-
tuning (SFT) or reinforcement learning (RL) with token-length rewards can im-
prove efficiency, they often do so at the cost of accuracy. This paper introduces
DeepCompress, a novel framework that simultaneously enhances both the accu-
racy and efficiency of LRMs. We challenge the prevailing approach of consistently
favoring shorter reasoning paths, showing that longer responses can contain a
broader range of correct solutions for difficult problems. DeepCompress employs
an adaptive length reward mechanism that dynamically classifies problems as “Sim-
ple” or “Hard” in real-time based on the model’s evolving capability. It encourages
shorter, more efficient reasoning for “Simple” problems while promoting longer,
more exploratory thought chains for “Hard” problems. This dual-reward strategy
enables the model to autonomously adjust its Chain-of-Thought (CoT) length,
compressing reasoning for well-mastered problems and extending it for those it
finds challenging. Experimental results on challenging mathematical benchmarks
show that DeepCompress consistently outperforms baseline methods, achieving
superior accuracy while significantly improving token efficiency.

1 INTRODUCTION

Large Reasoning Models (LRMs) have demonstrated significant advancements, exemplified by
OpenAT’s ol series (OpenAll [2024), DeepSeek’s R1 (Guo et al.; 2025), Google’s Gemini 2.5 (Google,
2025)), and Anthropic’s Claude 3.7 (Anthropic, |[2025). These models exhibit remarkable capabilities
across diverse complex reasoning tasks. Key characteristics of LRMs include their ability to perform
self-verification, engage in reflection, and generate extended Chain-of-Thought (CoT) reasoning,
leading to improved accuracy. However, recent research reveals inherent inefficiencies in LRM
cognition. These include overthinking (Chen et al., 2024)), characterized by excessive intermediate
step generation for simple problems, and underthinking (Wang et al., 2025b), manifesting as frequent,
unstable thought shifts during complex problem-solving. These findings underscore the necessity for
adaptive strategies to enhance both the efficiency and accuracy of current LRMs.

Recent studies have explored various strategies to enhance the reasoning efficiency of LRMs. One
line of research leverages Supervised Fine-Tuning (SFT) on curated datasets of shortened CoT
exemplars (Chen et al., 2024; Kang et al., [2025} |Yu et al., 2025b). This approach trains LRMs to
infer correct answers using fewer intermediate reasoning steps. Conversely, another line of work
incorporates token-length reward functions into Reinforcement Learning (RL) frameworks (Team
et al.} 2025} |Luo et al., 2025} |Aggarwal & Welleck, 2025; Liu et al., [2025). These methods explicitly
optimize for shorter reasoning paths while penalizing unnecessarily verbose ones. Although these
compression techniques achieve significant efficiency gains, they are often accompanied by slight
accuracy trade-offs. Therefore, the fundamental challenge remains in simultaneously achieving both
superior accuracy and computational efficiency.

In this paper, we propose DeepCompress, a novel framework that incorporates an adaptive length
reward mechanism which dynamically adjusts the preference for shorter or longer responses based
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on the problem difficulty perceived in real-time by the LRMs. Specifically, we first reveal that
longer responses contain a wider coverage of potentially correct solutions than shorter ones for
the same problems. In other words, current methods that constantly optimize shorter responses
in RL processes may constrain the problem-solving capacity of LRMs and restrict their reasoning
boundary. At the meantime, it is infeasible to encourage LRMs to always favor longer responses in RL
processes considering the efficiency for both training and inference. Our DeepCompress addresses
this challenge by first dividing the problems into “Simple* or “Hard* classes and then applying
different length reward modes to them, respectively, during training. With Group Relative Policy
Optimization (GRPO, [Shao et al.,2024) as our basic RL algorithm, we consider a problem as “Simple*
when its group pass ratio (i.e., the proportion of correct samples among its G generated responses)
exceeds the batch pass ratio (i.e., average of group pass ratio in the batch), and “Hard* when otherwise.
Then, DeepCompress encourages the LRMs to favor shorter responses of the “Simple‘ problems,
but longer responses of the “Hard* problems. Through this mechanism, DeepCompress dynamically
adapts the reasoning chain length — autonomously compressing lengthy CoT for well-mastered
problems while extending CoT for under-learned cases.

The contributions of this paper are summarized as below:

* We propose DeepCompress, which incorporates a model-aware diffifulty mechanism to dynami-
cally classify questions as “Simple” or “Hard”, and a dual length reward to adaptively explore
longer responses for “Hard” questions and favor shorter responses for “Easy” ones.

» Experimental results on challenging mathematical benchmarks demonstrate the capability of
DeepCompress in achieving superior performance consistently over baseline methods while also
improving the token efficiency significantly.

* Our in-depth analysis reveals that DeepCompress fosters a more effective learning process by
encouraging high policy entropy. This promotes efficient exploration and reflection, leading to
superior performance, particularly on challenging problems.

2 RELATED WORK

Manipulating Reasoning Length through Prompt Engineering Research on reasoning length in
LLMs presents a central trade-off. Some studies show that longer reasoning paths can improve task
performance (Jin et al.|[2024), whereas others advocate for conciseness to boost inference efficiency,
using strategies such as Constrained-CoT (CCoT) (Nayab et al|2024)). To navigate this complexity,
several methods have been proposed to optimize or adapt the reasoning process. Recognizing that
excessive length in Chain-of-Thought (CoT) can impair performance, Yang et al.[(2025) developed the
Thinking-Optimal Scaling strategy to find an ideal length by filtering for the shortest correct reasoning
paths. Other approaches focus on dynamic adaptation to the specific problem. Adaption-of-Thought
(ADOQT), for example, addresses the mismatch between question difficulty and prompting complexity
(Xu et al.;,|2024)), while TALE directly manages token overhead by dynamically tuning the number of
reasoning tokens via the prompt (Han et al., 2024)).

Post-Training for Reasoning Efficiency A significant body of work improves LLM reasoning
efficiency through post-training, primarily via Supervised Fine-Tuning (SFT) and Reinforcement
Learning (RL). SFT-based methods train models on datasets of curated, concise reasoning exemplars,
which can be generated by stronger LLMs (Chen et al.,|2024}; Kang et al.| 2025) or used within a
weighted objective that adapts the reasoning budget to question difficulty (Yu et al.,|2025b). The
majority of approaches, however, utilize RL to penalize excessive length. In its direct form, this
involves a simple length-based reward to encourage brevity (Team et al.;, 2025} |Luo et al.| [2025} |Arora
& Zanettel, 2025). More advanced methods employ dynamic reward-shaping, which calibrates the
length penalty based on task difficulty (Cheng et al.,|2025)), response correctness (Yuan et al., 2025)),
self-supervised optimal length signals (Y1 et al.| 2025} [Liu et al.| 2025)), or explicit user constraints
(Aggarwal & Welleck, [2025). Innovations also extend to the training architecture itself, through
methods like auxiliary reflection models (Deng et al.,[2025)) and iterative pruning (Hou et al., 2025).
These approaches achieve notable efficiency gains, yet they offer limited accuracy improvements and
occasionally incur minor performance losses.
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Figure 1: Relationship between standardized response length (z) and mathematical reasoning perfor-
mance (pass@k). Pass@1 score decreases with increasing length, while Pass @32 generally increases.

3 PRELIMINARIES

Existing work has made significant efforts to reduce model response length, but this has concurrently
led to a degradation in performance. In this section, we designed preliminary experiments to further
analyze the relationship between response length and performance.

3.1 EXPERIMENTAL SETUP

Data To assess the mathematical performance of our models, we followed Zeng et al.| (2025) and
evaluated them on four challenging benchmarks: MATH-500 (Hendrycks et al.| [2021]), Olympiad-
Bench (He et al2024), Minerva Math (Lewkowycz et al.,[2022) and AIME 2025 (MAA! |a)).

Model We conducted experiments on DeepMath—Zero—3B|I| and DeepMath—Zero—7BEL
which are created by finetuning Qwen models on DeepMath-103K (He et al., |2025) dataset via
Zero RL. These well-trained model has achieved state-of-the-art results on many challenging math
benchmarks and demonstrates prominent “aha moment” phenomenon (e.g. longer response length
and more cognitive behaviors).

Metric Following Deepseek-R1 (Guo et al.,[2025)), we define a rule-based outcome verifier and
report the pass @k score (Chen et al.} 2021). We set the maximum generation length to 32,768 tokens.
For each problem, we generate n samples (n > k) using a sampling temperature of 0.6 and a top-p
value of 0.95. Let c be the number of correct samples among the n generated samples, then Pass @k
is calculated as:

pass@kzl—(;).

(%)

Evaluation To better understand how response length impacts performance, we developed a refined
evaluation strategy. We standardized the lengths of all sampled 8,192 responses for a given problem
(refer to Section[4.2) and sorted them accordingly. These responses were then uniformly divided into
16 bins based on their standardized lengths. For each bin, we calculated both the average response
length and the average pass@k score. Specifically, we reported pass@1 (our general test-time metric)
and pass @32 (the sampling group size used in our later training settings).

ey

"nttps://huggingface.co/zwhe99/DeepMath-Zero— 3B
https://huggingface.co/zwhe99/DeepMath-Zero— 7B
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3.2 RESULTS

Figure ] plots the results of pass@k with respect to the standardized response length. For test-time
metrics pass@ 1, shorter responses exhibit better performance compared to the longer ones. However,
when it comes to pass @k, longer responses surprisingly catch up and surpass their shorter counterparts,
except for DeepMath-Zero-7B on the challenging AIME25, where we found the conclusion can
still hold with a larger k value (e.g., k=64). In prevelant RL algorithms like GRPO, we usually sample
multiple solutions for a single question (e.g., 32) and optimize the policy by leveraging relative
comparisons between solutions. Therefore, the trend of pass@k score can be a critical guidance for
these RL algorithms. On one hand, it suggests that longer responses contain a wider coverage
of potentially correct solutions, thereby providing critical positive reward signals necessary for
effective RL training. On the other hand, current length reduction strategies (Team et al., 2025) that
constantly optimize for shorter responses, while seemingly improving efficiency, may inadvertently
constrain the problem-solving capacity of LRMs, especially for complex problems requiring extended
reasoning. However, it is inpractical to encourage LRMs to always favor longer responses in RL
training processes considering the efficiency for both training and inference, indicating the need for
an adaptive strategy.

4 DEEPCOMPRESS

We propose DeepCompress, a novel framework that can dynamically adjust the preference of LRMs
for longer or shorter responses, in order to achieve superior performance and efficiency simultaneously.
Our method enhances the Zero RL by introducing two core innovations: 1) Dual Length Reward and
2) Model-Aware Difficulty.

4.1 ZERORL

In our study, we follow the zero RL training recipe from He et al.| (2025)) and utilize DAPO (Yu et al.,
2025a) as our RL algorithm. Let 7y denote the large language model policy. Given a training set
D = {(x;,y;)} comprising question-answer pairs where x; is a question and y; is its ground-truth
answer, the language model 7y samples a group of outputs {§}, 92, ..., ¢} for each question z;,
where 3 is the predicted answer and G is the group size. We adopt a rule-based verifier V' to judge
each answer, and use its final accuracy as the outcome reward. This binary reward R,, is computed as:

Ro(9,y) = {

+1, if the extracted final answer is exactly correct,
—1, otherwise.

(@)

4.2 DUAL LENGTH REWARD

Our primary objective is to train models to generate correct solutions using the minimal number of
tokens, thereby maximizing response efficiency. To simultaneously maintain the models’ capability
for deep exploration when addressing complex problems, we design distinct length reward modes for
“Simple” and “Hard” questions, respectively.

Specifically, for a set of G generated responses {g)i }JG:1 corresponding to a given question, we
compute the response length mean p; and standard deviation ;. The standardized length z; is then
obtained as: i)

Yil — M4
= 7 3

oite’ )
where € is a small constant introduced for numerical stability to avoid division by zero. The length
reward R, utilizes a sigmoid function for nonlinear transformation:

N . . 1
RZ (y7 B) = SlngId(—Bzi) = m, (4)

where (3 is a hyperparameter controlling the steepness of the sigmoid function, thereby modulating
R. (7, B)’s sensitivity to token length deviations.

24

By configuring the sign of 3, we enable two operational modes as illustrated in Figure[2} 1) For simple
questions, 3 > 0 yields higher rewards for shorter responses. 2) For complex (hard) questions, 5 < 0
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Figure 2: Reward values for our DeepCompress method. Subfigure (a) illustrates the reward for
Simple Questions, and (b) for Hard Questions. For both, Blue indicates correct responses and Red
indicates incorrect responses. The dashed line denotes the baseline outcome reward (R7,), while the
solid line represents our final combined reward (R = R, + R;), effectively showcasing how our Dual
Length Reward (R;) dynamically modulates the reward signal based on standardized response length
(2) and question difficulty (3).

encourages longer responses, facilitating more extensive exploration. As discussed in Section 3] this
strategy increases the probability of generating at least one correct solution for difficult problems.
Furthermore, we introduce a hyperparameter « to scale the magnitude of R. (g, 3), resulting in the
final length reward:

Ry =a x R.(3, ). )
4.3 MODEL-AWARE DIFFICULTY

A core challenge in implementing the dual length reward is the dynamic assessment of question
difficulty. While public datasets like MATH (Hendrycks et al.,|2021)) and DeepMath (He et al.l 2025)
offer curated difficulty labels, this approach incurs additional annotation costs and fails to adapt to
the model’s evolving capabilities during training.

To address this limitation, we propose a model-aware difficulty mechanism that dynamically classifies
each question as “Simple” or “Hard”. During RL training, we compute two key metrics: the group
pass ratio per question and the batch pass ratio. The latter provides a real-time indicator of the
model’s current overall capability.

Specifically, for each question x; within a batch, we define its group pass ratio P,(z;) as the
proportion of correct responses among its G generated outputs:

¢ I(Ro(9,y:) =1
Pq(xi)zzjzl ( gzay) )’ (6)

where I(-) denotes the indicator function and R, represents the outcome reward. Concurrently, the
batch pass ratio P, for a batch size B is computed as:

b B .

N

Here, P, quantifies the model’s current global performance, while Py (z;) reflects the difficulty of
each question z; for that model state. We then determine the difficulty label by assigning [ the
following bias term, and obtain the corresponding length reward:

ﬂz:Pg(xz)_Pb E(—l,l),

Ry = a x R.(7,5). ®
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A positive j; (i.e., Py(z;) > Py) indicates that the question is relatively easier for the current model
(“Simple”). Conversely, a negative 3; (i.e., Py(x;) < P,) signifies that the model finds the question
comparatively challenging (“Hard”). This mechanism prioritizes extended reasoning paths for the
most challenging questions per batch, thereby enhancing solution coverage and ultimately improving
overall performance.

Finally, the reward for RL optimization integrates both outcome reward and length reward:

R=R,+ R. C)]

Mechanism of 8 in DeepCompress

Here’s a breakdown of how 3 (i.e., 8 = Pg(aci) — P,) influences the length reward:

* Mode Control: The sign (+) of 3 controls the length reward modes: 1) 5 > 0 designates
Simple questions, activating short-response prioritization; 2) 5 < 0 flags Hard questions,
triggering extended-reasoning mode.

* Policy Intensity: The absolute value (|3|) scales reward pressure, such that a larger | 3] leads a
stronger preference to shorter or longer responses.

4.4 ENHANCING ROBUSTNESS

Building upon the DeepCompress framework, we introduce two enhancements to ensure robust
exploration: 1) Correctness-Conditioned Lentgh Reward; 2) Smoothed Batch Pass Ratio.

Correctness-Conditioned Length Reward In DeepCompress, the dual length reward applies
uniformly to all generated responses, indenpendent of their correctness. This unconditional appli-
cation risks creating a reward hacking scenario, where models may prioritize length optimization
over solution accuracy, potentially favoring incorrect responses. To address this issue, we refine the
length reward mechanism by restricting its application exclusively to responses that produce correct
solutions (i.e., those with R, = 1). The overall reward then becomes:

R {RO + R;, if solution y; is correct, (10)

R,, otherwise.

Smoothed Batch Pass Ratio In DeepCompress, we use the batch pass ratio P, to quantify the
model’s current global performance. However, this choice may impact the training stability. First,
the batch pass ratio reflects only one-sided performance of the model and can fluatuate noticeably
accross the batches. Second, the models often exhibit weak performance at the early steps of RL
training, resulting in a low batch pass ratio. Consequently, questions may be inadvertently misjudged
as simple, with undesirably large 3 values (derived from P, — P;). This phenomenon can prematurely
constrain response length, impeding critical exploration of the solution space.

To enhance the training robustness, we smooth the batch pass ratio by tracking its historical values
with an exponential moving average (EMA). Specfically, the smoothed batch pass ratio P ; at each
training step ¢ is updated as:

Pyy=X-Pyyq+ (1= N)- P, (11)

where P}f;“e denotes the true batch pass ratio, and A (€ [0, 1]) is the EMA parameter. Then, P, ; is
used in Equation [8|to determine the effective 3 for length modulation. This updating rule avoids the
bias by P}’ and gives a more stable estimation of model’s current global performance. Besides,
we initialize P, ; with 1.0, which ensures that P, ; gradually adapts from an optimistic initial state,
preventing premature over-penalization due to a low true Plf”;“e in early training.

5 EXPERIMENTS

This section details the experimental setup and presents a comprehensive evaluation across a suite
of challenging mathematical benchmarks. In particular, we aim to investigate how DeepCompress
improves both the performance and efficiency of models simultaneously.
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Table 1: Math reasoning performance. “DeepCompress” denotes models trained with our novel
DeepCompress approach, which improves the reasoning accuracy and efficiency simultaneously.

MATH AMC Olympiad Minerva AIME AIME Poly Avg

Model 500 23 Bench Math 24 25 Math Acc
Qwen-2.5-3B 50.4 24.2 21.2 20.4 4.2 1.5 21.9 205
Qwen-2.5-3B-Instruct 66.0 42.5 29.4 289 5.4 2.5 273 289
DeepMath-Zero-3B 72.8 48.0 38.0 30.8 11.5 6.9 34.1 34.6
DeepCompress-Zero-3B 753 494 39.3 32.7 16.7 71 358 36.6
Qwen-2.5-7B 54.8 353 27.8 16.2 7.7 54 28.1 25.0
Open-Reasoner-Zero-7B 81.8 589 47.9 384 15.6 14.4 40.7 425
Qwen-2.5-7B-SRL-Zoo 77.0 55.8 41.0 41.2 15.6 8.7 33.1 389
DeepMath-Zero-7B 85.6 64.7 51.3 454 194 13.1 42.6 46.0
DeepCompress-Zero-7B 85.6 67.8 53.3 47.4 23.5 19.6 44.0 48.7
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Figure 3: Average Response Length across mathematical benchmarks. DeepCompress-Zero models
achieve significantly shorter average outputs compared to DeepMath-Zero models.

5.1 EXPERIMENTAL SETUP

RL Training Our models are fine-tuned following the RL training recipe from (2023),
which has produced state-of-the-art reasoning models (e.g., DeepMath-Zero—-7B). We applied
dynamic sampling policy optimization (DAPO) algorithm from (20254), and_trained
Qwen?2. 5*3Bﬂ Qwen?2. 5*7]{| with a rule-based reward R, (as defined in Equation . Fol-
lowing (2025)), we adjusted the chat template of the Qwen model. Further details on the
training settings can be found in Appendix

Evaluation We comprehensively evaluate model performance on seven challenging mathematical
benchmarks: MATH-500 (Hendrycks et al., 2021), AMC 2023 (MAA| [b), OlympiadBench
[2024), Minerva Math (Lewkowycz et al., 2022), AIME 2024-2025 (MAA| [a), and the English subset
of PolyMath (Wang et al.,[2025a). As primary metrics, we samples 16 responses for each question
and report the pass@1 accuracy. We construct a validation set, which consists of 60 questions from
MATH and 60 from AIME 2022-2023, to select the checkpoint with the highest pass@1 score for
evaluation. We utilized vLLM for efficient batch inference, and fixed the decoding
parameters to temperature=0.6, top_p=0.95, and max_tokens=32,768. To ensure fair comparison
and eliminate variance from evaluation scripts, we re-evaluate all baseline models under our precise
evaluation settings.

5.2 MAIN RESULTS

DeepCompress exhibits stronger reasoning capabilities Table[T] presents the main experimental
results. Our proposed DeepCompress consistently outperforms all existing Zero RL baselines
across all seven mathematical reasoning benchmarks, establishing a new state-of-the-art (SOTA).

*https://huggingface.co/Qwen/Qwen2.5-3B
*nttps://huggingface.co/Qwen/Qwen2.5- 7B


https://huggingface.co/Qwen/Qwen2.5-3B
https://huggingface.co/Qwen/Qwen2.5-7B

Under review as a conference paper at ICLR 2026

8k

— DeepMath-Zero-7B
— DeepCompress-Zero-7B
— w/ Length Penalty
.. 12— W/ Length Bonus g ok
[=" o0
g 5
= —
D 08 9 4k
£ g
0.4 ook
0 0k
0 100 200 300 400 500 600 0 100 200 300 400 500 600
Steps Steps
(a) Policy entropy (training) (b) Response length (training)
50 16k
46 5 12k
2 0
3 k
Z 9 8k
® 42 g
Z &
- Q
38 &gk
34 0k
0 100 200 300 400 500 600 0 100 200 300 400 500 600
Steps Steps
(c) Pass@1 score (test) (d) Response length (test)

Figure 4: Training dynamics and evaluation results of DeepCompress. (a) Policy entropy during
training. (b) Average response length on training batches. (c) Average pass@1 score (%) on test sets.
(d) Average response length on test sets.

Compared to the previous SOTA model, DeepMath-Zero, DeepCompress achieves an average
absolute improvement of +2.0 points with the 3B model and +2.7 points with the 7B model. Notably,
DeepCompress demonstrates substantial gains on challenging problems. For example, DeepCompress-
Zero-TB surpasses DeepMath-Zero-7B by +4.1 absolute points on AIME 24 and by +6.5 on AIME 25.
These results highlight the robustness of DeepCompress in enhancing LLM reasoning through
deeper exploration, particularly on complex tasks that require extended reasoning paths to push the
boundaries of performance.

DeepCompress demonstrates higher inference efficiency As shown in Figure 8] DeepCompress
generates significantly more concise responses compared to DeepMath-Zero models across all the
evaluated benchmarks. On average, DeepCompress compresses the response length by 57.9% with
the 3B model and 16.6% with the 7B model. Particularly on AIME 24, DeepCompress-Zero-3B
uses 37.6% less tokens to achieves +5.2 absolute improvement, and DeepCompress-Zero-7B uses
35.2% less tokens to gain +4.1 improvement (see Table([T)). These results establish that dynamically
adjusting the preference for shorter or longer responses is truly an effective strategy for advancing
reasoning boundaries while minimizing inference costs.

5.3 IMPACT OF LENGTH REWARD

Experimental Settings To understand how DeepCompress’s length reward contributes to perfor-
mance gains, we conducted further ablation experiments beyond the main results. Specifically, we
analyzed variants trained with a fixed parameter 3: Length Penalty (5 = 1) designed purely to
reduce response length, and Length Bonus (8 = —1) intended to encourage longer outputs. Their
behaviors were then compared against our DeepCompress method, alongside DeepMath-Zero-7B.
We observed and analyzed policy entropy, response length, and pass@1 scores across different steps,
as presented in Figure 4]
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Results and Analysis As shown in Figure the policy entropy dynamics reveal interesting
patterns. Models trained with length bonus exhibit higher policy entropy during training, while
length penalty consistently maintains a remarkably stable and low entropy. Regarding response
length as shown in Figure 4d] the models’ behaviors align perfectly with our length reward design:
those trained with length bonus consistently generate longer outputs, while length penalty variants
produce remarkably shorter responses. Meanwhile, these additional reasoning overheads contribute
to stronger mathematical reasoning capabilities. Figure 4c|shows that length bonus variant exhibits
higher performance compared to other methods.

In contrast, our DeepCompress method demonstrates a more adaptive balancing act. As depicted,
DeepCompress’s policy entropy initially increases, reflecting a phase of broad exploration, then
gradually stabilizes as the model converges. Similarly, its average response length shows an initial
increase (for exploration) followed by a controlled reduction (for efficiency). Throughout this
dynamic process, DeepCompress’s performance on test sets exhibits continuous growth. This
illustrates how DeepCompress intelligently and automatically balances exploration with efficiency,
achieving simultaneous optimality in both dimensions and continuously improving performance.

5.4 QUANTIFYING EMERGENCE OF REASONING BEHAVIORS

To further investigate the mechanisms behind Table 2: Reflection Frequency on hard questions.
DeepCompress’s high policy entropy and su- We use GPT-4o to extract and track “aha moment”
perior performance, we conducted an analy- behaviors, with the prompt shown in Appendix D}
sis on a targeted set of challenging problems.

Specifically, we constructed this hard problem  podel Reflect Length Pass@1
set from instances where our baseline models DeepMath-Zero-3B 245 11222 721
(Qwen2.5-3B and Qwen2.5-7B), failed to DeepCompress-Zero-3B 2.73 4,853 8.72
produce a correct solution. On each set, we fol- DeepMath-Zero-7B 259 7.180 1135
low Zeng et al.| (2025) to track the emergence  DeepCompress-Zero-7B 264 5942 13.81
of four cognitive behaviors described in|Gandhi w/ Length Penalty 220 2,520 9.94
et al.| (2025)). The manifestation of these behav- w/ Length Bonus 2.87 13,575 11.89

iors suggests a reproduction of the “aha moment”
phenomenon observed in R1 (Guo et al.| [2025).

As shown in Table 2| DeepCompress reflects more often than the baseline models. Intriguingly,
despite this higher reflection frequency, its average response length remains shorter. This indicates
that DeepCompress has learned a more efficient reflection process, enabling more concise and targeted
attempts at a solution. This mechanism also proves highly effective, as evidenced by DeepCompress’s
stronger pass@1 score. Therefore, DeepCompress does not just encourage more thinking, but rather
smarter thinking, turning each reflective act into a productive step towards the solution.

6 CONCLUSION

This paper introduces DeepCompress, a novel framework that enhances both the accuracy and
efficiency of Large Reasoning Models. By incorporating a model-aware difficulty mechanism and a
dual length reward, DeepCompress dynamically adapts its reasoning strategy - encouraging concise
solutions for simple problems while promoting deeper exploration for hard ones. Our experiments
on challenging mathematical benchmarks show that DeepCompress achieves new state-of-the-art
performance while simultaneously making significant gains in token efficiency. Further analysis
reveals that our method fosters a more effective learning process by encouraging high policy entropy
for exploration, leading to more frequent yet more effective reflection behaviors. By enabling models
to intelligently allocate their reasoning efforts, DeepCompress represents a promising step toward
developing more powerful and efficient autonomous reasoners.

A limitation of this work is that our method’s effectiveness relies on sufficient length variation among
responses sampled within the RL group. Furthermore, to ensure training efficiency, we capped the
maximum generation length at 10k tokens. This constraint may have restricted the model’s ability to
explore more complex or longer-form solutions.
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7 ETHICS STATEMENT

The authors of this work have read and adhere to the ICLR Code of Ethics. Our research focuses
on developing a novel reinforcement learning framework, DeepCompress, aimed at enhancing the
reasoning capabilities and computational efficiency of Large Reasoning Models. The primary goal of
our work is to advance the scientific understanding of Al reasoning and to develop models that are
both more effective and more efficient, which we believe is a positive step towards sustainable and
accessible Al research. Our work is foundational and does not introduce societal harms. All code and
models will be released publicly to promote open research and reproducibility.

8 REPRODUCIBILITY STATEMENT

To ensure full reproducibility, all our code, training scripts, and final model weights will be made
publicly available. Detailed descriptions of our training setup, including all hyperparameters, software
versions, and implementation specifics, are provided in Appendix [B] This will allow researchers to
verify our results, build upon our framework, and further explore adaptive training strategies for large
reasoning models.
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A THE USE OF LARGE LANGUAGE MODELS

In the preparation of this manuscript, we utilized a Large Language Model as a writing assistant. Its
role was to aid in polishing the text, including improving grammar and sentence structure. The core
research ideas, experimental design, and analysis presented in this paper are entirely our own.

B TRAINING DETAILS

We use verl as the training frameworkﬂ Configurations are listed in Table

Table 3: Configurations for training DeepCompress series models.

Config DeepCompress-Zero-3B DeepCompress-Zero-7B
Ir le-6 le-6
kl_coef 0.0 0.0
max_prompt_length 2K 2K
max_response_length 10K 10K
train_batch_size 512 512
ppo_mini_batch_size 32 32
clip_ratio_low 0.20 0.20
clip_ratio_high 0.28 0.28
temperature 1.0 1.0
rollout.n 32 32
overlong_buffer.len 2K 2K
total_training_steps 600 600
reward_weight o 0.2 0.2
EMA _parameter A 0.99 0.99

C BATCH PASS RATIO

The core mechanism of DeepCompress relies on the batch pass ratio (P,) to judge problem difficulty.
We recorded the changes in P, throughout the training process, and as shown in Figure[5] the model’s
P, exhibits stable growth, indicating very low noise in the difficulty judgment process.
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Figure 5: Batch pass ratio during training.

Shttps://github.com/volcengine/verl
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D REASONING BEHAVIOR PROMPT

Prompt for Identifying and Analyzing Reasoning Behaviors

Below is a chain-of-reasoning generated by a Language Model when attempting to solve a
math problem. Evaluate this chain-of-reasoning to determine whether it demonstrates beneficial
problem-solving behaviors that deviate from typical linear, monotonic reasoning patterns
commonly observed in language models.

<start_of_reasoning>

{input}
<end_of_reasoning>

Specifically, actively identify and emphasize beneficial behaviors such as:
(1) Backtracking: Explicitly revising approaches upon identifying errors or dead ends
(e.g., “This approach won’t work because...”).

(2) Verification: Systematically checking intermediate results or reasoning steps
(e.g., “Let’s verify this result by...”).

(3) Subgoal Setting: Breaking down complex problems into smaller, manageable steps
(e.g., “To solve this, we first need to...”).

(4) Enumeration: Solving problems by exhaustively considering multiple cases or possibilities.

Additionally, remain attentive to and encourage the identification of other beneficial behaviors
not explicitly listed here, such as creative analogies, abstraction to simpler cases, or insightful
generalizations.

Important:

Clearly specify each beneficial behavior you identify.

Provide explicit examples from the reasoning chain.

If no beneficial behaviors are observed, explicitly return an empty list.
Provide your evaluation clearly, formatted as follows:

“‘jSOIl

9%, €6

“behaviour”: *,

99, <6

“example”:
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E PASs@32
Table 4: Pass@32 score.
Model MATH AMC Olympiad Minerva AIME AIME ©Poly Avg
500 23 Bench Math 24 25 Math Acc
DeepMath-Zero-3B 91.0 76.7 63.1 58.4 30.8 31.1 494 572
DeepCompress-Zero-3B 91.5 76.7 63.5 57.9 33.7 32.5 524 583
DeepMath-Zero-7B 95.9 89.3 72.6 68.9 46.5 36.1 59.2 66.9
DeepCompress-Zero-7B 96.1 88.7 72.4 66.4 53.1 40.4 58.1 679
F GPQA
Table 5: Performance on the GPQA-Diamond benchmark.
Model Biology Chemistry Physics Overall
Qwen-2.5-3B 29.9 19.8 20.3 21.0
Qwen-2.5-3B-Instruct 451 26.1 30.7 29.9
DeepMath-Zero-3B 45.1 25.3 322 30.2
DeepCompress-Zero-3B 44.1 25.5 35.7 31.7
Qwen-2.5-7B 33.6 21.4 27.8 253
Open-Reasoner-Zero-7B 50.3 26.7 47.8 38.1
Qwen-2.5-7B-SimpleRL-Zoo 31.9 22.6 37.9 30.2
DeepMath-Zero-7B 58.6 29.5 53.2 42.6
DeepCompress-Zero-7B 57.6 31.2 58.2 43.9

G BBH aNnpD MMLU-STEM

Table 6: Performance on the Big Bench Hard and MMLU-STEM benchmark.

Model BBH MMLU-STEM
Qwen-2.5-3B 7.5 48.1
Qwen-2.5-3B-Instruct 48.7 71.3
DeepMath-Zero-3B 54.7 71.6
DeepCompress-Zero-3B 56.0 73.7
Qwen-2.5-7B 12.1 41.5
Open-Reasoner-Zero-7B 47.0 83.2
Qwen-2.5-7B-SimpleRL-Zoo  15.0 74.9
DeepMath-Zero-7B 72.7 85.0
DeepCompress-Zero-7B 75.5 85.7
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