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Abstract
Modeling in Computer Vision has evolved to MLPs. Vision MLPs

naturally lack local modeling capability, to which the simplest treat-
ment is combined with convolutional layers. Convolution, famous
for its sliding window scheme, also su�ers from this scheme of
redundancy and lower parallel computation. In this paper, we seek
to dispense with the windowing scheme and introduce a more elab-
orate and parallelizable method to exploit locality. To this end, we
propose a new MLP module, namely Shifted-Pillars-Concatenation
(SPC), that consists of two steps of processes: (1) Pillars-Shift, which
generates four neighboring maps by shifting the input image along
four directions, and (2) Pillars-Concatenation, which applies lin-
ear transformations and concatenation on the maps to aggregate
local features. SPC module o�ers superior local modeling power
and performance gains, making it a promising alternative to the
convolutional layer. Then, we build a pure-MLP architecture called
Caterpillar by replacing the convolutional layer with the SPC mod-
ule in a hybrid model of sMLPNet [40]. Extensive experiments
show Caterpillar’s excellent performance on both small-scale and
ImageNet-1k classi�cation benchmarks, with remarkable scalability
and transfer capability possessed as well. The code is available at
https://github.com/sunjin19126/Caterpillar .

CCS Concepts
• Multimedia Foundation Models! Vision and Language.

∗Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
MM ’24, October 28-November 1, 2024, Melbourne, VIC, Australia
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0686-8/24/10
https://doi.org/10.1145/3664647.3680809

Keywords
Computer Vision, Pure-MLP Architecture, Caterpillar, SPC Module
ACM Reference Format:
Jin Sun, Xiaoshuang Shi, Zhiyuan Wang, Kaidi Xu, Heng Tao Shen, and Xi-
aofeng Zhu. 2024. Caterpillar: A Pure-MLP Architecture with Shifted-Pillars-
Concatenation. In Proceedings of the 32nd ACM International Conference on
Multimedia (MM ’24), October 28-November 1, 2024, Melbourne, VIC, Australia.
ACM,NewYork, NY, USA, 15 pages. https://doi.org/10.1145/3664647.3680809

1 Introduction
Deep architectures in computer vision have evolved from Con-

volutional Neural Networks (CNNs), through Vision Transform-
ers (ViTs), and now to Multi-Layer Perceptrons (MLPs). CNNs
[16, 22, 39] primarily utilize convolution to aggregate local features
but struggle to capture global dependencies between long-range
pillars (tokens) in an image. ViTs [9, 44] employ self-attention mech-
anism to consider all pillars from a global perspective. Unfortu-
nately, the self-attention mechanism su�ers from high computa-
tional complexity. To overcome this weakness, MLP-based models
[42] replace the self-attention layers with simple MLPs to perform
token(spatial)-mixing across the input pillars, thereby signi�cantly
reducing the computational costs. However, early MLP models
[42, 43] encounter the challenges in su�ciently incorporating lo-
cal dependencies. As a solution, researchers have proposed hybrid
models [27, 40] that combine convolutional layers with MLPs to
achieve a balance between capturing local and global information,
bringing stable performance improvements.

Convolutional layers slide a local window across an image to
introduce locality and translation-invariance, which have brought
great successes for CNNs [16, 22] and also inspired a number of
in�uential ViTs [33, 52]. Nevertheless, convolution has inherent
drawbacks. First, it may introduce redundancy, especially to the
edge features. The convolution aggregates pixels in a local win-
dow with a larger receptive scope, while the edge features, such as
shape and contour, often consist of only a few pixels that cannot
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Figure 1: (a) The convolutional layer sequentially slides a lo-
cal window across each pillar (token) with a larger receptive
�eld (i.e., the colored border), leading to low parallel com-
putation and redundant representation. (b) The proposed
SPC module adopts a window-free strategy. It applies four
linear �lters which encode the local features for all pillars in
parallel from their neighbors of four directions, exploiting
the locality elaborately and simultaneously.

fully �ll the scope. Therefore, the edges can get mixed information
with the background, leading to redundant representation. Addi-
tionally, the sliding window needs to encode features sequentially
and individually at each position. This sequential nature leads to
convolution calculations with limited parallel computing capability.

In this paper, we seek to break the sequential windowing scheme
and present an alternative to convolution. To this end, we pro-
pose a newMLP-based module called Shifted-Pillars-Concatenation
(SPC), which consists of two processes: Pillars-Shift and Pillars-
Concatenation. In Pillars-Shift, we shift the input image along four
directions (i.e., up, down, left, right) to create four neighboring
maps, with the local information for all pillars decomposed into
four respective groups according to the orientation of neighboring
pillars. In Pillars-Concatenation, we apply four linear transforma-
tions to individually encode these maps of discrete groups and then
concatenate them together, with each pillar achieving the simul-
taneous and elaborate aggregation of local features from its four
neighbors. Based on the proposed SPC, we introduce a pure-MLP
architecture namely Caterpillar, which is built by replacing the
(depth-wise) convolutional layer with the proposed SPC module
in a Conv-MLP hybrid model (i.e., sMLPNet[40]). The Caterpillar
inherits the advantages of sMLPNet, which clearly separates the
local- and global-mixing operations in its spatial-mixing blocks and
utilizes the sparse-MLP (sMLP) layer to aggregate global features
(Figure 3, left), while leveraging the SPC module to exploit locality.

For experiments, we uniformly validate the direct application
of the Caterpillar with various vision architectures (i.e., CNNs,
ViTs, MLPs, Hybrid models) on common-used small-scale images

[21, 47, 53], among which the Caterpillar achieves the best perfor-
mance on all used datasets. On the popular ImageNet-1K bench-
mark, the Caterpillar series attains better or comparable perfor-
mance to recent state-of-the-art methods (e.g., Caterpillar-B, 83.7%).
Caterpillar also possesses excellent scalability and transfer capabil-
ity through corresponding experiments. On the other hand, in all
experiments, the Caterpillars obtain higher accuracy than the base-
line sMLPNets, while changing the convolution to the SPC module
in ResNet-18 brings 4.7% top-1 accuracy gains on ImageNet-1K
dataset, demonstrating the potential of SPC to serve as an alterna-
tive to convolution in both plug-and-play and independent ways.

In summary, the major contributions of this paper are listed as
follows:

• We propose a novel SPC module, which adopts a window-
free scheme and can exploit local information more elabo-
rately and simultaneously than convolution.

• We introduce a new pure-MLP model called Caterpillar,
which utilizes SPC and sMLP module to aggregate the local
and global information in a sequential way.

• Extensive experiments demonstrate the excellent scalability,
transfer capability, as well as classi�cation performance of
the Caterpillar on both small- and large-scale image recogni-
tion tasks, with better performance of SPC than convolution.

2 Related Work
2 .1 Local Modeling Approaches

The idea of local modeling can be traced back to research on the
organization of the visual cortex [18, 19], which inspired Fukushima
to introduce the Cognitron [10], a neural architecture that mod-
els nearby features in local regions. Departing from biological in-
spiration, Fukushima further proposed Neocognitron [11], which
introduces weight sharing across spatial locations through a slid-
ing window strategy. LeCun combined weight sharing with back-
propagation algorithm and introduced LeNet [23–25], laying the
foundation for the widespread adoption of CNNs in the Deep Learn-
ing era. Since 2012, when AlexNet [22] achieved remarkable per-
formance in the ImageNet classi�cation competition, convolution-
based methods have dominated the �eld of computer vision for
nearly a decade. With the popularity of CNNs, research e�orts have
been devoted to improving individual convolutional layers, such
as depth-wise convolution [54] and deformable convolution [7].
On the other hand, alternative approaches to replace convolution
have also been explored, such as the shift-based methods involv-
ing sparse-shift [3] and partial-shift [30]. The idea behind these
approaches is to move each channel of the input image in di�erent
spatial directions, and mix spatial information through linear trans-
formations across channels. The proposed SPC module also builds
upon the shift idea but shifts the entire image into four neighboring
maps in the process of Pillars-Shift, while making use of the linear
projections and concatenation in Pillars-Concatenation.

2 .2 Neural Architectures for Vision
CNNs and Vision Transformers. CNNs have achieved remark-
able success in computer vision, with well-known models including
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Figure 2: The SPC module consists of two processes: Pillars-Shift (Shi� + Pad) and Pillars-Concatenation (Reduce + Concat +
Fuse). In Pillars-Shift, the input image is recurrently shifted along four directions to create neighboring maps, while Pad is used
to maintain the feature size by padding these maps with pillars of speci�c values. In Pillars-Concatenation, Reduce is achieved
through four C ⇥ C/4 linear projections, and Fuse is accomplished through a C ⇥ C linear projection, where C represents the
number of input feature channels.

AlexNet [22], VGG [39] and ResNet [16]. The attention-based Trans-
former, initially proposed for machine translation [46], has been
successfully applied to vision tasks with the introduction of Vision
Transformer (ViT) [9]. Since then, various advancements have been
proposed to improve training e�ciency and model performance
for ViTs, such as data-e�cient training strategy [44] and pyramid
architecture [33, 49], which have also bene�ted the entire vision
�eld. At the core of Transformer models lies the multi-head self-
attention mechanism. The proposed SPC module shares the similar
operation to themulti-head settings, as it encodes local neighboring
information from di�erent representation subspaces with multiple
linear �lters in the Pillars-Concatenation process.

Vision MLPs. Vision MLPs [2, 12, 17, 29, 41–43, 50, 55, 56] have
also made signi�cant progress since the invention of MLP-Mixer
[42], which alternatively conducts the token-mixing (cross-location)
operations and channel-mixing (per-location) operations to aggre-
gate spatial and channel information, respectively. Early MLP-based
models, such as MLP-Mixer [42] and ResMLP [43], perform token-
mixing across all pillars from a global perspective, lacking the abil-
ity to e�ectively model local features. As a result, a number of
studies propose to enhance MLPs with local modeling capabilities.
Hire-MLP [12], for instance, performs Inner- and Cross-region Re-
arrangement to encode the local and global information in parallel,
while AS-MLP [29] adopts an axial-shift strategy that shifts each
channel of the image along two directions. Our Caterpillar is built
with the SPC module, which shifts the entire image into four neigh-
boring maps, enabling the elaborate and simultaneous encoding of
local information for all pillars.

Hybrid Architectures. Apart from the pure-MLP methods[12],
which capture both local and global dependencies fully in MLP-
based approaches, there have been developments in combining
MLPs with convolutional layers to separately aggregate these two

types of information [1, 27, 40]. Among them, sMLPNet [40] intro-
duces a sparse-MLP module to aggregate global information while
using the depth-wise convolutional (DWConv) layer to model local
features. Concurrent with our work, Strip-MLP [1] chie�y replaces
the sparse-MLP (i.e., the global-mixing module) in sMLPNet with
a Strip-MLP layer, achieving superior scores on both large- and
small-scale image datasets. The proposed Caterpillar is also built
upon the sMLPNet but replaces the DWConv (i.e., the local-mixing
module) with the SPC module, resulting in a pure-MLP architecture,
which also attains excellent performance on various-scale image
recognition tasks.

3 Method
3 .1 Shifted-Pillars-Concatenation Module

In this section, we �rst introduce the SPC module, of which
the working procedure can be decomposed into Pillars-Shift and
Pillars-Concatenation, as shown in Figure 2. Then, we analyze its
computational parameters with that of the standard and depth-wise
convolutional layers.

3.1.1 Shifted-Pillars-Concatenation
Pillars-Shift. This process is to shift and pad an input image into
four neighboring maps, which can be formulated as:

PS (X | 38A , B, ?<) = Pad (Shi� (X,38A , B) , ?<) , 38A ✓ DB , (1)

where X is an image, 38A , B and ?< denote the shifting direction,
shifting steps and paddingmode, respectively.DB is a set containing
shifting directions.

Speci�cally, let x8 9 2 R⇠ denote a feature vector (referred to as
"pillar" and also depicted as pillars in Figure 2, so as to clearly and
accurately express and visualize the work�ow in the SPC module),
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we can have an image:

X8= =

26666666664

x11 x12 · · · x1,
x21 x22 · · · x2,
...

...
...

...
x(��1)1 x(��1)2 · · · x(��1),
x�1 x�2 · · · x�,

37777777775
,

which means X8= 2 R�⇥, ⇥⇠ , where � ,, and ⇠ represent the
width, height and channel number, respectively. Taking XD (i.e.,
the up-wise neighboring map) as an example, we �rst perform a
shift operation on X8= by setting 38A=‘D?0 and B = 1, so that X8= is
transformed to:

X
0
u =

26666666664

x21 x22 · · · x2,
...

...
...

...
x(��1)1 x(��1)2 · · · x(��1),
x�1 x�2 · · · x�,

37777777775
,

where X0
u 2 R(��1)⇥, ⇥⇠ . Then, we pad X

0
u according to the Zero

Padding and attain the XD :

Xu =

26666666664

x21 x22 · · · x2,
...

...
...

x(��1)1 x(��1)2 · · · x(��1),
x�1 x�2 · · · x�,
0 0 · · · 0

37777777775
,

whereXu 2 R�⇥, ⇥⇠ . By default settings withDB of [‘D?0, ‘3>F=0,
‘;4 5 C 0, ‘A86⌘C 0], the input X8= will be transformed into four neigh-
boring maps of XD ,X3 ,X; ,XA , where Xd ,Xl,Xr 2 R�⇥, ⇥⇠ .

Pillars-Concatenation. Obviously, Pillars-Shift has no param-
eter learning, which would weaken the representation capabil-
ity of the module. To overcome this de�ciency, we introduce the
Pillars-Concatenation process. Speci�cally, the neighboring maps
XD ,X3 ,X; ,XA are projected through four independent fully- con-
nected (FC) layers. The parameters areWD ,W3 ,W; ,WA 2 R⇠⇥⇠/4,
respectively, so as to reduce the number of neighboring maps’ chan-
nels into ⇠/4. After that, all of the reduced maps are concatenated
along the channel dimension and then projected again, by an FC
layer with the parameters W 2 R⇠⇥⇠ to fuse the local features.
This process can be represented as:

PC (X) = Concat (XDWD ,X3W3 ,X;W; ,XAWA )W, (2)

Through the Pillars-Concatenation, the four neighboring maps
are reduced, concatenated and �nally fused into theX>DC 2 R�⇥, ⇥⇠ ,
with the local information for all pillars within the image aggre-
gated in parallel.

3.1.2 Parameter Analysis with Convolutions
For an input image with the input dimension of 38= and output

dimension of 3>DC , the number of parameters in standard and depth-
wise convolution (DWConv) can be calculated as 38= ⇥ :2 ⇥ 3>DC
and 38= ⇥ :2, respectively, with : representing the kernel size. In
comparison, The parameters of SPCmodule are38=⇥38=+38=⇥3>DC
(detailed as38=⇥38=/4⇥4+38=⇥3>DC ). In the typical scenario, where

Figure 3: The structures of sMLPNet and Caterpillar blocks.

38= is equal to 3>DC , the parameters of a standard 3 ⇥ 3 convolution
are 9 ⇥ 38=2, which is 4.5 times larger than that of SPC, i.e., 2 ⇥
38=2, demonstrating that the SPC module has lower computational
complexity than the standard convolutional layers. Additionally,
the depth-wise settings reduce the parameters in DWConv into
9 ⇥ 38= , which is lower than SPC and might inspired future works
that improve SPC through such lightweight techniques.

3 .2 Caterpillar Block
Caterpillar block is built by replacing the depth-wise convolution

with the SPC module in sMLPNet block [40], in which a sparse-
MLP (sMLP) module (illustrated in Appendix A .8) is introduced for
aggregating global features. As illustrated in Figure 3, a Caterpillar
block contains three basic modules: an SPC module and an sMLP
module, with a BatchNorm (BN) and a GELU nonlinearity applied
before them, and a FFN module, which follows a LayerNorm (LN)
layer. The SPC and sMLP form the token-mixing component and the
FFN servers as channel-mixing module, with applied two residual
connections.

Given an image X 2 R�⇥, ⇥⇠ , the calculation in the Caterpillar
block can be formulated as:

X0 = SPC (GELU (BN (X))) , (3)

Y = sMLP
�
GELU

�
BN

�
X0� � � + X, (4)

Z = FFN (LN (Y)) + Y, (5)

where X0 denotes the output features of the SPC layer, Y and Z
represent the output of token-mixing and channel-mixing modules,
respectively.

3 .3 Caterpillar Architectures
We build the Caterpillar architectures in a pyramid structure of

four stages, which �rst represent the input images into patch-level
features, and gradually shrink the spatial size of the feature maps as
the network deepens. This enables Caterpillar to leverage the scale-
invariant property of images as well as make full use of multi-scale
features.
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We introduce �ve variants of the Caterpillar architectures, i.e.,
Caterpillar-Mi, -Tx, -T, -S and -B, with di�erent numbers of Cater-
pillar blocks stacked in their four stages. The architecture hyper-
parameters of these variants are:

• Caterpillar-Mi: ⇠ = 40, layer numbers = {2,6,10,2}
• Caterpillar-Tx: ⇠ = 60, layer numbers = {2,8,14,2}
• Caterpillar-T: ⇠ = 80, layer numbers = {2,8,14,2}
• Caterpillar-S: ⇠ = 96, layer numbers = {2,10,24,2}
• Caterpillar-B: ⇠ = 112, layer numbers = {2,10,24,2}

where ⇠ is the channel number of the hidden layers in the �rst
stage, and layer numbers denote the number of blocks in each of
their four stages. Detailed con�gurations are in Appendix A .5.

4 Experiments
We compare the classi�cation performance of Caterpillar with

various vision models on small-scale images as well as ImageNet-1k
dataset in Sec. 4 .1, 4 .5 and Sec. 4 .2, respectively, with its scalability
and transfer capability also veri�ed in Sec. 4 .1 and Sec. 4 .5. Then,
we conduct ablation studies in Sec. 4 .3 to �nd the best settings for
the proposed SPCmodule and Caterpillar architecture. Additionally,
the comparison between sMLPNet and Caterpillar in Sec. 4 .1, 4
.2 as well as the experiments in Sec. 4 .6 is to verify SPC to be an
alternative to convolution in both plug-and-play and independent
manners, with visualization analysis for SPC provided in Sec. 4 .4.

4 .1 Small-scale Image Classi�cation
Datasets.We conduct small-scale image recognition experiments
on four commonly-used benchmarks: Mini-ImageNet (MIN) [47],
CIFAR-10 (C10) [21], CIFAR-100 (C100) [21] and Fashion-MNIST
(Fashion) [53]. We utilize these images in their original sizes, di�er-
ent from the settings in [1] that resized images into 224 ⇥ 224.
Experimental Settings.We evaluate the Caterpillar with fourteen
representative vision models, including six MLP models [2, 12, 17,
41, 43, 50], two CNN models [16, 45], three Transformer models
[33, 44, 60], and three hybrid models [1, 14, 40], as tagged in Table
1. All models are directly trained on the small images without extra
data. To enable the models adaptable to small-sized images (e.g., 32
⇥ 32), we change their patch embedding layers into small patch sizes
according to uniform rules, of which the detailed implementation
is provided in Appendix A .6. For a fair comparison, we adopt the
same training strategies that were presented in their original papers
(for ImageNet-1K), which are presented in Appendix A .7.
Results. Table 1 presents the classi�cation results of di�erent
methods on the four small-scale image datasets. As we can see,
the proposed Caterpillar outperforms the sMLPNet on all the four
benchmarks (e.g., Caterpillar-T†, 23M, 77.56% vs sMLPNet-T, 24M,
77.07% on MIN), showcasing the better classi�cation capability of
the SPC than convolutional layers and its potential to be an al-
ternative to convolution in plug-and-play ways. Additionally, the
Caterpillar attain the best scores among all tested architectures, i.e.,
the Caterpillar-T reaches 78.16% accuracy on MIN, 97.10% on C10,
84.86% on C100, and 95.72% on Fashion, making it an e�ective tool
for small-scale image recognition tasks.
Scalability analysis. “Simple algorithms that scale well are the
core of deep learning” [15]. Thus, we scale the Caterpillar from
-Mi with FLOPs about 0.4G to -B about 5.5G, i.e., Caterpillar-Mi,

Table 1: Results (%) of Caterpillar and other MLP / CNN /
Transformer / Hybrid vision models on four small-scale
datasets. As the model parameters and FLOPs are similar
on these datasets, we just report those metrics on CIFAR-10
for clarity. The Caterpillar-T† scales the number of channels
to [72, 144, 288, 576], with similar computational costs to
the sMLPNet-T. N CNN, ⌥ Transformer, ⌅MLP, ⌅ Hybrid,F
Ours.

Networks MIN C10 C100 Fashion Params FLOPs

⌥ DeiT-Ti[44] 54.55 88.87 67.46 92.97 5.4M 0.3G
⌥ NesT-T[60] 73.44 94.05 75.60 94.26 6.4M 2.3G
⌅ CCT-7/3×1[14] – 91.80 74.09 93.70 3.7M 0.9G
F Caterpillar-Mi 74.14 95.54 79.41 95.14 5.9M 0.4G

N ResNet-18[43] 70.95 95.54 77.66 95.11 11.2M 0.7G
N ConvMixer_768/32[45] 57.94 91.54 70.13 93.36 19.4M 1.2G
⌅ ResMLP-S12[43] 68.63 93.67 76.44 94.58 14.3M 0.9G
⌅ CycleMLP-B1[2] 70.68 88.06 66.17 92.87 12.7M 0.1G
⌅ HireMLP-Tiny[12] 71.66 86.42 62.13 92.35 17.6M 0.1G
⌅ Wave-MLP-T[41] 72.15 88.85 65.92 92.83 16.7M 0.1G
⌅ Strip-MLP-T*[1] 76.05 96.34 82.53 95.33 16.3M 0.8G
F Caterpillar-Tx 77.27 96.54 82.69 95.38 16.0M 1.1G

N ResNet-34[16] 72.03 95.92 79.53 95.48 21.3M 1.5G
N ResNet-50[16] 72.65 96.06 79.11 95.28 23.7M 1.6G
⌥ DeiT-S[44] 42.41 83.10 64.65 93.43 21.4M 1.4G
⌥ Swin-T[33] 53.11 85.69 67.60 89.90 27.6M 1.4G
⌅ ResMLP-S24[43] 69.63 94.76 78.65 95.27 28.5M 1.9G
⌅ CycleMLP-B2[2] 71.11 88.84 67.83 93.41 22.6M 0.1G
⌅ HireMLP-Small[12] 73.86 88.51 62.54 92.70 32.6M 0.1G
⌅ Wave-MLP-S[41] 67.51 88.37 63.24 92.96 30.2M 0.1G
⌅ ViP-Small/7[17] 70.94 94.12 78.28 95.22 24.7M 1.7G
⌅ DynaMixer-S[50] 71.40 95.32 78.34 95.14 25.2M 1.8G
⌅ sMLPNet-T[40] 77.07 96.87 82.89 95.53 23.5M 1.6G
⌅ Strip-MLP-T[1] 76.47 96.48 82.59 95.50 22.5M 1.2G
F Caterpillar-T† 77.56 97.08 83.12 95.57 23.0M 1.6G
F Caterpillar-T 78.16 97.10 83.86 95.72 28.4M 1.9G

F Caterpillar-S 78.94 97.22 84.40 95.80 58.0M 4.1G
F Caterpillar-B 79.06 97.35 84.77 95.85 78.8M 5.5G

-Tx, -T, -S and -B. It is credible that Caterpillar exhibits excellent
scalability on small-scale datasets, as it obtains steady improvement
from bigger models.

4 .2 ImageNet Classi�cation
Datasets.We test the Caterpillar on the ImageNet-1K benchmark
[8], which consists of 1.28M training and 50K validation images
belonging to 1,000 categories.
Experimental Settings.We train ourmodels on 8NVIDIAGeForce
RTX 3090 GPUs with gradient accumulation techniques. For train-
ing strategies, we employ the AdamW [35] optimizer to train our
models for 300 epochs, with a weight decay of 0.05 and a batch
size of 1024. The learning rate is initially 1e-3 and gradually drops
to 1e-5 according to the consine schedule. The data augmentation
includes Random Augment [6], Mixup [58], Cutmix [57], Random
Erasing [61]. More details are shown in Appendix A .7.
Results. Table 2 presents the performance of Caterpillar with other
well-established methods on the ImageNet-1k benchmark. Similar
to the results in Section 4 .1, the Caterpillar models consistently
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Table 2: Results (%) of Caterpillar and other vision models
on ImageNet-1K datasets. N CNN, ⌥ Transformer, ⌅ MLP, ⌅
Hybrid, F Ours.

Networks Params FLOPs Top-1

⌥ DeiT-Ti[44] 5M 1.1G 72.2
⌅ gMLP-Ti[31] 6M 1.4G 72.3
F Caterpillar-Mi 6M 1.2G 76.3

N ResNet-18[16, 51] 12M 1.8G 70.6
⌅ ResMLP-S12[43] 15M 3.0G 76.6
⌅ Hire-MLP-Ti[12] 18M 2.1G 79.7
⌅ Wave-MLP-T[41] 17M 2.4G 80.6
⌅ Strip-MLP-T*[1] 18M 2.5G 81.2
F Caterpillar-Tx 16M 3.4G 80.9

N ResNet-50[16, 51] 26M 4.1G 79.8
N RegNetY-4G[37] 21M 4.0G 80.0
⌥ DeiT-S[44] 22M 4.6G 79.8
⌥ Swin-T[33] 29M 4.5G 81.3
⌅ ResMLP-S24[43] 30M 6.0G 79.4
⌅ ViP-Small/7[17] 25M 6.9G 81.5
⌅ AS-MLP-T[29] 28M 4.4G 81.3
⌅ Hire-MLP-S[12] 33M 4.2G 82.1
⌅ Wave-MLP-S[41] 30M 4.5G 82.6
⌅ sMLPNet-T[40] 24M 5.0G 81.9
⌅ Strip-MLP-T[1] 25M 3.7G 82.2
F Caterpillar-T 29M 6.0G 82.4

N ResNet-101[16, 51] 45M 7.9G 81.3
N RegNetY-8G[37] 39M 8.0G 81.7
⌥ Swin-S[33] 50M 8.7G 83.0
⌅ ViP-Medium/7[17] 55M 16.3G 82.7
⌅ AS-MLP-S[29] 50M 8.5G 83.1
⌅ Hire-MLP-B[12] 58M 8.1G 83.2
⌅ Wave-MLP-M[41] 44M 7.9G 83.4
⌅ sMLPNet-S[40] 49M 10.3G 83.1
⌅ Strip-MLP-S[1] 44M 6.8G 83.3
F Caterpillar-S 60M 12.5G 83.5

N ResNet-152[16, 51] 60M 11.6G 81.8
N RegNetY-16G[37] 84M 16.0G 82.9
⌥ DeiT-B[44] 86M 17.5G 81.8
⌥ Swin-B[33] 88M 15.4G 83.5
⌅ ResMLP-B24[43] 116M 23.0G 81.0
⌅ ViP-Large/7[17] 88M 24.4G 83.2
⌅ AS-MLP-B[12] 88M 15.2G 83.3
⌅ Hire-MLP-B[12] 96M 13.4G 83.8
⌅ Wave-MLP-B[41] 63M 10.2G 83.6
⌅ sMLPNet-B[40] 66M 14.0G 83.4
⌅ Strip-MLP-B[1] 57M 9.2G 83.6
F Caterpillar-B 80M 17.0G 83.7

outperform their sMLPNet counterparts, which further empha-
sizes the superiority of the SPC module over convolutional lay-
ers, highlighting its potential as a plug-and-play replacement to
convolution. Furthermore, the Caterpillar series exhibit compet-
itive or even superior performance to state-of-the-art networks.
For instance, Caterpillar-B achieves the top-1 accuracy of 83.7%,
which slightly surpasses several representative MLP architectures
(e.g., Wave-MLP-B, 83.6%, AS-MLP-B, 83.3%, ViP-Large/7, 83.2%),

verifying the e�cacy of Caterpillar in tackling large-scale vision
recognition tasks.

4 .3 Ablation Study
In this section, we ablate essential design components in the

proposed Caterpillar architecture. We use the same datasets and
experimental settings as in Section 4 .1. The base architecture is
Caterpillar-T.

4.3.1 Pillars-Shift of SPC
Number of shift directions. This hyper-parameter (#⇡ ) controls
the shifting directions of input images so as to determine the recep-
tive �eld of SPC on local features. We experiment with #⇡ values
ranging from 4 to 9. Among them, 4 represents the scope of four
neighboring directions (up, down, left, and right), and 5 includes the
center pillar itself. 8 covers a wider scope, including up, down, left,
right, up-left, up-right, down-left, and down-right directions. When
#⇡ is set to 9, it adds the center pillar itself, which is similar to
the scope of 3x3 convolution. From Table 3, increasing the num-
ber of neighbors can bring redundancy, because more background
information can be injected into the target pillar – the similar draw-
back existed in convolution. This result underscores that the local
features can be su�ciently obtained from a 4-scoped receptive �eld.

Table 3: Results (%) on di�erent numbers of shift directions
in the Pillars-Shift process. The ⇠ for the “# = 9” is adjusted
to [81, 162, 324, 648] to ensure the divisibility of ⇠ by # with
the Reduce Weights of W 2 R⇠⇥⇠/#

Num. of dir. (#⇡ ) MIN C10 C100 Fashion Params FLOPs

4 78.16 97.10 83.86 95.72 28.4M 1.9G
5 78.04 96.93 83.55 95.63 28.4M 1.9G
8 78.19 96.92 83.58 95.57 28.4M 1.9G
9⇤ 77.92 96.82 83.60 95.52 29.1M 2.0G

Number of shift steps. The hyper-parameter B determines the
range of local features for the Pillars-Shift operation. When B is
set to 0, 1, or 2, the input image is shifted 0, 1, or 2 steps along
the corresponding directions, which allows the local information
for each pillar to be aggregated from itself (no shifting, lacking
local modeling capability), neighboring pillars (with a distance of
1), or distant pillars (with a distance of 2), respectively. Table 4
displays the results of the proposed method with di�erent numbers
of shifting steps. The �ndings indicate that the best performance
can be achieved when B = 1.

Table 4: The model accuracy (%) on three di�erent shift steps
in the Pillars-Shift process.

shift steps (B) MIN C10 C100 Fashion

0 76.71 95.84 81.12 95.22
1 78.16 97.10 83.86 95.72
2 76.29 96.17 82.04 95.26

Type of padding modes. The padding operation is to supplement
pillars to the tail in neighboring maps. Di�erent modes can decide
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what noises (extra information) would be injected to the pillars on
the margin of images. We test four popular padding modes in Table
5. Among them, Replicated Padding can inject repeated features
to the marginal pillars, which might bring redundancy. Both the
Circular and Re�ect modes add long-distance information to those
pillars, which is obviously detrimental to the locality bias. Zero
Padding is clean and thus achieves the best accuracy.

Table 5: The model accuracy (%) on four di�erent padding
modes in the Pillars-Shift process.

Padding Mode (?<) MIN C10 C100 Fashion

Zero 78.16 97.10 83.86 95.72
Replicated 78.13 96.88 83.35 95.41
Circular 78.08 96.81 83.40 95.45
Re�ect 77.76 96.89 83.33 95.40

4.3.2 Pillars-Concatenation of SPC
The Pillars-Concatenation process involves three key operations:

(1) Reduce, which enables diverse representation by transforming
neighboring maps in multiple representation spaces; (2) Concate-
nation (Concat), which integrates four neighboring maps to com-
bine local features for all pillars in parallel; and (3) Fuse, which
selectively learns and weights neighboring features to enhance the
representation capabilities. We ablate �ve combinations of these
operations in Table 6 and observe that Reduce+Concat+Fuse and
Concat+Fuse perform better than the other options. Among them,
Reduce+Concat+Fuse achieves a better trade-o� between computa-
tional costs and accuracy.

Table 6: Results (%) of di�erent ways to mix local neighbors.

Mixing ways MIN C10 C100 Fashion Params FLOPs

Reduce+Concat+Fuse 78.16 97.10 83.86 95.72 28.4M 1.9G
Reduce+Concat 77.72 97.02 83.26 95.72 25.9M 1.8G
Concat+Fuse 78.37 97.06 83.94 95.45 33.3M 2.3G
Sum+Fuse 76.14 96.16 80.88 95.28 25.9M 1.8G
Sum 74.81 95.33 75.48 95.34 23.4M 1.6G

4.3.3 Local-Global Combination Strategies
In Section 4 .1 and 4 .2, the sMLPNet, Strip-MLP, and Caterpillar

all attained excellent performance on both small- and large-scale
image recognition tasks. This success could be attributed to the
common strategy that they clearly separate the local- and global-
mixing operations in their token-mixing modules. However, both
the sMLPNet and Strip-MLP missed the experiments to further
explore the e�ects of local-global combination ways. To �ll this
gap, we conduct this ablation and perform various strategies as
depicted in Figure 4. We evaluate six strategies, denoted as (a), (b),
(c) for sequential regimes, and (e), (f), (g) for parallel methods, by
rearranging the SPC and sMLP modules in Caterpillar blocks. Table
7 shows that the simply sequential methods generally outperform
the complicated parallel strategies.We attribute this phenomenon to
the idea that the ‘High-Cohesion and Low-Coupling’ principle leads
to higher performance, since the internal SPC and sMLP modules
are both working in sophisticated parallel ways. Furthermore, the
L-G strategy achieves the best performance.

Figure 4: Di�erent ways to combine local and global infor-
mation.

Table 7: Comparison (%) between six di�erent strategies for
combining local and global information.

Combine ways MIN C10 C100 Fashion Params FLOPs

2 Residual 77.06 96.92 82.51 95.64 28.4M 1.9G
L-G (default) 78.16 97.10 83.86 95.72 28.4M 1.9G
G-L 78.09 96.88 83.45 95.65 28.4M 1.9G
Sum 76.91 96.70 82.13 95.53 28.4M 1.9G
Weighted Sum 77.94 96.82 82.56 95.60 30.3M 2.0G
Concat+Reduce 76.77 96.18 82.15 95.49 33.4M 2.3G

4 .4 Visualization
To understand how the SPC module processes image data, we vi-

sualize the feature maps encoded by SPC coupled with two control
ways. Speci�cally, we build three Caterpillar-T models with the lo-
cal modules of identity, convolution and SPC, and implement them
on the CIFAR-100 dataset. Figure 5 (in Appendix A .1) illustrates
the feature maps of six samples, each of which is presented with 3
rows and 4 columns, where rows represent di�erent local-mixing
ways and columns are feature maps of di�erent phases in models.
For these samples, with the (a) cattle as an example, the patterns in
SPC features are closer to the convolution and di�erent from the
identity. Since convolutional layers capably capture local features,
the SPC is also capable of aggregating local information. Further-
more, compared to convolution, the objects in SPC maps exhibit
more prominent edge features and are closer to the original input
image, indicating that the proposed SPC module can encode local
information more elaborately and avoid redundancy issues.

4 .5 Analysis with Transfer Learning
4.5.1 Transfer Learning Performance of Caterpillar

In this subsection, we compare the Transfer Learning capability
of the proposed Caterpillar architecture with recent SOTA models.
Following the recent MLP-based models [17, 50], we pre-train the
Caterpillar-T on the ImageNet-1k and then �ne-tune it on CIFAR-10
and CIFAR-100. From Table 8, the Caterpillar attains higher scores
than other representative networks with similar computational
costs, indicating that Caterpillar can work well on Transfer tasks.

4.5.2 Comparison between Direct and Transfer Strategies
Despite the remarkable Transfer capability, we highlight that

Caterpillar can achieve exceptional performance on small-scale
images using the ’Direct Training’ (Direct) strategy (Section 4 .1). To
further illustrate Caterpillar’s e�ectiveness in data-hungry domains
without relying on pre-training data, which always faces challenges
to domain-shift and task-compatibility, we conduct this study.
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Table 8: The transfer learning results of models pre-trained
on ImageNet-1k and �ne-tuned to CIFAR-10 and CIFAR-100.

Networks Datasets Params Top-1(%)

ViT-S/16 [9] 49M 97.1
ViP-S/7 [17] CIFAR-10 25M 98.0
DynaMixer-S [50] 26M 98.2
Caterpillar-T 29M 98.3

ViT-S/16 [9] 49M 87.1
ViP-S/7 [17] CIFAR-100 25M 88.4
DynaMixer-S [50] 26M 88.6
Caterpillar-T 29M 89.3

We adopt the same datasets as in Section 4 .1, i.e.,MIN, C10, C100
and Fashion, while including two more datasets in certain scienti�c
�elds of remote sensing, i.e., Resisc45 (R45) [5] with 27,000 training
and 4,500 testing images in 45 categories, and disease diagnosis [20]
i.e., Chest_Xray (Chest) with 5,216 training images and 624 testing
images belonging to 2 classes. All images are resized to 224 ⇥ 224.
Then, we utilize two Caterpillar-T models as the base architectures.
The model of ‘Transfer’ is pre-trained on the ImageNet-1K and then
�ne-tune on the target datasets, while the other one for ‘Direct’ is
trained from scratch. From Table 9, the ‘Transfer’ strategy performs
better on MIN, C10, and C100, while the ‘Direct’ strategy achieves
higher scores on Fashion, R45, and Chest, which have dissimilar
distributions to the pre-trained data (ImageNet-1K). Therefore, for
the data-hungry scienti�c tasks (especially those without the same
distribution to the pre-trained natural images), directly training the
deepmodel can be amore cost-e�ective approach than the ‘Transfer’
strategy, with Caterpillar serving as the backbone architecture.

Table 9: Comparison (%) between ‘Transfer Learning’ and
‘Direct Training’ strategies on six small-scale datasets.

Networks Strategy Epochs MIN C10 C100 Fashion R45 Chest

Caterpillar-T Transfer 300+30 95.14 98.31 89.30 95.57 97.27 93.97
Direct 0+300 86.98 97.60 84.67 96.13 97.35 94.29

4 .6 Exploration for SPC
Previous comparison between Caterpillars and sMLPNets demon-

strates the potential of SPC as an alternative to convolution in plug-
and-play ways (Table 1, 2). We further explore the SPC to serve as
the main module for neural architectures.
Datasets. We utilize the same large-scale benchmark of ImageNet-
1K as well as the small-scale datasets of MIN, C10, C100 and Fashion,
as those in Section 4 .1 and 4 .2.
Experimental Settings. We adopt classic ResNet-18 (Res-18) [16]
as the baseline CNN. Then, we replace all convolutional layers
within Res-18’s basic blocks with the SPC module and obtain three
SPC-based variants referred to as ‘Res-18(SPC)’, with #⇠ utilized
as channel numbers to adjust model complexity. For training these
models, we follow the ‘Procedure A2’ in [51].
Results. Table 10 displays the ImageNet-1K classi�cation results
for the original Res-18 and Res-18(SPC) variants. As we can see,
the proposed SPC module can provide higher performance than

Table 10: Results (%) of Res-18 and Res-18(SPC) on ImageNet-
1K. #⇠ is the channel number of hidden layers in �rst stage.

Networks #⇠ Params FLOPs Top-1 (%)

Res-18[51] 64 12M 1.8G 70.6

Res-18(SPC)
64 3M 0.6G 69.1
96 7M 1.3G 73.6
128 11M 2.2G 75.3

Table 11: Results (%) of Res-18 and Res-18(SPC) on four small-
scale datasets

Networks #⇠ MIN C10 C100 Fashion Params FLOPs

Res-18[51] 64 70.95 95.54 77.66 95.11 11.2M 0.7G

Res-18(SPC)
64 70.10 94.52 76.19 94.90 2.6M 0.2G
96 71.88 95.72 78.35 95.33 5.7M 0.4G
128 73.24 95.84 79.77 95.54 10.2M 0.8G

convolution with only half of the parameters (Res-18(SPC), #⇠=96).
Increasing #⇠ to 128, the Res-18(SPC) reaches similar computa-
tional costs to the baseline Res-18 while achieving 4.7% higher
accuracy. Similar trends can be observed on small-scale recognition
tasks, as shown in Table 11. This con�rms that the SPC module can
also be used as the main component to construct neural networks,
potentially serving as an alternative to convolutional layers in in-
dependent manners.

5 Conclusion
This paper proposes the SPC module that conducts the Pillars-

Shift and Pillars-Concatenation to achieve an elaborate and par-
allelizable aggregation of local information, with superior classi�-
cation performance than convolutional layers. Based on SPC, we
introduce Caterpillar, a pure-MLP network that attains impressive
scores on both small- and large-scale image recognition tasks.

The philosophy of "simple and e�ective" and the principle of
"control variable" have run through this work. Therefore, Caterpillar
only replaces the DWConv with SPC module in sMLPNet and thus
hasmore parameters.We anticipate that integrating the SPCmodule
with lightweight techniques, like depth-wise, will further reduce
computational costs. Additionally, the experiments are primarily
conducted on the most fundamental classi�cation tasks, since SPC
and Caterpillar are introduced for the �rst time. We hope the SPC
and Caterpillar can be explored in broader tasks like detection and
segmentation, particularly in data-hungry domains.
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