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Abstract

Solving long-horizon, temporally-extended tasks using Reinforcement Learning1

(RL) is challenging, compounded by the common practice of learning without2

prior knowledge (or tabula rasa learning). Humans can generate and execute3

plans with temporally-extended actions and quickly learn to perform new tasks4

because we almost never solve problems from scratch. We want autonomous5

agents to have this same ability. Recently, LLMs have been shown to encode a6

tremendous amount of knowledge about the world and to perform impressive in-7

context learning and reasoning. However, using LLMs to solve real world problems8

is hard because they are not grounded in the current task. In this paper we exploit9

the planning capabilities of LLMs while using RL to provide learning from the10

environment, resulting in a hierarchical agent that uses LLMs to solve long-horizon11

tasks. Instead of completely relying on LLMs, they guide a high-level policy,12

making learning significantly more sample efficient. This approach is evaluated13

in simulation environments such as MiniGrid, SkillHack, and Crafter, and on a14

real robot arm in block manipulation tasks. We show that agents trained using our15

approach outperform other baselines methods and, once trained, don’t need access16

to LLMs during deployment.17

1 Introduction18

Humans can generate and execute plans with temporally extended actions to perform complex tasks19

in a dynamic and uncertain world. We would like autonomous agents to have the same capabilities.20

Massive engineering efforts can lead to agents that are remarkably robust, such as the rovers in space,21

and surgical and industrial robots. In the absence of such resources, techniques such as Reinforcement22

Learning (RL) can be used to extract robust control policies from experience. However, RL has23

many challenges, such as exploration under sparse rewards, generalization, safety, etc. This makes24

it difficult to learn good policies in a sample efficient way. Popular ways to tackle these problems25

include using expert feedback [6, 24] and leveraging the hierarchical structure of complex tasks.26

There is significant prior work on learning hierarchical policies to break down tasks into smaller27

sub-tasks [22, 9, 2].28

Hierarchical Reinforcement Learning (HRL) does indeed mitigate some of the problems mentioned29

above. However, as the number of options or skills increases, we face some of the same problems30

again. Using some form of supervision, such as providing details about the sub-tasks or intermediate31

rewards or high-level human guidance, is one approach [18, 14, 16].32

One of the reasons that humans are so good at dealing with unfamiliar situations is that we almost33

never solve problems from scratch. Presented with a new task and a library of skills, we are able to34

choose a subset of skills that seem most relevant and explore from there. We might perform some35

trial and error exploration (as in RL), but we quickly learn the right subset of skills as well as the36

correct sequence in which they need to be executed. For example, the door handles on newer cars37

lie flat against the door, unlike most other car door handles in existence. That presents a problem38
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Figure 1: We use the LLM to guide the high-level policy and accelerate learning. The LLM is
prompted with the context, some examples, and the current task and observation. We then use the
LLM output to bias the high-level action selection

the first time you try to open one. Humans immediately narrow down to a few exploratory actions,39

like trying to get a finger under the handle or pushing on it in different places. We don’t, unlike most40

RL algorithms might, tap the window or pull the side mirrors, as we believe that such options are41

causally irrelevant based on deep world knowledge.42

Large language models (LLMs) have been shown to encode a tremendous amount of knowledge43

about the world by virtue of being trained on massive amounts of text. We hypothesize that this44

knowledge can be leveraged to focus the training of hierarchical policies, making them significantly45

more sample efficient. In particular, we explore how large pretrained language models can be used to46

inject common sense priors into hierarchical agents.47

In this approach we assume access to several low level skills. These can be, for example, engineered48

planners or policies learned using RL and sub-task rewards. Based on a high-level task description49

and current state, the LLMs guide the agent by suggesting the most likely courses of action. Instead50

of random exploration, we use these suggestions to intelligently explore the various options. Because51

LLMs are not grounded in the domain, they are only used to bias action selection and their influence52

is reduced as training progresses. This results in a policy that can be deployed without depending53

on the LLM at run time. We evaluate this approach on several simulated environments (MiniGrid54

[5], SkillHack [17], and Crafter [11]), showing that it can learn to solve complex, long-horizon tasks55

much faster than baseline methods. Experiments with a real robot arm in block manipulation tasks56

using a tabular Q-learning version of the same algorithm show that it can learn policies much faster57

with less experience in the domain. Our contributions are summarized as follows:58

• an approach for using LLMs to guide exploration by extracting common sense priors;59

• a hierarchical agent that uses these priors to solve long-horizon tasks;60

• an evaluate of the framework in simulation as well as a simple real-world environment, show61

that it performs significantly better than baselines;62

• a discussion of (1) the advantages of our method compared prior work and (2) potential63

future work.64

2 Related Work65

Langauge and HRL There is significant prior work on hierarchical RL where the standard MDP is66

converted into a semi-Markov decision process (SMDP). The most common approach is to incorporate67

temporally extended actions, also known as options or skills [2]. Typically, a low-level policy achieves68

sub-tasks by executing primitive actions and a high-level policy plans over temporally extended69

options or skills. Natural language is a popular way to specify sub-tasks and achieve generalization70

due to its inherent compositionality and hierarchical structure [14, 18, 25, 12]. Most of these methods71

specify or generate a high-level plan in natural language, which is then executed sequentially by a72

separate low-level policy. These approaches face challenges when operating in high-dimensional73
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observation spaces. They also rely on manual data collection to train the high-level policies and74

therefore difficult to generalize to new tasks.75

RL and Foundation Models Recently, large language models such as GPT-3 have been used to76

build agents capable of acting in the real world based on language instructions [4, 3]. The in-context77

learning and intelligent prompting strategies supported by these models have been used to design78

language-guided hierarchical agents. [13] use LLMs as zero-shot planners to enable embodied agents79

to act in real world scenarios. Similarly, [1] use LLMs along with affordance functions to generate80

feasible plans that guide a robot to achieve goals specified in natural language instructions. Our work81

is closely related to [7], where they improve exploration by using LLMs to provide intermediate82

rewards and encourage the agent to seek novel states.83

3 Methods84

3.1 Problem Statement85

We consider a system that receives instructions in the form of natural language describing a task,86

similar to [1]. The instructions can be long, may contain warnings and constraints, and may not87

include all of the necessary individual steps. We also assume that the agent has access to a finite set of88

skills or sub-policies that can be executed in sequence to solve long-horizon tasks. These skills can be89

hand-coded, or trained using reinforcement learning or imitation learning with manual reward design.90

They must be accompanied by a simple description in natural language, such as "pick up red block"91

or "open blue door". They must also be able to detect sub-task completion to switch control back to92

the high-level policy. Given a finite set of options or skills, our objective is to obtain a high-level93

decision policy that selects among them.94

3.2 Using LLMs to Guide High-level Policies95

This section introduces our method for using LLMs to improve exploration in the high-level policy96

of an HRL system. The semantic knowledge and planning capabilities of LLMs improve high-level97

action selection given a task description and current state in the form of language. The core idea is to98

use LLMs to obtain a value that approximates the probability that a given skill or sub-task is relevant99

to achieve the larger goal. As mentioned earlier, each skill is accompanied by a language description100

lskill and the current trajectory is translated into language, ltraj . There is also a high level instruction,101

lgoal_inst, describing the larger goal along with optional constraints.102

The LLM is used to evaluate the function fLLM (lskilli ; lgoal_inst; ltraj) for each skill at every high-103

level decision step. Essentially, the LLM answers the following question: given the task, lgoal_inst,104

and trajectory so far, ltraj , should we choose skill lskill? The output of the LLM, ‘yes’ or ‘no’, can105

easily be converted to an int (“0” or “1”). This kind of closed form question-answering prompt has106

been shown to work better than open ended prompts [7]. After evaluating this for each of the k skills,107

we get FLLM = [ fLLM1
; fLLM2

; fLLM3
; :::; fLLMk

]. For example, FLLM = [0 ;1;0; :::;0;1;0;0].108

A LOG SOFTMAX function is applied to these logits to get the common sense priors from the LLM109

denoted by pCS = log_softmax(FLLM ). Relying entirely on pCS is not enough to solve complex110

tasks. At the same time, using RL and exploring without any common sense intuition is inefficient.111

Therefore we still use RL and sparse rewards to obtain high-level policies but also use the common112

sense priors, pCS , from the LLMs to guide exploration. More details about the RL algorithms used113

are in the Experiments section. The action selection in the exploration policy samples actions from a114

categorical distribution where the logits are obtained by the policy head processing the state. These115

logits are biased with the common sense priors pCS and a weight factor �. So the action selection116

looks like this: a = Categorical [�(st) + �:pCS(st)]. Here, the action a is the temporally extended117

macro action or the skill. The weight factor starts from � = 1 and is annealed gradually until it118

reaches zero by the end of training. This means that our trained agent does not continue to reply on119

the LLM during deployment. The process is summarized in Algorithm 1 and Figure 1.120

LLM Queries and Prompt Design. We use the gpt-3.5-turbo GPT provided by OpenAI APIs. To re-121

duce the number of API calls, the LLM responses for all possible combinations of lgoal_inst and ltraj122

are cached. A simplified version of ltraj is used to denote the current trajectory history using the past123

two actions. The main prompt used in our experiments has the following structure Goal:lgoal_inst,124

So far I have: ltraj, Should I lskilli ? . The LLM is shown a few examples of responses125
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Algorithm 1
high _inst ← high level goal in language
�� ← high level policy
fLLM ← common sense priors from LLM
procedure LLMxHRL(high_inst)

init ��
while �� not converged do

init � ← {}
for t← 0 to T do

pCS ← fLLM (high_inst; � )
at ← cat_dist[��(� ) + �:pCS(� )]:sample()
st; rt ← act(at)
� ← append(st; rt; at)

end for
update ��

end while
return ��

end procedure

to such queries and the prompt specifies that a one word Yes/No answer is required. Example prompts126

are in the Appendix.127

4 Experiments128

This section describes the experimental setup and results of testing the framework in three simulation129

environments and one real world robotic arm block manipulation task. The framework relies on130

communicating with the LLM using text. As mentioned earlier, each skill corresponds to a text131

description lskilli and the high level goal, lgoal_inst. We assume access to a captioner which maps132

the current observation history to ltraj . This could be automated by using modern vision to language133

models such as [19], but that is left for future work. Instead we use a CLIP-based model along with134

an LLM in the experiments with a real robot to convert visual input to a discrete low dimensional135

state. More details about obtaining ltraj is in the Appendix. In each environment, our method is136

compared with baseline hierarchical agents without any guidance from LLMs, and an oracle and a137

SayCan-like agent without affordances.138

Method Description

LLM x HRL (ours) Use LLMs to bias high-level action selection as explained in Section 3. Only
receives reward in the end at task completion.

Vanilla HRL A baseline hierarchical agent which has no guidance from the LLMs.

Shaped HRL Same as the Vanilla HRL with no LLM guidance. But here agents receive
shaped rewards for successful sub-task completion. Requires hand engi-
neered reward functions.

Oracle This is the upper bound. The high-level policy is an oracle state-machine
which provides the right sub-tasks in the correct sequence. [10]

SayCan w/o Aff A SayCan [1] like architecure but without an affordance function and blindly
trusting the LLM. This method will depend on LLM access during deploy-
ment

Table 1: This table lists the all methods we compared
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Figure 2: The plots show the success rate of different methods on the three tasks in the MiniGrid
Environment.

4.1 MiniGrid Experiments139

SetupThe experiments described in this section were performed on the MiniGrid environment by140

[5], which is a simple grid world. The environment can be designed with multiple rooms with doors,141

walls, and goal objects. These objects can have different colors and the agent and goal objects are142

spawned at random locations. The action space is discrete which allows movement in the 4 compass143

directions, opening and closing doors, and picking up and dropping objects. We designed multiple144

tasks in this setup which can be broken down into smaller sub-tasks.145

• UnlockReachtask consists of a random object in a room which is behind a locked door.146

The agent has to �rst �nd the right key based on the door color, unlock the door, and then147

navigate to the goal object.148

• KeyCorridor v0task consists of a corridor with multiple rooms on either side. A goal object149

is inside a locked room whose key is in another room. The agent has to �rst �nd the key and150

then unlock the door to ultimately reach the goal151

• KeyCorridor v1is similar to v0, but some of the rooms have defective keys. The goal152

instruction comes with the rooms to avoid. This task is much more dif�cult for standard153

HRL methods.154

Each task has a single reward that is only provided on successful task completion. The agents have155

access to several temporally extended skills:GoToObject, PickupObject, UnlockDoor, OpenBox.156

These are conditioned on the type and color of the objects. For example theObjectmay refer to157

key, ball, or box, and the color can bered, green, blue, yellow, etc. These low-level sub-tasks were158

pretrained and frozen using PPO [21] and manual reward speci�cation. The high-level policies are159

also trained using PPO where the . We compared against Vanilla HRL, Shaped HRL, an Oracle, and160

a SayCan-like method as described in Table 1. The results are summarized in Figure 2. It's clear that161

our method outperform both the baseline HRL methods with and without shaped rewards. It is also162

able to converge to the optimal policy much sooner than the other methods. The Oracle and SayCan163

are not trained using RL and so we show their performance using the horizontal lines. Although they164

are comparable to our method, one bene�t of our method is that it does not rely on the LLM during165

deployment.166

4.2 SkillHack167

The NetHack Learning Environment [15] is an RL environment based on the classic game of NetHack.168

It is notoriously dif�cult because of the large number on entities, actions, procedural generation, and169

stochastic nature of the game. MiniHack [20] and SkillHack [17] are extensions of NetHack that170

enable creation of custom levels and tasks. They are simpler than the full game while retaining most171

of the interesting complexities. The SkillHack suite contains 16 skills such asPickUp, Navigate,172

Fight, Wear, Weild, Zap, Apply, etc. More details are in the Appendix. These skills can be executed173

sequentially to achieve larger tasks. We consider two such tasks -Battle, FrozenLavaCross.174

• In theBattle task, the needs toPickUpa randomly placed Sword,Wield the Sword and175

�nally Fight and kill a Monster.176
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Figure 3: The 2 plots on the left show the success rate of different methods on the SkillHack - Battle
and Frozen Lava Cross. The 2 plots on the right show the success rate of different methods on the
Crafter - Get Stone and Make Stone Pickaxe

• In theFrozenLavaCrosstask, the needs toPickUpeither a WandOfCold or a FrostHorn177

based on what is available, then create a bridge across the lava with eitherZapWandOfCold178

or byApplyFrostHorn. Finally,NavigateLavaacross your newly made bridge to reach the179

staircase on the other side.180

In this environment we compare against Vanilla HRL and an Oracle high-level policy. The low level181

skills are are trained using IMPALA [8] with the code provided by [17]. The high-level policy is also182

trained using IMPALA where the policy skills are macro actions. As seen in the �rst two plots in183

Figure 3, in both the tasks,BattleandFrozenLavaCross, our method clearly outperforms the HRL184

agent without LLM guidance.185

4.3 Crafter186

Crafter [11] is a 2D version Minecraft which has the same complex dynamics but with a simpler187

observation space and faster simulation speeds. Similar to Minecraft, it involves collecting and188

building artifacts along an achievement tree. We modi�ed the game slightly to make it easier by189

slowing down health degradation and having fewer dangers to �ght. We evaluated on two tasks that190

have a natural hierarchical structure -MakeWoodPickaxeandMakeStonePickaxe. More details are in191

the Appendix. Similar to our other experiments we pretrain policies for multiple skills using PPO.192

The high level policy is then trained to select among these skills. The last two plots in 3 shows how193

our method performs better than the baseline HRL method.194

4.4 uArm Real Robot Experiments195

We also test on a real robot arm on a simpler tabular Q-learning version of196

our method. uArm Swift Pro [23] is an open-source desktop robotic arm.197

Figure 4: Robot Arm Results

We designed two block manipulation tasks -198

DeskCleanUpand SwapBlocks. Similar to199

previous simulation experiments, we assume200

access to various skills which can be used201

to solve larger, more complex tasks. In our202

setup, video from a camera is used to con-203

vert the robot arm and block positions into204

an array of discrete values representing the205

state. From this simpli�ed state, we are able206

to learn a high-level policy with tabular Q-207

learning. Like before, we calculatepCS =208

log_sof tmax (FLLM ) using an LLM and ac-209

cess tof LLM (lskill i ; lgoal _inst ; l traj ). Refer to210

the Appendix for more details.211

Figure 4 show the results of our experiments. In theDeskCleanUptask, we have a 3 locations212

where we have a tray and 2 blocks (red and green). The episode is initialized with blocks in random213

locations. The goal is to pick up the blocks and place them in the tray, essentially cleaning the desk.214

This task was trained for 100 episodes. In theSwapBlockstask again have 3 locations (or zones) and215

2 blocks in 2 random locations. The goal is to swap the position of blocks. In the Figure 4,Swap216
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- 100denotes performance after 100 episodes andSwap - 300, after 300 episodes. We can see that217

using LLMs to guide agent exploration give us better performance in fewer trials.218

5 Discussion219

In this work we present a framework for using LLMs to guide exploration in hierarchical agents.220

Instead of learning from random exploration without any prior knowledge, we use the LLMs to221

suggest high-level actions based on the task and current state. We evaluate our method on long222

horizon tasks which in simulation environments as well as a real robot. We show that out method223

perform better than baselines and does not require manual reward shaping. Moreover, once the agent224

is trained, we no longer depend on the LLM during deployment unlike some prior methods.225

This work can be extended in several ways to make to more end to end. We Currently assume access226

to a function which provides us to language descriptions of the current trajectory and state. This can227

be automated using recent advancements in vision language models (VLM). It will also be interesting228

to extend this framework for more and one level or hierarchy to tackle longer tasks.229
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A Appendix299

A.1 Environment Details300

A.1.1 MiniGrid301

Minigrid is an open source gridworld environment [5]. We use three tasksUnlockReach, KeyCorridor302

v0 and KeyCorridor v1. Figure 5 shows the grid layouts for the three tasks. The observation is an303

encoded version of the grid which capture the each cell type, color and an optional door/box state.304

We consider the fully observable version of these tasks, which means the observations consists of the305

full grid - 13x13 in our case.306

(a) Goal: open the locked
green door and go to the blue
box

(b) Goal: pick up a purple key,
then open the purple door and
go to the red ball

(c) Goal: pick up a purple key,
then open the purple door and
go to the red ball, avoid the
yellow and grey doors

Figure 5: The agent is represented using the red triangle. Left: The UnlockReach task where the
agent needs to get the right key and open a door and then go to the object in the right room. Middle:
The KeyCorridor-v0 task where the agent needs to reach the red ball in one of the locked rooms on
the right. It �rst needs to get a the key to from one of the rooms on the left. Right: Similar to v0 but
the some of the rooms have defective keys shown in red. The agent does not see this, it only recieves
this information in the text goal

A.1.2 SkillHack307

SkillHack [17] is an extensions on top of [15] which where you can design custom levels and get308

visual/spacial states along with text descriptions. Figure 6 shows the tasks we test where each of them309

require solving multiple sub-tasks. The state consists of a 2D map along with inventory information310

and text describing the effect of each action. This is very convenient for out method as we need to311

interact with the LLM using language.312

A.1.3 Crafter313

Crafter [11] is a 2D version Minecraft, Figure 6. it has a very simple state representation encoding314

the items on the map, an inventory and the health of the agent. It is fairly easy to translate this into315

text using a hang-coded function. The high-level skillslskill i we consider, such aschop tree, create316

table, make wood pickaxeetc can also be naturally described using langauge phrases.317
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