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ABSTRACT

Static program analysis is a foundational technique in software engineering for
reasoning about program behavior. Traditional static analysis algorithms model
programs as logical systems with well-defined semantics, but rely on uniform,
hard-coded heap abstractions. This limits their precision and flexibility, especially
in dynamic languages like JavaScript, where heap structures are heterogeneous
and difficult to analyze statically. In this work, we introduce ABSINT-AI, a
language-model-guided static analysis framework that augments abstract inter-
pretation with adaptive, per-object heap abstractions for Javascript. This enables
the analysis to leverage high-level cues, such as naming conventions and access
patterns, without requiring brittle, hand-engineered heuristics. Importantly, the LM
agent operates within a bounded interface and never directly manipulates program
state, preserving the soundness guarantees of abstract interpretation. To evaluate
our approach, we focus on a soundness-critical task: determining whether object
property accesses may result in undefined or null dereferences. This task directly
models a common requirement in compiler optimizations, where proving that an
access is safe enables the removal of dynamic checks or simplifies code motion. On
this task, ABSINT-AI reduces false positives by up to 34% compared to traditional
static analyses with fixed heap abstractions, while preserving formal guarantees.
Our ablations show that the LM’s ability to interact agentically with the analysis
environment is crucial, outperforming non-agentic LM predictions by 25%.

1 INTRODUCTION

As dynamic languages like JavaScript find their way into more backend applications with strong
performance requirements, there has been a growing interest in compiling them down to more optimal
forms (ang; Serrano, 2022; Chandra et al., 2016). An important obstacle for these approaches is the dif-
ficulty of performing sound static program analysis on these languages due to their dynamic behavior
and extensive use of complex heap allocated data (Feldthaus et al., 2013; Antal et al., 2023; Sridharan
et al., 2012). This is a problem because sound analysis is an essential element of compiler optimiza-
tion (Hind, 2001; Schneck, 1973). Soundness ensures that the analysis captures all possible runtime
behaviors of the program; without it, compilers cannot guarantee the safety of specific transformations.

A key challenge in sound and scalable static analysis for JavaScript is reasoning about the
heap. JavaScript’s dynamic object model allows programs to construct and mutate objects with
unpredictable shapes, runtime-dependent fields, and implicit behavior tied to values stored within
fields. Consider a typical loop that allocates multiple heterogeneous objects: some are short-lived
wrappers, others are stable configuration records, and others may exhibit role-dependent behaviors
encoded in field values. Traditional static analyses typically rely on uniform abstraction strategies,
and often result in excessive over-approximation and imprecision. Constructing precise yet scalable
heap abstractions is a major challenge for JavaScript due to its lack of static types and its permissive
object model, and it remains a major bottleneck for static analysis frameworks.

In this paper, we introduce ABSINT-AI, an agentic framework that assists static analysis by
performing heap abstractions. Our approach preserves the strong guarantees provided by traditional
static analysis techniques while addressing some of their major limitations. Static analysis techniques
analyze programs by treating them as sets of logical statements with well-defined semantics (Cousot
& Cousot, 1977). This type of analysis can provide guarantees of soundness, but these methods leave
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out a lot of information, such as variable names, comments, general programming design patterns,
and background knowledge. LMs on the other hand, are able to take advantage of this information
very well, but lack the robustness of traditional static analysis. For example, changing variable
names has been shown to have a drastic impact on model performance (Zeng et al., 2022; Srikant
et al., 2021). ABSINT-AI combines the best of both worlds by using LMs to provide background
information to a static analyzer without losing soundness guarantees.

The key design choice in ABSINT-AI is that it preserves the formal soundness guarantee of symbolic
program analysis by constraining the LM to only choose from a pre-determined set of sound
abstraction strategies and decide where to apply abstractions. As a result, ABSINT-AI bounds the
(inevitable) LM errors to only increased false positives (due to the aggressive abstraction decision)
or slow down the convergence of the analysis (reduce to the precise but expensive analysis) without
compromising the soundness.

Specifically, ABSINT-AI consists of a custom static analysis pipeline that invokes an agentic LM
framework at key decision points - most notably before fixpoint computations in unbounded loops,
where the choice of abstraction heavily influences convergence and precision. At each such point,
the agent inspects the current analysis state, including the heap, code, and abstraction history. Based
on this inspection, it selects appropriate abstraction strategies for each allocation site, such as
merging objects using recency-abstraction, field sets, or value similarity. If the available information
is insufficient to make a confident decision, the agent can request additional targeted analysis by
executing the loop body for more iterations to refine its understanding. This interactive, goal-directed
behavior enables adaptive, context-sensitive abstraction decisions and also allows the abstractions
themselves to reflect higher-level semantic concepts. For example, if objects contain a role field,
the agent can select a value-sensitive abstraction that merges all "teachers" into one object and all
"students" into another, allowing domain-specific concepts to guide the abstractions themselves.

We evaluate our approach on the downstream task of detecting accesses to non-existent object fields,
a common source of runtime errors in JavaScript. We compare our system against WALA (Santos
& Dolby, 2022) and TAJS (Jensen et al., 2009), two state-of-the-art static analysis frameworks
that are representative of conventional heap abstraction strategies. Our evaluation of real-world
JavaScript programs shows that ABSINT-AI achieves up to a 34% reduction in false positives
while maintaining soundness. Our ablations show that this improvement stems not just from more
expressive abstractions, but from the agent’s ability to interact with the analysis and adapt its choices
to the program context. When run with fixed symbolic abstractions or using the LM in a single-shot,
non-interactive mode, the false positive rate increases by 88% and 25%, respectively. These results
highlight the benefit of adaptive, semantically informed heap abstractions in improving the practical
effectiveness of sound JavaScript analysis.

2 MOTIVATING EXAMPLE

Static analyses rely on heap abstractions (summaries of sets of objects), to reason about dynamic,
heap-manipulating programs. The precision of these abstractions has a huge impact: too coarse and
the analysis produces spurious warnings; too fine and it may never converge.

Modern JavaScript programs often construct diverse heap objects with different structural patterns
and semantic roles, even within the same control-flow context. A one-size-fits-all heap abstraction
applied uniformly across the entire program can lead to loss of precision or unnecessary state
explosion. Consider the example in Figure 1, where each iteration of processElements allocates two
distinct objects: a short-lived wrapper (box), and a structured configuration object (config). Each
of these demands a different abstraction strategy. For instance, box can be aggressively summarized
without affecting soundnessprecision, while config exhibits a fixed field structure where only a
single field, valid, must remain precise for correct downstream control flow. While it is theoretically
possible to hand-engineer heuristics that assign abstraction strategies based on object structure or
access patterns, doing so at scale quickly becomes brittle, complex, and difficult to maintain. To
the best of our knowledge, existing analyses do not adapt their heap abstractions per object, due
to the complexity and brittleness of manually encoding such decisions.

However, many real-world objects contain semantic hints in field names or surrounding code that
indicate how they should be abstracted. For example, the field valid suggests that the config object
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Figure 1: When ABSINT-AI encounters an unbounded loop, it suspends analysis and interacts with
the language model agent for abstraction decisions. The agent selects a recency abstraction for box
and a field-based widening for the info field of config, preserving relevant structure while ensuring
convergence. A concrete instance of config is shown on the left, with its abstracted form on the
right. These per-allocation-site abstraction decisions guide the analysis to a sound fixpoint.

encodes access control logic, which is later reflected in a guard on config.valid. These high-level
concepts such as “valid” configurations are difficult to capture using purely syntactic heuristics or
static types, but are easily interpretable by language models. An agentic abstraction strategy can
leverage such semantic cues to select more appropriate abstractions: preserving distinctions between
roles, merging only safe-to-abstract fields, or even proposing domain-informed wideningsor
widening only fields relevant to the analysis domain. This enables adaptive precision where it matters,
and aggressive summarization where it doesn’t—leading to more efficient and accurate analyses.

In ABSINT-AI, a language model acts as an agent that guides heap abstraction dynamically over
the course of the analysis. Returning to the example in Figure 1, the agent might decide to apply
recency abstraction to the short-lived box object and a field-set abstraction to the structured config
object (preserving only config.valid). These decisions are not hardcoded: the agent queries the
analysis environment for relevant context (such as variable values and function definitions), and
may request additional loop iterations to test its abstraction choices. Crucially, all semantics and
state transitions are handled by a traditional abstract interpreter, ensuring that soundness is preserved.
The agent’s role is purely to steer how the heap is abstracted, enabling more precise and efficient
analysis by tailoring abstraction to the semantics of the program.

3 METHODOLOGY

ABSINT-AI is based on traditional abstract interpretation, but queries an LM to decide how to merge
summary nodes at key points in the analysis. The workflow of ABSINT-AI can be found in Figure 1.

3.1 BACKGROUND

Static program analysis. Static program analysis aims to reason about all possible executions of a pro-
gram. A key property is soundness, meaning the analysis never misses a real bug (no false negatives).
The tradeoff is precision: overly coarse reasoning introduces spurious warnings (false positives).

To ensure scalability, analyses use abstractions that merge unbounded program behaviors (e.g.,
integers, heap objects) into finite summaries. For heap-manipulating languages like JavaScript,
this typically means summarizing many concrete objects into a smaller set of abstract objects. The
challenge is choosing what to merge: aggressive abstraction hurts precision, while conservative
abstraction may prevent convergence. Prior work (Kanvar & Khedker, 2016) has developed many
hand-written heuristics for heap abstractions. Our approach replaces such heuristics with LM-guided,
context-sensitive adaptive abstractions.
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Abstract interpretation. Abstract interpretation (Cousot & Cousot, 1977) soundly approximates
program behavior by tracking an abstract state that summarizes all possible concrete states. Each
program operation updates the abstract state according to sound rules; for loops, iterative application
yields a fixpoint that safely over-approximates all executions. For heap-manipulating programs, this
requires a heap abstraction that merges potentially unbounded sets of objects into finite summary
objects (Sagiv et al., 1998; Kanvar & Khedker, 2016). Traditional analyses rely on hand-crafted
heuristics for when and how to introduce summaries. Our work instead uses a language model to
guide these choices adaptively. (We provide a more detailed overview of abstract interpretation and
heap abstractions in Appendix A.)

3.2 ABSTRACT INTERPRETATION

Abstract interpretation requires an abstract domain as well as modeling of the heap. In this section,
we briefly describe our abstract domain, our two-level representation of the heap, and when we
invoke the LM for summarization. The full analysis supports prototypal inheritance, recursion, loops,
and closures. Additional details can be found in the appendix.

Abstract Domain. Our abstract domain keeps track of heap objects using concrete
nodes and summary nodes. Summary nodes represent a set of possible concrete nodes.

1 var global = 0;
2 var global_obj = {};
3 function inc_global() {
4 let obj = {f: 1};
5 obj.f += 1;
6 global = global + obj.f;
7 }
8 function access_obj() {
9 if (global > 10) {

10 var f = global_obj.foo.bar; // bug
11 }
12 }
13 var btn1 = document.createElement("button");
14 var btn2 = document.createElement("button");
15 btn1.addEventListener("click", inc_global);
16 btn2.addEventListener("click", access_obj);

Figure 2: inc_global needs to be run at least 10 times
before the bug on line 11 is triggered.

Each node is a dictionary from primitive or ab-
stract values to other values. Our domain of
primitive values is based off of TAJS (Jensen
et al., 2009), one of the first abstract interpreta-
tion based analyses for Javascript. The abstract
domain and transfer functions are fixed; the LM
agent does not alter the semantics of the anal-
ysis. Its role is limited to guiding when and
where widening and merging operators are ap-
plied. Additional details on our abstract domain
can be found in the appendix. The most impor-
tant runtime decision of ABSINT-AI is deciding
when summarize heap nodes. We keep two sepa-
rate heap structures, referred to as the local heap
and global heap.

Local heap. The local heap is used for precise
representation for objects within local proce-
dures, such as a local object allocation in a function call. It is flow-sensitive (Kildall, 1973), taking
into account the order of statements. For example, in Figure 2, obj on line 4 is tracked in the local
heap.

Global heap. The global heap is a much less precise representation for objects that are accessed
and manipulated by multiple functions. The global heap captures all possible relationships between
globally visible objects at any point in the execution. The global heap is motivated by flow-insensitive
analysis (Weihl, 1980; Cousot & Cousot, 1977). This has two benefits: (1) It is much cheaper, as
we don’t have to keep track of a separate heap for each program location, and (2) it allows different
functions to be analyzed independently; the global heap considers all the possible heap states at
the point when the function is invoked, and the analysis of the function can reveal if any additional
relationships need to be added to the global heap. Summarization only happens in the global heap.

We draw a distinction between the local and global heap because JavaScript programs tend to be
reactive, with execution driven largely by external events. This has important implications for analysis,
as the analysis can’t assume the program will simply execute starting at the beginning from a well
defined initial state. Take the example in Figure 2, where inc_global is invoked by an event handler
and must be executed at least 10 times in order to trigger the bug on line 11. Keeping two separate
heaps allows us to to track global dependencies while not losing precision for local procedures.
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Agent Invocation. A key challenge in abstract interpretation is to reach a fixpoint without losing too
much precision when analyzing potentially unbounded loops. Because fixpoint computation requires
merging abstract states across iterations, the choice of how to abstract heap objects allocated within
the loop has a direct impact on both the precision and termination of the analysis.

Take the example in Figure 1. There are two objects, box and config. Each loop iteration allocates
two objects: box, which is short-lived and well-suited to recency abstraction, and config, which
contains a critical field (valid) that must remain precise. A uniform abstraction by allocation site
would collapse these distinctions, introducing spurious behaviors. ABSINT-AI addresses this by
invoking the LM agent at unbounded loops to choose abstraction strategies per object, balancing
semantic precision with soundness and convergence. The agent is only invoked at unbounded loop
joins, not at if–then–else merge points. Conditional branches use standard abstract joins and do not
require agent intervention.

3.3 AGENTIC HEAP ABSTRACTIONS

The agent in our framework serves as an interactive component embedded within the analysis loop.
Its role is to select heap abstraction strategies, but unlike a static classifier, it behaves as an agent that
operates under partial information and interacts with its environment to gather context before acting.

The agent is not invoked as a one-shot oracle. Instead, it operates as a environment-interacting agent
that gathers information over time. To make informed abstraction decisions, the agent interacts with
the abstract interpreter and the abstract state to selectively gather semantic information from the
program. Rather than exposing the entire program or heap state, which would overwhelm the agent
and obscure the relevant context, we treat the interpreter as a queryable environment. This avoids a
common challenge in machine learning for code: programs often contain far more information than
an LLM can meaningfully process, especially in settings with deep heap structure.

The agent’s outputs are limited to a predefined set of sound abstraction strategies, and
it never directly manipulates program state or executes code. The underlying ab-
stract interpreter remains responsible for all semantic computation and fixpoint reasoning.

Algorithm 1 Agentic Heap Abstraction Algorithm

Require: Loop L, Analysis state S, Allocation Sites A
1: b←0 {Interaction counter (queries + executions)}
2: A′= NONE
3: while b<budget do
4: Agent selects action a∈{INFO,EXEC, SELECT}
5: if a= INFO then
6: Agent queries S for program information
7: b←b+1
8: else if a= EXEC then
9: Abstract Interpreter executes one iteration of the

loop
10: b←b+1
11: continue
12: else if a= SELECT then
13: Agent selects sites A′⊆A to abstract
14: break
15: end if
16: end while
17: if A′= NONE then
18: Agent selects A′⊆A to abstract
19: end if
20: for ai∈A′ do
21: Agent selects (Strategy,Parameters)
22: Updated mapping in S from ai to strategy for L
23: end for

This architectural separation allows
us to embed an adaptive, learning-
driven agent within a sound static anal-
ysis framework—enabling high-level
decision-making informed by context
and semantics, while preserving for-
mal correctness guarantees.

Agent Interaction. The agent is ini-
tialized with the current abstract state,
including visible variables, relevant al-
location site data, and any previously
encountered heap shapes. It then en-
ters an interactive decision-making
loop. During this loop, the agent can
issue queries to the abstract state for
more information, such as request-
ing variable values, inspecting func-
tion definitions, or examining the heap
shape. If the available information is
insufficient, the agent may also post-
pone its decision making by request-
ing additional abstract loop iterations,
allowing it to observe how the heap
evolves over time. This enables the
agent to defer commitment while gath-
ering contextual evidence. We exper-
imented with providing the full pro-
gram and abstract state directly in the
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prompt, but the abstract heap often ex-
ceeded the model’s context window
for larger or deeply nested programs. To ensure stable, reproducible behavior, the agent instead
accesses information incrementally through INFO queries, retrieving only the specific variable or
function summaries needed for each decision.

The interaction is bounded: the agent operates under a fixed query and iteration budget to ensure
termination. Once satisfied, the agent returns a set of abstraction directives, specifying how the
interpreter should merge and widen objects associated with each allocation site. The interpreter then
executes the loop abstracting the heap as directed by the agent. If the abstract state does not reach
a fixpoint within five iterations, it re-queries the agent for new abstraction strategies. Algorithm 1
contains a detailed description of our procedure.

The agent performs two decision stages:

1. Selecting which allocation sites to summarize.

• At each loop iteration, the interpreter identifies allocation sites whose abstract states changed.
• The agent receives a prompt containing:

– The loop body and relevant code snippet.

– A summary of changed allocation sites (object structures, points-to sets).

• The agent can issue a number of information gathering requests (for example, querying the
current abstract value of a variable or requesting a summary of a function’s behavior) or a
simulated loop execution with the abstract interpreter.

• Finally, the agent selects a set of allocation sites to summarize or merge, ensuring convergence
before the next iteration.

2. Choosing a merging strategy and widening strategy for each selected site.

• For every selected allocation site, the interpreter asks the agent to choose one of the predefined
parameterizable merging strategies for that site.

• The agent picks among them using natural-language cues from code and variable names.
• After picking a merging strategy, the interpreter asks the agent to choose one of the predefined

parameterizable widening strategies.

Every action the agent can take is predefined, finite, and sound—it cannot invent new abstractions,
only select among existing ones—and all interactions are deterministic within the interpreter.

Information Gathering. The agent gathers information through a small set of read-only queries to
ABSINT-AI:

• Variable inspection: Requesting abstract values of in-scope variables.
• Function introspection: Retrieving the definition of local functions in scope.
• Loop execution: Requesting additional iterations with the abstract interpreter to observe how

heap structures evolve.

These interactions allow the agent to incrementally reduce uncertainty and focus attention on seman-
tically meaningful heap behaviors without drastically increasing the input size. In particular, loop
execution supports deliberate abstraction delay, giving the agent a richer view of program dynamics
before committing to a strategy.

Abstraction decisions. Merging Strategies. Once the agent has identified which allocation sites
require abstraction, it selects a merging strategy for each. This determines how objects allocated
at that site are grouped during join operations. The agent chooses from the following predefined
strategies:

• Allocation-site merge: Collapses all objects created at the same program location into a single
abstract object.

• Recency merge: Preserves the most recently allocated object at that site; merges older instances.
• Field-sensitive merge: Groups objects with the same fields.
• Role-based merge: Partitions objects based on semantically meaningful field values (e.g., role),

allowing distinctions like “student” vs. “teacher” to be preserved.
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In particular, role-based merging requires semantic understanding of field names and value meanings;
it is very difficult to implement role-based merging using purely symbolic techniques. Identifying
that a specific field should guide abstraction boundaries is often a decision that depends on natural
language cues and program intent.

After selecting a merging strategy for an allocation site, the agent also specifies a widening strategy.
Widening determines how abstract heap objects are generalized over time as they are revisited across
loop iterations. The agent chooses from the following strategies:

• Field-set widening: widen a selected subset of fields, leave the others concrete.
• Field merging: Merge the fields together, and select another widening strategy for the values.

This is for handling infinitely growing objects.
• Full widening: recursively widen the entire object into a single shape.
• Depth-based widening: Collapse structures beyond a fixed depth threshold

These strategies allow the agent to control the granularity of abstraction per object: preserving precise
structure where it matters while widening aggressively in parts of the heap that are less semantically
relevant. As with merging, widening strategies are selected per allocation site and parameterized to
balance precision with scalability.

3.4 DOWNSTREAM TASK

As a downstream task to test the precision of ABSINT-AI, we detect
the following situations (1) accessing a property of null or undefined

1 let userId = 100; // abstracted to NUMBER.
2 let names = {100: "Jane"};
3 names[userId]; // False positive

Figure 3: False positive due to userId getting
abstracted to the abstract NUMBER type.

and (2) reading an absent property of an object.

Abstracting unnecessarily can lead to false pos-
itives. Take the example in Figure 3. If userId
on line 1 gets abstracted to the abstract NUM-
BER type, then the object access on line 3 is
reported as a possible read of an absent property.
userId could take the value of all possible num-
bers, but names only has the the property 100.

Intersection of multiple runs. Different abstraction choices in a program can lead to different sets
of reported bugs. For example, when analyzing the program in Figure 3, ABSINT-AI may choose
to abstract the userId field in some runs but leave it concrete in others. This variation can affect
which false positives are reported. However, because each run is individually sound, any bug that
does not appear in any run is guaranteed not to be real. This allows us to improve precision by
taking the intersection of reported bugs across multiple runs (similar in spirit to self-consistency
approaches (Wang et al., 2022b)) while preserving full soundness.

4 EVALUATION

Our evaluation focuses on two key questions: (1) How does our system perform compared to existing
static analysis tools? (2) How important is agentic decision-making relative to fixed symbolic
strategies or direct LLM prediction? To answer these, we compare against two established baselines
(TAJS and WALA), conduct targeted ablations isolating the role of the agent, and present a case study
demonstrating the system’s ability to preserve meaningful heap structure.

4.1 BASELINES

TAJS. TAJS (Type Analysis for JavaScript) is a performs flow-sensitive, context-sensitive, and
partially path-sensitive static analyzer designed for sound and scalable analysis of JavaScript pro-
grams Jensen et al. (2009). TAJS is based on abstract interpretation, including specialized heap
abstractions such as allocation-site abstraction and recency abstraction, to model JavaScript’s dynamic
object behavior.

WALA. WALA (T. J. Watson Libraries for Analysis) is a general-purpose static analysis framework
that supports multiple languages, including JavaScript Santos & Dolby (2022). Unlike TAJS, WALA is

7
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Figure 4: Running multiple times and taking the in-
tersection of the reported bugs allows us to improve
precision while maintaining soundness.

Table 1: Overall mean performance across the Dataset.
#FP stands for False Positives. Fewer is better.

Model # FP↓ % Improve

Baselines
TAJS 157 0%
WALA 312 -98.7%
Symbolic ABSINT-AI 220 -28.6%

Mean
GPT-4o-mini 125 20.4%
GPT-4.1-mini 127 19.1%
Qwen3-32B 117 25.5%

Intersection
GPT-4o-mini 104 33.7%
GPT-4.1-mini 116 26.1%
Qwen3-32B 111 29.0%
Full Intersection 97 38.2%

not based on abstract interpretation and performs flow-insensitive heap analysis, using a combination
of allocation-site abstraction and context-sensitive pointer analysis.

Symbolic ABSINT-AI. We also include a baseline that runs ABSINT-AI using a fixed abstraction
configuration without LM guidance. This baseline selects a conservative widening strategy across
all allocation sites, simulating how our analysis would perform without agentic control. It serves
to isolate the contribution of the LM-driven adaptivity from the underlying analysis framework.
Symbolic ABSINT-AI begins with recency-based merging and a depth-1 field-sensitive abstraction.
If the loop fails to converge within 50 iterations, it switches to widening the entire object while
maintaining recency-based merging. If convergence still fails after another 50 iterations, it falls back
to a fully allocation-site-based abstraction.

Dataset. To evaluate our approach, we curated a benchmark of 17 self-contained JavaScript programs
from the Big Code dataset Raychev et al. (2016), the V8 benchmark suite, and Github. We filtered
for programs that were self-contained and did not use builtins excessively, as this greatly increases
the imprecision of the analysis (Math.floor, for example, requires modeling the Math library to
analyze precisely). These require substantial modeling effort and introduce orthogonal complexity.
We also excluded object-oriented programs that rely too heavily on classes and let statements, since
TAJS and WALA do not support Javascript features after ES2015. For context, prior work such as
TAJS evaluated on 8 programs (Jensen et al., 2009), underscoring the difficulty of assembling larger
benchmarks for sound JavaScript analysis. All 17 benchmarks were manually inspected to confirm
that the property of interest (absence of unsafe property accesses) holds. A detailed description of the
dataset can be found in the Appendix.

4.2 PERFORMANCE

We evaluate ABSINT-AI using three different language models: GPT-4o-mini, GPT-4.1-mini, and
Qwen3-32B. To compare against TAJS and WALA, we measure the number of (1) possible accesses
to a property of null or undefined or (2) possible reads of an absent property of an object. In
this setting, lower values indicate greater precision, reflecting fewer spurious results caused by
imprecise heap abstraction. We run ABSINT-AI 10 times across our benchmark per model across our
17-program benchmark and report the mean results in Table 1.

Our agent-guided approach reports significantly fewer false positives than either baseline, achieving
an average reduction of approximately 20%. This improvement stems from the agent’s ability to
select tailored abstraction strategies that avoid over-merging or premature widening, which often
cause TAJS and WALA to lose key field or value distinctions.

Intersection. As described in Section 3.4, one benefit of maintaining soundness is that we can safely
take the intersection of reported errors across multiple runs, improving precision without risking
missed bugs. Figure 4 shows the effect of taking intersections across multiple runs. As expected, the
language model often makes different abstraction decisions, leading to partially overlapping sets of
reported warnings. By intersecting the results across multiple runs, either for a single model or across
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all three, we can substantially reduce false positives. On average, intersecting runs from a single
model improves precision by 8%; intersecting all 30 runs across all models yields a 13% reduction in
false positives over any individual run. We find that intersecting the top 3–4 runs gives the steepest
improvement, with diminishing returns after 6 runs.

Run time. We also compare the runtime performance of ABSINT-AI against TAJS and WALA. As
expected, ABSINT-AI is slower, primarily due to our prototype implementation in Python, whereas
both TAJS and WALA are written in Java. Much of the overhead comes from the interpreter itself, not
from querying the agent. For example, when using GPT-4.1-mini, ABSINT-AI takes 500 seconds to
run across our dataset, 189 of which is spent on agent interaction. Of the 500 seconds required to run
across our dataset, 189 seconds correspond to agent interaction—the network latency and inference
time of querying the agent—while the remaining time reflects the Python interpreter’s overhead
and a more detailed heap representation. When the agent is disabled in Symbolic ABSINT-AI, the
analysis yields comparable precision to TAJS/WALA but remains slower. In contrast, TAJS and
WALA complete their analysis in approximately 20 seconds.

4.3 ABLATIONS

Ablation with symbolic abstractions. To isolate the contribution of the agent itself, we conducted
an ablation study comparing ABSINT-AI to a purely symbolic variant that uses the same abstraction
strategies but without agentic selection. In this setup, the analysis starts with the most precise
abstractions and applies a fixed conservative widening strategy if the loop fails to converge within
10 iterations. If the analysis still does not converge after 20 minutes, we terminate and collect any
reported warnings up to that point.

Table 1 shows that this symbolic version performs significantly worse: despite failing to converge
on five benchmarks, it still produces 28.6% more false positives than TAJS. This highlights that the
benefit of ABSINT-AI does not come merely from using expressive abstractions, but from the agent’s
ability to adaptively choose when and how to apply them based on program context.

Figure 5: Performance improvements of an interactive
agent vs. direct abstraction prediction.

Ablation with non-agent LLM. To isolate the
impact of agentic interaction, we compare our
full system to a variant that uses the same lan-
guage model, but in a non-agentic, single-shot
setting. In this baseline, the model is prompted
to select abstraction strategies directly, without
the ability to query the interpreter, inspect inter-
mediate state, or request additional loop itera-
tions. This version performs consistently worse
than our full system, show that the ability for
the model to gather evidence and defer commitment is important for robust and context-sensitive
decisions. As seen in Figure 5, the direct prediction consistently performs about 25% worse across
our benchmarks.

4.4 CASE STUDY ON CONWAY’S GAME OF LIFE

1 var cell_state = [
2 [0, 1, 0],
3 [0, 1, 0],
4 [0, 1, 0]
5 ]
6 var n = parseInt($("#iterations"));
7 for (var i = 0; i < n; i++) {
8 cell_state = newGeneration(cell_state);
9 }

Figure 6: A snippet from Conway’s Game of Life.

To illustrate the benefits of agent-guided abstrac-
tion, we present a case study from our bench-
mark based on Conway’s Game of Life in Fig-
ure 6. The cell_state variable represents a
3×3 grid of integers, updated over n iterations by
the newGeneration function. While the con-
tents change, the structure remains fixed across
iterations; a property inherent to the game’s
rules. ABSINT-AI identifies that only the in-
teger values need to be abstracted, preserving
the shape of the array and producing a precise heap abstraction.

9
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In contrast, symbolic baselines often over-abstract the structure itself, prematurely merging array
shapes and losing row-level distinctions. This highlights how the agent draws on both program syntax
and semantic cues such as common data patterns to guide more precise abstraction decisions.

5 RELATED WORK

LMs in program analysis. LMs have been applied to a wide range of program analysis tasks,
including type inference, fuzzing, vulnerability and resource leak detection, code summarization,
and fault localisation (Peng et al., 2023; Wei et al., 2023; Wang et al., 2023b; Xia et al., 2024;
Yang et al., 2023b;a; Deng et al., 2023; Mathews et al., 2024; Liu et al., 2023; Wang et al., 2023a;
Mohajer et al., 2023; Cai et al., 2023; Geng et al., 2024; Ahmed et al., 2024; Wang et al., 2022a;
Wu et al., 2023). However, none have been applied to static analysis while preserving soundness
guarantees. More recently, several neurosymbolic approaches combine static analysis with LMs:
LLift (Li et al., 2024a) filters false positives from UBITect (Zhai et al., 2020), IRIS (Li et al., 2024c)
augments CodeQL (Avgustinov et al., 2016) for taint analysis, and InferROI (Wang et al., 2024)
detects resource leaks in Java programs. While effective at improving precision, all of these systems
sacrifice soundness once neural predictions are introduced.

Program analysis for Javascript. Much prior work on JavaScript analysis has focused on unsound
but pragmatic tools for bug finding and security. These tools aim to detect likely vulnerabilities or
errors in real-world programs, often trading soundness for scalability and precision (Li et al., 2022;
Fass et al., 2019; Kang et al., 2023; Yu et al., 2023; Guo et al., 2024; Kang et al., 2025). While
effective for finding particular security issues in practice, these approaches do not provide soundness
guarantees. As a result, they are not suitable for many downstream tasks that depend on full program
coverage, such as compiler optimizations or transformations, where missing even a single feasible
behavior can invalidate correctness. Our work, by contrast, maintains the formal soundness of abstract
interpretation while improving its precision via adaptive heap abstraction.

LMs in sound reasoning. Machine learning has been used to guide compiler optimization selec-
tion (Ansel et al., 2014; Huang et al., 2019), proof search and theorem proving (Bansal et al., 2019),
as well as in program synthesis (Li et al., 2024b) and SAT/SMT solving (Ganesh et al., 2022), where
learned components suggest strategies or rule orderings without affecting overall soundness. In
contrast, abstract-interpretation-based program analysis forms a distinct line of work, traditionally
relying solely on manually designed heuristics for abstraction and widening. To our knowledge, no
prior system has incorporated large language models or other ML components into this framework
while preserving soundness. Our method is the first to do so by constraining the LLM to select among
a fixed, verified set of abstraction operators within a sound abstract domain.

6 LIMITATIONS AND CONCLUSION

Scalability. A limitation of ABSINT-AI is that it does not scale to large JavaScript codebases (e.g.,
2,000+ lines). This is a broader issue with JavaScript static analysis: neither TAJS nor WALA
converged on such programs in our experiments. The challenge stems from the dynamic and
object-heavy nature of real-world JavaScript. While our agent-guided approach adds adaptivity, our
prototype and reliance on whole-program analysis similarly limit scalability. Addressing this is an
important direction for future work.

In this work, we propose a method to augment static analyzers with an agentic LM for heap abstrac-
tions. We present ABSINT-AI as a proof-of-concept and an evaluation showing that augmenting
static analysis with LMs can have a dramatic improvement on the precision without losing soundness
guarantees.

7 REPRODUCIBILITY STATEMENT

We have included our source code along with instructions to reproduce the experiments in the
supplementary material.
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A BACKGROUND

Soundness and precision. Traditional static program analysis is often split between sound and
unsound analyses. Soundness is the quality of static analyzers which guarantees that the analysis
models an over-approximation of the target program’s behavior, but may model behaviors that do
not actually occur in any execution. The precision of the analysis is the extent to which the analysis
avoids such spurious results. In short, a program analysis is sound if there are no false negatives. A
program analysis is precise if there are not many false positives.

Abstractions in static analysis. Static analysis algorithms achieve scalability and soundness by using
abstractions in their analysis. Programs often manipulate unbounded resources (e.g., integers, heap
structures). Abstractions merge a potentially infinite set of objects into a single summary object to
ensure convergence and for scalability. A key challenge is choosing what to abstract in the target
program to ensure convergence while retaining as much important information as possible. There has
been a rich body of literature on improving precision and scalability of heap abstractions (Kanvar
& Khedker, 2016). In this work, we use an LM to decide what should be abstracted in the target
program.

Abstract Interpretation. Abstract interpretation is a framework for analyzing programs by soundly
approximating their behavior through the use of an abstract state that summarizes the set of possible
states that a program can be in at different points in the execution (Cousot & Cousot, 1977). For
simple programs manipulating scalar values, the abstract state is usually a simple mapping from
variable names to abstract values representing sets of numbers. For example, an integer variable
may be assigned the abstract value POSITIVE, representing all positive integers, to indicate the
fact that its concrete value is guaranteed to be a positive value on any execution of the program.
Abstract interpretation works by interpreting the program using rules that describe how each operation
available in the language transforms the abstract state into new abstract states. For example, a rule may
indicate that the addition of two POSITIVE numbers always results in a positive number. Soundness
of the analysis is guaranteed by ensuring the soundness of each individual rule; for programs with
loops, the analysis needs to be executed iteratively, and the theory of abstract interpretation ensures
that once the abstract states converge to a fixpoint, this fixpoint will be a sound representation of the
set of possible states that any execution of the program can reach.

For heap manipulating programs, the abstract state must include an abstraction of the heap which
represents all the possible states of the heap a program might exhibit at a given point in time (Sagiv
et al., 1998). There is an extensive literature on heap abstractions (Kanvar & Khedker, 2016), but
all of them have a few elements in common. One important element is the use of summarization
to represent multiple objects which may be living in the heap at a given point in the execution as a
single summary object. Summarization allows the analysis to use a bounded representation for the
potentially unbounded set of objects that can live on the heap on any arbitrary execution. Traditional
abstract interpretation frameworks rely on complex heuristics to determine when and how to introduce
summary nodes during program analysis to allow the analysis to maintain precision while quickly
converging to a reasonably sized representation of the abstract heap. Our goal for this work is to
replace those heuristics with an LM which can take advantage of its background knowledge of
concepts used in the code as expressed through variable names, field names and comments.
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B ABSTRACT INTERPRETATION DETAILS

B.1 ANALYSIS DETAILS

Functions In Javascript, functions are stored as objects on the heap. We include a __code__ property
storing the function body to be executed. At the beginning of the analysis, ABSINT-AI scans the
entire program, and generates a schema for each function. The schema for each function contains
which variables are local to the function and which variables are accessed by other functions. We
refer to variables that are local as private, and variables that are accessed by other functions as shared.
Each time a function is executed, an environment is initialized according to the schema for that
function. When a function is defined, is initialized with a __hf__ field set to the current heap frame.
The __hf__ field is used to model scopes and closures. When the function returns, the stack frame σ
is popped from the stack, and the stack pointer is decremented.

Scopes and Closures Whenever a function is called, a new stack frame σ is pushed, along with a
corresponding heap frame. The stack pointer for the current stack frame is updated to point to σ.
The private variables for that function are stored in the stack frame σ, and any shared variables are
stored in the heap frame. The heap frame is initialized with a parent field __parent__ which is used
to model the scope chain. The __parent__ field points to the __hf__ field for the function being
initialized.

To lookup a variable name in the environment, ABSINT-AI first checks the current stack frame. If it
finds a value for the variable, it returns the value. If it doesn’t, it checks the corresponding heap frame
for the stack frame, and then follows the chain of __parent__ pointers until it finds the variable.

Recursion ABSINT-AI keeps track of all functions that have been called but have not finished
executing yet. Whenever it encounters a recursive call, ABSINT-AI sets the return value to a recursive
placeholder and stores a hash of the function that is called. When the function returns, ABSINT-AI
checks the return values and any allocated heap objects for recursive placeholders for the function
and fills them in with the return values.

B.2 ENVIRONMENT

In this section we describe how ABSINT-AI represents the abstract state. We define concrete and
abstract values. HL refers to the concrete heap, HG refers to the global heap, and σ refers to the
stack. τ is an abstract type, C refers to constants, obj and õbj refer to concrete and abstract objects.
val and ṽal refer to the values that a variable can take.

val ::= a |obj | ṽal
ṽal ::= C | ã |τ | õbj
τ ::= Bool |Null |Num |String

obj ::= τ→val |C→val

õbj ::= τ→ ṽal |C→ ṽal
HL ::= a→val

HG ::= ã→ ṽal
σ ::= C→val

B.3 SYNTAX

op ::= + |−|÷| · | ...
E ::= id |E.field |E[E] |foo(E) |E1[E2](E3,E4,...) | function(x0,x1,...){S}

|new foo(E1,E2,...) |C |{f :E}
varDef ::= var id=E | let id=E |const id=E

Stmt ::= varDef | id=E |
E.f=E |E[E]=E |def foo(x1,x2,...,xn){Stmt}|
if (E){Stmt} else {Stmt}|class foo{Stmt}|
return E | for (varDef; E; Stmt){Stmt}
for (varDef in E){Stmt}|while (E){Stmt}|Stmt;Stmt
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NUMBER

1

2

...

⊥

Figure 7: Number Lattice.

STRING

"foo"
"bar"

...

⊥

Figure 8: String Lattice.

BOOL

True False

⊥

Figure 9: Boolean Lattice.
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NULL

⊥

Figure 10: Null Singleton.

B.4 SEMANTICS

B.4.1 FUNCTIONS

This section is several functions we use, such looking up a variable name and initializing a new
schema for a function.

lookup(id)
s≡∅ θ=∅

⟨lookup(HL,HG,s,id)→θ⟩

s∈HL id∈HL(s) θ=s

⟨lookup(HL,HG,s,id)→θ⟩

s∈HG id∈HG(s) θ=s

⟨lookup(HL,HG,s,id)→θ⟩

s∈HL id ̸∈HL(s) θ= lookup(HL,HG,HL(s).par,id)

⟨lookup(HL,HG,s,id)→θ⟩

s∈HG id ̸∈HG(s) θ= lookup(HL,HG,HG(s).par,id)

⟨lookup(HL,HG,s,id)→θ⟩

initialize(schema)
HL[a 7→{schema.public,par 7→σ.hf}] σ′._secret 7→{schema.secret} σ′.hf 7→a

initialize(schema)→HL,HG,σ ::σ′

return_from_schema
σ≡σ′ ::v

return_from_schema→HL,HG,σ′

B.4.2 SMALL-STEP SEMANTICS

⟨HL,HG,σ,S⟩→⟨H ′
L,H

′
G,σ

′,S′⟩

17
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id
⟨HL,HG,σ,id⟩→⟨HL,HG,σ,lookup(id)⟩

E.field
⟨HL,HG,σ,E⟩→⟨H′

L,H′
G,σ′,V ⟩

⟨HL,HG,σ,E.field⟩→⟨H′
L,H′

G,σ′,get(V,field)⟩

E1[E2]
⟨HL,HG,σ,E2⟩→⟨H′

L,H′
G,σ′,V2⟩ ⟨H′

L,H′
G,σ′,E1⟩→⟨H′′

L,H′′
G,σ′′,V1⟩

⟨HL,HG,σ,E1[E2]⟩→⟨H′
L,H′

G,σ′,get(V1,V2)⟩

foo(E0,E1,...)
⟨lookup(foo)→V,V.__type≡Function⟩ ⟨HL,HG,σ,E0,E1,...⟩→⟨H′

L,H′
G,σ′,V0,V1,...⟩

⟨HL,HG,σ,foo(E0,E1,...)⟩→⟨H′
L[x0 7→V0,x1 7→V1,...],H′

G,σ′,initialize(V.__code);V.__code⟩

E1[E2](E3,E4,...)
⟨HL,HG,σ,E0,E1,...⟩→⟨H′

L,H′
G,σ′,V0,V1,V2,...⟩ ⟨get(V0,V1)→V,V.__type≡Function⟩

⟨HL,HG,σ,foo(E0,E1,...)⟩→⟨H′
L[x0 7→V0,x1 7→V1,...],H′

G,σ′[this 7→V0],V.__code⟩

function(x0,x1,...){S}
⟨HL,HG,σ,function(x0,x1,...)⟩→⟨H′

L[a′ 7→{...,prototype :a},a 7→ ],H′
G,σ′,a′⟩

new foo(E0,E1,...)
⟨lookup(foo)→V ⟩ ⟨V.__type≡Class⟩ ⟨E0,E1,...⟩→⟨V0,V1,...⟩

⟨HL,HG,σ,new foo(E0,E1,...)⟩→⟨H′
L,H′

G,σ′[this 7→V ],init();get(prototype(V ),constructor)(V0,V1,...)⟩

⟨lookup(foo)→V ⟩ ⟨V.__type≡Function⟩ ⟨E0,E1,...⟩→⟨V0,V1,...⟩
⟨HL,HG,σ,new foo(E0,E1,...)⟩→⟨H′

L,H′
G,σ′,V.__code(V0,V1,...)⟩

{f1 :E1,f2 :E2,...}
⟨HL,HG,σ,E1,E2,...⟩→⟨H′

L,H′
G,σ′,V1,V2,...⟩

⟨HL,HG,σ,{f1 :E1,f2 :E2,...}⟩→⟨HL[a 7→{f1 :V1,f2 :V2,...,__type :object}],HG,σ,a⟩

(var x = E)
⟨HL,HG,σ,E⟩→⟨H′

L,H′
G,σ′,V ⟩ θ= lookup(x) θ∈HL fr=HL[θ] fr’=fr[id 7→V ]

⟨HL,HG,σ,x=E⟩→⟨H′
L[θ 7→fr′],H′

G,σ′,skip⟩

⟨HL,HG,σ,E⟩→⟨H′
L,H′

G,σ′,V ⟩ θ= lookup(x) θ∈HG fr=HG[θ] fr’=fr[id 7→V ∪fr[id]]

⟨HL,HG,σ,x=E⟩→⟨H′
L,H′

G[θ 7→fr′],σ′,skip⟩

(x.f = E)
lookup(x)≡a θ=HL(a) ⟨HL,HG,σ,E⟩→⟨H′

L,H′
G,σ′,V ⟩

⟨HL,HG,σ,x.f=E⟩→⟨H′
L[θ[f 7→V ]],H′

G,σ′],skip⟩

lookup(x)≡ ã θ̃=HG(ã) ⟨HL,HG,σ,E⟩→⟨H′
L,H′

G,σ′,V ⟩
⟨HL,HG,σ,x=E⟩→⟨H′

L,H′
G[θ̃[f 7→V ],σ′,skip⟩
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(x[E] = E’)
lookup(x)≡a θ=HL(a) ⟨HL,HG,σ,E,E′⟩→⟨H′

L,H′
G,σ′,V,V ′⟩

⟨HL,HG,σ,x[f ]=E⟩→⟨H′
L[θ[V 7→V ′]],H′

G,σ′],skip⟩

lookup(x)≡ ã θ̃=HG(ã) ⟨HL,HG,σ,E,E′⟩→⟨H′
L,H′

G,σ′,V,V ′⟩
⟨HL,HG,σ,x=E⟩→⟨H′

L,H′
G[θ̃[V 7→V ′],σ′,skip⟩

(def foo(x0,x1,...,xn){Stmt})
θ= lookup(foo) θ∈σ

⟨HL,HG,σ,x[f ]=E⟩→⟨HL[a 7→ ...,prototype :a′,a′ 7→{}],HG,σ[θ 7→a],skip⟩

θ= lookup(foo) θ∈HL

⟨HL,HG,σ,x[f ]=E⟩→⟨HL[a 7→ ...,prototype :a′,a′ 7→{},θ 7→a],HG,σ,skip⟩

θ= lookup(foo) θ∈HG

⟨HL,HG,σ,x[f ]=E⟩→⟨HL,HG[a 7→ ...,prototype :a′,a′ 7→{},θ 7→θ∪a],σ,skip⟩

(x[E] = E’)
lookup(x)≡a θ=HL(a) ⟨HL,HG,σ,E,E′⟩→⟨H′

L,H′
G,σ′,V,V ′⟩

⟨HL,HG,σ,x[f ]=E⟩→⟨H′
L[θ[V 7→V ′]],H′

G,σ′],skip⟩

lookup(x)≡ ã θ̃=HG(ã) ⟨HL,HG,σ,E,E′⟩→⟨H′
L,H′

G,σ′,V,V ′⟩
⟨HL,HG,σ,x=E⟩→⟨H′

L,H′
G[θ̃[V 7→V ′],σ′,skip⟩

if (E) { Stmt }) else { Stmt’ } ⟨HL,HG,σ,E⟩→⟨H′
L,H′

G,σ′,False∨∅⟩
⟨HL,HG,σ,if (E){Stmt} else {Stmt;}⟩→⟨H′

L,H′
G,σ′],Stmt⟩

⟨HL,HG,σ,E⟩ ̸→⟨H′
L,H′

G,σ′,False∨∅⟩
⟨HL,HG,σ,if (E){Stmt} else {Stmt′}⟩→⟨H′

L,H′
G,σ′],Stmt′⟩

class foo[M1,M2,...,MN ]
class_obj={M1,M2,...,MN}

⟨HL,HG,σ,class foo[M1,M2,...,MN ]⟩→⟨HL[a 7→class_obj],HG,σ,skip⟩

(return E)
⟨HL,HG,σ,E⟩→⟨H′

L,H′
G,σ′,V ⟩

⟨HL,HG,σ,returnE⟩→⟨H′
L,H′

G,σ′[returns 7→σ′[returns]∪V ],skip⟩

for ([let |var] id in E) {Stmt}
⟨HL,HG,σ,E⟩→⟨H′

L,H′
G,σ′,V ⟩ V.__proto__≡∅ isEmpty(V )≡True

⟨HL,HG,σ,for ([let |var] id in E) {Stmt}⟩→⟨H′
L,H′

G,σ′,skip⟩

⟨HL,HG,σ,E⟩→⟨H′
L,H′

G,σ′,V ⟩ V.__proto__ ̸≡∅ isEmpty(V )≡True

⟨HL,HG,σ,for ([let |var] id in E) {Stmt}⟩→⟨H′
L,H′

G,σ′,for ([let | var] id in V.__proto__){Stmt}⟩

⟨HL,HG,σ,E⟩→⟨H′
L,H′

G,σ′,V ⟩ V ≡X ::V ′ varDef.type≡ let

⟨HL,HG,σ,for (let id in E) {Stmt}⟩→⟨H′′
L,H′′

G,σ′′,initialize(Stmt);let id=X;Stmt; for (let id in V’) { Stmt }⟩

⟨HL,HG,σ,E⟩→⟨H′
L,H′

G,σ′,V ⟩ V ≡X ::V ′ varDef.type≡var

⟨HL,HG,σ,for (let id in E) {Stmt}⟩→⟨H′
L,H′

G,σ′,var id=X;Stmt; for (let id in V’) { Stmt }⟩
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Figure 11: Performance per model on each benchmark program compared to WALA and TAJS.

while (E) {Stmt}
⟨HL,HG,σ,E⟩→⟨H′

L,H′
G,σ′,V ⟩ V ∈Falsey

⟨HL,HG,σ,while (E) {Stmt}⟩→⟨H′
L,H′

G,σ′,skip⟩

⟨HL,HG,σ,E⟩→⟨H′
L,H′

G,σ′,V ⟩ V ̸∈Falsey ⟨H′
L,H′

G,σ′,Stmt;summarize()→⟨H′
L,H′

G,σ′⟩
⟨HL,HG,σ,while (E) {Stmt}⟩→⟨H′

L,H′
G,σ′,skip⟩

⟨HL,HG,σ,E⟩→⟨H′
L,H′

G,σ′,V ⟩ V ̸∈Falsey ⟨H′
L,H′

G,σ′,Stmt;summarize()→⟨H′′
L,H′′

G,σ′′⟩
⟨HL,HG,σ,while (E) {Stmt}⟩→⟨H′′

L,H′′
G,σ′′,while (E) {Stmt}⟩

C IMPLEMENTATION AND DATASET

Implementation. We implemented ABSINT-AI in 8049 lines of Python, and use Espree brettz9
to parse the Javascript into an AST. We conducted the experiments on a Linux server with two
AMD EPYC 7763 64-Core Processors, 128 cores, 1024GB RAM, and 4 NVIDIA RTX 6000 Ada
Generation GPUs.

C.1 DATASET

Table 2: Each program and a small description.

Program #Lines Description

CGOL.js 65 Conway’s Game of Life.
2048.js 234 The 2048 game implemented for the DOM.
breakout_game.js 158 An implementation of the Breakout arcade game for the DOM.
breakout_game2.js 91 A separate implementation of the Breakout arcade game for the DOM.
datepattern.js 91 Testing date string equality
hash-map.js 577 A JavaScript implementation of a HashMap.
confetti.js 400 Confetti animations in the DOM.
pong.js 243 Pong game in the DOM.
snake_game.js 102 Snake game in the DOM.
books.js 504 A library for storing books.
FlashSort.js 84 Flash Sort.
math_sprint.js 345 Math calculations in the DOM.
drawing-app.js 442 A drawing app in the DOM.
TimSort.js 113 Tim Sort.

navier-stokes.js 385 Fluid dynamics simulation using a
simplified implementation of the Navier–Stokes equations.

music_player.js 196 Picking between songs to display in the DOM.
splay.js 406 An implementation of a Splay Tree in JavaScript.

D LLM USAGE

We used a large language model (ChatGPT, GPT-5, OpenAI) to assist with polishing the writing
and improving clarity of exposition. The model was not used to design the methodology, conduct
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experiments, or generate results. All technical contributions, data analysis, and conclusions are the
authors’ own.

21


	Introduction
	Motivating Example
	Methodology
	Background
	Abstract Interpretation
	Agentic Heap Abstractions
	Downstream Task

	Evaluation
	Baselines
	Performance
	Ablations
	Case Study on Conway's Game of Life

	Related Work
	Limitations and Conclusion
	Reproducibility Statement
	Background
	Abstract Interpretation Details
	Analysis details
	Environment
	Syntax
	Semantics
	Functions
	Small-step semantics


	Implementation and Dataset
	Dataset

	LLM Usage

