
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ABSINT-AI: AGENTIC HEAP ABSTRACTIONS FOR
ABSTRACT INTERPRETATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Static program analysis is a foundational technique in software engineering for
reasoning about program behavior. Traditional static analysis algorithms model
programs as logical systems with well-defined semantics, but rely on uniform,
hard-coded heap abstractions. This limits their precision and flexibility, especially
in dynamic languages like JavaScript, where heap structures are heterogeneous
and difficult to analyze statically. In this work, we introduce ABSINT-AI, a
language-model-guided static analysis framework that augments abstract inter-
pretation with adaptive, per-object heap abstractions for Javascript. This enables
the analysis to leverage high-level cues, such as naming conventions and access
patterns, without requiring brittle, hand-engineered heuristics. Importantly, the LM
agent operates within a bounded interface and never directly manipulates program
state, preserving the soundness guarantees of abstract interpretation. To evaluate
our approach, we focus on a soundness-critical task: determining whether object
property accesses may result in undefined or null dereferences. This task directly
models a common requirement in compiler optimizations, where proving that an
access is safe enables the removal of dynamic checks or simplifies code motion. On
this task, ABSINT-AI reduces false positives by up to 34% compared to traditional
static analyses with fixed heap abstractions, while preserving formal guarantees.
Our ablations show that the LM’s ability to interact agentically with the analysis
environment is crucial, outperforming non-agentic LM predictions by 25%.

1 INTRODUCTION

As dynamic languages like JavaScript find their way into more backend applications with strong
performance requirements, there has been a growing interest in compiling them down to more optimal
forms (ang; Serrano, 2022; Chandra et al., 2016). An important obstacle for these approaches is the dif-
ficulty of performing sound static program analysis on these languages due to their dynamic behavior
and extensive use of complex heap allocated data (Feldthaus et al., 2013; Antal et al., 2023; Sridharan
et al., 2012). This is a problem because sound analysis is an essential element of compiler optimiza-
tion (Hind, 2001; Schneck, 1973). Soundness ensures that the analysis captures all possible runtime
behaviors of the program; without it, compilers cannot guarantee the safety of specific transformations.

A key challenge in sound and scalable static analysis for JavaScript is reasoning about the
heap. JavaScript’s dynamic object model allows programs to construct and mutate objects with
unpredictable shapes, runtime-dependent fields, and implicit behavior tied to values stored within
fields. Consider a typical loop that allocates multiple heterogeneous objects: some are short-lived
wrappers, others are stable configuration records, and others may exhibit role-dependent behaviors
encoded in field values. Traditional static analyses typically rely on uniform abstraction strategies,
and often result in excessive over-approximation and imprecision. Constructing precise yet scalable
heap abstractions is a major challenge for JavaScript due to its lack of static types and its permissive
object model, and it remains a major bottleneck for static analysis frameworks.

In this paper, we introduce ABSINT-AI, an agentic framework that assists static analysis by
performing heap abstractions. Our approach preserves the strong guarantees provided by traditional
static analysis techniques while addressing some of their major limitations. Static analysis techniques
analyze programs by treating them as sets of logical statements with well-defined semantics (Cousot
& Cousot, 1977). This type of analysis can provide guarantees of soundness, but these methods leave

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

out a lot of information, such as variable names, comments, general programming design patterns,
and background knowledge. LMs on the other hand, are able to take advantage of this information
very well, but lack the robustness of traditional static analysis. For example, changing variable
names has been shown to have a drastic impact on model performance (Zeng et al., 2022; Srikant
et al., 2021). ABSINT-AI combines the best of both worlds by using LMs to provide background
information to a static analyzer without losing soundness guarantees.

The key design choice in ABSINT-AI is that it preserves the formal soundness guarantee of symbolic
program analysis by constraining the LM to only choose from a pre-determined set of sound
abstraction strategies and decide where to apply abstractions. As a result, ABSINT-AI bounds the
(inevitable) LM errors to only increased false positives (due to the aggressive abstraction decision)
or slow down the convergence of the analysis (reduce to the precise but expensive analysis) without
compromising the soundness.

Specifically, ABSINT-AI consists of a custom static analysis pipeline that invokes an agentic LM
framework at key decision points - most notably before fixpoint computations in unbounded loops,
where the choice of abstraction heavily influences convergence and precision. At each such point,
the agent inspects the current analysis state, including the heap, code, and abstraction history. Based
on this inspection, it selects appropriate abstraction strategies for each allocation site, such as
merging objects using recency-abstraction, field sets, or value similarity. If the available information
is insufficient to make a confident decision, the agent can request additional targeted analysis by
executing the loop body for more iterations to refine its understanding. This interactive, goal-directed
behavior enables adaptive, context-sensitive abstraction decisions and also allows the abstractions
themselves to reflect higher-level semantic concepts. For example, if objects contain a role field,
the agent can select a value-sensitive abstraction that merges all "teachers" into one object and all
"students" into another, allowing domain-specific concepts to guide the abstractions themselves.

We evaluate our approach on the downstream task of detecting accesses to non-existent object fields,
a common source of runtime errors in JavaScript. We compare our system against WALA (Santos
& Dolby, 2022) and TAJS (Jensen et al., 2009), two state-of-the-art static analysis frameworks
that are representative of conventional heap abstraction strategies. Our evaluation of real-world
JavaScript programs shows that ABSINT-AI achieves up to a 34% reduction in false positives
while maintaining soundness. Our ablations show that this improvement stems not just from more
expressive abstractions, but from the agent’s ability to interact with the analysis and adapt its choices
to the program context. When run with fixed symbolic abstractions or using the LM in a single-shot,
non-interactive mode, the false positive rate increases by 88% and 25%, respectively. These results
highlight the benefit of adaptive, semantically informed heap abstractions in improving the practical
effectiveness of sound JavaScript analysis.

2 MOTIVATING EXAMPLE

Static analyses rely on heap abstractions (summaries of sets of objects), to reason about dynamic,
heap-manipulating programs. The precision of these abstractions has a huge impact: too coarse and
the analysis produces spurious warnings; too fine and it may never converge.

Modern JavaScript programs often construct diverse heap objects with different structural patterns
and semantic roles, even within the same control-flow context. A one-size-fits-all heap abstraction
applied uniformly across the entire program can lead to loss of precision or unnecessary state
explosion. Consider the example in Figure 1, where each iteration of processElements allocates two
distinct objects: a short-lived wrapper (box), and a structured configuration object (config). Each
of these demands a different abstraction strategy. For instance, box can be aggressively summarized
without affecting soundness, while config exhibits a fixed field structure where only a single field,
valid, must remain precise for correct downstream control flow. While it is theoretically possible to
hand-engineer heuristics that assign abstraction strategies based on object structure or access patterns,
doing so at scale quickly becomes brittle, complex, and difficult to maintain. To the best of our
knowledge, existing analyses do not adapt their heap abstractions per object, due to the complexity
and brittleness of manually encoding such decisions.

However, many real-world objects contain semantic hints in field names or surrounding code that
indicate how they should be abstracted. For example, the field valid suggests that the config

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Figure 1: When ABSINT-AI encounters an unbounded loop, it suspends analysis and interacts with
the language model agent for abstraction decisions. The agent selects a recency abstraction for box
and a field-based widening for the info field of config, preserving relevant structure while ensuring
convergence. A concrete instance of config is shown on the left, with its abstracted form on the
right. These per-allocation-site abstraction decisions guide the analysis to a sound fixpoint.

object encodes access control logic, which is later reflected in a guard on config.valid. These
high-level concepts such as “valid” configurations are difficult to capture using purely syntactic
heuristics or static types, but are easily interpretable by language models. An agentic abstraction
strategy can leverage such semantic cues to select more appropriate abstractions: preserving
distinctions between roles, merging only safe-to-abstract fields, or even proposing domain-informed
widenings. This enables adaptive precision where it matters, and aggressive summarization where
it doesn’t—leading to more efficient and accurate analyses.

In ABSINT-AI, a language model acts as an agent that guides heap abstraction dynamically over
the course of the analysis. Returning to the example in Figure 1, the agent might decide to apply
recency abstraction to the short-lived box object and a field-set abstraction to the structured config
object (preserving only config.valid). These decisions are not hardcoded: the agent queries the
analysis environment for relevant context (such as variable values and function definitions), and
may request additional loop iterations to test its abstraction choices. Crucially, all semantics and
state transitions are handled by a traditional abstract interpreter, ensuring that soundness is preserved.
The agent’s role is purely to steer how the heap is abstracted, enabling more precise and efficient
analysis by tailoring abstraction to the semantics of the program.

3 METHODOLOGY

ABSINT-AI is based on traditional abstract interpretation, but queries an LM to decide how to merge
summary nodes at key points in the analysis. The workflow of ABSINT-AI can be found in Figure 1.

3.1 BACKGROUND

Static program analysis. Static program analysis aims to reason about all possible executions of a pro-
gram. A key property is soundness, meaning the analysis never misses a real bug (no false negatives).
The tradeoff is precision: overly coarse reasoning introduces spurious warnings (false positives).

To ensure scalability, analyses use abstractions that merge unbounded program behaviors (e.g.,
integers, heap objects) into finite summaries. For heap-manipulating languages like JavaScript,
this typically means summarizing many concrete objects into a smaller set of abstract objects. The
challenge is choosing what to merge: aggressive abstraction hurts precision, while conservative
abstraction may prevent convergence. Prior work (Kanvar & Khedker, 2016) has developed many
hand-written heuristics for heap abstractions. Our approach replaces such heuristics with LM-guided,
context-sensitive abstraction.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Abstract interpretation. Abstract interpretation (Cousot & Cousot, 1977) soundly approximates
program behavior by tracking an abstract state that summarizes all possible concrete states. Each
program operation updates the abstract state according to sound rules; for loops, iterative application
yields a fixpoint that safely over-approximates all executions. For heap-manipulating programs, this
requires a heap abstraction that merges potentially unbounded sets of objects into finite summary
objects (Sagiv et al., 1998; Kanvar & Khedker, 2016). Traditional analyses rely on hand-crafted
heuristics for when and how to introduce summaries. Our work instead uses a language model to
guide these choices adaptively. (We provide a more detailed overview of abstract interpretation and
heap abstractions in Appendix A.)

3.2 ABSTRACT INTERPRETATION

Abstract interpretation requires an abstract domain as well as modeling of the heap. In this section,
we briefly describe our abstract domain, our two-level representation of the heap, and when we
invoke the LM for summarization. The full analysis supports prototypal inheritance, recursion, loops,
and closures. Additional details can be found in the appendix.

Abstract Domain. Our abstract domain keeps track of heap objects using concrete
nodes and summary nodes. Summary nodes represent a set of possible concrete nodes.

1 var global = 0;
2 var global_obj = {};
3 function inc_global() {
4 let obj = {f: 1};
5 obj.f += 1;
6 global = global + obj.f;
7 }
8 function access_obj() {
9 if (global > 10) {

10 var f = global_obj.foo.bar; // bug
11 }
12 }
13 var btn1 = document.createElement("button");
14 var btn2 = document.createElement("button");
15 btn1.addEventListener("click", inc_global);
16 btn2.addEventListener("click", access_obj);

Figure 2: inc_global needs to be run at least 10 times
before the bug on line 11 is triggered.

Each node is a dictionary from primitive or ab-
stract values to other values. Our domain of
primitive values is based off of TAJS (Jensen
et al., 2009), one of the first abstract interpreta-
tion based analyses for Javascript. Additional
details on our abstract domain can be found in
the appendix. The most important runtime deci-
sion of ABSINT-AI is deciding when summarize
heap nodes. We keep two separate heap struc-
tures, referred to as the local heap and global
heap.

Local heap. The local heap is used for pre-
cise representation for objects within local pro-
cedures, such as a local object allocation in a
function call. It is flow-sensitive (Kildall, 1973),
taking into account the order of statements. For
example, in Figure 2, obj on line 4 is tracked in
the local heap.

Global heap. The global heap is a much less precise representation for objects that are accessed
and manipulated by multiple functions. The global heap captures all possible relationships between
globally visible objects at any point in the execution. The global heap is motivated by flow-insensitive
analysis (Weihl, 1980; Cousot & Cousot, 1977). This has two benefits: (1) It is much cheaper, as
we don’t have to keep track of a separate heap for each program location, and (2) it allows different
functions to be analyzed independently; the global heap considers all the possible heap states at
the point when the function is invoked, and the analysis of the function can reveal if any additional
relationships need to be added to the global heap. Summarization only happens in the global heap.

We draw a distinction between the local and global heap because JavaScript programs tend to be
reactive, with execution driven largely by external events. This has important implications for analysis,
as the analysis can’t assume the program will simply execute starting at the beginning from a well
defined initial state. Take the example in Figure 2, where inc_global is invoked by an event handler
and must be executed at least 10 times in order to trigger the bug on line 11. Keeping two separate
heaps allows us to to track global dependencies while not losing precision for local procedures.

Agent Invocation. A key challenge in abstract interpretation is to reach a fixpoint without losing too
much precision when analyzing potentially unbounded loops. Because fixpoint computation requires

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

merging abstract states across iterations, the choice of how to abstract heap objects allocated within
the loop has a direct impact on both the precision and termination of the analysis.

Take the example in Figure 1. There are two objects, box and config. Each loop iteration allocates
two objects: box, which is short-lived and well-suited to recency abstraction, and config, which
contains a critical field (valid) that must remain precise. A uniform abstraction by allocation site
would collapse these distinctions, introducing spurious behaviors. ABSINT-AI addresses this by
invoking the LM agent at unbounded loops to choose abstraction strategies per object, balancing
semantic precision with soundness and convergence.

3.3 AGENTIC HEAP ABSTRACTIONS

The agent in our framework serves as an interactive component embedded within the analysis loop.
Its role is to select heap abstraction strategies, but unlike a static classifier, it behaves as an agent that
operates under partial information and interacts with its environment to gather context before acting.

The agent is not invoked as a one-shot oracle. Instead, it operates as a environment-interacting agent
that gathers information over time. To make informed abstraction decisions, the agent interacts with
the abstract interpreter and the abstract state to selectively gather semantic information from the
program. Rather than exposing the entire program or heap state, which would overwhelm the agent
and obscure the relevant context, we treat the interpreter as a queryable environment. This avoids a
common challenge in machine learning for code: programs often contain far more information than
an LLM can meaningfully process, especially in settings with deep heap structure.

The agent’s outputs are limited to a predefined set of sound abstraction strategies, and
it never directly manipulates program state or executes code. The underlying ab-
stract interpreter remains responsible for all semantic computation and fixpoint reasoning.

Algorithm 1 Agentic Heap Abstraction Algorithm

Require: Loop L, Analysis state S, Allocation Sites A
1: b←0 {Interaction counter (queries + executions)}
2: A′= NONE
3: while b<budget do
4: Agent selects action a∈{INFO,EXEC, SELECT}
5: if a= INFO then
6: Agent queries S for program information
7: b←b+1
8: else if a= EXEC then
9: Interpreter executes one iteration of the loop

10: b←b+1
11: continue
12: else if a= SELECT then
13: Agent selects sites A′⊆A to abstract
14: break
15: end if
16: end while
17: if A′= NONE then
18: Agent selects A′⊆A to abstract
19: end if
20: for ai∈A′ do
21: Agent selects (Strategy,Parameters)
22: Updated mapping in S from ai to strategy for L
23: end for

This architectural separation allows
us to embed an adaptive, learning-
driven agent within a sound static anal-
ysis framework—enabling high-level
decision-making informed by context
and semantics, while preserving for-
mal correctness guarantees.

Agent Interaction. The agent is ini-
tialized with the current abstract state,
including visible variables, relevant
allocation site data, and any previ-
ously encountered heap shapes. It
then enters an interactive decision-
making loop. During this loop, the
agent can issue queries to the abstract
state for more information, such as
requesting variable values, inspecting
function definitions, or examining the
heap shape. If the available informa-
tion is insufficient, the agent may also
postpone its decision making by re-
questing additional abstract loop iter-
ations, allowing it to observe how the
heap evolves over time. This enables
the agent to defer commitment while
gathering contextual evidence.

The interaction is bounded: the agent
operates under a fixed query and it-
eration budget to ensure termination.
Once satisfied, the agent returns a set of abstraction directives, specifying how the interpreter should
merge and widen objects associated with each allocation site. The interpreter then executes the loop
abstracting the heap as directed by the agent. If the abstract state does not reach a fixpoint within

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

five iterations, it re-queries the agent for new abstraction strategies. Algorithm 1 contains a detailed
description of our procedure.

Information Gathering. The agent gathers information through a small set of read-only queries to
ABSINT-AI:

• Variable inspection: Requesting abstract values of in-scope variables.
• Function introspection: Retrieving the definition of local functions in scope.
• Loop execution: Requesting additional iterations to observe how heap structures evolve.

These interactions allow the agent to incrementally reduce uncertainty and focus attention on seman-
tically meaningful heap behaviors without drastically increasing the input size. In particular, loop
execution supports deliberate abstraction delay, giving the agent a richer view of program dynamics
before committing to a strategy.

Abstraction decisions. Once the agent has identified which allocation sites require abstraction, it
selects a merging strategy for each. This determines how objects allocated at that site are grouped
during join operations. The agent chooses from the following predefined strategies:

• Allocation-site merge: Collapses all objects created at the same program location into a single
abstract object.

• Recency merge: Preserves the most recently allocated object at that site; merges older instances.
• Field-sensitive merge: Groups objects with the same fields.
• Role-based merge: Partitions objects based on semantically meaningful field values (e.g., role),

allowing distinctions like “student” vs. “teacher” to be preserved.

In particular, role-based merging requires semantic understanding of field names and value meanings;
it is very difficult to implement role-based merging using purely symbolic techniques. Identifying
that a specific field should guide abstraction boundaries is often a decision that depends on natural
language cues and program intent.

After selecting a merging strategy for an allocation site, the agent also specifies a widening strategy.
Widening determines how abstract heap objects are generalized over time as they are revisited across
loop iterations. The agent chooses from the following strategies:

• Field-set widening: widen a selected subset of fields, leave the others concrete.
• Field merging: Merge the fields together, and select another widening strategy for the values.

This is for handling infinitely growing objects.
• Full widening: recursively widen the entire object into a single shape.
• Depth-based widening: Collapse structures beyond a fixed depth threshold

These strategies allow the agent to control the granularity of abstraction per object: preserving precise
structure where it matters while widening aggressively in parts of the heap that are less semantically
relevant. As with merging, widening strategies are selected per allocation site and parameterized to
balance precision with scalability.

3.4 DOWNSTREAM TASK

As a downstream task to test the precision of ABSINT-AI, we detect
the following situations (1) accessing a property of null or undefined

1 let userId = 100; // abstracted to NUMBER.
2 let names = {100: "Jane"};
3 names[userId]; // False positive

Figure 3: False positive due to userId getting
abstracted to the abstract NUMBER type.

and (2) reading an absent property of an object.

Abstracting unnecessarily can lead to false pos-
itives. Take the example in Figure 3. If userId
on line 1 gets abstracted to the abstract NUM-
BER type, then the object access on line 3 is
reported as a possible read of an absent property.
userId could take the value of all possible num-
bers, but names only has the the property 100.

Intersection of multiple runs. Different abstraction choices in a program can lead to different sets
of reported bugs. For example, when analyzing the program in Figure 3, ABSINT-AI may choose
to abstract the userId field in some runs but leave it concrete in others. This variation can affect

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

which false positives are reported. However, because each run is individually sound, any bug that
does not appear in any run is guaranteed not to be real. This allows us to improve precision by
taking the intersection of reported bugs across multiple runs (similar in spirit to self-consistency
approaches (Wang et al., 2022b)) while preserving full soundness.

4 EVALUATION

Our evaluation focuses on two key questions: (1) How does our system perform compared to existing
static analysis tools? (2) How important is agentic decision-making relative to fixed symbolic
strategies or direct LLM prediction? To answer these, we compare against two established baselines
(TAJS and WALA), conduct targeted ablations isolating the role of the agent, and present a case study
demonstrating the system’s ability to preserve meaningful heap structure.

4.1 BASELINES

TAJS. TAJS (Type Analysis for JavaScript) is a performs flow-sensitive, context-sensitive, and
partially path-sensitive static analyzer designed for sound and scalable analysis of JavaScript pro-
grams Jensen et al. (2009). TAJS is based on abstract interpretation, including specialized heap
abstractions such as allocation-site abstraction and recency abstraction, to model JavaScript’s dynamic
object behavior.

WALA. WALA (T. J. Watson Libraries for Analysis) is a general-purpose static analysis framework
that supports multiple languages, including JavaScript Santos & Dolby (2022). Unlike TAJS, WALA is
not based on abstract interpretation and performs flow-insensitive heap analysis, using a combination
of allocation-site abstraction and context-sensitive pointer analysis.

Symbolic ABSINT-AI. We also include a baseline that runs ABSINT-AI using a fixed abstraction
configuration without LM guidance. This baseline selects a conservative widening strategy across
all allocation sites, simulating how our analysis would perform without agentic control. It serves
to isolate the contribution of the LM-driven adaptivity from the underlying analysis framework.
Symbolic ABSINT-AI begins with recency-based merging and a depth-1 field-sensitive abstraction.
If the loop fails to converge within 50 iterations, it switches to widening the entire object while
maintaining recency-based merging. If convergence still fails after another 50 iterations, it falls back
to a fully allocation-site-based abstraction.

Dataset. To evaluate our approach, we curated a benchmark of 17 self-contained JavaScript programs
from the Big Code dataset Raychev et al. (2016) and Github. We filtered for programs that were
self-contained and did not use builtins excessively, as this greatly increases the imprecision of the
analysis (Math.floor, for example, requires modeling the Math library to analyze precisely). These
require substantial modeling effort and introduce orthogonal complexity. We also excluded object-
oriented programs that rely too heavily on classes and let statements, since TAJS and WALA do
not support Javascript features after ES2015. For context, prior work such as TAJS evaluated on 8
programs (Jensen et al., 2009), underscoring the difficulty of assembling larger benchmarks for sound
JavaScript analysis. A detailed description of the dataset can be found in the Appendix.

4.2 PERFORMANCE

We evaluate ABSINT-AI using three different language models: GPT-4o-mini, GPT-4.1-mini, and
Qwen3-32B. To compare against TAJS and WALA, we measure the number of (1) possible accesses
to a property of null or undefined or (2) possible reads of an absent property of an object. In
this setting, lower values indicate greater precision, reflecting fewer spurious results caused by
imprecise heap abstraction. We run ABSINT-AI 10 times across our benchmark per model across our
17-program benchmark and report the mean results in Table 1.

Our agent-guided approach reports significantly fewer false positives than either baseline, achieving
an average reduction of approximately 20%. This improvement stems from the agent’s ability to
select tailored abstraction strategies that avoid over-merging or premature widening, which often
cause TAJS and WALA to lose key field or value distinctions.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 4: Running multiple times and taking the in-
tersection of the reported bugs allows us to improve
precision while maintaining soundness.

Table 1: Overall mean performance across the Dataset.
#FP stands for False Positives. Fewer is better.

Model # FP↓ % Improve

Baselines
TAJS 157 0%
WALA 312 -98.7%
Symbolic ABSINT-AI 220 -28.6%

Mean
GPT-4o-mini 125 20.4%
GPT-4.1-mini 127 19.1%
Qwen3-32B 117 25.5%

Intersection
GPT-4o-mini 104 33.7%
GPT-4.1-mini 116 26.1%
Qwen3-32B 111 29.0%
Full Intersection 97 38.2%

Intersection. As described in Section 3.4, one benefit of maintaining soundness is that we can safely
take the intersection of reported errors across multiple runs, improving precision without risking
missed bugs. Figure 4 shows the effect of taking intersections across multiple runs. As expected, the
language model often makes different abstraction decisions, leading to partially overlapping sets of
reported warnings. By intersecting the results across multiple runs, either for a single model or across
all three, we can substantially reduce false positives. On average, intersecting runs from a single
model improves precision by 8%; intersecting all 30 runs across all models yields a 13% reduction in
false positives over any individual run. We find that intersecting the top 3–4 runs gives the steepest
improvement, with diminishing returns after 6 runs.

Run time. We also compare the runtime performance of ABSINT-AI against TAJS and WALA. As
expected, ABSINT-AI is slower, primarily due to our prototype implementation in Python, whereas
both TAJS and WALA are written in Java. Much of the overhead comes from the interpreter itself,
not from querying the agent. For example, when using GPT-4.1-mini, ABSINT-AI takes 500 seconds
to run across our dataset, 189 of which is spent on agent interaction. In contrast, TAJS and WALA
complete their analysis in approximately 20 seconds.

4.3 ABLATIONS

Ablation with symbolic abstractions. To isolate the contribution of the agent itself, we conducted
an ablation study comparing ABSINT-AI to a purely symbolic variant that uses the same abstraction
strategies but without agentic selection. In this setup, the analysis starts with the most precise
abstractions and applies a fixed conservative widening strategy if the loop fails to converge within
10 iterations. If the analysis still does not converge after 20 minutes, we terminate and collect any
reported warnings up to that point.

Table 1 shows that this symbolic version performs significantly worse: despite failing to converge
on five benchmarks, it still produces 28.6% more false positives than TAJS. This highlights that the
benefit of ABSINT-AI does not come merely from using expressive abstractions, but from the agent’s
ability to adaptively choose when and how to apply them based on program context.

Figure 5: Performance improvements of an interactive
agent vs. direct abstraction prediction.

Ablation with non-agent LLM. To isolate the
impact of agentic interaction, we compare our
full system to a variant that uses the same lan-
guage model, but in a non-agentic, single-shot
setting. In this baseline, the model is prompted
to select abstraction strategies directly, without
the ability to query the interpreter, inspect inter-
mediate state, or request additional loop itera-
tions. This version performs consistently worse
than our full system, show that the ability for
the model to gather evidence and defer commitment is important for robust and context-sensitive

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

decisions. As seen in Figure 5, the direct prediction consistently performs about 25% worse across
our benchmarks.

4.4 CASE STUDY ON CONWAY’S GAME OF LIFE

1 var cell_state = [
2 [0, 1, 0],
3 [0, 1, 0],
4 [0, 1, 0]
5]
6 var n = parseInt($("#iterations"));
7 for (var i = 0; i < n; i++) {
8 cell_state = newGeneration(cell_state);
9 }

Figure 6: A snippet from Conway’s Game of Life.

To illustrate the benefits of agent-guided abstrac-
tion, we present a case study from our bench-
mark based on Conway’s Game of Life in Fig-
ure 6. The cell_state variable represents a
3×3 grid of integers, updated over n iterations by
the newGeneration function. While the con-
tents change, the structure remains fixed across
iterations; a property inherent to the game’s
rules. ABSINT-AI identifies that only the in-
teger values need to be abstracted, preserving
the shape of the array and producing a precise heap abstraction.

In contrast, symbolic baselines often over-abstract the structure itself, prematurely merging array
shapes and losing row-level distinctions. This highlights how the agent draws on both program syntax
and semantic cues such as common data patterns to guide more precise abstraction decisions.

5 RELATED WORK

LMs in program analysis. LMs have been applied to a wide range of program analysis tasks,
including type inference, fuzzing, vulnerability and resource leak detection, code summarization,
and fault localisation (Peng et al., 2023; Wei et al., 2023; Wang et al., 2023b; Xia et al., 2024;
Yang et al., 2023b;a; Deng et al., 2023; Mathews et al., 2024; Liu et al., 2023; Wang et al., 2023a;
Mohajer et al., 2023; Cai et al., 2023; Geng et al., 2024; Ahmed et al., 2024; Wang et al., 2022a;
Wu et al., 2023). However, none have been applied to static analysis while preserving soundness
guarantees. More recently, several neurosymbolic approaches combine static analysis with LMs:
LLift (Li et al., 2024a) filters false positives from UBITect (Zhai et al., 2020), IRIS (Li et al., 2024b)
augments CodeQL (Avgustinov et al., 2016) for taint analysis, and InferROI (Wang et al., 2024)
detects resource leaks in Java programs. While effective at improving precision, all of these systems
sacrifice soundness once neural predictions are introduced.

Program analysis for Javascript. Much prior work on JavaScript analysis has focused on unsound
but pragmatic tools for bug finding and security. These tools aim to detect likely vulnerabilities or
errors in real-world programs, often trading soundness for scalability and precision (Li et al., 2022;
Fass et al., 2019; Kang et al., 2023; Yu et al., 2023; Guo et al., 2024; Kang et al., 2025). While
effective for finding particular security issues in practice, these approaches do not provide soundness
guarantees. As a result, they are not suitable for many downstream tasks that depend on full program
coverage, such as compiler optimizations or transformations, where missing even a single feasible
behavior can invalidate correctness. Our work, by contrast, maintains the formal soundness of abstract
interpretation while improving its precision via adaptive heap abstraction.

6 LIMITATIONS AND CONCLUSION

Scalability. A limitation of ABSINT-AI is that it does not scale to large JavaScript codebases (e.g.,
2,000+ lines). This is a broader issue with JavaScript static analysis: neither TAJS nor WALA
converged on such programs in our experiments. The challenge stems from the dynamic and
object-heavy nature of real-world JavaScript. While our agent-guided approach adds adaptivity, our
prototype and reliance on whole-program analysis similarly limit scalability. Addressing this is an
important direction for future work.

In this work, we propose a method to augment static analyzers with an agentic LM for heap abstrac-
tions. We present ABSINT-AI as a proof-of-concept and an evaluation showing that augmenting
static analysis with LMs can have a dramatic improvement on the precision without losing soundness
guarantees.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

7 REPRODUCIBILITY STATEMENT

We have included our source code along with instructions to reproduce the experiments in the
supplementary material.

REFERENCES

URL https://angular.dev/tools/cli/aot-compiler.

Toufique Ahmed, Kunal Suresh Pai, Premkumar Devanbu, and Earl T. Barr. Automatic semantic
augmentation of language model prompts (for code summarization), 2024.

Gábor Antal, Péter Hegedűs, Zoltán Herczeg, Gábor Lóki, and Rudolf Ferenc. Is javascript call
graph extraction solved yet? a comparative study of static and dynamic tools. IEEE Access, 11:
25266–25284, 2023. doi: 10.1109/ACCESS.2023.3255984.

Pavel Avgustinov, Oege de Moor, Michael Peyton Jones, and Max Schäfer. Ql: Object-oriented
queries on relational data. In European Conference on Object-Oriented Programming, 2016. URL
https://api.semanticscholar.org/CorpusID:13385963.

brettz9. Brettz9/espree: An esprima-compatible javascript parser. URL https://github.com/
brettz9/espree.

Yufan Cai, Yun Lin, Chenyan Liu, Jinglian Wu, Yifan Zhang, Yiming Liu, Yeyun Gong, and Jin Song
Dong. On-the-fly adapting code summarization on trainable cost-effective language models. In
A. Oh, T. Neumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neural
Information Processing Systems, volume 36, pp. 56660–56672. Curran Associates, Inc., 2023.

Satish Chandra, Colin S Gordon, Jean-Baptiste Jeannin, Cole Schlesinger, Manu Sridharan, Frank
Tip, and Youngil Choi. Type inference for static compilation of javascript. ACM SIGPLAN Notices,
51(10):410–429, 2016.

Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified lattice model for static analysis
of programs by construction or approximation of fixpoints. In Proceedings of the 4th ACM
SIGACT-SIGPLAN symposium on Principles of programming languages, pp. 238–252, 1977.

Yinlin Deng, Chunqiu Steven Xia, Haoran Peng, Chenyuan Yang, and Lingming Zhang. Large
language models are zero-shot fuzzers: Fuzzing deep-learning libraries via large language models,
2023.

Aurore Fass, Michael Backes, and Ben Stock. Jstap: A static pre-filter for malicious javascript
detection. In Proceedings of the 35th Annual Computer Security Applications Conference, pp.
257–269, 2019.

Asger Feldthaus, Max Schäfer, Manu Sridharan, Julian Dolby, and Frank Tip. Efficient construction
of approximate call graphs for javascript ide services. In 2013 35th International Conference on
Software Engineering (ICSE), pp. 752–761, 2013. doi: 10.1109/ICSE.2013.6606621.

Mingyang Geng, Shangwen Wang, Dezun Dong, Haotian Wang, Ge Li, Zhi Jin, Xiaoguang Mao,
and Xiangke Liao. Large language models are few-shot summarizers: Multi-intent comment
generation via in-context learning. In Proceedings of the 46th IEEE/ACM International Conference
on Software Engineering, ICSE ’24, New York, NY, USA, 2024. Association for Computing
Machinery. ISBN 9798400702174. doi: 10.1145/3597503.3608134. URL https://doi.org/
10.1145/3597503.3608134.

Zhiyong Guo, Mingqing Kang, VN Venkatakrishnan, Rigel Gjomemo, and Yinzhi Cao. Reactappscan:
Mining react application vulnerabilities via component graph. In Proceedings of the 2024 on ACM
SIGSAC Conference on Computer and Communications Security, pp. 585–599, 2024.

Michael Hind. Pointer analysis: Haven’t we solved this problem yet? In Proceedings of the 2001
ACM SIGPLAN-SIGSOFT workshop on Program analysis for software tools and engineering, pp.
54–61, 2001.

10

https://angular.dev/tools/cli/aot-compiler
https://api.semanticscholar.org/CorpusID:13385963
https://github.com/brettz9/espree
https://github.com/brettz9/espree
https://doi.org/10.1145/3597503.3608134
https://doi.org/10.1145/3597503.3608134

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Simon Holm Jensen, Anders Møller, and Peter Thiemann. Type analysis for javascript. In Static
Analysis: 16th International Symposium, SAS 2009, Los Angeles, CA, USA, August 9-11, 2009.
Proceedings 16, pp. 238–255. Springer, 2009.

Mingqing Kang, Yichao Xu, Song Li, Rigel Gjomemo, Jianwei Hou, VN Venkatakrishnan, and
Yinzhi Cao. Scaling javascript abstract interpretation to detect and exploit node. js taint-style
vulnerability. In 2023 IEEE Symposium on Security and Privacy (SP), pp. 1059–1076. IEEE, 2023.

Zifeng Kang, Muxi Lyu, Zhengyu Liu, Jianjia Yu, Runqi Fan, Song Li, and Yinzhi Cao. Follow my
flow: Unveiling client-side prototype pollution gadgets from one million real-world websites. In
2025 IEEE Symposium on Security and Privacy (SP), pp. 991–1008. IEEE, 2025.

Vini Kanvar and Uday P. Khedker. Heap abstractions for static analysis. ACM Computing Surveys, 49
(2):1–47, June 2016. ISSN 1557-7341. doi: 10.1145/2931098. URL http://dx.doi.org/
10.1145/2931098.

Gary A Kildall. A unified approach to global program optimization. In Proceedings of the 1st annual
ACM SIGACT-SIGPLAN symposium on Principles of programming languages, pp. 194–206, 1973.

Haonan Li, Yu Hao, Yizhuo Zhai, and Zhiyun Qian. Enhancing static analysis for practical bug
detection: An llm-integrated approach. Proc. ACM Program. Lang., 8(OOPSLA1), April 2024a.
doi: 10.1145/3649828. URL https://doi.org/10.1145/3649828.

Song Li, Mingqing Kang, Jianwei Hou, and Yinzhi Cao. Mining node. js vulnerabilities via object
dependence graph and query. In 31st USENIX Security Symposium (USENIX Security 22), pp.
143–160, 2022.

Ziyang Li, Saikat Dutta, and Mayur Naik. Llm-assisted static analysis for detecting security vulnera-
bilities, 2024b. URL https://arxiv.org/abs/2405.17238.

Puzhuo Liu, Chengnian Sun, Yaowen Zheng, Xuan Feng, Chuan Qin, Yuncheng Wang, Zhi Li, and
Limin Sun. Harnessing the power of llm to support binary taint analysis, 2023.

Noble Saji Mathews, Yelizaveta Brus, Yousra Aafer, Meiyappan Nagappan, and Shane McIntosh.
Llbezpeky: Leveraging large language models for vulnerability detection, 2024.

Mohammad Mahdi Mohajer, Reem Aleithan, Nima Shiri Harzevili, Moshi Wei, Alvine Boaye Belle,
Hung Viet Pham, and Song Wang. Skipanalyzer: A tool for static code analysis with large language
models, 2023.

Yun Peng, Chaozheng Wang, Wenxuan Wang, Cuiyun Gao, and Michael R. Lyu. Generative type
inference for python, 2023.

Veselin Raychev, Pavol Bielik, Martin Vechev, and Andreas Krause. Learning programs from noisy
data. SIGPLAN Not., 51(1):761–774, January 2016. ISSN 0362-1340. doi: 10.1145/2914770.
2837671. URL https://doi.org/10.1145/2914770.2837671.

Mooly Sagiv, Thomas Reps, and Reinhard Wilhelm. Solving shape-analysis problems in languages
with destructive updating. ACM Transactions on Programming Languages and Systems (TOPLAS),
20(1):1–50, 1998.

Joanna CS Santos and Julian Dolby. Program analysis using wala (tutorial). In Proceedings of the
30th ACM Joint European Software Engineering Conference and Symposium on the Foundations of
Software Engineering, pp. 1819–1819, 2022.

Paul B Schneck. A survey of compiler optimization techniques. In Proceedings of the ACM annual
conference, pp. 106–113, 1973.

Manuel Serrano. On javascript ahead-of-time compilation performance (keynote). In Proceedings of
the 19th International Conference on Managed Programming Languages and Runtimes, pp. 1–1,
2022.

11

http://dx.doi.org/10.1145/2931098
http://dx.doi.org/10.1145/2931098
https://doi.org/10.1145/3649828
https://arxiv.org/abs/2405.17238
https://doi.org/10.1145/2914770.2837671

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Manu Sridharan, Julian Dolby, Satish Chandra, Max Schäfer, and Frank Tip. Correlation tracking
for points-to analysis of javascript. In James Noble (ed.), ECOOP 2012 – Object-Oriented
Programming, pp. 435–458, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg. ISBN 978-3-
642-31057-7.

Shashank Srikant, Sijia Liu, Tamara Mitrovska, Shiyu Chang, Quanfu Fan, Gaoyuan Zhang, and
Una-May O’Reilly. Generating adversarial computer programs using optimized obfuscations.
arXiv preprint arXiv:2103.11882, 2021.

Chaozheng Wang, Yuanhang Yang, Cuiyun Gao, Yun Peng, Hongyu Zhang, and Michael R. Lyu.
No more fine-tuning? an experimental evaluation of prompt tuning in code intelligence. In
Proceedings of the 30th ACM Joint European Software Engineering Conference and Symposium on
the Foundations of Software Engineering, ESEC/FSE 2022, pp. 382–394, New York, NY, USA,
2022a. Association for Computing Machinery. ISBN 9781450394130. doi: 10.1145/3540250.
3549113. URL https://doi.org/10.1145/3540250.3549113.

Chong Wang, Jianan Liu, Xin Peng, Yang Liu, and Yiling Lou. Llm-based resource-oriented intention
inference for static resource leak detection, 2023a.

Chong Wang, Jianan Liu, Xin Peng, Yang Liu, and Yiling Lou. Boosting static resource leak detection
via llm-based resource-oriented intention inference, 2024. URL https://arxiv.org/abs/
2311.04448.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models.
arXiv preprint arXiv:2203.11171, 2022b.

Yue Wang, Hung Le, Akhilesh Deepak Gotmare, Nghi D. Q. Bui, Junnan Li, and Steven C. H. Hoi.
Codet5+: Open code large language models for code understanding and generation, 2023b.

Jiayi Wei, Greg Durrett, and Isil Dillig. Typet5: Seq2seq type inference using static analysis, 2023.

William E Weihl. Interprocedural data flow analysis in the presence of pointers, procedure variables,
and label variables. In Proceedings of the 7th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pp. 83–94, 1980.

Yonghao Wu, Zheng Li, Jie M. Zhang, Mike Papadakis, Mark Harman, and Yong Liu. Large language
models in fault localisation, 2023.

Chunqiu Steven Xia, Matteo Paltenghi, Jia Le Tian, Michael Pradel, and Lingming Zhang. Fuzz4all:
Universal fuzzing with large language models, 2024.

Chenyuan Yang, Yinlin Deng, Runyu Lu, Jiayi Yao, Jiawei Liu, Reyhaneh Jabbarvand, and Lingming
Zhang. White-box compiler fuzzing empowered by large language models, 2023a.

Chenyuan Yang, Zijie Zhao, and Lingming Zhang. Kernelgpt: Enhanced kernel fuzzing via large
language models, 2023b.

Jianjia Yu, Song Li, Junmin Zhu, and Yinzhi Cao. Coco: Efficient browser extension vulnerability
detection via coverage-guided, concurrent abstract interpretation. In Proceedings of the 2023 ACM
SIGSAC Conference on Computer and Communications Security, pp. 2441–2455, 2023.

Zhengran Zeng, Hanzhuo Tan, Haotian Zhang, Jing Li, Yuqun Zhang, and Lingming Zhang. An
extensive study on pre-trained models for program understanding and generation. In Proceedings
of the 31st ACM SIGSOFT international symposium on software testing and analysis, pp. 39–51,
2022.

Yizhuo Zhai, Yu Hao, Hang Zhang, Daimeng Wang, Chengyu Song, Zhiyun Qian, Mohsen Lesani,
Srikanth V. Krishnamurthy, and Paul Yu. Ubitect: a precise and scalable method to detect use-
before-initialization bugs in linux kernel. In Proceedings of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software Engineering,
ESEC/FSE 2020, pp. 221–232, New York, NY, USA, 2020. Association for Computing Machinery.
ISBN 9781450370431. doi: 10.1145/3368089.3409686. URL https://doi.org/10.1145/
3368089.3409686.

12

https://doi.org/10.1145/3540250.3549113
https://arxiv.org/abs/2311.04448
https://arxiv.org/abs/2311.04448
https://doi.org/10.1145/3368089.3409686
https://doi.org/10.1145/3368089.3409686

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A BACKGROUND

Soundness and precision. Traditional static program analysis is often split between sound and
unsound analyses. Soundness is the quality of static analyzers which guarantees that the analysis
models an over-approximation of the target program’s behavior, but may model behaviors that do
not actually occur in any execution. The precision of the analysis is the extent to which the analysis
avoids such spurious results. In short, a program analysis is sound if there are no false negatives. A
program analysis is precise if there are not many false positives.

Abstractions in static analysis. Static analysis algorithms achieve scalability and soundness by using
abstractions in their analysis. Programs often manipulate unbounded resources (e.g., integers, heap
structures). Abstractions merge a potentially infinite set of objects into a single summary object to
ensure convergence and for scalability. A key challenge is choosing what to abstract in the target
program to ensure convergence while retaining as much important information as possible. There has
been a rich body of literature on improving precision and scalability of heap abstractions (Kanvar
& Khedker, 2016). In this work, we use an LM to decide what should be abstracted in the target
program.

Abstract Interpretation. Abstract interpretation is a framework for analyzing programs by soundly
approximating their behavior through the use of an abstract state that summarizes the set of possible
states that a program can be in at different points in the execution (Cousot & Cousot, 1977). For
simple programs manipulating scalar values, the abstract state is usually a simple mapping from
variable names to abstract values representing sets of numbers. For example, an integer variable
may be assigned the abstract value POSITIVE, representing all positive integers, to indicate the
fact that its concrete value is guaranteed to be a positive value on any execution of the program.
Abstract interpretation works by interpreting the program using rules that describe how each operation
available in the language transforms the abstract state into new abstract states. For example, a rule may
indicate that the addition of two POSITIVE numbers always results in a positive number. Soundness
of the analysis is guaranteed by ensuring the soundness of each individual rule; for programs with
loops, the analysis needs to be executed iteratively, and the theory of abstract interpretation ensures
that once the abstract states converge to a fixpoint, this fixpoint will be a sound representation of the
set of possible states that any execution of the program can reach.

For heap manipulating programs, the abstract state must include an abstraction of the heap which
represents all the possible states of the heap a program might exhibit at a given point in time (Sagiv
et al., 1998). There is an extensive literature on heap abstractions (Kanvar & Khedker, 2016), but
all of them have a few elements in common. One important element is the use of summarization
to represent multiple objects which may be living in the heap at a given point in the execution as a
single summary object. Summarization allows the analysis to use a bounded representation for the
potentially unbounded set of objects that can live on the heap on any arbitrary execution. Traditional
abstract interpretation frameworks rely on complex heuristics to determine when and how to introduce
summary nodes during program analysis to allow the analysis to maintain precision while quickly
converging to a reasonably sized representation of the abstract heap. Our goal for this work is to
replace those heuristics with an LM which can take advantage of its background knowledge of
concepts used in the code as expressed through variable names, field names and comments.

B ABSTRACT INTERPRETATION DETAILS

B.1 ANALYSIS DETAILS

Functions In Javascript, functions are stored as objects on the heap. We include a __code__ property
storing the function body to be executed. At the beginning of the analysis, ABSINT-AI scans the
entire program, and generates a schema for each function. The schema for each function contains
which variables are local to the function and which variables are accessed by other functions. We
refer to variables that are local as private, and variables that are accessed by other functions as shared.
Each time a function is executed, an environment is initialized according to the schema for that
function. When a function is defined, is initialized with a __hf__ field set to the current heap frame.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

The __hf__ field is used to model scopes and closures. When the function returns, the stack frame σ
is popped from the stack, and the stack pointer is decremented.

Scopes and Closures Whenever a function is called, a new stack frame σ is pushed, along with a
corresponding heap frame. The stack pointer for the current stack frame is updated to point to σ.
The private variables for that function are stored in the stack frame σ, and any shared variables are
stored in the heap frame. The heap frame is initialized with a parent field __parent__ which is used
to model the scope chain. The __parent__ field points to the __hf__ field for the function being
initialized.

To lookup a variable name in the environment, ABSINT-AI first checks the current stack frame. If it
finds a value for the variable, it returns the value. If it doesn’t, it checks the corresponding heap frame
for the stack frame, and then follows the chain of __parent__ pointers until it finds the variable.

Recursion ABSINT-AI keeps track of all functions that have been called but have not finished
executing yet. Whenever it encounters a recursive call, ABSINT-AI sets the return value to a recursive
placeholder and stores a hash of the function that is called. When the function returns, ABSINT-AI
checks the return values and any allocated heap objects for recursive placeholders for the function
and fills them in with the return values.

B.2 ENVIRONMENT

In this section we describe how ABSINT-AI represents the abstract state. We define concrete and
abstract values. HL refers to the concrete heap, HG refers to the global heap, and σ refers to the
stack. τ is an abstract type, C refers to constants, obj and õbj refer to concrete and abstract objects.
val and ṽal refer to the values that a variable can take.

val ::= a |obj | ṽal
ṽal ::= C | ã |τ | õbj
τ ::= Bool |Null |Num |String

obj ::= τ→val |C→val

õbj ::= τ→ ṽal |C→ ṽal
HL ::= a→val

HG ::= ã→ ṽal
σ ::= C→val

B.3 SYNTAX

op ::= + |−|÷| · | ...
E ::= id |E.field |E[E] |foo(E) |E1[E2](E3,E4,...) | function(x0,x1,...){S}

|new foo(E1,E2,...) |C |{f :E}
varDef ::= var id=E | let id=E |const id=E

Stmt ::= varDef | id=E |
E.f=E |E[E]=E |def foo(x1,x2,...,xn){Stmt}|
if (E){Stmt} else {Stmt}|class foo{Stmt}|
return E | for (varDef; E; Stmt){Stmt}
for (varDef in E){Stmt}|while (E){Stmt}|Stmt;Stmt

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

NUMBER

1

2

...

⊥

Figure 7: Number Lattice.

STRING

"foo"
"bar"

...

⊥

Figure 8: String Lattice.

BOOL

True False

⊥

Figure 9: Boolean Lattice.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

NULL

⊥

Figure 10: Null Singleton.

B.4 SEMANTICS

B.4.1 FUNCTIONS

This section is several functions we use, such looking up a variable name and initializing a new
schema for a function.

lookup(id)
s≡∅ θ=∅

⟨lookup(HL,HG,s,id)→θ⟩

s∈HL id∈HL(s) θ=s

⟨lookup(HL,HG,s,id)→θ⟩

s∈HG id∈HG(s) θ=s

⟨lookup(HL,HG,s,id)→θ⟩

s∈HL id ̸∈HL(s) θ= lookup(HL,HG,HL(s).par,id)

⟨lookup(HL,HG,s,id)→θ⟩

s∈HG id ̸∈HG(s) θ= lookup(HL,HG,HG(s).par,id)

⟨lookup(HL,HG,s,id)→θ⟩

initialize(schema)
HL[a 7→{schema.public,par 7→σ.hf}] σ′._secret 7→{schema.secret} σ′.hf 7→a

initialize(schema)→HL,HG,σ ::σ′

return_from_schema
σ≡σ′ ::v

return_from_schema→HL,HG,σ′

B.4.2 SMALL-STEP SEMANTICS

⟨HL,HG,σ,S⟩→⟨H ′
L,H

′
G,σ

′,S′⟩

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

id
⟨HL,HG,σ,id⟩→⟨HL,HG,σ,lookup(id)⟩

E.field
⟨HL,HG,σ,E⟩→⟨H′

L,H′
G,σ′,V ⟩

⟨HL,HG,σ,E.field⟩→⟨H′
L,H′

G,σ′,get(V,field)⟩

E1[E2]
⟨HL,HG,σ,E2⟩→⟨H′

L,H′
G,σ′,V2⟩ ⟨H′

L,H′
G,σ′,E1⟩→⟨H′′

L,H′′
G,σ′′,V1⟩

⟨HL,HG,σ,E1[E2]⟩→⟨H′
L,H′

G,σ′,get(V1,V2)⟩

foo(E0,E1,...)
⟨lookup(foo)→V,V.__type≡Function⟩ ⟨HL,HG,σ,E0,E1,...⟩→⟨H′

L,H′
G,σ′,V0,V1,...⟩

⟨HL,HG,σ,foo(E0,E1,...)⟩→⟨H′
L[x0 7→V0,x1 7→V1,...],H′

G,σ′,initialize(V.__code);V.__code⟩

E1[E2](E3,E4,...)
⟨HL,HG,σ,E0,E1,...⟩→⟨H′

L,H′
G,σ′,V0,V1,V2,...⟩ ⟨get(V0,V1)→V,V.__type≡Function⟩

⟨HL,HG,σ,foo(E0,E1,...)⟩→⟨H′
L[x0 7→V0,x1 7→V1,...],H′

G,σ′[this 7→V0],V.__code⟩

function(x0,x1,...){S}
⟨HL,HG,σ,function(x0,x1,...)⟩→⟨H′

L[a′ 7→{...,prototype :a},a 7→],H′
G,σ′,a′⟩

new foo(E0,E1,...)
⟨lookup(foo)→V ⟩ ⟨V.__type≡Class⟩ ⟨E0,E1,...⟩→⟨V0,V1,...⟩

⟨HL,HG,σ,new foo(E0,E1,...)⟩→⟨H′
L,H′

G,σ′[this 7→V],init();get(prototype(V),constructor)(V0,V1,...)⟩

⟨lookup(foo)→V ⟩ ⟨V.__type≡Function⟩ ⟨E0,E1,...⟩→⟨V0,V1,...⟩
⟨HL,HG,σ,new foo(E0,E1,...)⟩→⟨H′

L,H′
G,σ′,V.__code(V0,V1,...)⟩

{f1 :E1,f2 :E2,...}
⟨HL,HG,σ,E1,E2,...⟩→⟨H′

L,H′
G,σ′,V1,V2,...⟩

⟨HL,HG,σ,{f1 :E1,f2 :E2,...}⟩→⟨HL[a 7→{f1 :V1,f2 :V2,...,__type :object}],HG,σ,a⟩

(var x = E)
⟨HL,HG,σ,E⟩→⟨H′

L,H′
G,σ′,V ⟩ θ= lookup(x) θ∈HL fr=HL[θ] fr’=fr[id 7→V]

⟨HL,HG,σ,x=E⟩→⟨H′
L[θ 7→fr′],H′

G,σ′,skip⟩

⟨HL,HG,σ,E⟩→⟨H′
L,H′

G,σ′,V ⟩ θ= lookup(x) θ∈HG fr=HG[θ] fr’=fr[id 7→V ∪fr[id]]

⟨HL,HG,σ,x=E⟩→⟨H′
L,H′

G[θ 7→fr′],σ′,skip⟩

(x.f = E)
lookup(x)≡a θ=HL(a) ⟨HL,HG,σ,E⟩→⟨H′

L,H′
G,σ′,V ⟩

⟨HL,HG,σ,x.f=E⟩→⟨H′
L[θ[f 7→V]],H′

G,σ′],skip⟩

lookup(x)≡ ã θ̃=HG(ã) ⟨HL,HG,σ,E⟩→⟨H′
L,H′

G,σ′,V ⟩
⟨HL,HG,σ,x=E⟩→⟨H′

L,H′
G[θ̃[f 7→V],σ′,skip⟩

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

(x[E] = E’)
lookup(x)≡a θ=HL(a) ⟨HL,HG,σ,E,E′⟩→⟨H′

L,H′
G,σ′,V,V ′⟩

⟨HL,HG,σ,x[f]=E⟩→⟨H′
L[θ[V 7→V ′]],H′

G,σ′],skip⟩

lookup(x)≡ ã θ̃=HG(ã) ⟨HL,HG,σ,E,E′⟩→⟨H′
L,H′

G,σ′,V,V ′⟩
⟨HL,HG,σ,x=E⟩→⟨H′

L,H′
G[θ̃[V 7→V ′],σ′,skip⟩

(def foo(x0,x1,...,xn){Stmt})
θ= lookup(foo) θ∈σ

⟨HL,HG,σ,x[f]=E⟩→⟨HL[a 7→ ...,prototype :a′,a′ 7→{}],HG,σ[θ 7→a],skip⟩

θ= lookup(foo) θ∈HL

⟨HL,HG,σ,x[f]=E⟩→⟨HL[a 7→ ...,prototype :a′,a′ 7→{},θ 7→a],HG,σ,skip⟩

θ= lookup(foo) θ∈HG

⟨HL,HG,σ,x[f]=E⟩→⟨HL,HG[a 7→ ...,prototype :a′,a′ 7→{},θ 7→θ∪a],σ,skip⟩

(x[E] = E’)
lookup(x)≡a θ=HL(a) ⟨HL,HG,σ,E,E′⟩→⟨H′

L,H′
G,σ′,V,V ′⟩

⟨HL,HG,σ,x[f]=E⟩→⟨H′
L[θ[V 7→V ′]],H′

G,σ′],skip⟩

lookup(x)≡ ã θ̃=HG(ã) ⟨HL,HG,σ,E,E′⟩→⟨H′
L,H′

G,σ′,V,V ′⟩
⟨HL,HG,σ,x=E⟩→⟨H′

L,H′
G[θ̃[V 7→V ′],σ′,skip⟩

if (E) { Stmt }) else { Stmt’ } ⟨HL,HG,σ,E⟩→⟨H′
L,H′

G,σ′,False∨∅⟩
⟨HL,HG,σ,if (E){Stmt} else {Stmt;}⟩→⟨H′

L,H′
G,σ′],Stmt⟩

⟨HL,HG,σ,E⟩ ̸→⟨H′
L,H′

G,σ′,False∨∅⟩
⟨HL,HG,σ,if (E){Stmt} else {Stmt′}⟩→⟨H′

L,H′
G,σ′],Stmt′⟩

class foo[M1,M2,...,MN]
class_obj={M1,M2,...,MN}

⟨HL,HG,σ,class foo[M1,M2,...,MN]⟩→⟨HL[a 7→class_obj],HG,σ,skip⟩

(return E)
⟨HL,HG,σ,E⟩→⟨H′

L,H′
G,σ′,V ⟩

⟨HL,HG,σ,returnE⟩→⟨H′
L,H′

G,σ′[returns 7→σ′[returns]∪V],skip⟩

for ([let |var] id in E) {Stmt}
⟨HL,HG,σ,E⟩→⟨H′

L,H′
G,σ′,V ⟩ V.__proto__≡∅ isEmpty(V)≡True

⟨HL,HG,σ,for ([let |var] id in E) {Stmt}⟩→⟨H′
L,H′

G,σ′,skip⟩

⟨HL,HG,σ,E⟩→⟨H′
L,H′

G,σ′,V ⟩ V.__proto__ ̸≡∅ isEmpty(V)≡True

⟨HL,HG,σ,for ([let |var] id in E) {Stmt}⟩→⟨H′
L,H′

G,σ′,for ([let | var] id in V.__proto__){Stmt}⟩

⟨HL,HG,σ,E⟩→⟨H′
L,H′

G,σ′,V ⟩ V ≡X ::V ′ varDef.type≡ let

⟨HL,HG,σ,for (let id in E) {Stmt}⟩→⟨H′′
L,H′′

G,σ′′,initialize(Stmt);let id=X;Stmt; for (let id in V’) { Stmt }⟩

⟨HL,HG,σ,E⟩→⟨H′
L,H′

G,σ′,V ⟩ V ≡X ::V ′ varDef.type≡var

⟨HL,HG,σ,for (let id in E) {Stmt}⟩→⟨H′
L,H′

G,σ′,var id=X;Stmt; for (let id in V’) { Stmt }⟩

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Figure 11: Performance per model on each benchmark program compared to WALA and TAJS.

while (E) {Stmt}
⟨HL,HG,σ,E⟩→⟨H′

L,H′
G,σ′,V ⟩ V ∈Falsey

⟨HL,HG,σ,while (E) {Stmt}⟩→⟨H′
L,H′

G,σ′,skip⟩

⟨HL,HG,σ,E⟩→⟨H′
L,H′

G,σ′,V ⟩ V ̸∈Falsey ⟨H′
L,H′

G,σ′,Stmt;summarize()→⟨H′
L,H′

G,σ′⟩
⟨HL,HG,σ,while (E) {Stmt}⟩→⟨H′

L,H′
G,σ′,skip⟩

⟨HL,HG,σ,E⟩→⟨H′
L,H′

G,σ′,V ⟩ V ̸∈Falsey ⟨H′
L,H′

G,σ′,Stmt;summarize()→⟨H′′
L,H′′

G,σ′′⟩
⟨HL,HG,σ,while (E) {Stmt}⟩→⟨H′′

L,H′′
G,σ′′,while (E) {Stmt}⟩

C IMPLEMENTATION AND DATASET

Implementation. We implemented ABSINT-AI in 8049 lines of Python, and use Espree brettz9
to parse the Javascript into an AST. We conducted the experiments on a Linux server with two
AMD EPYC 7763 64-Core Processors, 128 cores, 1024GB RAM, and 4 NVIDIA RTX 6000 Ada
Generation GPUs.

C.1 DATASET

Table 2: Each program and a small description.

Program #Lines Description

CGOL.js 65 Conway’s Game of Life.
2048.js 234 The 2048 game implemented for the DOM.
breakout_game.js 158 An implementation of the Breakout arcade game for the DOM.
breakout_game2.js 91 A separate implementation of the Breakout arcade game for the DOM.
datepattern.js 91 Testing date string equality
hash-map.js 577 A JavaScript implementation of a HashMap.
confetti.js 400 Confetti animations in the DOM.
pong.js 243 Pong game in the DOM.
snake_game.js 102 Snake game in the DOM.
books.js 504 A library for storing books.
FlashSort.js 84 Flash Sort.
math_sprint.js 345 Math calculations in the DOM.
drawing-app.js 442 A drawing app in the DOM.
TimSort.js 113 Tim Sort.

navier-stokes.js 385 Fluid dynamics simulation using a
simplified implementation of the Navier–Stokes equations.

music_player.js 196 Picking between songs to display in the DOM.
splay.js 406 An implementation of a Splay Tree in JavaScript.

D LLM USAGE

We used a large language model (ChatGPT, GPT-5, OpenAI) to assist with polishing the writing
and improving clarity of exposition. The model was not used to design the methodology, conduct

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

experiments, or generate results. All technical contributions, data analysis, and conclusions are the
authors’ own.

20

	Introduction
	Motivating Example
	Methodology
	Background
	Abstract Interpretation
	Agentic Heap Abstractions
	Downstream Task

	Evaluation
	Baselines
	Performance
	Ablations
	Case Study on Conway's Game of Life

	Related Work
	Limitations and Conclusion
	Reproducibility Statement
	Background
	Abstract Interpretation Details
	Analysis details
	Environment
	Syntax
	Semantics
	Functions
	Small-step semantics

	Implementation and Dataset
	Dataset

	LLM Usage

