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Abstract

Neural radiance fields (NeRFs) have gained popularity with multiple works show-
ing promising results across various applications. However, to the best of our
knowledge, existing works do not explicitly model the distribution of training
camera poses, or consequently the triangulation quality, a key factor affecting
reconstruction quality dating back to classical vision literature. We close this gap
with ProvNeRF, an approach that models the provenance for each point – i.e., the
locations where it is likely visible – of NeRFs as a stochastic field. We achieve
this by extending implicit maximum likelihood estimation (IMLE) to functional
space with an optimizable objective. We show that modeling per-point provenance
during the NeRF optimization enriches the model with information on triangulation
leading to improvements in novel view synthesis and uncertainty estimation under
the challenging sparse, unconstrained view setting against competitive baselines1.

1 Introduction

Neural radiance fields (NeRFs) [42], allowing for learning 3D scenes given only 2D images, have
grown in popularity in recent years. It has shown promise in many different applications such as
novel view synthesis [4, 6], depth estimation [14], robotics [22, 1], localization [36, 38], etc. Existing
literature [11, 15, 45] show that the quality of NeRF reconstruction is correlated with the selection of
training camera poses. Similar correlations are observed in the classical literature too, triangulation is
highly dependent on camera poses [47, 44, 3], which greatly influences the reconstruction quality.
One common and important setting in computer vision literature [2, 37, 40, 16] is the sparse view [18]
setting in unconstrained [53] environments, and triangulation is even more critical, affecting the
reconstruction quality as limited input views make the system more sensitive to noise.

Despite the correlation between triangulation and reconstruction quality, to the best of our knowledge,
existing works do not explicitly model the former when optimizing the latter. In this work, we address
this gap in the literature by modeling for each point the locations where it is likely visible. We dub
this as the provenances of a point. Modeling and learning per-point provenance can help NeRF
understand how the training cameras are distributed in space, which inherently links it to triangulation
and reconstruction quality.

However, determining the provenances of a point x without the underlying geometry is not straight-
forward as many factors influence the visibility of each point in the reconstructed geometry. For
example, the literature on stereo matching [44, 47] has extensively studied the influences of camera
locations on 3D reconstruction. One such well-known challenge arises when selecting the baseline of
a pair of cameras in a stereo system. As shown in Fig. 2, points’ visibility can suffer from different
sets of errors when the length of the camera pair’s baseline changes. For NeRFs, the dependence

1Code will be available at https://github.com/georgeNakayama/ProvNeRF.
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Figure 1: (Left) ProvNeRF models a provenance field that outputs provenances for each 3D point
as likely samples (arrows). For 3D points (brown triangle and blue circle), the corresponding
provenances (illustrated by the arrows), are locations that likely observe them. (Right) ProvNeRF
enables better novel view synthesis and estimating the uncertainty of the capturing process because it
models the locations of likely observations that is critical for NeRF’s optimization.

becomes more complex as multiple cameras’ visibility needs to be estimated. To overcome this
challenge, we propose to model the provenance as the samples from a probability distribution, where
a location y is assigned with a large likelihood if and only if x is likely to be visible from y.

To handle the potential complexity of this distribution, we represent the provenance of x as a set of
location samples, generated from a learned probability distribution. This is distinct from the existing
“attribute" prediction extensions of NeRFs [69, 30, 8] since provenance is a distribution for every
3D point in space. Thus, this amounts to modeling an infinite collection of distributions (per-point’s
provenance) over all 3D points, which is mathematically, a stochastic field over R3. In our work,
we extend implicit maximum likelihood estimation (IMLE) [33], a sample-based generative model,
to model stochastic fields by adapting the objective to functional space. Furthermore, we derive an
equivalent pointwise objective that can be efficiently optimized with gradient descent and use it to
model the provenance field.

We dub our method ProvNeRF which models per-point provenance during the training stage of
NeRF (Fig. 1). This enriches the model with information on triangulation quality when the model
parameters are optimized. Once the provenance stochastic field is trained, we show that we can use it
to improve novel view synthesis (Sec. 5.1) and estimate triangulation uncertainty in the capturing
process (Sec. 5.2) under the challenging sparse, unconstrained view setting.

2 Related Works

NeRFs and their Extensions. Neural radiance fields (NeRFs) [42] have revolutionized the field
of 3D reconstruction [20] and novel view synthesis [50, 32] with its powerful representation of
a scene using weights of an MLP that is rendered by volume rendering [41, 58]. Follow-ups on
NeRF further tackle novel view synthesis under more difficult scenarios such as unconstrained
photo collections [39], unbounded [5], dynamic [35] and deformable [46] scenes, and reflective
objects [59, 7]. Going beyond novel view synthesis, the NeRF representation has also shown
great promise in different applications such as autonomous driving [56, 62], robotics [1, 22] and
editing [67, 63]. Recent works have also extended NeRFs to model other fields in addition to color
and opacity such as semantics [69, 68], normals [66], CLIP embeddings [28], image features [30]
and scene flow [34]. Most of these works learn an additional function that predicts an auxiliary
deterministic output at each point that is either a scalar or a vector, trained with extra supervision
using volume rendering. All of the above works use a deterministic field to output the additional
information. However, because each point’s provenance is a probabilistic distribution, we need to
model a stochastic field instead of a deterministic field for provenance.

Sparse View Novel View Synthesis. NeRFs with rendering supervision alone struggle with sparse
view input due to insufficient constraints in volume rendering. Several approaches have been
proposed to train NeRFs under the sparse-view regime with regularization losses [43, 64], semantic
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Figure 2: Complex influence of camera baseline distance on the 3D reconstruction. Right: With
a wide baseline, the reconstruction is more robust against 2D measurement noises. However, it is
more likely to omit hidden surfaces because the invisible region is larger than a small baseline camera
pair. Left: With a small baseline, the 3D reconstruction is less likely to suffer from occlusions as the
invisible region between cameras is small. However, the reconstruction can be noisy due to large
stereo range errors (large deviation in depth with a small amount of noise in the 2D measurement).

consistency [23], and image [60] or cost volume [12, 61, 10] feature constraints. Other works also
constrain the optimization using priors from data [24, 65] or depth [49, 57, 54]. Despite addressing
the setting with limited number of input views, many works are not specifically designed to tackle our
desired sparse, unconstrained views setting as they either focus on object-level [24, 65, 43, 23, 21],
limited camera baselines [12, 61], or forward-facing scenes [60] scenes. Recent works [49, 57, 54]
have looked into improving the NeRF quality on a more difficult setting of sparse, unconstrained
(outward-facing) input views by incorporating depth priors. However, none of these works consider
the locations and orientations of training cameras in their optimization process despite it being one of
the major factors influencing the NeRF’s optimization in a sparse setup.

Uncertainty Modeling in Neural Radiance Fields. The current literature separates NeRF’s
uncertainty into aleatoric – e.g., transient objects or changes in lighting – and epistemic – data
limitation due to weak texture or limited camera views – uncertainties. Some works [39, 26]
model aleatoric uncertainty by directly predicting the uncertainty values through a neural network.
However, their approach requires training on large-scale data and is not suited for estimating the
uncertainty of a specific scene. On the other hand, several works explore epistemic uncertainty
estimation in NeRFs through variational inference [51, 52, 48], ensemble learning [55, 31], and
Bayesian inference [19, 25, 45]. While these works estimate epistemic uncertainty, they still entangle
different sources of uncertainty such as texture, camera poses, and model bias, resulting in unclear
and inconsistent definitions of the uncertainty quantified. In our work, we specifically model the
uncertainty caused by the capturing process that is useful in various downstream tasks [45, 26, 48, 31].

3 Preliminaries

3.1 Neural Radiance Fields (NeRF)

A neural radiance field (NeRF) is a coordinate-based neural network that learns a field in 3D space,
where each point x ∈ R3 is of certain opacity and color. Mathematically, a NeRF is parameterized by
two functions representing the two fields Fϕ,ψ = (σψ(x), cϕ(x,d)), one for opacity σψ : R3 → R+

and one for color cϕ : R3×S2 → [0, 1]3, where d ∈ S2 is the direction from where x is viewed from.
One of the key underpinnings of NeRFs is volume rendering allowing for end-to-end differentiable
learning with only training images. Concretely, given a set of M images I1, I2, ..., IM and their
corresponding camera poses P1, P2, ..., PM , the rendered color of a pixel x is the expected color
along a camera ray ri,x(t) = oi + tdi,x, where oi is the camera origin and di,x is the ray direction
for pixel x that can be computed from the corresponding camera pose Pi. The pixel value for 2D
coordinate x is then given by the line integral:

Cϕ,ψ (ri,x) =

∫ tf

tn

σψ (ri,x(t))T (ri,x(t)) cϕ (ri,x(t)) dt, (1)
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where tn, tf defines the near and far plane, and

T (ri,x(t)) = exp

[
−
∫ t

tn

σ (ri,x(s)) ds

]
(2)

is the transmittance of the point ri,x(t) along the direction di,x.

3.2 Implicit Maximum Likelihood Estimation

One choice of probabilistic model is implicit maximum likelihood estimation (IMLE) [33] that
represents a distribution as a set of samples and is designed to handle possibly multimodal distributions.
As an implicit probabilistic model, IMLE learns a parameterized transformation Hθ(·) of a latent
random variable, e.g. a Gaussian z ∼ N (0, I), where Hθ(·) often takes the form of a neural network
that output samples wj = Hθ(zj) with wj ∼ Pθ(w). Here, Pθ is a probability measure obtained
by transforming the standard Gaussian distribution measure via Hθ. Given a set of data samples
{ŵ1, ..., ŵN}, the IMLE objective optimizes the model parameters θ with

θ̂ = argmin
θ

Ez1,...,zK

[
N∑
i=1

min
j

∥Hθ(zj)− ŵi∥22

]
. (3)

It is shown that the above objective to be equivalent to maximizing the likelihood.

4 Method

In the following sections, we formally define the provenance at all points as a stochastic field
(Sec. 4.1), extend IMLE to model the provenance field (Sec. 4.2), and derive an equivalent pointwise
loss for gradient descent (Sec. 4.3).

Notations. We denote a stochastic field with a calligraphic font (Dθ) and samples from the stochastic
field using the same letter but bolded (Dθ). Concretely Dθ is a function sample, a function defined
over all points x ∈ R3, that is sampled from the stochastic field Dθ, i.e. Dθ ∼ Dθ. Dθ maps each
point to one possible sample in its provenances. We also denote the distribution of the provenances at
point x as Dθ(x). Moreover, a provenance sample Dθ(x) from Dθ(x) is equivalent to evaluating
the function Dθ ∼ Dθ at x. Finally, we let a hat (̂·) denote the empirical samples/distributions.

4.1 Provenance as a Stochastic Field

The provenance of a point is defined as the locations where it is likely visible from, and as a point can
be visible from multiple locations, it can be represented as samples from a distribution. Specifically,
provenances of a point x can be represented as samples from its provenance distribution Dθ(x).
That means that the likelihood of sampling a location y ∈ R3 from Dθ(x) determines how likely
x is visible from location y. Because such distributions are defined for each 3D point x ∈ R3, the
collection of per-point provenances forms a stochastic field Dθ indexed by coordinates x ∈ R3.

Empirically, given sparse training camera views P1, . . . , PM , if x is inside the camera frustum Πi for
view Pi and is not occluded, an empirical sample from the provenances of x can be parameterized as
a distance-direction tuple D̂i(x) = (t̂i,x, d̂i,x) ∈ R+ × D3 2. Considering all M training views, the
empirical distribution of provenances at point x is defined by the following density function:

pemp (t,d) =
1

M

M∑
i=1

δ[(t,d) = (ti,x,di,x)] (4)

where (ti,x,di,x) =

(
vi,x ∥x− oi∥ , vi,x

x− oi
∥x− oi∥

)
(5)

where δ is the Dirac delta function; vi,x ∈ [0, 1] determines the length of d to handle occlusions. We
modeled it as the transmittance from the NeRF model. To recover the location that observes x, we
can write yi,x = x− ti,xdi,x.

2D3 denotes a solid ball in R3
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Figure 3: Training pipeline for ProvNeRF. For each point x seen from provenance tuple (t̂, d̂),
with direction d at distance t, we first sample K latent random functions {Zj} from distribution Z .
The learned transformation Hθ transforms each Zj(x) to a provenance sample D(j)

θ (x). Finally Hθ

is trained with LProvNeRF as defined in Eq. 9.

While the above empirical distribution of provenances is given by the training cameras, the actual
distribution of provenances, i.e. for each point the locations that point is likely visible from, can
have a more complex dependence on both the underlying geometry and the cameras. To capture
this complexity, we model Dθ (x) as a learnable network, a probabilistic model that can model
potentially complex distribution, and one choice of such a model is implicit maximum likelihood
estimate (IMLE) [33]. Similar to the empirical distribution, we also represent provenance samples
from Dθ(x) as a distance-direction tuple (t,d) as defined in Eq 5. We optimized our network with
the empirical distribution D̂ as training signals.

Dθ(x) defines a distribution for all point x ∈ R3. Treating R3 as the index set, Dθ = {Dθ (x)}x∈R3

defines a stochastic field on R3 as a collection of distributions Dθ (x) for all x ∈ R3. Because a
stochastic field is composed of infinitely many random variables over R3, existing methods cannot be
applied out of the box as they only model finite-dimensional distributions. In the following sections,
we extend IMLE [33] to model this stochastic field.

4.2 ProvNeRF

ProvNeRF models provenances of a NeRF as a stochastic field by extending IMLE [33] to functional
space. IMLE learns a mapping that transforms a latent distribution to the data distribution, where
each data sample is either a scalar or a vector (Sec. 3.2). However, in our context, since samples from
the stochastic field Dθ are functions mapping 3D locations to provenances, we need to extend IMLE
to learn a neural network mapping Hθ that transforms a pre-defined latent stochastic field Z to the
provenance distribution Dθ (See Fig. 3).

Let Z be the stochastic field where each sample Z ∼ Z is a function Z : R3 → Rb. To transform Z
to Dθ, fIMLE learns a deterministic mapping Hθ that maps each latent function Z ∼ Z to a function
Dθ ∼ Dθ via composition: Dθ = Hθ ◦ Z. Hθ here is represented as a neural network to handle
complex transformations from Z to Dθ.

We define a latent function sample Z ∼ Z to be the concatenation of a random linear transformation
of x and x itself. Mathematically, each latent function Z ∼ Z is a block matrix of size (b+ 4)× 3:

Z (x) =

[
z
I

]
x, where z ∼ N

(
0, λ2I

)
,x ∈ R3. (6)

Although Z can be designed to have non-linear dependence on the input location x, we experimentally
show that this simple design choice works well across different downstream applications.

To train Hθ, we maximize the likelihood of the training provenances (Eq. 4) under Dθ for each x
using the IMLE objective [33] extended to functional space. We term this extension as functional
Implicit Maximum Likelihood Estimation (fIMLE). Because a direct extension to fIMLE leads to
an intractable objective, we derive an efficient pointwise loss between the training provenances and
model predictions equivalent to the fIMLE objective in the following section.
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Figure 4: Visual Effect of LProvNVS in Eq. 10. Compared to pre-trained SCADE model, our method
can remove additional floaters in the scene (see the boxed region).

Scannet Tanks and Temple
PSNR (↑) SSIM (↑) LPIPS (↓) PSNR (↑) SSIM (↑) LPIPS (↓)

NeRF [42] 19.03 0.670 0.398 17.19 0.559 0.457
DDP [49] 19.29 0.695 0.368 19.18 0.651 0.361
SCADE [57] 21.54 0.732 0.292 20.13 0.662 0.358
DäRF [54] 21.28 0.741 0.323 19.67 0.652 0.374

Ours 21.73 0.733 0.291 20.36 0.663 0.349

Table 1: Novel View Synthesis Results. Our method outperforms baselines in novel view synthesis
on both Scannet and Tanks and Temple Datasets. This is because our novel NeRF regularizer in
Eq. 10 can remove additional floaters in the scene as shown in Fig. 4. See Sec. 5.1 for details.

4.3 Functional Implicit Maximum Likelihood Estimation

We construct an IMLE objective for stochastic fields to maximize the likelihood of training prove-
nances under Dθ. Similar to Eq. 3, if we have i.i.d. empirical samples D̂1, . . . , D̂M from the
empirical stochastic field D̂ (defined in Sec. 4.1), and model samples D

(1)
θ , . . . ,D

(K)
θ from the

parameter stochastic field Dθ, we define the fIMLE objective as

θ̂ = argmin
θ

E
D

(1)
θ ,...,D

(K)
θ

[
n∑
i=1

min
j

∥∥∥D̂i −D
(j)
θ

∥∥∥2
L2

]
. (7)

Unlike the original IMLE objective (Eq. 3) that can be directly optimized, the fIMLE objective in
Eq. 7 requires the computation of a L2 integral norm – a functional analogy to the L2 vector norm –
which, in general, is not analytically in closed form. Furthermore, approximations of this integral are
very expensive since each point query to Dθ needs a forward pass through Hθ.

To get around this, we use the calculus of variations to reformulate Eq. 7 to minimize the pointwise
difference between the empirical samples and model predictions 3. This allows us to write the fIMLE
objective as

LfIMLE = E
D

(1)
θ ,...,D

(K)
θ ∼Dθ

[
n∑
i=1

min
j

Ex∼U(Ω)

∥∥∥D̂i (x)−D
(j)
θ (x)

∥∥∥2
2

]
, (8)

where U(Ω) is a uniform distribution over the scene bound Ω. Eq. 8 only requires computing the
pointwise difference between samples from D̂(x) and Dθ(x), making it efficiently optimizable with

3See the supplementary for the full derivation
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gradient descent. Ultimately, ProvNeRF jointly updates the underlying NeRF’s parameters and Dθ
by minimizing

LProvNeRF = LNeRF +LfIMLE = LNeRF +E
D

(1)
θ ,...,D

(K)
θ ,x

[
min
j

E(t̂,d̂)
∥∥∥(t̂, d̂)− (tj,x,dj,x)

∥∥∥2
2

]
(9)

where (tj,x,dj,x) = D
(j)
θ (x), (t̂, d̂) are i.i.d. samples from D̂(x), and LNeRF is the original

objective of the NeRF model, e.g. photometric loss and depth loss. We provide implementation and
architectural details in the supplementary material. See Figure 3 for the training pipeline illustration.

5 Experiments

Our ProvNeRF learns per-point provenance field Dθ by optimizing LProvNeRF on a NeRF-based model.
To validate ProvNeRF, we demonstrate that jointly optimizing the provenance distribution and NeRF
representation can result in better scene reconstruction as shown in the task of novel view synthesis
(Sec. 5.1). Moreover, we also show that the learned provenance distribution enables other downstream
tasks such as estimating the uncertainty of the capturing field (Sec. 5.2). We provide an ablation study
on fIMLE against other probabilistic methods in Sec. 5.3. Lastly, in Sec. 5.4, we show a preliminary
extension of ProvNeRF to 3DGS [27].

Stochastic Provenance Field Visualization Fig. 7 visualizes the provenance stochastic field by
sampling 16 provenances on a test view of the Scannet 758 scene. The directions of the samples are the
negative of the predicted provenance directions for better illustration. Each sample is colored based
on its predicted visibility. Notice that fIMLE allows ProvNeRF to predict multimodal provenance
distributions at different scene locations.

5.1 Novel View Synthesis

We show modeling per-point provenance improves sparse, unconstrained novel view synthesis. As a
point’s provenances are sample locations from where the point is likely visible, the region between the
provenance location samples and the query point should likely be empty. We design our provenance
loss for NVS with this intuition.

PSNR (↑) SSIM (↑) LPIPS (↓)

Determinisic Field 21.38 0.720 0.307
Frustum Check 21.56 0.728 0.297

Ours 21.73 0.733 0.291

Table 2: NVS Ablation Results on Scannet.

Concretely, starting from a given NeRF
model, we first sample points x1, ...,xN
for a training camera ray parameter-
ized as r̂x(t). Here we denote point
xi = r̂x(t̂i). We only take points
xi with transmittance greater than a se-
lected threshold λ = 0.9. For each vis-
ible point xi, we sample provenances
(t

(i)
1 ,d

(i)
1 ), . . . , (t

(i)
K ,d

(i)
K ) from Dθ(xi)

with ∥d(i)
1 ∥2 ≥ 0.7. Then each distance-

direction tuple (t
(i)
j ,d

(i)
j ) gives a location y

(i)
j = xi − t

(i)
j d

(i)
j from which xi is observed.

This in turn means x should be equally visible when rendered from ray parameterized as
r
(i)
x (t) = y

(i)
j + td

(i)
j ,∀j. With this, we define our provenance loss for novel view synthesis as

LProvNVS =

N∑
i=1

K∑
j=1

[
α + T (r(i)x (t

(i)
j ))− T (r̂x(t̂i))

]
+
, (10)

where [. . . ]+ denotes the hinge loss and α = 0.05 is a constant margin. LProvNVS encourages the
transmittance at xi along training camera rays to be at least the visibility predicted by the sampled
provenances from the provenance field with margin α. By matching transmittances between the
provenance directions and the training rays, LProvNVS can be used together with LProvNeRF to optimize
the NeRF representation and the provenance field, resulting in an improved scene geometry. We
apply ProvNeRF to SCADE [57] for the task of novel view synthesis. See the supplement for details
on the dataset, metrics, baselines, and implementation details.

Results. Table 1 shows our approach outperforms the state-of-the-art baselines in NVS on scenes
from both the Scannet [13] and Tanks and Temples [29] dataset. Qualitative comparisons are shown
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Figure 5: Qualitative Results for Uncertainty Modeling. We visualize our uncertainty maps
obtained using the method described in Sec. 5.2. The uncertainty and depth error maps are shown
with color bars specified. Uncertainty values and depth errors are normalized per test image for the
result to be comparable. As shown in the boxed regions, our method predicts uncertainty regions
with more correlation with the predicted depth errors.

Scannet Matterport
Avg. #710 #758 #781 Avg. Room 0 Room 1 Room 2

Ensemble 7.71 3.01 2.96 17.2 63.0 8.04 110 71.3
CF-NeRF [52] 660 430 571 980 507 799 488 233
Bayes’ Rays [19] 5.47 5.11 5.23 6.07 5.49 5.67 5.77 5.91

Ours -3.05 0.19 -1.93 -7.40 -11.0 -13.6 -10.2 -9.17

Table 3: NLL Results for Triangulation Uncertainty.

in Fig. 4. We see that compared to the baseline SCADE, whose geometry is already relatively crisp,
our LProvNVS can further improve its NVS quality by removing additional cloud artifacts, as shown in
the encircled regions. Note that this improvement does not require any additional priors and is only
based on the provenance of the scene.

We also compare our performance with deterministic baselines: Deterministic Field regresses one
provenance for each 3D location using a neural network and Frustum Check calculates the training
provenance defined in Eq. 4 by back-projecting the sampled points to one of the training camera and
use that as the regularization information. Table 2 shows that our provenance field outperforms these
baselines on the novel view synthesis task because the deterministic field cannot model complex
provenance distribution and the frustum check baseline lacks generalization ability as it cannot be
optimized to adapt the output provenance based on the current NeRF’s geometry.

5.2 Modeling Uncertainty in the Capturing Process

Figure 6: Triangulation Uncertainty [20].
The figure shows that x′ is more uncertain com-
pared to x because the predicted provenances
for x′ give a narrower baseline than the baseline
given by provenances of x.

Provenances allow for estimating the uncertainty in
triangulation, i.e., the capturing process. In classical
multiview geometry [20], the angle between the rays
is a good rule of thumb that determines the accuracy
of reconstruction. Fig. 6 illustrates this rule as the re-
gion of uncertainty changes depending on the setup
of the cameras. Formally, for a 3D point x, we sam-
ple provenances {(tj ,dj)}Kj=1 from Dθ(x). Treating
dj as the principal axes and tj as the distances from
x to the camera origin, each provenance sample de-
fines a pseudo camera Pj that observes x at pixel lo-
cation xj = Projj(x). Following chapter 12.6 of [20],
we define the triangulation uncertainty of x as the
probability of x given its noisy 2D pseudo observa-
tions: P (x|x1, . . . , xK) ∝ P (x1, . . . , xK |x)P (x) =∏K
j=1 P (xj |x)P (x) .
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Figure 7: Visualization of Provenance Field.

AP (↑) AUC (↑)
Deterministic Field 0.163 0.168
Gaussian-based w/ C = 2 0.537 0.539
Gaussian-based w/ C = 5 0.629 0.631
VAE-based 0.323 0.325

ProvNeRF w/ Spatial Inv. Z 0.742 0.744
Ours 0.745 0.747

Table 4: Ablation Results on Scannet.

The last two equalities are derived by assuming independence of the 2D observations and each
P(xj |x) follows a Gaussian distribution N (Projj(x), σ

2). This assumption is equivalent to corrupting
each 2D observation Projj(x) by a zero-mean Gaussian noise with σ2 variance, accounting for
measurement noises in the capturing process. Assuming a uniform prior of P(x) over the scene
bound, the exact likelihood can be efficiently computed with importance sampling. This quantifies
a point’s triangulation quality given the sampled provenances, which becomes a measurement of
the uncertainty of the capturing process. We apply our provenance field to ProvNeRF with different
NeRF backbones [57, 49] and compute the likelihood. See supplementary for details on the dataset,
metrics, baselines, and implementations.

Results. Tab. 3 shows the quantitative results on Scannet [13] and Matterport3D [9]. We follow [51,
55] to measure the negative log-likelihood (NLL) of the ground-truth surface under each model’s
uncertainty prediction. Since our ProvNeRF can be applied to any pre-trained NeRF module, we
use pre-trained SCADE [57] for Scannet and DDP [49] for Matterport3D, both of which are state-
of-the-art approaches in each dataset. Our approach achieves the best NLL across all scenes in
both datasets by a margin because we compute a more fundamentally grounded uncertainty from
classical multiview geometry [20] based on triangulation errors, while both CF-NeRF and Bayes’
Rays require an approximation of the true posterior likelihood. Fig. 5 shows qualitative comparisons
between baselines’ and our method’s uncertainty estimation. We expect a general correlation between
uncertain regions with high-depth errors. An ideal uncertainty map should mark high-depth error
regions with high uncertainty and vice versa. As shown in the boxed regions in the figure, our
method’s uncertainty map shows better correlation with the depth error maps. We also quantitatively
evaluate uncertainty maps using negative log-likelihood following prior works Notice that in both
examples, our method’s certain (blue) regions mostly have low-depth errors (e.g., encircled parts in
Fig. 5) because our formulation only assigns a region to be certain if it is well triangulated (Fig. 6). On
the other hand, baselines struggle in these regions because they either use an empirical approximation
from data or a Gaussian approximation of the ground truth posterior likelihood.

5.3 Ablation Study

We validate the choice of fIMLE as our probabilistic model by measuring the average precision
(AP) [17] and area under the curve (AUC) [17] of predicted provenances (t,d) against ground truth
provenances (t̂, d̂) for a set of densely sampled points in the scene bound. See supplementary for
metric and ablation implementation details.

Deterministic v.s. Stochastic Field. We validate the importance of modeling per-point provenance
as a stochastic field rather than a deterministic field. We model Dθ with a deterministic field
parameterized by a neural network. Table 4 shows the importance of modeling per-point provenance
as a stochastic field. Since the provenances of a point are inherently multimodal, a deterministic field
that only maps each x to a single provenance cannot capture this multimodality.

Choice of Probabilistic Model. We validate our choice of fIMLE [33] as our probabilistic model.
We first compare with explicit probabilistic models that model the provenance field as a mixture
of C Gaussian processes and a VAE-based model. Table 4 shows results for the Gaussian Mixture
field with C = 2, 5 and the VAE-based process. Although the performances for the Gaussian-based
models improve as we increase C, they still suffer from expressivity because of their explicit density
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Figure 8: Uncertainty Estimation Comparison with 3DGS. Compared with FishRF, our method
is able to estimate uncertainties that correlate more with the depth error as shown by the encircled
regions. The right shows a quantitative comparison of uncertainty in negative log-likelihood.

assumption. Similarly, the VAE-based model suffers from mode-collapse while our fIMLE enables
capturing a more complex distribution with a learned transformation Hθ.
Choice of Random Function Z . Lastly, we validate our latent stochastic field Z . We ablate our
choice of Z with instead using a spatially invariant latent stochastic field Z⋆ with Z⋆ (x) = [ε,x]∀x.
Here, ε is a Gaussian noise vector in Rd. Table 4 shows the comparison between Dθ obtained by
transforming Z (Ours) and transforming Z⋆ (Spatial Inv. Z). We see that using a spatially varying
latent stochastic field further increases the expressivity of our model.

5.4 Preliminary Extension to 3D Gaussian Splatting

Because ProvNeRF is a post-hoc method that can model the provenance information for arbitrary
novel view synthesis representations, we conduct a preliminary experiment that extends our prove-
nance field modeling to 3D Gaussian Splatting [27]. Specifically, given a pre-trained Gaussian
representation G, we model a provenance distribution for each splat using IMLE with a shared 6-layer
MLP for Hθ. The post-training takes around 30 minutes on a single A6000 Nvidia GPU. To show the
usefulness of ProvNeRF applied to 3DGS, we use the methodology in Sec. 5.2 to estimate uncertainty
maps and compare them with the predicted depth errors. Fig. 8 shows a qualitative comparison of our
uncertainty map w.r.t. FishRF [25], a recent 3DGS uncertainty estimation baseline. Compared to
their uncertainty map, ours shows more correlation to the depth error as highlighted by the boxed
regions. Quantitatively we evaluate NLL on the three Scannet scenes shown on the right side of
the same figure and show substantial improvements over FishRF. This improvement over existing
literature suggests applying ProvNeRF to other representations such as 3DGS is promising. We leave
further exploration of the method and applications as future works.

6 Conclusion, Limitation, & Future Works
We present ProvNeRF, a model that enhances the traditional NeRF representation by modeling
provenance through an extension of IMLE for stochastic processes. ProvNeRF can be easily applied
to any NeRF model to enrich its representation. We showcase the advantages of modeling per-point
provenance in various downstream applications such as improving novel view synthesis and modeling
the uncertainty of the capturing process.

We note that our work is not without limitations. Our ProvNeRF requires post-hoc optimization,
which takes around 8 hours on SCADE, limiting its current usability for real-time or on-demand
applications. However, the idea presented in our work is not specific to the model design and can be
adapted to other representations. See Sec. 5.4 for preliminary adaption of ProvNeRF to 3DGS.

We also note that the hyperparameters to incorporate ProvNeRF are chosen for better performance,
e.g. for the uncertainty and novel view synthesis applications, and in the future, it will be beneficial
to explore a more adaptive approach in integrating provenance to different downstream applications.

Acknowledgement This work is supported by a Vannevar Bush Faculty Fellowship, ARL
grant W911NF-21-2-0104, an Apple Scholars in AI/ML PhD Fellowship, and the Natural Sciences
and Engineering Research Council of Canada (NSERC).
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