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ABSTRACT

When the amount of training data is limited, augmenting it with generated data
from a simulator can be a beneficial approach to improving prediction accuracy.
However, there are no clear metrics on which generated data should be added to
the training set and in what proportion, especially when the predictive model is
a Gaussian Processes (GPs) model. To address this, we propose using the log
marginal likelihood as a guiding metric. The log marginal likelihood is a the-
oretically grounded criterion for model selection when incorporating simulator-
generated data into the training set. Nevertheless, computing this metric for GPs
is computationally expensive. To overcome this challenge, we introduce a faster
method for calculating the log marginal likelihood by considering the Cholesky
factor and matrix element dependencies. Experimental results demonstrate that
metrics utilizing the log likelihood outperform basic methods in mean squared
error on test set.

1 INTRODUCTION

Gaussian Processes (GPs) are widely used as predictive models due to their flexibility as non-
parametric models and their ability to output confidence levels for predictions. Like other machine
learning models, GPs require training data, but in real-world applications, sufficient training data is
often lacking.

When training data is limited, if access to a simulator capable of generating training data is avail-
able, incorporating the generated data can be a beneficial approach to improving prediction accuracy.
Typical data augmentation techniques, such as image flipping and trimming, are a part of this ap-
proach, but here we consider more complex simulators. For example, when predicting solar power
generation from weather conditions, a power generation simulator can be used in addition to the
previous year’s data.

However, the data generated by simulators often deviates from the true distribution. In the solar
power generation example, the inverters and other equipment used in the simulator tool may differ
from those actually used by the company that wants to predict power generation.

Several studies have investigated the utilization of simulators that partially deviate from the true
distribution for training predictive models. These approaches can be broadly classified into two
categories: modifying the objective function of the predictive model or modifying the generated
data added to the predictive model. The former incorporates a penalty term for the degree of devia-
tion from the simulator into the loss function, with a representative example being physics-informed
neural networks Raissi et al. (2019). However, such objective function modification methods are dif-
ficult to apply to non-parametric models, including GPs, because non-parametric models do not have
parameters to optimize with respect to the objective function (except for kernel hyperparameters).
The latter approach of modifying the generated data added to the predictive model is applicable to
non-parametric models such as GPs, and our method belongs to this category. Within this approach,
existing research focuses on Auto Data Augmentation Cubuk et al. (2019; 2020); Ho et al. (2019);
Lim et al. (2019), which parameterizes data augmentation and optimizes those parameters (for more
details, see Appendix A.4). However, while Auto Data Augmentation can be applied to simulators
where individual operations can be parameterized, such as image flipping and trimming, it is diffi-
cult to apply to off-the-shelf simulation tools where machine learning engineers cannot access the
internal workings and thus cannot parameterize individual operations.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Therefore, we adopt a framework that evaluates each generated data point and decides whether to
include it in the training data. This framework is applicable to non-parametric models since it does
not involve updating model parameters, and it is also applicable to off-the-shelf simulation tools that
cannot be internally modified, as it does not require parameterizing the simulator.

We propose using the log marginal likelihood on training data for evaluating generated data. The
negative log marginal likelihood is a metric that measures the model’s fit to the training data and has
a theoretical foundation that it matches, on average, the Kullback–Leibler (KL) divergence between
the true distribution and the model’s distribution. For more details, see Appendix F, G and Shlens
(2007).

Consequently, the proposed method of evaluating generated data using the log marginal likelihood
effectively adds the generated data to the training data if the inclusion of the generated data brings the
GPs’ predictive distribution closer to the true distribution on average, and does not add it otherwise.

Furthermore, evaluating each candidate training data point using the negative log marginal like-
lihood can be time-consuming, so we propose a method for fast computation by considering the
Cholesky update and the dependencies between matrix elements. Specifically, using our method,
the computational cost to select generated data to add to the training set can be reduced from
O(M3N + M2N2 + MN3) to O(M2N + MN2) where N is the number of true training data
and M is the number of data generated by the simulator.

The contributions of this research are 2 folds. First, we proposed using the negative log marginal
likelihood of the GPs1 as a criterion when selectively adding simulator-generated data to the training
data. Second, we proposed an algorithm to efficiently compute the negative log marginal likelihood
when selecting training data (Section 4.2).

2 RELATED WORKS

2.1 EFFICIENT TRAINING DATA SELECTION METHODS FOR GPS

GPs have a computational complexity of O(N3) during prediction, where N is the number of train-
ing data points. Therefore, two approaches have been developed to reduce the amount of training
data as much as possible. One approach is called Subset of Data (SoD), which involves retaining
only the good data points from the training data and discarding the rest. The criterion for good-
ness is diversity, and various ways of measuring diversity have been proposed (see Appendix A.1
for more details). However, selecting generated data from the simulator to increase diversity may
also include data points that deviate from the true distribution. We verify this experimentally. The
second approach is sparse Gaussian processes, which generate a small number of pseudo-training
data points (see Appendix A.2 for more details). However, this approach is not closely related to the
objective of selecting generated data from the simulator.

2.2 COMPUTATIONAL TECHNIQUES FOR GPS

Due to the high computational complexity of GPs, various computational techniques have been
developed. After training with N data points (after computing the inverse matrix with N data), an
additional data point can be learned with an added computational effort of O(N2) using a technique
called rank-one update Nguyen-Tuong et al. (2008); Seeger (2004). This technique is used in part
in our method (see Appendix A.3 for more details). Additionally, methods for efficiently computing
the Cholesky factor of the kernel matrix have been proposed Osborne (2010). However, to efficiently
compute the log marginal likelihood, it is necessary to compute the Cholesky factor of the covariance
matrix (see footnote 5 for mathematical explanations). Section 4.2 presents our proposed method to
address this issue.

3 METRICS

The metric for deciding whether to add generated data from the simulator to the training data should
be based on whether the addition improves the prediction accuracy of the GPs. We use the log

1The algorithm we proposed is specialized for regression models.
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marginal likelihood of the GPs as a metric, which is the average KL divergence between the pre-
dictive distribution and the true distribution. (For an explanation of the approximation, refer to
Appendix F) Therefore, if the log marginal likelihood improves after adding the generated data, it
means that the predictive distribution of the GPs has moved closer to the true distribution on average,
and the prediction accuracy is expected to increase.

The process of the proposed method is straightforward. First, the hyperparameters of the GPs are
learned using training data. Next, data (x, y)2 is sampled from the simulator and added to the
training data of the GPs. We measure the log marginal likelihood of the GPs, and if it improves,
we accept the sampled data as valid training data, otherwise, we discard it. This process is repeated
until no continuous improvement is observed or until all generated data has been examined. The
GPs that possess both the original training data and the accepted generated data serve as our final
prediction model.

In Section 3.1, we derive the marginal likelihood when adding the training data candidates generated
from the simulator. In Section 4, we propose a method to quickly compute that marginal likelihood.

3.1 MARGINAL LIKELIHOOD OF GPS WHEN GENERATED DATA IS ADDED

We define the symbols as follows: x ∈ Rd is a random variable, XN = (x1,x2, . . . ,xN ) are N
independent random variables following the same distribution, y ∈ R1 is a random variable, and
yN = (y1, y2, . . . , yN ) are N independent random variables following the same distribution. Let
(XN ,yN ) be the training data and (Xm∗

,ym∗
) be the m training data candidates generated from

the simulator. Note that M is the total number of data generated from the simulator, and m is
the number of training data candidates generated by the simulator up to the current step, as data is
greedily added to the training set. We also denoted the star in (Xm∗

,ym∗
) to explicitly indicate that

it is not a sample from the true distribution.

As we mentioned at the beginning of Section 3, in order to evaluate samples from the simulator,
we determine the marginal likelihood of the GP when such a sample is added. The negative log
marginal likelihood (the free energy) of the discriminative model when generated data is added was
Fm∗ = − log p(yN |XN ,ym∗

,Xm∗
). (Refer to Appendix G for the derivation.) In the case of

GPs, since the predictive distribution can be analytically determined (see Appendix H), the marginal
likelihood p(yN |XN ,ym∗

,Xm∗
) is also trivially obtained. To define the notation, let’s express the

joint distribution of generated data and training data as follows:

x1∗
3 · · ·xm∗ x1 · · ·xN

y1∗ 0 x1∗

ym∗ 0 xm∗

y1 0 x1

yN 0 xN

∼ N ,

Km∗ + σ2I4 KN,m∗

KT
N,m∗ KN + σ2I
















. (1)

Here, each K is the kernel of the corresponding rows and columns of x. Using this notation, the
free energy when generated data is added as training data is expressed as p(yN |XN ,ym∗

,Xm∗
) =

N (KT
N,m∗ [Km + σ2I]−1ym∗

, [KN + σ2I]−KT
N,m∗ [Km + σ2I]−1KN,m∗).

Next, as a metric to determine whether to add the m+1-th data to where m pieces of generated data
have been adopted, we will explain the free energy when the m+1-th generated data is added. Let’s

2The definition of (x, y) is provided in Section 3.1.
3x1∗ . . .xm∗ ,x1 . . .xN represent the input variables for the kernel function that constructs the covariance

matrix.
4Different-sized identity matrices appear in the paper, but the size is easily inferred from the context, so

they are all uniformly denoted as I.
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define the notation of the covariance matrix by adding xm+1∗ to Equation 1 as follows:

x1∗ · · ·xm∗ xm+1∗ x1 · · ·xN

y1∗ 0 x1∗

ym∗ 0 xm∗

ym+1∗ 0 xm+1∗

y1 0 x1

yN 0 xN

∼ N ,

Km+1∗ + σ2I KN,m+1∗

KT
N,m+1∗ KN + σ2I
















. (2)

At this time, the free energy can be simply extended as: Fm+1∗ = − log p(yN |XN ,ym∗
,Xm∗

) =
− logN (KT

N,m+1∗ [Km+1∗ +σ2I]−1ym+1, [KN +σ2I]−KT
N,m+1∗ [Km+1∗ +σ2I]−1KN,m+1∗).

For subsequent sections, let’s expand the content of the free energy as follows:

Fm+1∗ =
1

2

(
yN − µm+1

)T
Σ−1

m+1

(
yN − µm+1

) 1
2
log |Σm+1| −

N

2
log 2π, (3)

µm+1 = KT
N,m+1∗ [Km+1∗ + σ2I]−1ym+1, (4)

Σm+1 = [KN + σ2I]−KT
N,m+1∗ [Km+1∗ + σ2I]−1KN,m+1∗ . (5)

The overall procedure of the algorithm is to randomly draw a generated data in sequence and for-
mally add the m+1-th generated data to the training data if Fm+1∗ < Fm∗ , and discard it otherwise.
Section 4 will explain an algorithm to perform this evaluation quickly.

4 REDUCING THE COMPUTATIONAL COST OF FREE ENERGY UPDATE

In order to rapidly compute equation 3, there are two challenges. The first one is to compute
K−1

m+1∗ +σ2I in the mean (Equation 4). Though the computation of K−1
m+1∗ +σ2I can be efficiently

determined through the Cholesky decomposition Km+1∗ + σ2I = Lm+1L
T
m+1 (where Lm+1 is an

(m + 1) × (m + 1) lower triangular matrix), the computational cost of obtaining Lm+1∗ still re-
mains O(m3). Hence, the total computational cost, even if generated samples are adopted every
time, amounts to O(M4) for incorporating M data points. This makes the computation challeng-
ing. However, by utilizing Lm from the previous step, the computation of Lm+1 can be achieved
in O(m2), and the total computational cost can be kept within O(M3). This technique is called
Cholesky Update Osborne (2010). For other existing acceleration techniques, refer to Appendix
A.3. The second one is that the inverse matrix of the free energy variance-covariance matrix, Σ−1

m+1,
appearing in the first term on the right side of Equation 3, requires a matrix multiplication cost of
O(m2N + mN2) and O(N3) for the inversion even when the efficiently updated Lm+1 is used
Osborne (2010). Thus, the total amounts to O(M3N +M2N2 +MN3), exceeding the allowable
range. However, we propose a new algorithm which passes through the Cholesky decomposition
of the variance-covariance matrix Σm+1 = Vm+1V

T
m+1, and reuses Vm from the previous step

for calculating Vm+1
5. The algorithm achieves a computational complexity of O(mN + N2) per

step, with a total cost of O(M2N + MN2), keeping it within the quadratic order for N. Once the
Cholesky factor Vm+1 is determined, the second term |Σm+1| in Equation 3 can also be immedi-
ately computed.

4.1 COMPUTING K−1
m+1∗ + σ2I

First, we explain how to efficiently compute the Cholesky factor Lm+1 of K−1
m+1∗ + σ2I from Lm.

Km+1∗ , as shown in Equation 6, possesses a structure extended by the kernel vector km+1∗ and

5Osborne (2010) proposed an efficient method to compute Lm+1 from Lm in O(m2) for the Cholesky
factor Km+1∗ + σ2I = Lm+1L

T
m+1. In contrast, we propose an efficient method to derive Vm+1 from Vm

in O(mN +N2) for Σm+1 = Vm+1V
T
m+1.
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scalar km+1∗ due to the added generated data xm+1∗ to the covariance matrix Km∗ prior to the
addition:

x1∗ · · ·xm∗ xm+1∗

x1∗

xm∗

xm+1∗ kT
m+1∗ km+1∗

Km+1∗ + σ2I =
Km∗ km+1∗ +σ2I.


 (6)

Here, we block partition the Cholesky factor Lm+1 into three regions in the same manner:

1 · · ·m m+ 1
1

m
m+ 1 lT21 l22

Lm+1 =
L11 0


. (7)

Using the Cholesky factor update relations from Osborne (2010), Lm+1 can be efficiently obtained
using Lm as follows:

L11 = Lm, (8)
l21 = Lm\km+1∗ , (9)

l22 =
√
km+1∗ + σ2 − lT21l21. (10)

Here, l21 = Lm\km+1∗ is obtained by solving the equation Lml21 = km+1∗ for l21. This compu-
tation can be efficiently performed in O(m2) using back-substitutions Seeger (2004). The compu-
tational cost of the Cholesky factor update (equations 8, 9, 10) is dominated by equation 9, and as a
result, Lm+1 can be computed from Lm in O(m2). Once Lm+1 is determined, the mean term (equa-
tion 4) (Lm+1L

T
m+1)

−1ym+1∗ can also be computed in O(m2) by performing back-substitution
twice.

4.2 COMPUTING INVERSE OF COVARIANCE MATRIX Σ−1
m+1

Once the Cholesky factor Σm+1 = Vm+1V
T
m+1 is obtained, the first term in equation 3 can be

computed by back-substitution in O(N2), and the second term, which is the product of the diagonal
components of the Cholesky factor, can be computed in O(N). Here, we describe a method to
efficiently compute Vm+1 using Vm.

The covariance matrix can be transformed as follows:
Vm+1V

T
m+1 = [KN + σ2I]−KT

N,m+1∗ [Km+1∗ + σ2I]−1KN,m+1∗ (11)

= [KN + σ2I]−KT
N,m+1∗

(
Lm+1L

T
m+1

)−1
KN,m+1∗ (12)

= [KN + σ2I]−
(
L−1
m+1KN,m+1∗

)T (
L−1
m+1KN,m+1∗

)
. (13)

Here, if we let L−1
m+1KN,m+1∗ = Am+1, we want to show that it actually has the structure:

Am+1 =

 Am

aTm+1

. (14)

Upon rearranging terms, it can be written as Lm+1Am+1 = KN,m+1∗ . The explicit structures of
Lm+1 and KN,m+1∗ can be represented as follows: Lm

lTm+1

Am+1 =

KN,m∗

kT
N,m+1

. (15)
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When solving this for each column of Am+1 using the back-substitution method, it is observed that
the components of each column are only influenced by the components above them in Lm+1 and
KN,m+1∗ . Therefore, the influences of lTm+1 and kT

N,m+1 are limited to the final row, resulting in
the form described in Equation 14. Here, the nth component of aTm+1, am+1,n, is defined as follows.
Let lTm+1 = (lTm+1,≤m|lm+1,m+1), the vector excluding the last element am+1,n of the nth column
of Am+1 be am,n, and the nth component of kT

N,m+1 be km+1,n. Then,

am+1,n =
1

lm+1,m+1

{
km+1,n − (lTm+1,≤mam,n)

}
(16)

can be obtained.

The second term of Equation 13 is expressed as AT
m+1Am+1, but by leveraging the structure of

Equation 14, it can be separated into AT
m+1Am+1 = AT

mAm + am+1a
T
m+1. Substituting this in,

we get

Vm+1V
T
m+1 = [KN + σ2I]−

(
AT

mAm + am+1a
T
m+1

)
. (17)

From Equation 13, it is known that [KN + σ2I]−
(
AT

mAm

)
= VmVT

m, hence

Vm+1V
T
m+1 = VmVT

m − am+1a
T
m+1 (18)

holds true. With this form, the rank-one downdate Seeger (2004) can be utilized to update from
Vm to Vm+1 with a computational complexity of O(N2). The derived algorithm is summarized in
Algorithm 1 in Appendix B.

5 EXPERIMENTS

5.1 COMPARISON WITH OTHER METHODS

Firstly, in order to measure the accuracy of the proposed method in regression, we compare the
mean squared error (MSE) with existing methods. For the first dataset, we employ one-dimensional
generated data to investigate the behavior under the simplest scenario. We aim to replicate a scenario
where we can obtain training data from the true distribution and data from a partially correct simu-
lator. In this experiment, the distributions of the true and the simulator are given by the following
equations:

True : 4 cos (1.5x) exp (−0.1x) + 4 arctan(x− 10) +N (0, 0.5),

Sim. : 4 cos (1.5x) + 4 arctan(x− 10) +N (0, 0.5).

It is assumed that during the simulator’s construction, the existence of the decay term exp (−0.1x)
was not recognized. The proposed algorithm aims to selectively incorporate only the matching
data from simulator data into the training data. In our experiments, we utilize three types of data:
training data, simulation data, and test data. To ensure these data sets do not overlap, they were
constructed as follows: From the true distribution, 2000 data points were generated, and randomly
50, 100, 200, . . . , 900 points were chosen as training data. From the remaining data, 1000 data points
were randomly selected as test data. As simulator data, 10000 data points were generated from the
simulation distribution. In most of our experiments, we repeated the experiment 10 times, reporting
the average and standard deviation. The training and test data were reselected randomly from the
2000 data points generated from the true distribution in each trial.

For the second dataset, we utilize eight-dimensional generated data to evaluate the effectiveness of
the proposed method when extended to multidimensional settings. The distributions for the true and
the simulator are as follows:

True : 4 cos 1.5x1 + 3 sin 0.5x2 + 4x3 + (x4 − 5)2 + 3 cos 3x5 + 3 sinx6 + x2
7 − (x8 − 15)2

+150 exp (−(x1 − 10)2) +N (0, 1.0),

Sim. : 4 cos 1.5x1 + 3 sin 0.5x2 + 4x3 + (x4 − 5)2 + 3 cos 3x5 + 3 sinx6 + x2
7 − (x8 − 15)2

+N (0, 1.0).

6
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The methods for generating training data, simulation data, and test data are the same as for the one-
dimensional data mentioned above. However, to reduce learning time in the eight-dimensional data,
we generated and used 1000 data points as simulation data. For details on the kernel and training
parameters, refer to Appendix C.

For the third dataset, we use a publicly available dataset to validate the performance on real-world
data. We evaluated our method using the concrete compressive strength dataset, a standard dataset
in regression tasks Yeh (2007). The concrete compressive strength dataset aims to predict the target
variable, concrete compressive strength, using eight explanatory variables related to materials. As
for data generated from a simulator, out of 500 data points, the target variable was modified to be
+20 from its original value for 3/4 of the data, while the remaining 1/4 were kept as the original
data. This simulates a scenario where a simulator tends to overestimate the concrete compressive
strength due to some factors. The number of training data points was set at 100, 200, 300, 400, and
the test data comprised 100 data points. For details on the kernel and training parameters, refer to
Appendix D.

For the fourth dataset, we leverage an off-the-shelf simulator, as mentioned in the introduction, to
assess the proposed method in realistic situations. Suppose we want to estimate the power generation
for the next year’s weather conditions based on hourly weather and power generation data from the
past year and a power generation simulator. However, we assume a situation where the inverter
settings in the power generation simulator are incorrect. As an off-the-shelf simulator, we used
pvlib python Anderson et al. (2023), a Python simulator for photovoltaic energy systems. In our
experiments, the training and test data were generated using the Sandia Inverter, while the generated
data from the power generation simulator was obtained using the CEC Inverter. The weather data
used was from Albuquerque for the years (2005, 2006, 2008, 2009, 2011, 2013, 2014, 2015)5. For
each dataset - training, test, and simulator-generated - we used one year’s worth of data (24 × 365
data points). For example, the training and simulator data were from 2005, while the test data was
from the following year, 2006. We evaluated the performance using seven such combinations.

As comparative methods, in addition to the standard GPs, we implemented a method using anomaly
detection as a naive benchmark and SoD Lalchand & Faul (2018). Lalchand & Faul (2018) de-
scribed in Appendix A.1, promote diversity of training data. The termination condition was set to
accept until half of all simulator data were accepted. The method using anomaly detection is a naive
approach that excludes outliers in the simulator using a GP trained on true training data. The cri-
terion for determining if it’s an outlier is calculated by feeding all input data X from the simulator
to the GP to predict its distribution and then using the likelihood of all the output data y from the
simulator. If the likelihood is below a certain threshold, it is considered an outlier and is not added to
the training data. The threshold was selected from (0.2, 0.4, 0.6, 0.8, 1.0) through cross-validation.
This method can be seen as not sequentially adding simulator data to training data in the proposed
method, and also measures the significance of sequential addition.

Figure 1 (a) to (c) shows the results of comparing the MSE on three datasets. The horizontal axis
of each graph represents the number of true training data used for learning, while the vertical axis
represents MSE on test data, with a lower value being better. The solid lines represent the average
of 10 trials for each method, and the shaded regions represent the standard deviation. Figure 1 (d)
presents the MSE of each method on the pvlib python dataset. The results shown are the average
values over the seven years of data.

For those datasets, improvements were observed with the proposed method, negative marginal likeli-
hood (NML), compared to the Plane GP. As can be seen in Section 5.2, this is because only beneficial
data from the simulator-generated data were added to the training data.

5.2 PROPERTIES OF MARGINAL LIKELIHOOD AND SOD

We aim to clarify the effective range of marginal likelihood and SoD. Specifically, unlike our pro-
posed method which doesn’t require training data to be from the true distribution, SoD assumes it
is. We seek to understand the effects on both methods when training data diverges from the true
distribution.

5Although the years are intermittent, these eight years of data are all the data included in the library
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Figure 1: Comparison of the proposed method (NML) with other methods

To this end, we altered the distance between the simulator distribution and the true distribution,
observing the prediction accuracy of each method. Specifically, the true and simulator distributions
were set as follows:

True : sin (x) + arctan(x− 10) +N (0, 0.5)

Sim. : a× sin (x) + arctan(x− 10) +N (0, 0.5)

Here, a is an experimental parameter to adjust the distance between the simulator and true distribu-
tions. In this experiment, a = [1, 2, 3]. When a = 1, the training data candidates are assumed to
be sampled from the true distribution, and as a increases, the distribution of training data candidates
diverges from the true distribution. The number of true training data was set to 50, the number of
training data candidates generated from the simulator was 1000, and the number of test data was
1,000. We resampled all this data 10 times and showed the average and standard deviation of MSE
on a graph. For details on the kernel and training parameters, refer to Appendix D.

The results are shown in Figure 2. First, when a = 1 and the distributions of training data candi-
dates and the true distribution match, both NML and SoD had a lower MSE than Plane GP. Among
them, SoD had a lower MSE than NML. This suggests that the diversity of training data in the SoD
approach is important under this condition. However, as a increases to 2 and 3, and the training
data candidate distribution deviates from the true distribution, the MSE of SoD increases, while the
MSE of NML remains smaller than Plane GP. For a = 3, data included in the training data from the
training data candidates and data that was rejected are visualized in Figure 3.

As SoD aims to enhance the diversity of training data, it accepts training data candidates that deviate
from the true distribution that training and test data follow, resulting in a deterioration in MSE due
to the predictions being influenced by these data. On the other hand, NML mainly accepts training
data candidates close to the true distribution, leveraging the correct part of the simulator distribu-
tion, arctan(x − 10). Accepting only the beneficial parts and stopping there implies that we have

8
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Figure 2: Impact of the difference between the training data candidate distribution and the true
distribution on the MSE of each method.

(a) NML (b) SoD

Figure 3: Data adopted for training from the training data candidates. The x-axis represents x and
the y-axis represents y. Predictive Mean Plane and Predictive Std Plane are the average and standard
deviation of Plane GP predictions. Predictive Mean Added and Predictive Std Added are the average
and standard deviation of predictions for NML or SoD. Accepted Data are those adopted from the
training data candidates, and the gray points were not adopted.

achieved our original goal, which was to automatically adjust the strength of the model’s assump-
tions, that is, to find an appropriate balance between the strong assumptions of the simulator and the
lax assumptions of the GPs. From these results, when training data deviates from the true distribu-
tion and aligns with simulator-generated data, using marginal likelihood to fit training data can yield
samples close to the true distribution, benefiting prediction tasks. In contrast, the SoD metric, focus-
ing on training data diversity, can include data far from the true distribution in simulator-generated
data, negatively impacting predictions.

5.3 COMPUTATION TIME
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Figure 4: Computational Time

We experimentally verify the computational complexity
reduction effect of the proposed method. We compare
the method that goes through the Cholesky decompo-
sition of the covariance matrix proposed in Section 4
Σm+1 = Vm+1V

T
m+1 with the method that does not.

The CPU was an Intel CORE i7 vPro 8th Gen, and 32GB
memory was used. The results are shown in Figure 4. The
horizontal axis represents the number of training data N ,
and the vertical axis represents the time taken for learn-
ing in hours. With the proposed computational technique,
the increase in computational time is gradual even as the
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number of training data increases, while without it, there
is a sharp increase. This result confirms that the computa-
tional time order of the conventional method is O(N3), whereas the computational time order of the
proposed method is O(N2). Furthermore, the gentle increase in computational time of the proposed
method suggests that the coefficient of O(N2) is small.

6 CONCLUSION

We propose using the negative log marginal likelihood of the GPs as a criterion when selectively
adding simulator-generated data to the training data. Through experiments, it was confirmed that
the proposed method extracts only the correct knowledge from the simulator and improves the MSE.
Moreover, by taking into account the Cholesky factor and the dependency of matrix elements, We
proposed an algorithm that reduces the computational cost of selecting training data candidates from
O(M3N +M2N2 +MN3) to O(M2N +MN2).
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A EXTENDED RELATED WORKS

A.1 SUBSET OF DATA

Subset of Data (SoD) is a method that selects important data from candidate training data for GPs.
By generating training data candidates from simulators built using domain knowledge, the extent of
domain knowledge reflection into GPs can be adjusted by determining which data and how much
of it is included in the training data. SoD evaluates the training data candidates based on a metric
and greedily adds the highest-ranked ones. The metric for selecting important data is the diversity
of the training data Seeger et al. (2003); Lawrence et al. (2002); Lalchand & Faul (2018). Various
methods to measure this diversity have been proposed. Lawrence et al. (2002) uses the difference in
entropy between predictive distributions with and without a specific training data point as its metric.
Seeger et al. (2003) uses the KL divergence between predictive distributions with and without a spe-
cific training data point. Lalchand & Faul (2018) employs its unique diversity metric. Specifically,
when predicting with a GPs using the already accepted training data, they add data candidates to
the training set where the sum of the squared error and the prediction uncertainty is large. As the
training data candidates move farther from the already adopted training data, both the prediction
squared error and uncertainty increase. Thus, candidates that enhance the diversity of the training
data are chosen. These methods assume that training data candidates are sampled from the true
distribution and can ensure diversity within the training set. However, in the context of adjusting
the amount of domain knowledge introduced, training data candidates are sampled from simulators
using domain knowledge, which means there could be regions that deviate from the true distribu-
tion. Consequently, data deviating from the true distribution might be prioritized, causing predictive
distributions to diverge. Lawrence et al. (2002) employs a method using GPs classification, while
Seeger et al. (2003) uses a sparse GPs method. Given this, we choose Lalchand & Faul (2018),
which can be directly applied to standard GPs regression, to represent the SoD method and compare
it with our proposed method in experiments.

A.2 SPARSE GAUSSIAN PROCESSES

Similarly to the Subset of Data, there are methods to generate a small number of pseudo-
training data for reducing the training data. Some of these methods, like the proposed ap-
proach, use the log marginal likelihood as a metric to generate pseudo-training data Titsias (2009);
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Snelson & Ghahramani (2005). However, none of these compute the exact log marginal likelihood.
For example, Titsias (2009) developed sparse GPs to reduce training data by substituting the Gaus-
sian process model from p(f |X) to p(f |fm), avoiding direct dependency of function values f on the
training data X, rather relying of function value fm on the pseudo data. This change in the model
altered the formula for marginal likelihood, which could not be computed quickly, leading to the
use of a lower bound of marginal likelihood as the metric instead Titsias (2009). On the other hand,
in our intended applications, all training data are available, so there is no need to alter the marginal
likelihood. Our proposed acceleration method allows us to use the exact log likelihood as the metric.
Similarly, Snelson & Ghahramani (2005) also uses an approximation of the marginal log likelihood,
not the exact value, as the metric Titsias (2009).

A.3 RECOMPUTATION TECHNIQUES FOR GPS WHEN DATA IS ADDED

SoD evaluates the goodness of added training data candidates by sequentially adding them to the
GP’s training data and measuring the predictive distribution of the model using a metric. The compu-
tational effort needed to compute the predictive distribution when data is added has been researched
in the domain of Online GPs. After training with N data points (after computing the inverse matrix
with N data), an additional data point can be learned with an added computational effort of O(N2)
using a technique called rank-one update Nguyen-Tuong et al. (2008); Seeger (2004). This tech-
nique is used in part in our method. However, even with this technique, it’s not efficient to compute
the inverse of the covariance matrix for the log marginal likelihood. In this study, we propose a
method to efficiently compute it.

Since it takes O(N3) computational effort to compute the predictive distribution of a GPs, meth-
ods have been proposed that combine approximation techniques and online learning to reduce this.
Among the approximation methods that use the inducing variable method and variational inference,
methods to go online by mini-batch Hensman et al. (2013); Cheng & Boots (2016) and methods to
go online by sequential Bayesian updates Csató & Opper (2002); Bui et al. (2017) have been pro-
posed. Also, an online method that used a local GPs has been proposed Nguyen-Tuong et al. (2008).
Although our study does not use these approximation methods to compute the log marginal likeli-
hood without approximation, they may be utilized in the future to reduce computational effort.

A.4 AUTO-DATAAUGMENTATION

When Data Augmentation rules are considered as one of the inductive biases, one can interpret it
as injecting domain knowledge, such as the rules of augmentation (like an image retains its class
even when flipped), into the machine learning model. Notably, auto data augmentation Cubuk et al.
(2019; 2020); Ho et al. (2019); Lim et al. (2019) explores optimal magnitudes and application prob-
abilities of multiple data augmentations, like image flips and rotations, based on training data. This
concept is similar to our proposed method. The difference lies in the fact that while auto data aug-
mentation employs neural network classifiers as the discriminative model, our approach uses a GPs
regression model. Moreover, auto data augmentation evaluates policies, while our method evaluates
individual single data. Although potentially less efficient, our method offers versatility in situations
where defining a policy is challenging. Our approach does not optimize the order of samples for
evaluation. This is because, compared to the vast neural networks used in auto data augmentation,
the GPs evaluations can be conducted in a shorter computation time. However, considering sample
order optimization could be a consideration for future work if it becomes crucial.

B DETAILS OF THE PROPOSED ALGORITHM

The pseudo-code of the proposed algorithm is shown in Algorithm 1.

The hyperparameters of the input kernel function are pre-optimized using the true training data
(XN ,yN ) and remain fixed until the completion of Algorithm 1. While it is possible to relearn the
kernel’s hyperparameters using the selected generated data (XM∗

,yM∗
) and the original training

data (XN ,yN ) after applying Algorithm 1, this second round of learning has not been conducted in
the experiments presented in this paper.
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Algorithm 1 Selection of Samples Reducing Free Energy

Input: Training data (XN ,yN ), simulator pS(y,x), GP kernel function
Output: Selected generated data

(
XM∗

,yM∗)
1: compute KN

2: V0 = Cholesky
(
KN + σ2I

)
3: while True do
4: sample (ym+1∗ ,xm+1∗) ∼ pS(y,x)
5: if m = 0 then
6: L1 =

√
k1∗ + σ2

7: else {m ≥ 1}
8: compute km+1∗ , km+1∗

9: Lm+1 = CholeskyFactorUpdate
(
Lm,km+1∗ , km+1∗ + σ2

)
10: end if
11: compute KN,m+1∗

12: Mean µm+1 = KT
N,m+1∗

(
Lm+1L

T
m+1

)−1
ym+1

13: if m = 0 then
14: aT1 = KN,1∗/L1

15: A1 = aT1
16: else {m ≥ 1}
17: am+1 = LastCholeskySolution (Lm+1,Am,KN,m+1∗)
18: Am+1 = stack (Am,am+1)
19: end if
20: Vm+1 = RankOneDowndate (Vm,am+1)

21:
(
yN − µm+1

)T
Σ−1

m+1

(
yN − µm+1

)
=

(
yN − µm+1

)T (
Vm+1V

T
m+1

)−1 (
yN − µm+1

)
22: |Σm+1| = product of diagonal elements of Vm+1

23: Fm+1 = − 1
2

(
yN − µm+1

)T
Σ−1

m+1

(
yN − µm+1

)
− 1

2 log |Σm+1| − N
2 log 2π

24: if Fm+1 < Fm then
25: Xm+1 = Xm∗

+ xm+1∗

26: ym+1 = ym∗
+ ym+1∗

27: m++
28: else {Fm+1 ≥ Fm}
29: reject (ym+1∗ ,xm+1∗)
30: break if rejected R times consecutively
31: end if
32: end while

C DETAILS OF KERNELS AND TRAINING PARAMETERS IN SECTION 5.1

We employed the RBF kernel as the kernel for GPs regression. The initial values of the kernel
parameters were set to amplitude = 10 and lengthscale = 10. The variance of observation noise
was 1.

The estimation of the above three parameters was carried out by maximum likelihood estimation
using the true training data. For training parameters, we used Adam Kingma & Ba (2015) with a
learning rate of 0.001, β1 = 0.9, β2 = 0.999, and ϵ = 1e − 7. The batch size was set to 1, and the
number of iterations was 15,000. We did not optimize these training hyperparameters.

D DETAILS OF KERNELS AND TRAINING PARAMETERS IN SECTION 5.2 AND
REAL DATA

We employed the RBF kernel as the kernel for GPs regression. The initial values of the kernel
parameters were set to amplitude = 1 and length scale = 1. The variance of observation noise
was 1. Estimation of these parameters was conducted using maximum likelihood estimation with
true training data. For training parameters, we used Adam Kingma & Ba (2015) with a learning rate

13
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of 0.01, β1 = 0.9, β2 = 0.999, and ϵ = 1e − 7. The batch size was set to 1, and the number of
iterations was 2,000. These training hyperparameters were not optimized.

E ABLATION STUDY

Our proposed method used the free energy as a metric, and efficiently computed the computationally
expensive inverse of the covariance matrix Σ−1

m+1 and its determinant ∥Σm+1∥ in the free energy
equation 3. To verify whether it’s truly necessary to compute the inverse and determinant of the
covariance matrix, we conducted an ablation study.

We compared with two ablated methods. The first method removed the inverse of the covariance
matrix from equation 3, resulting in − 1

2 (y
N−µm+1)

T(yN−µm+1)− 1
2 log |Σm+1|−N

2 log 2π. The
second method also eliminated the determinant term, yielding − 1

2 (y
N − µm+1)

T(yN − µm+1)−
N
2 log 2π. This approach is simply the squared error between the GPs (GP) prediction mean and the

actual data. The constant term N
2 log 2π does not influence data selection.

We varied the amount of training data, conducted a 10-cross validation, and compared the MSE
of test data. The results are shown in Figure 5. The method without the inverse of the covariance
matrix is labeled as w/o inverse, the one without the determinant is labeled as squared error, and our
proposed method is labeled as NML. The results showed that MSE, which evaluates the full free

Figure 5: Comparison of MSE with ablated methods

energy, demonstrated more stable improvements than both the simple squared error and w/o inverse.
From this, we can deduce that both the inverse of the covariance matrix Σ−1

m+1 and its determinant
∥Σm+1∥ significantly contribute to the improvement of MSE.

F NEGATIVE LOG MARGINAL LIKELIHOOD

In Bayesian statistics, free energy (negative log marginal likelihood) or generalization loss is used as
a model evaluation metric. The free energy measures the model’s fit to the training data, and model
selection often involves either the free energy or its approximation, the BIC (Bayes Information
criterion). The generalization loss measures the accuracy of the model’s predictive distribution, and
for model selection, cross-validation loss or the AIC (Akaike Information Criterion) Akaike (1998)
are commonly used. In this study, we use the free energy as the metric for SoD.

We define the symbols as follows: X ∈ Rd is a random variable, XN = (X1,X2, . . . ,XN ) are N
independent random variables following the same distribution, y ∈ R1 is a random variable, and
yN = (y1,y2, . . . ,yN ) are N independent random variables following the same distribution. The
free energy of the discriminative model (including GPs) is given by the following equation:

F = − log p(yN |XN ). (19)
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When the realized values of N training data are obtained in a regression task, the realized value
of the model’s free energy is − log p(yN = yN |XN = xN ). Random variables are denoted in
uppercase, and realized values are denoted in lowercase.

This metric is explained by the difference between the true distribution of the dataset and the inferred
model distribution. If we denote the true distribution of the dataset as q(yN |XN )q(XN ) and the
distribution in the discriminative model of the dataset as p(yN |XN ), the conditional KL-divergence
Póczos & Schneider (2012) between the two distributions is

KL(q(yN |XN )||p(yN |XN )) =

∫
q(XN )

∫
q(yN |XN ) log

q(yN |XN )

p(yN |XN )
dyNdXN (20)

= E[F ] + C.

Where E[·] denotes the average over samples from the true distribution and C =∫
q(yN |XN )q(XN ) log q(yN |XN )dXNdyN is a constant that does not depend on the model’s

distribution. Therefore, a smaller free energy F indicates that the inferred distribution approximates
the true distribution well on average.

G FREE ENERGY WHEN GENERATED DATA IS ADDED IN GENERAL

As mentioned at the beginning of Section 3, we want to measure whether the performance of the
discriminative model improved by adding samples from the simulator to the training data of the
discriminative model. We adopt free energy as a performance metric and extend the free energy
of Equation 19 when samples are added from the simulator. If m samples from the simulator are
represented by (Xm∗

,ym∗
), then the predictive distribution given (Xm∗

,ym∗
) in the model be-

comes p(yN |XN ,Xm∗
,ym∗

). The conditional KL-divergence Póczos & Schneider (2012) between
p(yN |XN ,Xm∗

,ym∗
) and the true distribution can be transformed as follows:

KL(q(yN |XN ) || p(yN |XN ,Xm∗
,ym∗

)) (21)

=

∫
q(XN )

∫
q(yN |XN ) log

q(yN |XN )

p(yN |XN ,Xm∗ ,ym∗)
dyNdXN

= E[− log p(yN |XN ,Xm∗
,ym∗

)] + C.

Therefore, if we define

Fm∗ = − log p(yN |XN ,Xm∗
,ym∗

) (22)

then minimizing Fm∗ will minimize KL(q(yN |XN )||p(yN |XN ,Xm∗
,ym∗

)) on average. Thus,
we obtained Fm∗ as a performance metric for the discriminative model when (Xm∗

,ym∗
) is given.

Fm∗ is, then, the free energy when generated data is added.

H BASICS OF GPS REGRESSION

Given an input x, we define the feature vector of x as ϕ(x) = (ϕ0(x), ϕ1(x), . . . , ϕH(x))
T.

Considering the linear regression model y = wTϕ(x) with weights w = (w0, w1, . . . , wH),
for N input-output pairs, it can be described simultaneously using the design matrix Φ =(
ϕ(x1)

T, . . . ,ϕ(xN )T
)
, which can be written as y = Φw. Here, y = (y1, . . . , yN )T.

Assume the weights w are drawn from a Gaussian distribution N (0, λ2I) with mean 0 and vari-
ance λI. Then, since y is a linear transformation of the Gaussian distributed vector w by the con-
stant matrix Φ, y = Φw also follows a Gaussian distribution. The mean is given by E[y] =
E[Φw] = ΦE[w] = 0, and the covariance matrix is E[yyT] − E[y]E[y]T = E[(Φw)(Φw)T] =

ΦE[wwT]ΦT = λ2ΦΦT. As a result, the distribution of y becomes a multivariate Gaussian dis-
tribution, y ∼ N (0, λ2ΦΦT). By defining the covariance matrix as K = λ2ΦΦT, the (n, n′)
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elements become k(xn,xn′) = ϕ(xn)
Tϕ(xn′). Now, by constructing the kernel matrix K by di-

rectly defining the kernel function k(xn,xn′), there’s no need to explicitly define the feature vector
ϕ(x) (kernel trick). Here, the definition of the GPs is that for any set of N inputs (x1, . . . ,xN ),
if the joint distribution p(y) of the corresponding outputs y = (y1, . . . , yN ) follows a multivariate
Gaussian distribution, the relationship between x and y is governed by a GPs. Now, y ∼ N (0,K)
is a GPs with mean 0 and covariance matrix K. It should be noted that we can centered the mean of
the observed data y at 0 without loosing generalization. For the training data XN = (x1, . . . ,xN )
and yN = (y1, . . . , yN )T, and the data we wish to predict X̄S = (x̄1, . . . , x̄S), the joint distribution
of the corresponding output ȳS = (ȳ1, . . . , ȳS)

T is given by:

x1 · · ·xN x̄1 · · · x̄S

y1 0 x1

yN 0 xN

ȳ1 0 x̄1

ȳS 0 x̄S

∼ N ,

KN + σ2I K̄S,N

K̄T
S,N K̄S
















. (23)

σ2I represents the variance of observational noise, modeling the presence of noise in the training
data. The predictive distribution can be analytically derived as

p(ȳS |X̄S ,yN ,XN ) = N (K̄T
S,N [KN + σ2I]−1yN , K̄S − K̄T

S,N [KN + σ2I]−1K̄S,N ). (24)
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