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ABSTRACT

In therapeutic antibody design, achieving a balance between optimizing binding
affinity subject to multiple constraints, and sequence diversity within a batch for
experimental validation presents an important challenge. Contemporary methods
often fall short in simultaneously optimizing these attributes, leading to ineffi-
ciencies in experimental exploration and validation. In this work, we tackle this
problem using the latest developments in constrained latent space Bayesian op-
timization. Our methodology leverages a deep generative model to navigate the
discrete space of potential antibody sequences, facilitating the selection of diverse,
high-potential candidates for synthesis. We also propose a novel way of training
VAEs that leads to a lower dimensional latent space and achieves excellent per-
formance under the data-constrained setting. We validate our approach in vitro by
synthesizing optimized antibodies, demonstrating consistently high binding affini-
ties and preserved thermal stability.

1 INTRODUCTION

Generative modeling has emerged as a transformative approach in computational biology, partic-
ularly in the discovery and optimization of biological sequences such as molecules and protein
sequences. With recent developments in latent space Bayesian optimization (BO) (Jin et al., 2018;
Maus et al., 2022), it is now feasible to search for sequences with desired properties from this expo-
nentially large combinatorial space.

Recent progress in this topic has focused on both improving the deep generative model that is used
for optimization, and the optimization algorithm itself. Earlier works of Jin et al. (2018) and Maus
et al. (2022) investigated specific VAE architectures and string representations that reliably produced
valid molecules. The work of Stanton et al. (2022) and Maus et al. (2023b) used masked language
models and VAEs in the domain of optimizing protein sequences. Notably, Gruver et al. (2023)
proposed LaMBO-2, a method that uses saliency maps to guide discrete diffusion models to gen-
erate edits on antibody sequences. While it showed promising results for generating an enriched
library without excessive in vitro screening, it faces similar problems as genetic methods (Ren et al.,
2022) in incorporating the kind of constraints often required for real-world therapeutic antibody
optimization, with an increasing number of sampling steps leading to violation of the constraints.

Addressing these challenges, our work proposes a comprehensive framework for latent space BO
within the context of antibody sequence optimization. We make the following contributions:

• We introduce a novel method for the antibody optimization setting. Our method consistently
produces a batch of sequences that are diverse from each other and always satisfies given con-
straints.

• We propose a novel VAE model training approach that efficiently generates a mutation-based
dataset from a seed sequence, minimizing training data requirements and latent space dimensions
while preserving optimization efficacy.
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• We validate this approach in vitro, producing antibodies with improved binding affinities
and preserved thermostability.

2 BACKGROUND AND RELATED WORK

Black-box and Bayesian optimization. In black-box optimization, we aim to optimize an oracle
objective function f(x) over a space of candidates x∗ = argmaxx∈X f(x). Examples of such prob-
lems include molecule activity maximization for drug discovery (Trabucco et al., 2022; Maus et al.,
2022), and binding affinity of DNA sequences or proteins (Barrera et al., 2016; Gruver et al., 2023).
Commonly, f(x) is assumed to be expensive to evaluate or even completely unknown.

Bayesian optimization is a sample-efficient framework to solve these costly to evaluate model-based
optimization problems (Osborne et al., 2009; Mockus, 1982; Snoek et al., 2012). At iteration t
of BO, one has access to observations Dt = {(xi, yi)}ti=1, where yi denotes the objective value
of the input xi. Typically, a Gaussian process (Rasmussen, 2003) is employed as the surrogate
model to approximate the objective function using these inputs and values. This surrogate model
aids the optimization by employing an acquisition function, which strategically proposes the next
candidates for evaluation. After querying these candidates through the true oracle, the surrogate
model is updated with the new observations. This process gradually builds a more comprehensive
dataset and refines the surrogate model, thereby improving the quality of the proposed samples in
future iterations.

Bayesian optimization over latent spaces. Due to the discrete and structural nature of biological
sequences, we utilize recent developments in latent space BO that adapt BO from continuous black-
box optimization problems to the discrete domain (Tripp et al., 2020; Gómez-Bombarelli et al.,
2018). Latent space BO leverages the capabilities of deep generative models, most commonly vari-
ational autoencoders (VAEs) (Kingma & Welling, 2013) to aid optimization. Concretely, a VAE is
composed of two networks: an encoder E(z | x) : X → P(Z) mapping from amino acid sequences
to latent space Z , and a decoder D(x | z) : Z → P(X ) that probabilistically decodes latent space
vectors back into amino acid sequences. The search space is now over the continuous latent space
Z of the VAE instead of the discrete space of amino acid sequences X , we can now formulate our
optimization problem as:

x⋆ ≈ D(z⋆) where z⋆ = argmax
z∈Z

f ′ (D(z)) (1)

The objective function we are optimizing now takes in a latent vector z and decodes it into an amino
acid sequence, which is then evaluated with the provided surrogate model f ′. We then select a batch
of sequences that are then sent to the lab for synthesis and experimental validation. Our optimization
algorithm is based off LOL-BO (Maus et al., 2022), with adaptations for the constrained setting.

Bayesian optimization for biological discovery. Due to the combinatorial space of possible bi-
ological sequences and structures, Bayesian optimization (BO) is a powerful tool for biological
discovery. Earlier works utilized BO without deep generative models over a fixed list of molecules
for accelerating drug screening (Graff et al., 2021; Hernández-Lobato et al., 2017). However, the
space of all possible molecules is so large that any pre-defined list of molecules is negligible (Kirk-
patrick & Ellis, 2004). Latent space BO methods resolve this by utilizing the capabilities of deep
generative models such as VAEs and Diffusion models so that it is possible to generate any possi-
ble molecules during optimization (Maus et al., 2022; Gruver et al., 2023). These methods employ
either straightforward string representations (Stanton et al., 2022) or more complex graphical or
grammatical structures (Kusner et al., 2017; Jin et al., 2018). The works of Khan et al. (2023) and
Romero et al. (2012) explored designing novel antibodies by exploration of the protein fitness land-
scape, while Maus et al. (2023b) optimized solutions to the inverse protein folding problem with BO.
These developments highlight the capability and success of BO in advancing biological discovery.

Antibody design and engineering. Antibodies are the fastest growing class of therapeutics (Carter
& Lazar, 2018), and thus represent an important application domain for sequence optimization. To
be functional, antibodies must bind their target with strong affinity, but to be viable therapeutics they
must also meet a range of criteria collectively termed ”developability” (Jarasch et al., 2015). Because
many of these developability properties, such as thermostability, need not be maximized but only
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exceed a threshold, this lends to framing antibody sequence design as a constrained optimization
problem e.g. maximizing binding affinity subject to the constraint of acceptable thermostability.

3 METHODS

Our antibody design task seeks to generate sequences that exhibit optimal binding affinity towards
a target, while maintaining a lower bound on thermostability based on program requirements. We
start with a batch of seed amino acid sequences and their binding affinities to the target as initial
observations. We are also given surrogate models that predict the binding affinity and melting tem-
perature of the antibody sequences. The objective is to generate a collection of antibody sequences
characterized by elevated affinity and preserved thermostability, which are subsequently synthesized
and subjected to empirical validation in a laboratory setting.

Optimizing with constraints. In the domain of antibody engineering, it is standard practice to im-
pose constraints on the generated sequences to ensure their viability. For example, these constraints
can be used to preserve developability by requiring thermostability exceed a threshold value, or to
restrict the introduced mutations to specific regions such as the CDRs. Additionally, there is a pref-
erence for sequences that do not deviate excessively from given seed sequences (Fowler et al., 2014;
Storici & Resnick, 2006), as experience has shown that sequences too divergent from known seeds
make synthesis and validation significantly harder. The extension of Equation 1 to include these
constraints can be represented as follows:

x⋆ ≈ D(z⋆) where z⋆ = argmax
z∈Z

f ′ (D(z)) s.t. ∀i: ci (D(z)) ≤ 0,

In this scenario, ci(·) represents black-box constraints that are applied to the decoded antibody
sequences D(z). We integrated a constrained BO algorithm SCBO (Eriksson & Poloczek, 2021)
with LOL-BO in a straightforward manner, as they are all based on the TurBO algorithm (Eriksson
et al., 2019). It is known that training the VAE and GP surrogate model end-to-end substantially
improves optimization performance (Maus et al., 2022). Following a similar approach, we regularize
the latent space of the VAE by training the constraint surrogate models jointly with both the VAE
and the objective surrogate models. With a number of m constraints, we now have the modified
VAE ELBO with m+ 1 GPs written as:

Ljoint(θE , θD, θGP0:m
) = EE(z|x)

[
m∑
i=0

LGPi
(θGPi

, θE ; z,y)

]
+ LVAE(θE , θD; x),

Where y denotes the objective values obtained so far during optimization. Because the encoder
parameters θE are updated jointly with the GP parameters θGPi

, the encoder E not only acts as an
encoder for the VAE but is also acting as a deep kernel for the surrogate and constraint GP models
(Wilson et al., 2016).

Producing diverse solutions. Given the constraint of approximately 70 sequences for laboratory
validation, it is desirable to identify a set of solutions that not only exhibit high binding affinity
but also encapsulate sufficient diversity to fully explore the antibody design space. To this end,
the optimization algorithm has been augmented with ROBOT (Maus et al., 2023a), which focuses
on discovering a batch of diverse solutions subject to a specific diversity criterion. We use the
Levenshtein edit distance δ(x, x′) as the diversity constraint in our optimization process, and solve
the following optimization problems:

z⋆1 = argmax
z∈Z

f ′ (D(z)) s.t. ∀i: ci (D(z)) ≤ 0,

z⋆n = argmax
z∈Z

f ′ (D(z)) s.t. ∀i: ci (D(z)) ≤ 0, & δ
(
D(z), z⋆j

)
≥ τ for j = 1, ..., n− 1

Solving the above problems produces a set of n high-affinity antibody sequences {x⋆
i }ni=1 =

{D(zi)
⋆}ni=1 so that each antibody is at least τ edits away from any other antibody.

Single Sequence VAE. To address the challenges of latent space BO for antibody optimization,
there are two desirable properties when designing a VAE:

• String reconstruction accuracy: A high string reconstruction accuracy can ensure that the latent
vectors identified by the BO algorithm can be accurately decoded into viable antibody sequences.
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• Latent space dimensionality: It is known that the performance of BO deteriorates in higher di-
mensional spaces (Shahriari et al., 2016), a VAE with a low latent space dimension is more desirable
for optimization.

In this work, we introduce a novel approach to VAE training, specifically targeted at the antibody
optimization problem. Our strategy is grounded in the fact that we aim to produce antibodies with
maximal binding affinity, preserved thermostability, and which are only a few edits away from a
given ”seed” sequence, with mutations predominantly within the CDRs. Following a similar ap-
proach to Nikankin et al. (2023), we trained the VAE on a dataset comprising 1.8 million variants
of a seed sequence. Each variant is generated through 1-10 random mutations strictly within the
allowed editable regions, and then passed through the oracles to obtain a label during optimization.
We also removed the non-editable regions of the antibody during training. Therefore, the VAE is
only responsible for modeling the mutations within the editable regions, relieving the burden of
reconstructing the entire sequence.

4 EXPERIMENTS

4.1 CONSTRAINED LATENT SPACE OPTIMIZATION SETUP

Model details. In this work, we pretrain an autoregressive VAE using the Transformer architec-
ture (Vaswani et al., 2017) with 5 encoder and 5 decoder layers. The model was trained using the
VAE ELBO with the KL divergence term multiplied by a constant factor of 0.001 to emphasize
reconstruction accuracy (Higgins et al., 2017), achieving a reconstruction accuracy of 99.8% for the
targeted antibody sequence, with a 48-dimensional latent space.

Constraints. In all of our experiments, we enforce the following constraints:

• The predicted melting temperature of the antibodies should be above T °C for T ∈ {60, 65} for
improved thermal stability
• All of the edits to the seed sequences should be within the complementarity-determining regions
(CDRs)
• For any sequence x and batch of n seed sequences {xi}ni=1, we have mini (δ(x, xi)) ≤ k for
k ∈ {1, 2, 3, 4, 5}

For the diversity criteria, we set τ = ⌊k
2 ⌋ for each edit distance constraint k to ensure maximum di-

versity while not degrading optimization performance. For the experiments in this work, we did not
set an oracle call budget, instead we ran the optimization algorithm until convergence for each opti-
mization run, and aggregated the best sequences from each temperature and edit distance threshold
for experimental validation.

4.2 AFFINITY AND THERMOSTABILITY ORACLE MODELS

The black box oracle models we optimized against consisted of an ensemble of 10 regressors for
each task (KD and Tm). Each ensemble was comprised of CNNs trained on distinct 0.8/0.1/0.1 frac-
tional train/validation/test splits for cross validation. The Kd models were pre-trained on ∼650,000
data points derived from phage display affinity maturation, then fine tuned on 1425 affinity mea-
surements derived from Bio-Layer Interferometry (BLI) measurement of antibodies synthesized via
Cell Free Protein Synthesis (CFPS). These same CFPS produced antibodies were characterized for
thermostability via NanoDSF, and this data was used to train an ensemble of dilated CNNs for Tm

modeling. The Kd model ensemble had a measured vs. predicted spearman correlation in crossval-
idation 0.73, while the the Tm model ensemble had an spearman correlation of 0.62. Both models
used dilated convolutional architectures, with the affinity model using a CARP/ByteNet architecture
(Yang et al., 2022) with 32 residual ByteNet blocks and a model dimension of 64. The ligher-weight
thermostability model has 8 dilated convolutional layers with stnadard 2l progression in dilation rate,
two stride-2 convolutional layers and a fully connected layer. All models were trained on sequences
aligned to a reference sequence.
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(a) Optimized Target Binding Affinity (b) Thermostability Constraint Satisfaction

Figure 1: Lab validation confirms optimized antibodies have strong target binding and largely satisfy
thermostability constraints. Resulting variants have the best median affinities (a) and represent 7 of the top
10 designs overall, many exceeding the affinity of the best optimization seed (a, dashed line). Measured Tms
(b) are preserved at or above the 60 C program requirement at a rate equal to or better than prior methods,
including greedy optimization with the same oracles.

4.3 LAB VALIDATED RESULTS

As part of an ongoing therapeutic optimization campaign a range of sequence optimization meth-
ods were deployed, ranging from simple greedy optimization to several single- and multi-objective
BayesOpt methods (Stanton et al., 2022; Maus et al., 2022; Gruver et al., 2021). However due to the
iterative nature of this optimization campaign, these earlier methods were deployed with smaller,
differently distributed training data and so to avoid incongruous comparison we group these to-
gether as ”Previous Designs”. For the most recent iteration, we synthesized 70 antibodies from
constrained LOL-BO + single sequence VAE optimized sequences. We also synthesized antibodies
from a baseline greedy optimization method, where CDR variants were proposed using a masked
language model (Prihoda et al., 2022), and then ranked via predicted affinities and thermostabilities
using the same oracles and a non-dominated sort, with the top 128 selected for synthesis. Variants
which were synthesizable in sufficient quantities were then characterized for target binding affinity
KD and thermostability Tm. The constrained LOL-BO variants had the best median affinity of any
method deployed to date on this program, also exceeding that of the baseline method 1a. The ther-
mostability of the designed variants was preserved at or above the 60 °C Tm program requirement
(similar to the stability of the optimization seed) at a rate as good or better than other designs.

5 DISCUSSION

Generative modeling is playing an increasingly pivotal role in therapeutic discovery, with Bayesian
optimization emerging as a promising approach in this domain. We have shown how a specifically
designed deep generative model can be integrated with latent space BO algorithms to obtain better
optimization results, achieving good sequence diversity while supporting an arbitrary number of
constraints relevant to real-world therapeutics development. Moreover, we successfully optimized
antibody binding while constraining thermal stability to be maintained, demonstrating superiority in
vitro to previous design rounds consisting of various optimization methods.

One limitation of our approach is that our method of reducing latent space dimensions relies on
knowing which parts of the biological sequence we want to optimize over, for example, CDRs of a
given antibody. While we have focused our experimental evaluation on antibody optimization tasks
alone, further work is needed to adapt our method to any arbitrary biological sequence optimization
problem. Future work may also examine how non-autoregressive models, such as diffusion models
and GANs, can be integrated with our algorithm.
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Matt J. Kusner, Brooks Paige, and José Miguel Hernández-Lobato. Grammar variational autoen-
coder. In Doina Precup and Yee Whye Teh (eds.), Proceedings of the 34th International Confer-
ence on Machine Learning, volume 70 of PMLR, pp. 1945–1954. PMLR, 06–11 Aug 2017.

Natalie Maus, Haydn Jones, Juston Moore, Matt J Kusner, John Bradshaw, and Jacob Gardner. Local
latent space bayesian optimization over structured inputs. In Advances in Neural Information
Processing Systems, volume 35, pp. 34505–34518. Curran Associates, Inc., 2022. doi: 10.48550/
arXiv.2201.11872.

Natalie Maus, Kaiwen Wu, David Eriksson, and Jacob Gardner. Discovering many diverse solutions
with bayesian optimization. In Proceedings of The 26th International Conference on Artificial
Intelligence and Statistics, volume 206 of PMLR, pp. 1779–1798. PMLR, 25–27 Apr 2023a. doi:
10.48550/arXiv.2210.10953.

Natalie Maus, Yimeng Zeng, Daniel Allen Anderson, Phillip Maffettone, Aaron Solomon, Peyton
Greenside, Osbert Bastani, and Jacob R. Gardner. Inverse protein folding using deep bayesian
optimization. arXiv Preprint, 2023b. doi: 10.48550/arXiv.2305.18089.

Jonas Mockus. The Bayesian approach to global optimization. In System Modeling and Optimiza-
tion, pp. 473–481. Springer, 1982.

Yaniv Nikankin, Niv Haim, and Michal Irani. SinFusion: Training diffusion models on a single
image or video. In Proceedings of the 40th International Conference on Machine Learning,
volume 202 of PMLR, pp. 26199–26214. PMLR, 23–29 Jul 2023.

M. A. Osborne, R. Garnett, and S. J. Roberts. Gaussian processes for global optimization. In 3rd
International Conference on Learning and Intelligent Optimization (LION3), pp. 1–15, 2009.

David Prihoda, Jad Maamary, Andrew Waight, Veronica Juan, Laurence Fayadat-Dilman, Daniel
Svozil, and Danny A Bitton. Biophi: A platform for antibody design, humanization, and human-
ness evaluation based on natural antibody repertoires and deep learning. In MAbs, volume 14, pp.
2020203. Taylor & Francis, 2022.

Carl Edward Rasmussen. Gaussian processes in machine learning. In Summer School on Machine
Learning, pp. 63–71. Springer, 2003.

Zhizhou Ren, Jiahan Li, Fan Ding, Yuan Zhou, Jianzhu Ma, and Jian Peng. Proximal exploration
for model-guided protein sequence design. In Proceedings of the 39th International Conference
on Machine Learning, volume 162 of PMLR, pp. 18520–18536. PMLR, 17–23 Jul 2022.

Philip A. Romero, Andreas Krause, and Frances H. Arnold. Navigating the protein fitness landscape
with gaussian processes. Proceedings of the National Academy of Sciences, 110(3), December
2012. ISSN 1091-6490. doi: 10.1073/pnas.1215251110.

7



Published at the GEM workshop, ICLR 2024

Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P. Adams, and Nando de Freitas. Taking the
human out of the loop: A review of bayesian optimization. Proceedings of the IEEE, 104(1):
148–175, 2016. doi: 10.1109/JPROC.2015.2494218.

Jasper Snoek, Hugo Larochelle, and Ryan P. Adams. Practical Bayesian optimization of machine
learning algorithms. In Proc NeurIPS, volume 25, pp. 2951–9, 2012. doi: 10.48550/arXiv.1206.
2944.

Samuel Stanton, Wesley Maddox, Nate Gruver, Phillip Maffettone, Emily Delaney, Peyton Green-
side, and Andrew Gordon Wilson. Accelerating Bayesian optimization for biological sequence
design with denoising autoencoders. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba
Szepesvari, Gang Niu, and Sivan Sabato (eds.), Proceedings of the 39th International Conference
on Machine Learning, volume 162 of Proceedings of Machine Learning Research, pp. 20459–
20478. PMLR, 17–23 Jul 2022.

Francesca Storici and Michael A Resnick. The delitto perfetto approach to in vivo site-directed
mutagenesis and chromosome rearrangements with synthetic oligonucleotides in yeast. pp. 329–
345, 2006. doi: 10.1016/S0076-6879(05)09019-1.

Brandon Trabucco, Xinyang Geng, Aviral Kumar, and Sergey Levine. Design-bench: Benchmarks
for data-driven offline model-based optimization. In Proceedings of the 39th International Con-
ference on Machine Learning, volume 162 of PMLR, pp. 21658–21676. PMLR, 17–23 Jul 2022.
doi: 10.48550/arXiv.2202.08450.
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A COMPUTATIONAL COST

We trained the single sequence VAE using the pytorch-lightning library with DDP to distribute the
training process across 6 × 48GB GPUs (NVIDIA RTX A6000) for 20 hours. For our constrained
LOL-BO runs, we use 1 × 24GB or 1 × 48GB GPU (NVIDIA RTX A5000/A6000) and optimize
until convergence, each run taking approximately 1 to 3 days.
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