IMITATION IMPROVEMENT LEARNING FOR LARGE-SCALE CAPACITATED VEHICLE ROUTING PROBLEMS

Anonymous authors

Paper under double-blind review

Abstract

Recent works using deep reinforcement learning (RL) to solve routing problems such as the capacitated vehicle routing problem (CVRP) have focused on improvement learning-based methods, which involve improving a given solution until it becomes near-optimal. Although adequate solutions can be achieved for small problem instances, their efficiency degrades for large-scale ones. In this work, we propose a new improvement learning-based framework based on imitation learning where classical heuristics serve as experts to encourage the policy model to mimic and produce similar or better solutions. Moreover, to improve scalability, we propose *Clockwise Clustering*, a novel augmented framework for decomposing large-scale CVRP into subproblems by clustering sequentially nodes in clockwise order, and then learning to solve them simultaneously. Our approaches enhance state-of-the-art CVRP solvers while attaining competitive solution quality on several well-known datasets, including real-world instances with sizes up to 30,000 nodes. Our best methods are able to achieve new state-of-the-art results for several large instances and generalize to a wide range of CVRP variants and solvers. We also contribute new datasets and results to test the generalizability of our deep RL algorithms.

1 INTRODUCTION

We study the vehicle routing problems (VRP), an important class of combinatorial optimization problems which has a wide range of applications in logistics (Laporte, 2009). Capacitated vehicle routing problem (CVRP) is a basic variant of VRP, aiming to find a set of routes that minimize the cost and fulfill the demands of a set of customers without violating vehicle capacity constraints. The CVRP is NP-hard (Dantzig & Ramser, 1959; Lenstra & Kan, 1981), and both exact and heuristic methods have been developed to solve it (Golden et al., 2008; Kumar & Panneerselvam, 2012; Toth & Vigo, 2014). In recent years, especially after the seminal work of Pointer Networks (Vinyals et al., 2015) and Graph Neural Networks (Prates et al., 2019), researchers have started to develop new deep learning and reinforcement learning (RL) frameworks to solve combinatorial optimization problems (Nazari et al., 2018; Bello et al., 2017; Khalil et al., 2017; Velickovic et al., 2018; Kool et al., 2019; Chen & Tian, 2019). The idea behind the RL algorithms is that a machine learning method could learn better heuristics by extracting useful information directly from data, rather than having an explicitly programmed behavior like heuristic methods. In fact, it has been known that, even though heuristics would get stuck in local optimums, they often offer stable and high-quality solutions, especially for large-scale instances and when the problem involves complex constraints. The RL approach is better in exploring new solutions and escaping from local optimums, but needs time to train and would be unstable with complex constraints. This motivates us to combine heuristics and RL in such a way that RL can learn and benefit from heuristic operators.

In this work, we propose an imitation reinforcement learning algorithm trained via policy gradient to learn improvement heuristics based on k-opt moves and treat advanced heuristics (e.g., VNS or HGS) as experts to *teach* the policy model. Our work aims to enhance the deep RL process via heuristic methods and address scalability by learning from smaller sub-problems simultaneously. That is, for each step, a certain amount of nodes are selected in turn clockwise, following by an initial solution, to form sub-problems to our RL policy for ease of learning. In fact, our *clockwise* mechanism offers a good initial solution structure and a natural way to decompose the whole problem into sub-problems that can be solved and learned simultaneously. Moreover, a solution returned

by the RL policy model will be fed to a heuristic method to be further improved. Solutions from heuristics are also collected to build an imitation learning model that will be integrated back into the RL policy to persuade the RL to produce similar solutions.

In summary, by combining the clockwise framework, heuristic methods and imitation learning, we bring several advantages to the same place:

- (i) Starting with poor quality solutions, we first use heuristics to improve solutions, and heuristic operators are learned and imitated by deep learning networks (i.e., *generative adversarial imitation learning* (Ho & Ermon, 2016)) to generate similar or better solutions at each step. In fact, by letting deep RL and imitation learning work together in an iterative manner, we encourage the algorithm to both explore new solutions (by deep RL) and exploit operators that lead to high-quality solutions (i.e. imitation learning mimicking heuristics).
- (ii) The whole network is clustered into smaller sub-problems of similar distributions, allowing our algorithms to process them quickly and scale up.
- (iii) Heuristics play as experienced experts (or teacher/corrector) that help the deep RL generate more stable and high-quality solutions. Faster convergence is to be expected with the powerful performance of heuristic methods. Moreover, since solutions are always corrected by heuristics to ensure feasibility, the Policy Network doesn't need to control infeasible solutions.

Altogether, we make the following contributions:

- We propose *Imitation Improvement Learning*, a new learning-based framework using policy gradient with a heuristic method that serves as an expert/teacher to correct and improve any solution to ensure feasibility and teach the policy gradient to generate high-quality solutions.
- We propose *Clockwise Clustering*, a recursive sub-problem decomposition framework to handle large-scale CVRP instances.
- We offer new state-of-the-art solutions for some well-known large-scale CVRP instances.

Our experiments demonstrate the scalability of our *Clockwise Clustering* in solving large-scale realworld instances, the benefits of using imitation learning to get high-quality solutions, and the generalizability of our learning-based model in solving instances of similar distributions.

2 RELATED WORK

Heuristics for solving combinatorial optimization problems have been developed for decades. The most powerful methods, such as local search (Crama et al., 1995), genetic algorithms (Heiss-Czedik, 1997), and ant colony methods (López-Ibáñez, 2010), involve iteratively improving solutions in a hand-designed neighborhood search. For example, *move, swap* (Wu et al., 2016), and 2-opt (Croes, 1958) are well-known heuristics for the traveling salesman and vehicle routing problems. Examples of the state-of-the-art heuristic algorithms for the CVPR would be the *HGS* (Vidal, 2022; Vidal et al., 2012) that uses a hybrid genetic and local search procedure to achieve state-of-the-art solution qualities on instances of sizes up to 1000, or the *LKH-3* (Helsgaun, 2017) that uses the Lin-Kernighan heuristic (Lin & Kernighan, 1973) as a backbone, which involves swapping pairs of sub-routes to create new routes. For large-scale problem instances, low-level heuristics are of-ten combined with meta-heuristics to achieve good performance, e.g., Tabu Search with Adaptive Memory (Taillard et al., 2001), Knowledge-Guided Local Search (Voudouris & Tsang, 2003), Large Neighborhood Search (Shaw, 1998), Quantum Annealing (Syrichas & Crispin, 2017), Pruning and Sequential Search (Arnold et al., 2019), Spatial Partitioning Strategies (Tu et al., 2017), Constrained Clustering (Alesiani et al., 2022) and Cluster-First Route-Second (Shalaby et al., 2021).

In recent years, there have been a number of studies focusing on using deep RL to solve combinatorial optimization problems. Those models are categorized into two classes, i.e., *construction* and *improvement methods* (Kwon et al., 2020):

• *Construction methods* (Nazari et al., 2018; Kool et al., 2019): Starting with an empty solution, a construction method constructs a solution by sequentially assigning each customer

to a vehicle until all customers are served. Construction methods still require additional procedures such as beam search, classical improvement heuristics, and sampling to achieve such results.

• *Improvement methods* (Chen & Tian, 2019; Hottung & Tierney, 2019): Starting with a complete initial solution, the methods select either candidate *nodes* (customers or depot) or heuristic *operators* (or both) to improve and update the solution at each step. This is repeated until termination. Here, if one can learn a policy to improve a solution, such a policy can be used to obtain better solutions from a construction heuristic or even random solutions. Studies have shown that *improvement* methods are able to provide better solutions than *construction* ones (Lu et al., 2020; da Costa et al., 2021).

Deep RL approaches have achieved competitive results as compared to classical heuristics. For example, Lu et al. (2020) propose *Learning-to-improve* based on Meta-controller learning, which outperforms LKH-3 but only works on small-scale problems. da Costa et al. (2021) propose *Learning 2-opt* based on learning from local search operations, which also only works with small-scale problem instances. Recently, Li et al. (2021) develop a *learning to delegate* approach in which sub-problem are selected and learned. This method outperforms LKH-3 and works well with uniformly large-scale problems. It is moreover quite scalable and is efficient for generalization. However, since the approach requires a large dataset of instances for training and similar data distributions for testing, the performance on non-uniform large-scale CVRP instances such as CVRPLIB would be poor. In fact, there are very few learning-based experimental studies on very large-scale instances. Although deep RL's learnability is appealing, trajectory collection becomes prohibitively expensive for large-scale problem instances.

3 BACKGROUND

3.1 CAPACITATED VEHICLE ROUTING PROBLEMS

CVRP can be defined by a fully connected weighted graph $\mathcal{G} = (\mathbb{V}, \mathbb{A})$, where $\mathbb{V} = \{0 \cup \mathbb{I}\}$ stands for a set of nodes and $\mathbb{A} = \{(i, j) | i, j \in \mathbb{V}, i \neq j\}$ denotes a set of arcs connecting these nodes. Set \mathbb{I} denotes the set of customers and 0 denotes the central depot. Each arc of the network is associated with a non-negative value $d_{ij} = ||x_i - x_j||_2$ representing the distance between two nodes i and j, where x_i, x_j are vectors of spatial coordinates of nodes i and j, respectively. Each customer $k \in \mathbb{I}$ is assigned a positive demand $b_k > 0$. At central depot, the demand b_0 is set to 0. We also let $\mathbb{B} = \{b_k | k \in \mathbb{I}\}$ denote the set of demands. The objective function of the CVRP, assuming that the fleet of vehicles is homogeneous, is to seek a set of routes that minimize the total traveling distance such that each customer is visited exactly once by exactly one vehicle. Vehicles start and end at the depot and for every route, the total demand of customers does not exceed the maximal carrying capacity C > 0 of the vehicle. In Appendix A.1 we provide a more detailed description and a mixed-integer formulation for the CVRP problem.

3.2 *k*-Opt Heuristic for the CVRP

An improvement heuristic concerns a search procedure that iteratively improve feasible solutions. A procedure can start with an initial solution S_0 and iteratively search a better solution S_{t+1} from a current solution S_t . Local search methods such as Lin-Kernighan-Helsgaun (LKH) (Helsgaun, 2017) performs well for CVRP. The procedure seeks for k edge swaps (k-opt moves) that could be replaced by new edges to form a shorter tour. Sequential pairwise operators such as k-opt moves can be decomposed in simpler k'-opt ones (k' < k). For instance, sequential 3-opt operations can be decomposed into one, two or three 2-opt operations. However, in local search algorithms, the quality of the initial solution usually affects the quality of the final solution, i.e. local search methods can easily get stuck in local optima (Hansen & Mladenović, 2006). To avoid local optima, different meta-heuristics have been proposed, including Simulated Annealing and Tabu Search, which work by accepting bad solutions to enhance exploration on the searching space. Meta-heuristics, nevertheless, still require expert knowledge and rely on sub-optimal rules in their designs.

4 CLOCKWISE CLUSTERING

In this section we formally introduce the "Clockwise Clustering" framework, our method for solving large-scale CVRPs. Figure 5 illustrates an overview of this framework. From a large-scale instance input $(\mathcal{G}, \mathbb{B}, C)$, we generate an initial solution S_0 by a *clock-hand initializer*, an simple procedure that arranges all nodes in clockwise order and sequentially groups nodes into tours satisfying that the total demand of each tour is not greater than the demand capacity C. Clock-hand initializer basically produces a feasible solution that all tours $T = [t_1, t_2, ..., t_{n_T}]$ are ordered in clockwise direction. Note that sorting tours in clockwise direction means that tours are arranged by the angle between y-axis and the line connecting the centroid point and the depot of each tour. The first u tours (i.e., a proportion of all the tours) $[t_1, t_2, ..., t_u]$ are then selected to form a sub-instance $(\mathcal{G}_{sub}, \mathbb{B}, C)$. Here, only a subset of tours is selected to process, instead of all the tours, to enhance the scalability. After solving this sub-instance by the Imitation Improvement Learning framework (described in the next section), we then send the first v tours of the returned sub-solution to a sub-solution buffer to keep the results. The unprocessed tours and nodes are then collected and sent back to the beginning of the cycle loop for the next round of the *Imitation Improvement Learning*. When all the nodes are processed, we take the processed tours from the sub-solution buffer to build a complete (and feasible) solution S_1 of \mathcal{G} . After that, S_1 could be processed same as S_0 to create new solutions S_2 , S_3, S_4, \dots We accept bad solutions to allow more exploration on the search space. After a certain number of loops, we return the best solution among $\{S_1, S_2, S_3, ...\}$. We provide an overview of the framework in Appendix A.2.

The *clock-hand initializer* offers a good initial solution and a natural way to decompose the whole problem into sub-problems of similar distributions, allowing heuristics to process them quickly and providing RL with sub-instances of similar distributions for efficient training. The *learning-to-delegate* framework (Li et al., 2021) also endeavors to select sub-problems to improve scalability, but differ from our approach by the fact that the *learning-to-delegate* learns to select sub-problems and uses traditional heuristics (HGS/LKH3) with a huge number of running steps to achieve good sub-instance selections. Instead, our method does not requires such a large number of steps as the sub-instance decomposition is embedded as part of the heuristic loop and cooperates with heuristics so both will be improved over iterations.

Figure 1: A visualization of the *Clockwise Clustering* framework: The clock-hand initializer is used to construct an initial solution. At each round, a small proportion of the tours are selected to form a sub-problem and sent to *Imitation Improvement Learning* to improve. A majority of the output are kept in a *sub-solution buffer* (*stacked*) and the remaining portion (*unstacked*) is merged with unprocessed tours to start the next round. Once all nodes are processed, we get all the sub-solutions from the sub-solution buffer and build a complete solution, save it and start a new round with the new solution to further improve it.

5 IMITATION IMPROVEMENT LEARNING

In this section, we present our *Imitation Improvement Learning* (IIL) framework, a main component of the *Clockwise Clustering* for solving sub-instances. Figure 2 provides an overview of the framework. Our framework is iterative in nature; a sub-solution S is improved after each cycle loop. Starting with an initial sub-solution as S, a state $s(\mathcal{G}, S, \mathbb{B}, C)$ is forwarded to a neural encoderdecoder network to approximate the stochastic policy $\pi_{\theta}(a|s)$, where θ are trainable parameters. The value function $V_{\phi}(s)$ is also a neural network, where ϕ are trainable parameters. This platform uses policy gradient to optimize the parameters of the policy and value functions of the RL network. Here, thanks to the *Clockwise Clustering* platform, the sub-instances sent to IIL are significantly smaller in size, as compared to the original instance and have similar distributions. This matches the ability of learning-based RL models to produce high-quality solutions for small-sized instances (Chen & Tian, 2019; Hottung & Tierney, 2019). Intuitively, a good RL policy model would provide the heuristics with better local search space, leading to better expert solutions to further teach and improve the RL through imitation learning.

Figure 2: An overview of our *Imitation Improvement Learning* framework: Starting with an initial sub-solution S, the input is forwarded to an imitation cycle loop between RL Policy (student) and Heuristics (expert) to be improved after each iteration. At each iteration, the RL Policy, together with k-opt operators, generate a student solution and brings it directly to the traditional heuristics's local search to produce an expert solution. These two solutions are used to calculate rewards and imitation loss for training RL policy with policy gradient.

5.1 IMITATION LEARNING WITH EXPERTS

The key component of the IIL framework is an imitation learning model that use heuristics' solutions to teach the RL policy to generate high-quality solutions. More precisely, the RL policy model acts as a student who wants to learn from experts. Classical heuristics are ideal experts, which are also iterative and are able to generate good solutions quickly. Combining the loop of RL policy (student) and heuristics (expert), we have a closed loop where the imitation learning model encourages the RL policy to mimit the heuristics' policy. To train the imitation learning model, we employ the generative adversarial imitation learning (GAIL) algorithm (Ho & Ermon, 2016), which is based on a discriminative neural model D_{δ} to distinguish between solutions generated by the RL policy and the expert's (i.e. heuristics) policy, where δ are trainable parameters. The objective of the GAIL is $\max_{\pi} \min_{\delta} \mathbb{E}_{\pi} [\log (D_{\delta}(s, a))] + \mathbb{E}_{\pi_E} [\log (1 - D_{\delta}(s, a))]$, where π_E refers to the experts' policy. By solving the max-min problem, one can force the RL policy to generate solutions that are similar to those generated by the expert's policy.

5.2 IMPROVEMENT LEARNING WITH k-OPT MOVES

Inspired by the Learning 2-opt algorithm (da Costa et al., 2021), our framework aims to select k different nodes and swap its edges to form a student solution. The RL policy samples an action a which contains k nodes in I used for k-opt moves to generate a student solution $S_{student}$. After that, this solution is forwarded to the Local Search component of classical heuristics to get an expert solution S_{expert} . The heuristics don't need to be refreshed after generating this solution. Expert solution S_{expert} continues to be forwarded to RL policy for a new loop. Rewards are computed by the different cost values of input and output solutions. For each step, replay buffer \mathcal{D} collects states, actions, rewards and expert/student solutions for updating model parameters via policy gradient with RL loss and imitation learning loss.

5.3 NETWORK ARCHITECTURE

Our neural network is based on an encoder-decoder architecture (a detailed description is given in appendix). The encoder learns representations that embed graph topology. We create node features $X \in \mathbb{R}^{|\mathbb{V}| \times 3}$ (x-coordinate, y-coordinate, and demand rate), edge features $E \in \mathbb{R}^{|\mathbb{A}| \times 2}$ (euclidean distance and radian angle between each edge and x-axis), and import them into the Residual E-GAT (Lei et al., 2021) for feature extraction. Given these representations, the policy decoder samples action indices $a_1, a_2, ..., a_k$ sequentially for k-opt. We aim to learn the parameters of a stochastic policy $\pi_{\theta}(a|s)$ that, given a state s, assigns high probabilities to moves that reduce the cost of a tour. Our architecture uses a chain rule to factorize the probability of a k-opt move as $\pi_{\theta}(a|s) = \prod_{i=1}^{k} p_{\theta}(a_i|s)$. We use a pointing mechanism (da Costa et al., 2021) to predict a distribution over node outputs given encoded actions (nodes) and a state representation (query vector). The value decoder operates on the same encoder outputs but outputs real-valued estimates of state values. We give more details of network architecture in Appendix A.3.

5.4 Loss Function

We use PPO (Schulman et al., 2017) for policy gradient optimization with the loss function $\mathbb{E}_{\pi_{\theta}}[\mathcal{L}_{\pi_{\theta}}^{PPO}]$. We also add an imitation loss to for imitation learning, leading to the following overall loss

$$\mathcal{L}_{\pi_{\theta}}^{IIL} = \mathcal{L}_{\pi_{\theta}}^{PPO} + c_{IL} \left\{ \min_{\delta} \mathbb{E}_{\pi_{\theta}} \left[\log \left(D_{\delta} \left(s, a \right) \right) \right] + \mathbb{E}_{\pi_{E}} \left[\log \left(1 - D_{\delta} \left(s, a \right) \right) \right] \right\}$$

Where the first term is the PPO loss from standard RL policy and the second term (with weight parameter c_{IL}) is from the imitation learning model. By optimizing $\max_{\theta} \mathbb{E}[\mathcal{L}_{\pi_{\theta}}^{IIL}]$, we seek for a policy that both maximizes the standard long-term reward function of the RL policy and mimics the heuristics' policy. Intuitively, the first term of the loss function is to encourage exploration of new solutions and the second term is to exploit high-quality solutions from heuristics.

6 EXPERIMENTS AND RESULTS

We provide extensive experimental results based on some large-scale well-known CVRP datasets, targeting the following questions.

- (i) By using heuristic methods as an expert/teacher for the policy model, can our *Imitation Improvement Learning framework* outperform the standing-alone heuristics?
- (ii) Can the *Clockwise Clustering* and *Imitation Improvement Learning* frameworks help us solve very-large-scale instances with competitive performance?
- (iii) Can our frameworks generalize to other instance sets of similar distributions?
- (iv) Can our algorithms offer new *state-of-the-art (SOTA)* solutions for some popular CVRP instances?

Below, we present our datasets and our comparison results. Other details can be found in the appendix.

6.1 DATASET

We benchmark our frameworks using large-scale instances from three recent datasets from CVR-PLIB (http://vrp.atd-lab.inf.puc-rio.br/index.php/en/), which is known to be challenging for both heuristic and learning-based methods. To test the generalizability of our clockwise clustering (CC) and IIL method, we experiment on an uniform dataset from Li et al. (2021). We also benchmark on *constrained electrical vehicle routing* (CEVRP) datasets, a CVRP variant for electrical vehicles with battery constraints. For this, Mavrovouniotis et al. (2020) contribute a large-scale CEVRP dataset containing 17 instances. Same as CVRP, we test the generalizability of our approaches in CEVRP by using this dataset to train the RL policy and uniformly generating 238 new instances to serve as a test set.

Six datasets used for benchmarking are listed in Table 1. First, we try to test the efficiency of our algorithms, compared to the heuristic counterparts, using Dataset 1. Next, we test the generalizability of our model by learning with a train set and evaluating with another test set of Dataset 2. We then benchmark our algorithms with two real-world large-scale datasets, called as Dataset 3&4, which are collected in Brazil and Belgium, respectively. Although most of the CVRP datasets use 2D euclidean distances, the DIMACS dataset (Dataset 3) use weights specifically defined for pairs of nodes. For CEVRP, we benchmark with instances from Mavrovouniotis et al. (2020) (named as Dataset 5) and our newly generated instances (Dataset 6).

Dataset	Source	VRP Type	Distance Space	# instances	# customers
1	Uchoa et al. (2017)	CVRP	Euclidean	100	100-1000
2	Li et al. (2021)	CVRP	Euclidean	2000/40/40	500-2000
3	DIMACS ¹	CVRP	Explicit	12	241-1000
4	Arnold et al. (2019)	CVRP	Euclidean	10	3000-30000
5	Mavrovouniotis et al. (2020)	CEVRP	Euclidean	17	21-1000
6	Ours	CEVRP	Euclidean	238	21-1000

Table 1: Datasets.

6.2 EXPERIMENTAL RESULTS AND ANALYSIS

With Dataset 1, we compare our methods with OR-tools, VNS, HILS Subramanian et al. (2013), KGLS Arnold & Sörensen (2019), SISR Christiaens & Berghe (2020), and HGS Vidal (2022). Instead of running HGS with full settings, we compare with HGS 30k steps and HGS 95% solution quality, similarly to Li et al. (2021). Table 2 reports the results from previous works and our results, compared to the best known solutions (BKS) by GAP (percentage) scores, where IIL stands for our *Imitation Improvement Learning* method and RL stands for our learning-based framework but without the imitation learning loss. Our methods are clearly better than the corresponding standing-alone heuristics (i.e., RL+VNS and IIL+VNS versus VNS, and RL+HGS and IIL+HGS versus HGS). For instance, with HGS, our IIL method get -0.27% GAP vs BKS, better than -0.30% of HGS 30k steps. In terms of running time, our algorithms need about 10 hours while HGS takes about 16 to 40 hours to finish. We do not report the running times of the other methods because they are not reported in their respective papers, and these methods are clearly outperformed by our algorithms in terms of solution quality. The results also indicate that our IIL framework works the best with HGS sub-solver.

Table 3 shows a comparison of our best method IIL+HGS with previous results reported for Dataset 2 (Li et al., 2021). Note that all cost scores are divided by 1*e*5. Our costs are better than the previous SOTA results obtained by Learning-to-delegate (L2D) (Li et al., 2021) for all the three sub-datasets. Although we use only one CPU worker without GPU for evaluating but the running time of our algorithm is just slightly longer than L2D (short).

Table 4 shows the results for Dataset 3 & 4. For Dataset 3, the classical HGS's score is slightly better than that of the IIL+HGS. Note that it's a non-euclidean dataset so we are not able to set correctly the node and edge features for our E-GAT encoder. It might affect the performance of our framework.

¹The 12th DIMACS Implementation Challenge (http://dimacs.rutgers.edu/programs/ challenge/vrp/cvrp/cvrp-competition)

Method	GAP vs BKS
OR-tools	-4.01%
VNS	-3.08%
HILS	-1.00%
KGLS	-0.66%
SISR	-0.54%
HGS (30k)	-0.30%
HGS (95%)	-0.48%
RL+VNS (ours)	-2.15%
RL+HGS (ours)	-0.31%
IIL+VNS (ours)	-1.79%
IIL+HGS (ours)	-0.27%

Table 2: Experimental results for Dataset 1.

Table 3: Experimental results for Dataset 2.

Method	N=500		N=1	1000	N=2000		
Methou	Cost	Time	Cost	Time	Cost	Time	
LKH-3 (95%)	62.0	4.4min	120.02	18min	234.89	52min	
LKH-3 (30k)	61.87	30min	119.88	77min	234.65	149min	
OR-tools	65.59	15min	126.52	15min	244.65	15min	
AM sampling	69.08	4.70s	151.01	17.40s	356.69	32.29s	
AM greedy	68.58	25ms	142.84	56ms	307.86	147ms	
NeuRewriter	73.6	58s	136.29	2.3min	257.61	8.1min	
Random	61.99	71s	120.02	3.2min	234.88	6.4min	
Count-based	61.99	59s	120.02	2.1min	234.88	5.3min	
Max Min	61.99	59s	120.02	2.5min	234.89	5.2min	
L2D (short)	61.99	38s	119.87	1.5min	234.89	3.4min	
L2D (long)	61.7	76s	119.55	3.0min	233.86	6.8min	
IIL+HGS (ours)	60.49	68s	118.37	2.6min	225.43	6.3min	

In addition, initial solutions created by our *clock-hand* could be worst, making it difficult for our *Clockwise Clustering* framework to split nodes into sub-instances. Nevertheless, we achieved a new SOTA result for *Loggi-n501-k24* instance; our solution cost is 177078, better than the previous one 177176 reported by the CVRPLIB authors (http://vrp.galgos.inf.puc-rio.br/index.php/en/updates/). For Dataset 4, even-though it contains very-large-scale instances of sizes up to 30k, our IIL+HGS performs better than the classical HGS and any other methods. We illustrate initial solutions (from the Clock-hand initializer) and our best solutions for two large instances from Dataset 3&4 in Figure 3 and 4.

Table 4: GAP vs BKS	(percentage) for two	real-world datasets.
---------------------	----------------------	----------------------

Methods	Dataset 3	Dataset 4
CW	-	-8.00%
MDM	-0.05%	-3.63%
HGS	-0.05%	-4.89%
IIL+VNS (ours)	-0.77%	-6.71%
IIL+HGS (ours)	-0.09%	-2.95%

Table 5 reports results for large-scale CEVRP instances from Dataset 5& 6, where "-" indicates that the information is not available from previous works. For these instances, battery information is added to the node features. IIL+HGS outperforms other classical heuristics. Specifically, IIL+HGS gets a new SOTA results with 1.88% GAP vs BKS. Note that HGS does not support the CEVRP variant with battery constraints, so we are not able to embed directly HGS library to our IIL framework. To make it work, we add a post-processing step, similarly to the GRASP (Woller et al., 2020), to rebuild feasible solutions that fit the battery constraints. To test the generalizability of our ap-

Initial solution - cost: 1406303 IIL+VNS - cost: 288820 IIL+HGS - cost: 285021

Figure 3: Instance Loggi-n1001-k31 from Dataset 3, which does not support 2D Euclidean space.

Figure 4: Solutions generated by IIL+HGS for two very-large-scale instances of *Dataset 4*, which represent the real-world maps of Brussels & Flanders, Belgium with sizes up to 30k.

proach, we run our IIL algorithms on Dataset 6 and compare the results with VNS and BACO (i.e., SOTA algorithms for the CEVRP instances), which clearly shows that IIL+HGS is much better than the heuristics in terms of both solution quality and running time.

Mothods	Dataset	5	Dataset 6		
Wiethous	GAP vs BKS	Time	GAP vs BKS	Time	
GA	-4.57%	-	-	-	
SA	-2.65%	-	-	-	
VNS	-1.08%	5.5h	0.00%	77.7h	
BACO	-0.43%	16.7h	0.13%	113.2h	
IIL+VNS (ours)	0.43%	6.1h	1.36%	39.2h	
IIL+HGS (ours)	1.88%	2.5h	2.15%	31.3h	

Table 5: Experimental results for CEVRP datasets

7 CONCLUSION

We proposed a new learning-based framework for CVRP, which employs heuristic methods as an expert to teach the RL policy model to generate high-quality solutions. To enhance the scalability and take the advantage of the RL approaches in learning from similar instances, we propose the *Clockwise Clustering* framework that offers good initial solutions and a nature way to decompose the whole instances into sub-instances of similar distributions. We benchmarked on several popular large-scale CVRP instances of sizes up to 30k, showing that our proposed algorithms outperform the respective standing-alone heuristics and offer competitive solutions, compared to previous SOTA algorithms. Our methods also archive new best solutions for several instances and generalize for a wide range of CVRP distributions and solvers.

Our work highlights the effectiveness of using generative adversarial imitation learning to help RL and heuristic methods work together in an iterative manner. An interesting direction for future work may extend our frameworks to other challenging combinatorial optimization problems.

REFERENCES

- Francesco Alesiani, Gülcin Ermis, and Konstantinos Gkiotsalitis. Constrained clustering for the capacitated vehicle routing problem (cc-cvrp). *Applied Artificial Intelligence*, 2022.
- Florian Arnold and Kenneth Sörensen. What makes a vrp solution good? the generation of problemspecific knowledge for heuristics. *Comput. Oper. Res.*, 106:280–288, 2019.
- Florian Arnold, Michel Gendreau, and Kenneth Sörensen. Efficiently solving very large-scale routing problems. Comput. Oper. Res., 107:32–42, 2019.
- Irwan Bello, Hieu Pham, Quoc V. Le, Mohammad Norouzi, and Samy Bengio. Neural combinatorial optimization with reinforcement learning. *ArXiv*, abs/1611.09940, 2017.
- Xinyun Chen and Yuandong Tian. Learning to perform local rewriting for combinatorial optimization. In *NeurIPS*, 2019.
- Johan Christiaens and Greet Vanden Berghe. Slack induction by string removals for vehicle routing problems. *Transp. Sci.*, 54:417–433, 2020.
- Yves Crama, Antoon W. J. Kolen, and Erwin Pesch. Local search in combinatorial optimization. In *Artificial Neural Networks*, 1995.
- G. A. Croes. A method for solving traveling-salesman problems. *Operations Research*, 6:791–812, 1958.
- Paulo da Costa, Jason Rhuggenaath, Yingqian Zhang, Alp Eren Akçay, and Uzay Kaymak. Learning 2-opt heuristics for routing problems via deep reinforcement learning. SN Comput. Sci., 2:388, 2021.
- G. B. Dantzig and J. H. Ramser. The truck dispatching problem. *Management Science*, 6(1):80–91, 1959. doi: 10.1287/mnsc.6.1.80.
- Bruce L. Golden, Sriram Raghavan, and Edward A. Wasil. The vehicle routing problem : latest advances and new challenges. 2008.
- Pierre Hansen and Nenad Mladenović. First vs. best improvement: An empirical study. *Discret. Appl. Math.*, 154:802–817, 2006.
- Dorothea Heiss-Czedik. An introduction to genetic algorithms. Artificial Life, 3:63-65, 1997.
- Keld Helsgaun. An extension of the lin-kernighan-helsgaun tsp solver for constrained traveling salesman and vehicle routing problems. 12 2017. doi: 10.13140/RG.2.2.25569.40807.
- Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. Advances in neural information processing systems, 29, 2016.
- André Hottung and Kevin Tierney. Neural large neighborhood search for the capacitated vehicle routing problem. *arXiv preprint arXiv:1911.09539*, 2019.
- Elias Boutros Khalil, Hanjun Dai, Yuyu Zhang, Bistra N. Dilkina, and Le Song. Learning combinatorial optimization algorithms over graphs. In *NIPS*, 2017.
- Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. *CoRR*, abs/1412.6980, 2015.
- Wouter Kool, Herke van Hoof, and Max Welling. Attention, learn to solve routing problems! In *ICLR*, 2019.
- Suresh Kumar and Ramasamy Panneerselvam. A survey on the vehicle routing problem and its variants. *Intelligent Information Management*, 4:66–74, 2012.
- Yeong-Dae Kwon, Jinho Choo, Byoungjip Kim, Iljoo Yoon, Youngjune Gwon, and Seungjai Min. Pomo: Policy optimization with multiple optima for reinforcement learning. *Advances in Neural Information Processing Systems*, 33:21188–21198, 2020.

Gilbert Laporte. Fifty years of vehicle routing. Transportation science, 43(4):408–416, 2009.

- Kun Lei, Peng Guo, Yi Wang, Xiao Wu, and Wenchao Zhao. Solve routing problems with a residual edge-graph attention neural network. *ArXiv*, abs/2105.02730, 2021.
- Jan Karel Lenstra and Alexander H. G. Rinnooy Kan. Complexity of vehicle routing and scheduling problems. *Networks*, 11:221–227, 1981.
- Sirui Li, Zhongxia Yan, and Cathy Wu. Learning to delegate for large-scale vehicle routing. In *NeurIPS*, 2021.
- S. Lin and Brian W. Kernighan. An effective heuristic algorithm for the traveling-salesman problem. Oper. Res., 21:498–516, 1973.
- Manuel López-Ibáñez. Ant colony optimization. In GECCO '10, 2010.
- Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In ICLR, 2019.
- Hao Lu, Xingwen Zhang, and Shuang Yang. A learning-based iterative method for solving vehicle routing problems. In *ICLR*, 2020.
- Michalis Mavrovouniotis, Charalambos Menelaou, Stelios Timotheou, Christos G. Panayiotou, Georgios Ellinas, and Marios M. Polycarpou. Benchmark set for the ieee wcci-2020 competition on evolutionary computation for the electric vehicle routing problem. 2020.
- M. Nazari, Afshin Oroojlooy, Lawrence V. Snyder, and Martin Takác. Reinforcement learning for solving the vehicle routing problem. In *NeurIPS*, 2018.
- Marcelo Prates, Pedro Avelar, Henrique Lemos, Luís Lamb, and Moshe Vardi. Learning to solve npcomplete problems: A graph neural network for decision tsp. *Proceedings of the AAAI Conference* on Artificial Intelligence, 33:4731–4738, 07 2019. doi: 10.1609/aaai.v33i01.33014731.
- John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimization algorithms. ArXiv, abs/1707.06347, 2017.
- Mohamed A. Wahby Shalaby, Ayman R. Mohammed, and Sally S. Kassem. Supervised fuzzy cmeans techniques to solve the capacitated vehicle routing problem. *Int. Arab J. Inf. Technol.*, 18: 452–463, 2021.
- Paul Shaw. Using constraint programming and local search methods to solve vehicle routing problems. In Michael Maher and Jean-Francois Puget (eds.), *Principles and Practice of Constraint Programming* — *CP98*, pp. 417–431, Berlin, Heidelberg, 1998. Springer Berlin Heidelberg. ISBN 978-3-540-49481-2.
- Anand Subramanian, Eduardo Uchoa, and Luiz Satoru Ochi. A hybrid algorithm for a class of vehicle routing problems. *Comput. Oper. Res.*, 40:2519–2531, 2013.
- Alex Syrichas and Alan Crispin. Large-scale vehicle routing problems: Quantum annealing, tunings and results. *Comput. Oper. Res.*, 87:52–62, 2017.
- Éric D. Taillard, Luca Maria Gambardella, Michel Gendreau, and Jean-Yves Potvin. Adaptive memory programming: A unified view of metaheuristics. *Eur. J. Oper. Res.*, 135:1–16, 2001.
- Paolo Toth and Daniele Vigo. Vehicle routing: Problems, methods, and applications, second edition. 2014.
- Wei Tu, Qingquan Li, Qiuping Li, Jiasong Zhu, Baoding Zhou, and Bi Yu Chen. A spatial parallel heuristic approach for solving very large-scale vehicle routing problems. *Transactions in GIS*, 21: 1130 – 1147, 2017.
- Eduardo Uchoa, Diego Pecin, Artur Alves Pessoa, Marcus Poggi de Aragão, Thibaut Vidal, and Anand Subramanian. New benchmark instances for the capacitated vehicle routing problem. *Eur. J. Oper. Res.*, 257:845–858, 2017.

- Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio', and Yoshua Bengio. Graph attention networks. *ArXiv*, abs/1710.10903, 2018.
- Thibaut Vidal. Hybrid genetic search for the cvrp: Open-source implementation and swap* neighborhood. *Computers & Operations Research*, 140:105643, 2022. ISSN 0305-0548. doi: https://doi.org/10.1016/j.cor.2021.105643.
- Thibaut Vidal, Teodor Gabriel Crainic, Michel Gendreau, Nadia Lahrichi, and Walter Rei. A hybrid genetic algorithm for multidepot and periodic vehicle routing problems. *Oper. Res.*, 60:611–624, 2012.
- Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett (eds.), *Advances in Neural Information Processing Systems*, volume 28. Curran Associates, Inc., 2015.
- Christos Voudouris and Edward P. K. Tsang. *Guided Local Search*, pp. 185–218. Springer US, Boston, MA, 2003. ISBN 978-0-306-48056-0. doi: 10.1007/0-306-48056-5_7. URL https://doi.org/10.1007/0-306-48056-5_7.
- David Woller, Viktor Kozák, and Miroslav Kulich. The grasp metaheuristic for the electric vehicle routing problem. In *MESAS*, 2020.
- Cathy Wu, Kalyanaraman Shankari, Ece Kamar, Randy H. Katz, David E. Culler, Christos H. Papadimitriou, Eric Horvitz, and Alexandre M. Bayen. Optimizing the diamond lane: A more tractable carpool problem and algorithms. 2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC), pp. 1389–1396, 2016.

A APPENDIX

A.1 MIXED-INTEGER PROGRAMMING MODEL FOR THE CVRP

With a fully connected weighted graph $\mathcal{G} = (\mathbb{V}, \mathbb{A})$, the CVRP can be mathematically formulated as follows:

$$\min \sum_{i \in \mathbb{V}, j \in \mathbb{V}, i \neq j} d_{ij} x_{ij},\tag{1}$$

s.t

$$\sum_{j \in \mathbb{V}, i \neq j} x_{ij} = 1, \forall i \in \mathbb{I},$$
(2)

$$\sum_{j \in \mathbb{V}, i \neq j} x_{ij} - \sum_{j \in \mathbb{V}, i \neq j} x_{ji} = 0, \forall i \in \mathbb{V},$$
(3)

$$u_{j} \leq u_{i} - b_{i} x_{ij} + C \left(1 - x_{ij}\right), \forall i \in \mathbb{V}, \forall j \in \mathbb{V}, i \neq j,$$

$$\tag{4}$$

 $0 \le u_i \le C, i \in \mathbb{V},\tag{5}$

$$x_{ij} \in \{0,1\}, i \in \mathbb{V}, j \in \mathbb{V}, i \neq j$$
(6)

where equation 1 defines the CVRP objective function, equation 2 ensures every customer is entered once, equation 3 establishes flow conservation by guaranteeing the number of times a vehicle enters a node is equal to the number of times it leaves that node. equation 4 and equation 5 guarantee demand fulfillment at all customers by assuring a non-negative carrying load upon arrival at any node including the depot, and equation 6 define a set of binary decision variables which each one equal to 1 if an arc is traveled and 0 otherwise. Variables u_i denote the remaining carrying capacity of a vehicle on its arrival at node $i \in \mathbb{N}$.

A.2 Algorithms

The pseudo-code of the *Clockwise Clustering* framework is provided in Algorithm 1. We first employ Clock-hand initializer for creating initial solution S and send it into a loop to find the best

improvement solution S^* . Inspired by the *Divide-and-Conquer* mechanism, we select the first u tours of S to be a sub-problem S_{sub} , forward it to the *Imitation Improvement Learning* framework to find its optimal solution S^*_{sub} and select its first v tours for a solution buffer S'. After that, we combine all unprocessed nodes of \mathcal{G} into S and continue find improved solution until the stack S' is full. Section A.4 below indicates how we specify u and v in our experiment settings. Figure 5 also provides an overview of our frameworks, showing how the *Clockwise Clustering* and *Imitation Improvement Learning* frameworks work together. Detailed steps of the *Imitation Improvement Learning* framework are provided in Algorithm 2.

Figure 5: An overview of our *Clockwise Clustering* platform.

Algorithm 1 Clockwise Clustering $S \leftarrow \text{ClockHandInitializer}(\mathcal{G}, \mathbb{B}, C)$ \triangleright Initial solution for \mathcal{G} $\begin{array}{l} S^* \leftarrow S \\ S' \leftarrow [] \end{array}$ ▷ Best solution \triangleright Solution buffer for \mathcal{G} while repeat a certain number of times do $S_{sub} \leftarrow S_{:u}, S_{other} \leftarrow S_{u}:$ $S_{sub}^{*} \leftarrow \text{IILSolver}(S_{sub}, \mathbb{B}, C)$ $S_{sub}' \leftarrow S_{sub,:v}^{*}, S_{other}' \leftarrow S_{sub,v}^{*}:$ $S' \leftarrow S' \oplus S_{sub}'$ $S \leftarrow S_{other} \oplus S_{other}'$ if S is empty then \triangleright Select first *u* tours for sub-problem \triangleright Select first v tours for \mathcal{G} solution Combine all unprocessed nodes if S is empty then \triangleright All nodes of \mathcal{G} are processed if $Cost(S') < Cost(S^*)$ then $S^{*} \leftarrow S'$ ▷ Best solution ever end if $S \leftarrow S^*$ end if end while return S^*

A.3 MODEL ARCHITECTURE

A.3.1 POLICY ENCODER

With each input state $s(\mathcal{G}, S, \mathbb{B}, C)$, the encoder embeds the raw features of them into a higherdimensional space. We create a node feature $x_i \in \mathbb{R}^3$ by the values of x-coordinate, y-coordinate, and demand rate \tilde{b}_i of each node *i* in \mathbb{V} , where $\tilde{b}_i = b_i/C$. For each edge (i, j) in \mathbb{A} , we also create

 $S \leftarrow \text{InitSolution}(\mathcal{G}, \mathbb{B}, C)$ Global solution $\mathcal{D} \leftarrow []$ ▷ Replay buffer while repeat a certain number of times do ▷ Number of global loops $s \leftarrow \text{InputFeatures}(S, \mathcal{G}, \mathbb{B}, C)$ ⊳ State $a \leftarrow \text{SampleActionFromPolicy}(s)$ ▷ Action $S_{student} \leftarrow \operatorname{ProcessOperators}(S, a)$ \triangleright k-opt operation ▷ Initiate heuristic solution $S_h \leftarrow S_{student}$ while repeat a certain number of times do Number of heuristic loops $\begin{array}{l} S'_h \leftarrow \text{LocalSearch}(S_h) \\ S^*_h \leftarrow \text{Perturbation}(S'_h) \\ S_h \leftarrow \text{AcceptanceCriterion}(S'_h, S^*_h) \end{array}$ end while $S_{expert} \leftarrow S_h$ $r \leftarrow \operatorname{Cost}(S_{student}) - \operatorname{Cost}(S_{expert})$ ▷ Reward $\mathcal{D} \leftarrow \mathcal{D}.\mathsf{append}((s, a, r, S_{student}, S_{expert}))$ ▷ Update global solution $S \leftarrow S_{expert}$ if $|\mathcal{D}| > n_{\mathcal{D}}$ then UpdateRLWithImitation(D) $\mathcal{D} \leftarrow []$ ▷ Clear replay buffer end if end while return S

Figure 6: Model architecture of the RL policy.

an edge feature $e_{ij} \in \mathbb{R}^2$ by the euclidean distance d_{ij} and angle value θ_{ij} between node i and j, where $\theta_{ij} = \arctan\left(\frac{y_i - y_j}{x_i - x_j}\right)$.

Both node and edge features are imported into Residual E-GAT (Lei et al., 2021) for feature extraction. Output of this layer is a set of representation vectors $\{\bar{x}_i | i \in \mathbb{V}\}\)$, which embedded the information of \mathcal{G} , \mathbb{B} , and C. To represent the input solution S, we generate a context vector H by mean pooling of each tour t in S:

$$\boldsymbol{h} = \boldsymbol{W}_{\boldsymbol{h}} \left(\frac{1}{|S|} \sum_{t \in S} \sum_{i \in t} \bar{\boldsymbol{x}}_i \right) + \boldsymbol{b}_{\boldsymbol{h}},$$

where W_h and b_h are trainable parameters.

A.3.2 POLICY DECODER

We aim to learn the parameters of a stochastic policy $\pi_{\theta}(a|s)$ that, given a state s, assigns high probabilities to moves that reduce the cost of a tour. Our architecture uses a chain rule to factorize the probability of a k-opt move as $\pi_{\theta}(a|s) = \prod_{i=1}^{k} p_{\theta}(a_i|s)$. We use a pointing mechanism (da Costa

et al., 2021) to predict a distribution over node outputs given encoded actions (nodes) and a state representation (query vector).

Decoder predicts sequentially action $\hat{\pi}_t \in \mathbb{V}$ at time step $t \in \{1, ..., k\}$. Probability of action $\hat{\pi}_t$ is $p(\hat{\pi}_t|s) = \arg \max_{i \in \mathbb{V}} \frac{\exp(\boldsymbol{u}_{i,t})}{\sum_{j \in \mathbb{V}} \exp(\boldsymbol{u}_{j,t})}$, where \boldsymbol{u}_t is the attention compatibility vectors of all nodes at time t. We set \mathbb{M}_t is a set of different nodes allowed at time t. $\mathbb{M}_t = \{i | i \in S, i \neq \hat{\pi}_{t'} \forall t' < t\}$. Attention compatibility of node i at time t is

$$\boldsymbol{u}_{i,t} = egin{cases} anh\left(rac{\boldsymbol{Q}_{i,t}^{T}\boldsymbol{K}_{i}}{\sqrt{d}}
ight) & ext{if } i \in \mathbb{M}_{t} \ -\infty & ext{, otherwise} \end{cases},$$

where K, Q, and d are key, query, and its dimension of this attention layer; $K_i = W_K \bar{x}_i$; $Q_{i,t} = MHA(W_{query}c_t, W_{key}\bar{x}_i, W_{value}\bar{x}_i)$ is an output of a multi-head attention layer; context vector $c_t = h + W_c \bar{x}_{\hat{\pi}_{t-1}} + b_c$, where W_c and b_c are trainable parameters. At time t = 1, $\hat{\pi}_{t-1}$ is set to the depot 0.

A.3.3 VALUE DECODER AND DISCRIMINATION MODEL

Besides policy decoder, we also create neural networks for value decoder and discrimination model by using representation vectors from policy encoder. Value decoder $V_{\phi}(s)$ uses two convolution layers with ReLU and sum pooling as activation functions of each layer respectively:

$$V_{\phi}(s) = \sum_{i \in \mathbb{V}} \operatorname{Conv}(\operatorname{ReLU}(\operatorname{Conv}(\bar{\boldsymbol{x}}_i)))$$

Discriminator $D_{\delta}(\tau)$ is a logistic classification model with a learned function f_{δ} predicts the probability of an input trajectory τ is student's or expert's. We uses multi-layer perceptron (MLP) with two fully connected layers for the discrimination network $D_{\delta}(\tau) = 1/(1 + \exp(-f_{\delta}(\tau))) = \sigma(\text{MLP}_{\delta}(\tau))$, where σ is logistic sigmoid function.

A.4 HYPERPARAMETER SETTINGS

All our experiments use the same set of hyperparameters given below.

Network architecture:

- Encoder: Two GATConv layers; hidden dim 128.
- Decoder: k-opt with k = 3; using 8 heads on multi-head attention layers; hidden dim 256.

PPO hyperparameters:

- Clipping version, $\epsilon = 0.2$
- $\gamma = 0.995, \lambda = 0.95$
- Value coefficient $c_1 = 0.5$
- Entropy coefficient $c_2 = 0.01$
- Clipping gradient norm with max norm 0.5 to avoid exploding gradients.

Clockwise Cluster settings:

- Initializer: Clockhand method
- Number of repeating solving a sub-problem: 128 (VNS) or 24 (HGS)
- Number of nodes collected for sub-problems of each loop: 1024 (for very-large scale instance) or 256 (otherwise)
- Number of the last tours removed in sub-problem solutions: 2 (if number of tours is greater than 4) or 0 (otherwise)

IIL settings:

- Classical heuristic sub-solvers: VNS/HGS
- Number of training policy steps when the replay buffer is full: 64
- Number of heuristic steps of each loop: 128 (VNS) or 32 (HGS)

Training settings:

- Adam optimization (Kingma & Ba, 2015) with weight decay (Loshchilov & Hutter, 2019) $\lambda=0.01$
- Learning rate lr = 3e-4
- Imitation coefficient $c_{IL} = 0.1$ (if use imitation loss) else 0.0 (otherwise)
- Number of workers $n_{workers} = 32$
- Buffer size $n_{\mathcal{D}} = 16n_{workers}$
- Use CUDA for GPU acceleration
- Number of random seeds: 20

Evaluating settings:

- Number of workers $n_{workers} = 1$
- Use CPU only

Device specifications:

- CPU: Intel Xeon Silver xxx Processor, 24 cores, 48 threads
- GPU: NVIDIA GeForce RTX 3080 Ti 12GB
- Memory: 64GB of RAM

Model configuration for experiments:

- RL+VNS: $c_{IL} = 0.0$, VNS sub-solver
- RL+HGS: $c_{IL} = 0.0$, HGS sub-solver
- IIL+VNS: $c_{IL} = 0.1$, VNS sub-solver
- IIL+HGS: $c_{IL} = 0.1$, HGS sub-solver
- A.5 MORE EXPERIMENTAL RESULTS

We give more details for the experiments reported in the main body of the paper.

Instance	BKS	MDM	HGS	IIL+VNS	IIL+HGS
				(ours)	(ours)
ORTEC-n242-k12	123750	123750	123750	124456	123808
ORTEC-n323-k21	214071	214071	214071	215394	214125
ORTEC-n405-k18	200986	200986	200986	202962	200986
ORTEC-n455-k41	292485	292516	292516	294470	292516
ORTEC-n510-k23	184529	184529	184529	185507	184746
ORTEC-n701-k64	445543	445601	445541	450240	446537
Loggi-n401-k23	336903	336963	337065	337497	337206
Loggi-n501-k24	177176	177466	177428	178067	177078
Loggi-n601-k19	113155	113174	113181	113707	113225
Loggi-n601-k42	347059	347046	347052	349414	347082
Loggi-n901-k42	246301	246360	246441	249671	247143
Loggi-n1001-k31	284356	285521	285362	288820	285021
GAP (vs BKS)	0.00%	-0.05%	-0.05%	-0.77%	-0.09%

Table 6: Experimental results with Dataset 3

Table 7: Experimental results with Dataset 4

Instance	CW	MDM	HGS	IIL+VNS	IIL+HGS
Antwerp1	498422	486497	486959	490436	489367
Antwerp2	322902	305039	305190	307696	299575
Brussels1	532558	520643	527068	550138	522275
Brussels2	386048	366817	368166	375128	360741
Flanders1	7525575	7407580	7567917	8051525	7442533
Flanders2	4805608	4603333	4950737	4921000	4567692
Ghent1	490783	482315	485713	492605	482492
Ghent2	287371	272117	272165	275536	264491
Leuven1	200971	195102	194813	196665	195906
Leuven2	125613	114412	114458	114708	112974
GAP (vs BKS)	-8.00%	-3.63%	-4.89%	-6.71%	-2.95%

Table 8: Experimental results with Dataset 5

Instance	GA	SA	VNS	BACO	IIL+VNS	IIL+HGS
X-n143-k7	16489	16610	16028	15901	15884	15865
X-n214-k11	11762	11404	11324	11133	11152	10992
X-n351-k40	28008	27223	27065	26478	26654	26173
X-n459-k26	26048	27223	25371	24764	24906	24263
X-n573-k30	54190	51929	52182	53823	51663	51138
X-n685-k75	73926	72550	71345	70835	70043	69071
X-n749-k98	84035	81393	81002	80300	79794	78684
X-n819-k171	170966	165070	164290	164721	161833	159396
X-n916-k207	357392	342797	341650	342993	335912	334087
X-n1001-k43	78833	78054	77476	76297	76145	74097
GAP vs BKS	-4.57%	-2.65%	-1.08%	-0.43%	0.43%	1.88%
Running Time	-	-	5.5h	16.7h	6.1h	2.5h

Table 9: Experimental results with Dataset 6

Method	GAP vs Baseline	Running Time
VNS (baseline)	0.00%	77.7h
BACO	0.13%	113.2h
RL+VNS	1.33%	30.9h
RL+HGS	2.10%	26.2h
IRL+VNS	1.36%	39.2h
IRL+HGS	2.15%	31.3h

Instance	VNS	OR-	HGS	HGS	RL+	IIL+	RL+	IIL+
Instance	VIND	Tools	(30k)	(95%)	VNS	VNS	HGS	HGS
X-n101-k25	28588	27977	27591	27591	27858	28027	27591	27591
X-n106-k14	26740	26758	26421	26421	26419	26583	26397	26375
X-n110-k13	15264	15100	14971	14971	14985	15121	14971	14971
X-n115-k10	12823	12808	12747	12747	12816	12823	12747	12747
X-n120-k6	13746	13502	13332	13332	13429	13418	13332	13332
X-n125-k30	56555	56853	55542	55546	56448	56348	55549	55542
X-n129-k18	29709	29722	28940	28940	29007	29018	28940	28940
X-n134-k13	11206	11171	10916	10916	11010	11003	10916	10916
X-n139-k10	13793	13741	13590	13590	13704	13738	13590	13590
X-n143-k7	16432	16136	15700	15700	15786	15879	15700	15700
X-n148-k46	43986	44599	43448	43448	43962	43741	43448	43448
X-n153-k22	22292	21789	21225	21225	22032	21589	21225	21225
X-n157-k13	16972	17138	16876	16876	16894	16923	16876	16876
X-n162-k11	14263	14262	14138	14138	14174	14179	14138	14138
X-n167-k10	21143	21176	20557	20557	20969	20949	20557	20557
X-n172-k51	46543	46875	45607	45607	46223	45812	45607	45607
X-n176-k26	48971	49260	47812	47812	48888	48865	47815	47837
X-n181-k23	25828	25936	25569	25579	25681	25637	25575	25575
X-n186-k15	24787	24908	24145	24147	24662	24542	24145	24145
X-n190-k8	17432	17422	17011	17039	17323	17276	17017	17029
X-n195-k51	45297	46151	44225	44274	44767	44651	44225	44225
X-n200-k36	60127	60448	58624	58632	60034	59952	58623	58608
X-n204-k19	19960	20348	19570	19570	19820	19809	19566	19565
X-n209-k16	31658	31776	30676	30680	31302	31141	30659	30683
X-n214-k11	11296	11374	10880	10932	11180	11076	10873	10863
X-n219-k73	117935	118038	117606	117626	117819	117700	117595	117610
X-n223-k34	41540	42047	40437	40497	41135	41024	40496	40559
X-n228-k23	26199	26613	25743	25745	26472	26325	25743	25745
X-n233-k16	19833	19884	19230	19255	19588	19405	19230	19234
X-n237-k14	27647	27928	27042	27042	27549	27437	27042	27044
X-n242-k48	84081	85518	82846	83103	84164	83799	82898	83239
X-n247-k50	38533	38283	37302	37377	38096	38075	37299	37300
X-n251-k28	39552	40088	38805	38886	39418	39217	38724	38776
X-n256-k16	19283	19295	18880	18880	19107	19120	18876	18880
X-n261-k13	27352	27921	26621	26652	27170	27073	26627	26621
X-n266-k58	77507	77661	75811	76122	76814	76751	75886	75867
X-n270-k35	36111	36701	35303	35356	35935	35868	35319	35304
X-n275-k28	21815	22087	21245	21271	21554	21453	21245	21250
X-n280-k17	34659	35056	33558	33601	34320	34203	33551	33615
X-n284-k15	20878	21138	20288	20299	20901	20730	20327	20317
X-n289-k60	97897	98561	95530	95738	96986	96906	95665	95408
X-n294-k50	48203	49302	47225	47247	48052	47755	47227	47222
X-n298-k31	35532	36971	34291	34291	34985	35324	34240	34275
X-n303-k21	22543	22574	21843	21867	22137	22081	21797	21763
X-n308-k13	26605	27141	25891	25906	26426	26667	25890	25920
X-n313-k71	96628	97497	94284	94458	95776	95709	94207	94090
X-n317-k53	79129	79211	78400	78420	78671	78612	78400	78379
X-n322-k28	30991	31489	29941	29965	30560	30324	29908	29834
X-n327-k20	28867	28778	27582	27608	28450	28103	27587	27592
X-n331-k15	32125	32648	31116	31150	31877	31623	31152	31105

Table 10: Detail scores for Dataset 3 (part I)

Instance	VNS	OR-	HGS	HGS	RL+	IIL+	RL+	IIL+
mstance	VIG	Tools	(30k)	(95%)	VNS	VNS	HGS	HGS
X-n336-k84	142258	143295	140048	140414	141908	141476	139671	139295
X-n344-k43	43368	44036	42147	42147	43075	43041	42091	42080
X-n351-k40	26578	27434	26023	26046	26594	26472	25990	25959
X-n359-k29	53538	53858	51788	52080	52792	52652	51844	51727
X-n367-k17	23987	23874	22814	22818	23605	23306	22828	22822
X-n376-k94	148355	148776	147757	147946	148256	148054	147823	147749
X-n384-k52	68423	69022	66118	66233	67711	67239	66171	66115
X-n393-k38	39856	40786	38319	38527	39375	39131	38298	38373
X-n401-k29	67771	68249	66365	66487	67478	67053	66450	66431
X-n411-k19	20624	20811	19751	19797	20190	20095	19751	19736
X-n420-k130	110505	111594	107937	108084	109704	109127	107917	107890
X-n429-k61	67499	68858	65622	65810	67093	66602	65554	65518
X-n439-k37	37074	37655	36430	36431	37063	36870	36417	36434
X-n449-k29	58101	58427	55693	55852	57179	56968	55777	55562
X-n459-k26	25535	25835	24211	24236	24921	24783	24176	24160
X-n469-k138	230351	230963	223359	224071	227018	225629	222876	222550
X-n480-k70	91887	92923	89775	89876	91496	90952	89691	89897
X-n491-k59	68555	70817	66911	67208	68399	67880	67042	66802
X-n502-k39	69971	70167	69272	69312	69680	69615	69276	69315
X-n513-k21	25414	25846	24236	24236	24776	24731	24259	24281
X-n524-k153	157354	156897	154898	155103	157963	157243	154714	154859
X-n536-k96	98060	99576	95293	95653	97051	96391	95395	95141
X-n548-k50	88752	89383	86974	87065	88131	87860	86883	87009
X-n561-k42	44378	45759	42809	42829	44003	43931	42762	42819
X-n573-k30	52059	52437	50909	51110	51405	51393	50969	50871
X-n586-k159	197669	198347	191043	191890	193932	193017	190960	191168
X-n599-k92	112460	113381	109467	109966	111220	110622	108933	108700
X-n613-k62	62205	64074	59865	60105	61308	61045	59907	59735
X-n627-k43	64805	64898	62558	62760	64502	64064	62704	62561
X-n641-k35	66801	66862	64217	64485	66165	65965	64275	64015
X-n655-k131	107469	107816	106857	106961	107367	107200	106925	106961
X-n670-k130	150623	151874	146838	147390	152982	152381	146856	146720
X-n685-k75	71130	74086	68502	68676	70005	69826	68536	68518
X-n701-k44	85231	87060	82852	83175	84531	84458	82830	83026
X-n716-k35	45519	46013	43640	43791	44990	44535	44032	43919
X-n733-k159	139838	143829	136613	137173	139030	138475	136653	136841
X-n749-k98	80269	82813	78113	78459	79526	79287	78162	77896
X-n766-k71	119155	123106	114965	115425	118121	117951	115346	115237
X-n783-k48	76475	77519	73457	73812	75216	74739	73232	73086
X-n801-k40	76461	76428	73617	73934	75811	75076	73686	73703
X-n819-k171	164244	165074	158870	159631	161557	161126	159037	158729
X-n837-k142	199937	201837	195237	196195	197979	196878	195398	195419
X-n856-k95	90906	91614	89060	89126	90240	89948	89085	89208
X-n876-k59	102839	103576	100317	100769	101791	101339	100376	100433
X-n895-k37	57365	58192	54320	54588	56280	56209	54308	54190
X-n916-k207	340623	342127	331472	331993	335394	333588	331754	331691
X-n936-k151	138629	140479	133426	133754	139309	137563	133279	133113
X-n957-k87	88487	88603	85821	86086	87295	86765	85605	85757
X-n979-k58	122827	123885	120070	120255	123360	122935	119927	119697
X-n1001-k43	76363	78085	73509	74002	75588	75011	73411	73354
							•	

Table 11: Detail scores for Dataset 3 (part II)

Instance	Index	VNS	BACO	RL+VNS	IIL+VNS	RL+HGS	IIL+HGS
X-n143-k7	min	16028.1	15901.2	15894.6	15883.7	15865.2	15865.2
	mean	16459.3	16031.5	15935.5	16068.3	15877.8	15878.6
	std	242.6	262.5	48.0	117.1	5.7	5.0
X-n214-k11	min	11323.6	11133.1	11199.3	11152.3	11018.9	10991.8
	mean	11482.2	11219.7	11277.7	11274.2	11026.7	11025.6
	std	76.1	46.3	63.3	67.8	8.2	14.0
X-n351-k40	min	27064.9	26478.3	26806.1	26653.6	26280.5	26172.8
	mean	27217.8	26593.2	26831.3	26792.2	26322.4	26271.0
	std	86.2	72.9	21.6	79.1	26.5	42.1
X-n459-k26	min	25370.8	24763.9	25050.8	24905.7	24338.1	24263.3
	mean	25582.3	24916.6	25080.6	25046.9	24363.2	24357.2
	std	106.9	94.1	28.6	81.2	19.1	55.0
X-n573-k30	min	52181.5	53822.9	51774.5	51662.6	51264.7	51138.1
	mean	52548.1	54567.2	51942.9	51861.3	51342.6	51361.4
	std	278.9	231.1	133.9	131.6	52.0	113.7
X-n685-k75	min	71345.4	70834.9	70265.6	70043.2	69197.4	69071.4
	mean	71770.6	71440.6	70527.3	70415.3	69244.6	69185.4
	std	197.1	281.8	169.3	177.4	42.3	65.6
X-n749-k98	min	81002.0	80299.8	79989.7	79794.3	79001.3	78683.9
	mean	81327.4	80694.5	80274.1	80074.2	79062.5	78899.5
	std	176.2	223.9	166.4	138.3	79.7	104.8
X-n819-k171	min	164290.0	164720.8	162261.4	161832.7	159766.9	159396.0
	mean	81327.4	80694.5	162611.1	162093.5	159852.6	159607.8
	std	176.2	223.9	181.4	146.7	53.9	103.0
X-n916-k207	min	341649.9	342993.0	337513.5	335911.8	333647.2	334086.8
	mean	342460.7	345000.0	337977.5	336633.8	333990.3	334554.1
	std	510.7	905.7	252.8	350.0	158.2	254.6
X-n1001-k43	min	77476.4	76297.1	76543.9	76145.4	74231.4	74097.1
	mean	77920.5	77434.3	76778.8	76538.8	74485.5	74483.4
	std	234.7	719.9	127.4	257.1	161.4	167.9

Table 12: Detail scores for Dataset 5.

Figure 7: Visualization of several optimal solutions found by our methods