Under review as a conference paper at ICLR 2023

IMITATION IMPROVEMENT LEARNING FOR L ARGE-
SCALE CAPACITATED VEHICLE ROUTING PROBLEMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent works using deep reinforcement learning (RL) to solve routing problems
such as the capacitated vehicle routing problem (CVRP) have focused on improve-
ment learning-based methods, which involve improving a given solution until it
becomes near-optimal. Although adequate solutions can be achieved for small
problem instances, their efficiency degrades for large-scale ones. In this work, we
propose a new improvement learning-based framework based on imitation learn-
ing where classical heuristics serve as experts to encourage the policy model to
mimic and produce similar or better solutions. Moreover, to improve scalability,
we propose Clockwise Clustering, anovel augmented framework for decomposing
large-scale CVRP into subproblems by clustering sequentially nodes in clockwise
order, and then learning to solve them simultaneously. Our approaches enhance
state-of-the-art CVRP solvers while attaining competitive solution quality on sev-
eral well-known datasets, including real-world instances with sizes up to 30,000
nodes. Our best methods are able to achieve new state-of-the-art results for sev-
eral large instances and generalize to a wide range of CVRP variants and solvers.
We also contribute new datasets and results to test the generalizability of our deep
RL algorithms.

1 INTRODUCTION

We study the vehicle routing problems (VRP), an important class of combinatorial optimization
problems which has a wide range of applications in logistics (Laporte, [2009). Capacitated vehicle
routing problem (CVRP) is a basic variant of VRP, aiming to find a set of routes that minimize the
cost and fulfill the demands of a set of customers without violating vehicle capacity constraints. The
CVRP is NP-hard (Dantzig & Ramser, [1959; |[Lenstra & Kan, [1981), and both exact and heuristic
methods have been developed to solve it (Golden et al., 2008 |Kumar & Panneerselvam, 2012} Toth
& Vigo,|2014). In recent years, especially after the seminal work of Pointer Networks (Vinyals et al.,
2015) and Graph Neural Networks (Prates et al.,[2019)), researchers have started to develop new deep
learning and reinforcement learning (RL) frameworks to solve combinatorial optimization problems
(Nazari et al., [2018; Bello et al.| 2017; | Khalil et al.| 2017} |Velickovic et al.| 2018} Kool et al.,[2019;
Chen & Tian, 2019). The idea behind the RL algorithms is that a machine learning method could
learn better heuristics by extracting useful information directly from data, rather than having an
explicitly programmed behavior like heuristic methods. In fact, it has been known that, even though
heuristics would get stuck in local optimums, they often offer stable and high-quality solutions,
especially for large-scale instances and when the problem involves complex constraints. The RL
approach is better in exploring new solutions and escaping from local optimums, but needs time to
train and would be unstable with complex constraints. This motivates us to combine heuristics and
RL in such a way that RL can learn and benefit from heuristic operators.

In this work, we propose an imitation reinforcement learning algorithm trained via policy gradient
to learn improvement heuristics based on k-opt moves and treat advanced heuristics (e.g., VNS or
HGS) as experts to teach the policy model. Our work aims to enhance the deep RL process via
heuristic methods and address scalability by learning from smaller sub-problems simultaneously.
That is, for each step, a certain amount of nodes are selected in turn clockwise, following by an
initial solution, to form sub-problems to our RL policy for ease of learning. In fact, our clockwise
mechanism offers a good initial solution structure and a natural way to decompose the whole prob-
lem into sub-problems that can be solved and learned simultaneously. Moreover, a solution returned

Under review as a conference paper at ICLR 2023

by the RL policy model will be fed to a heuristic method to be further improved. Solutions from
heuristics are also collected to build an imitation learning model that will be integrated back into the
RL policy to persuade the RL to produce similar solutions.

In summary, by combining the clockwise framework, heuristic methods and imitation learning, we
bring several advantages to the same place:

(1) Starting with poor quality solutions, we first use heuristics to improve solutions, and heuris-
tic operators are learned and imitated by deep learning networks (i.e., generative adversar-
ial imitation learning (Ho & Ermon, 2016))) to generate similar or better solutions at each
step. In fact, by letting deep RL and imitation learning work together in an iterative man-
ner, we encourage the algorithm to both explore new solutions (by deep RL) and exploit
operators that lead to high-quality solutions (i.e. imitation learning mimicking heuristics).

(i) The whole network is clustered into smaller sub-problems of similar distributions, allowing
our algorithms to process them quickly and scale up.

(iii) Heuristics play as experienced experts (or teacher/corrector) that help the deep RL generate
more stable and high-quality solutions. Faster convergence is to be expected with the pow-
erful performance of heuristic methods. Moreover, since solutions are always corrected
by heuristics to ensure feasibility, the Policy Network doesn’t need to control infeasible
solutions.

Altogether, we make the following contributions:

* We propose Imitation Improvement Learning, a new learning-based framework using pol-
icy gradient with a heuristic method that serves as an expert/teacher to correct and improve
any solution to ensure feasibility and teach the policy gradient to generate high-quality
solutions.

* We propose Clockwise Clustering, a recursive sub-problem decomposition framework to
handle large-scale CVRP instances.

* We offer new state-of-the-art solutions for some well-known large-scale CVRP instances.

Our experiments demonstrate the scalability of our Clockwise Clustering in solving large-scale real-
world instances, the benefits of using imitation learning to get high-quality solutions, and the gener-
alizability of our learning-based model in solving instances of similar distributions.

2 RELATED WORK

Heuristics for solving combinatorial optimization problems have been developed for decades. The
most powerful methods, such as local search (Crama et al.L[1995), genetic algorithms (Heiss-Czedik,
1997)), and ant colony methods (Lopez-Ibanez, 2010), involve iteratively improving solutions in a
hand-designed neighborhood search. For example, move, swap (Wu et al.,|2016)), and 2-opt (Croes),
1958)) are well-known heuristics for the traveling salesman and vehicle routing problems. Exam-
ples of the state-of-the-art heuristic algorithms for the CVPR would be the HGS (Vidal, 2022;
Vidal et al [2012) that uses a hybrid genetic and local search procedure to achieve state-of-the-art
solution qualities on instances of sizes up to 1000, or the LKH-3 (Helsgaun, [2017) that uses the
Lin-Kernighan heuristic (Lin & Kernighan, [1973) as a backbone, which involves swapping pairs
of sub-routes to create new routes. For large-scale problem instances, low-level heuristics are of-
ten combined with meta-heuristics to achieve good performance, e.g., Tabu Search with Adaptive
Memory (Taillard et al.,|2001), Knowledge-Guided Local Search (Voudouris & Tsang, |2003), Large
Neighborhood Search (Shaw, [1998)), Quantum Annealing (Syrichas & Crispin, |2017)), Pruning and
Sequential Search (Arnold et al., 2019)), Spatial Partitioning Strategies (Tu et al.L|2017), Constrained
Clustering (Alesiani et al.,|2022) and Cluster-First Route-Second (Shalaby et al., 2021).

In recent years, there have been a number of studies focusing on using deep RL to solve combina-
torial optimization problems. Those models are categorized into two classes, i.e., construction and
improvement methods (Kwon et al., 2020):

* Construction methods (Nazari et al., |2018; Kool et al.,[2019): Starting with an empty solu-
tion, a construction method constructs a solution by sequentially assigning each customer

Under review as a conference paper at ICLR 2023

to a vehicle until all customers are served. Construction methods still require additional
procedures such as beam search, classical improvement heuristics, and sampling to achieve
such results.

» Improvement methods (Chen & 'Tian| 2019; Hottung & Tierney, 2019): Starting with a
complete initial solution, the methods select either candidate nodes (customers or depot)
or heuristic operators (or both) to improve and update the solution at each step. This is re-
peated until termination. Here, if one can learn a policy to improve a solution, such a policy
can be used to obtain better solutions from a construction heuristic or even random solu-
tions. Studies have shown that improvement methods are able to provide better solutions
than construction ones (Lu et al., 2020; |da Costa et al., 2021).

Deep RL approaches have achieved competitive results as compared to classical heuristics. For
example, Lu et al.[(2020) propose Learning-to-improve based on Meta-controller learning, which
outperforms LKH-3 but only works on small-scale problems. |da Costa et al.| (2021) propose Learn-
ing 2-opt based on learning from local search operations, which also only works with small-scale
problem instances. Recently, Li et al.|(2021) develop a learning to delegate approach in which sub-
problem are selected and learned. This method outperforms LKH-3 and works well with uniformly
large-scale problems. It is moreover quite scalable and is efficient for generalization. However,
since the approach requires a large dataset of instances for training and similar data distributions for
testing, the performance on non-uniform large-scale CVRP instances such as CVRPLIB would be
poor. In fact, there are very few learning-based experimental studies on very large-scale instances.
Although deep RL’s learnability is appealing, trajectory collection becomes prohibitively expensive
for large-scale problem instances.

3 BACKGROUND

3.1 CAPACITATED VEHICLE ROUTING PROBLEMS

CVRP can be defined by a fully connected weighted graph G = (V, A), where V = {0 U I} stands
for a set of nodes and A = {(4, j)|i,j € V,i # j} denotes a set of arcs connecting these nodes. Set
I denotes the set of customers and 0 denotes the central depot. Each arc of the network is associated
with a non-negative value d;; = ||z; — ||, representing the distance between two nodes ¢ and j,
where z;, x; are vectors of spatial coordinates of nodes ¢ and j, respectively. Each customer k € I
is assigned a positive demand b; > 0. At central depot, the demand b is set to 0. We also let
B = {bi|k € I} denote the set of demands. The objective function of the CVRP, assuming that the
fleet of vehicles is homogeneous, is to seek a set of routes that minimize the total traveling distance
such that each customer is visited exactly once by exactly one vehicle. Vehicles start and end at
the depot and for every route, the total demand of customers does not exceed the maximal carrying
capacity C' > 0 of the vehicle. In Appendix we provide a more detailed description and a
mixed-integer formulation for the CVRP problem.

3.2 k-OPT HEURISTIC FOR THE CVRP

An improvement heuristic concerns a search procedure that iteratively improve feasible solutions.
A procedure can start with an initial solution Sy and iteratively search a better solution Sy from
a current solution S;. Local search methods such as Lin-Kernighan-Helsgaun (LKH) (Helsgaun,
2017) performs well for CVRP. The procedure seeks for k edge swaps (k-opt moves) that could be
replaced by new edges to form a shorter tour. Sequential pairwise operators such as k-opt moves
can be decomposed in simpler k’-opt ones (k' < k). For instance, sequential 3-opt operations can be
decomposed into one, two or three 2-opt operations. However, in local search algorithms, the qual-
ity of the initial solution usually affects the quality of the final solution, i.e. local search methods
can easily get stuck in local optima (Hansen & Mladenovic, 2006). To avoid local optima, differ-
ent meta-heuristics have been proposed, including Simulated Annealing and Tabu Search, which
work by accepting bad solutions to enhance exploration on the searching space. Meta-heuristics,
nevertheless, still require expert knowledge and rely on sub-optimal rules in their designs.

Under review as a conference paper at ICLR 2023

4 CLOCKWISE CLUSTERING

In this section we formally introduce the “Clockwise Clustering” framework, our method for solving
large-scale CVRPs. Figure [§illustrates an overview of this framework. From a large-scale instance
input (G, B, C), we generate an initial solution Sy by a clock-hand initializer, an simple procedure
that arranges all nodes in clockwise order and sequentially groups nodes into tours satisfying that the
total demand of each tour is not greater than the demand capacity C'. Clock-hand initializer basically
produces a feasible solution that all tours T' = [t, ¢, ..., t,,.] are ordered in clockwise direction.
Note that sorting tours in clockwise direction means that tours are arranged by the angle between
y-axis and the line connecting the centroid point and the depot of each tour. The first u tours (i.e.,
a proportion of all the tours) [tq,ta, ..., t,] are then selected to form a sub-instance (Gsup, B, C).
Here, only a subset of tours is selected to process, instead of all the tours, to enhance the scalability.
After solving this sub-instance by the Imitation Improvement Learning framework (described in the
next section), we then send the first v tours of the returned sub-solution to a sub-solution buffer to
keep the results. The unprocessed tours and nodes are then collected and sent back to the beginning
of the cycle loop for the next round of the Imitation Improvement Learning. When all the nodes
are processed, we take the processed tours from the sub-solution buffer to build a complete (and
feasible) solution S; of G. After that, S; could be processed same as Sy to create new solutions Ss,
Ss, 54, We accept bad solutions to allow more exploration on the search space. After a certain
number of loops, we return the best solution among {51, Sa, Ss, ... }. We provide an overview of the
framework in Appendix[A.2]

The clock-hand initializer offers a good initial solution and a natural way to decompose the whole
problem into sub-problems of similar distributions, allowing heuristics to process them quickly and
providing RL with sub-instances of similar distributions for efficient training. The learning-to-
delegate framework (Li et al., [2021)) also endeavors to select sub-problems to improve scalability,
but differ from our approach by the fact that the learning-to-delegate learns to select sub-problems
and uses traditional heuristics (HGS/LKH3) with a huge number of running steps to achieve good
sub-instance selections. Instead, our method does not requires such a large number of steps as the
sub-instance decomposition is embedded as part of the heuristic loop and cooperates with heuristics
so both will be improved over iterations.

A Unprocessed
A Sub-problem
A Stacked

Unstacked

Instance Solution

Figure 1: A visualization of the Clockwise Clustering framework: The clock-hand initializer is
used to construct an initial solution. At each round, a small proportion of the tours are selected
to form a sub-problem and sent to Imitation Improvement Learning to improve. A majority of the
output are kept in a sub-solution buffer (stacked) and the remaining portion (unstacked) is merged
with unprocessed tours to start the next round. Once all nodes are processed, we get all the sub-
solutions from the sub-solution buffer and build a complete solution, save it and start a new round
with the new solution to further improve it.

Under review as a conference paper at ICLR 2023

S5 IMITATION IMPROVEMENT LEARNING

In this section, we present our Imitation Improvement Learning (IIL) framework, a main compo-
nent of the Clockwise Clustering for solving sub-instances. Figure [2] provides an overview of the
framework. Our framework is iterative in nature; a sub-solution S is improved after each cycle loop.
Starting with an initial sub-solution as S, a state s(G, S, B, C) is forwarded to a neural encoder-
decoder network to approximate the stochastic policy 7y (a|s), where 6 are trainable parameters.
The value function Vj, (s) is also a neural network, where ¢ are trainable parameters. This platform
uses policy gradient to optimize the parameters of the policy and value functions of the RL network.
Here, thanks to the Clockwise Clustering platform, the sub-instances sent to IIL are significantly
smaller in size, as compared to the original instance and have similar distributions. This matches
the ability of learning-based RL models to produce high-quality solutions for small-sized instances
(Chen & Tian, [2019; |Hottung & Tierney, 2019). Intuitively, a good RL policy model would provide
the heuristics with better local search space, leading to better expert solutions to further teach and
improve the RL through imitation learning.

Initial solution

4 " N
Solution](—[Expert solution

; ‘ h Perturbation
T
Decoder :

Replay
buffer

Heuristics

Local search

A

\\ \—)@7 3| Student solution /

\4

Best solution

Figure 2: An overview of our Imitation Improvement Learning framework: Starting with an
initial sub-solution S, the input is forwarded to an imitation cycle loop between RL Policy (student)
and Heuristics (expert) to be improved after each iteration. At each iteration, the RL Policy, together
with k-opt operators, generate a student solution and brings it directly to the traditional heuristics’s
local search to produce an expert solution. These two solutions are used to calculate rewards and
imitation loss for training RL policy with policy gradient.

5.1 IMITATION LEARNING WITH EXPERTS

The key component of the IIL framework is an imitation learning model that use heuristics’ solutions
to teach the RL policy to generate high-quality solutions. More precisely, the RL policy model acts
as a student who wants to learn from experts. Classical heuristics are ideal experts, which are also
iterative and are able to generate good solutions quickly. Combining the loop of RL policy (student)
and heuristics (expert), we have a closed loop where the imitation learning model encourages the
RL policy to mimic the heuristics’ policy. To train the imitation learning model, we employ the
generative adversarial imitation learning (GAIL) algorithm (Ho & Ermonl [2016), which is based
on a discriminative neural model Djs to distinguish between solutions generated by the RL policy and
the expert’s (i.e. heuristics) policy, where § are trainable parameters. The objective of the GAIL is
max, ming B, [log (Ds (s,a))] + Ex, [log (1 — Ds (s, a))], where 7 refers to the experts’ policy.
By solving the max-min problem, one can force the RL policy to generate solutions that are similar
to those generated by the expert’s policy.

Under review as a conference paper at ICLR 2023

5.2 IMPROVEMENT LEARNING WITH k-OPT MOVES

Inspired by the Learning 2-opt algorithm (da Costa et al., 2021)), our framework aims to select k
different nodes and swap its edges to form a student solution. The RL policy samples an action a
which contains & nodes in I used for k-opt moves to generate a student solution Ssyden:. After
that, this solution is forwarded to the Local Search component of classical heuristics to get an expert
solution Segpert. The heuristics don’t need to be refreshed after generating this solution. Expert
solution S¢per+ continues to be forwarded to RL policy for a new loop. Rewards are computed by
the different cost values of input and output solutions. For each step, replay buffer D collects states,
actions, rewards and expert/student solutions for updating model parameters via policy gradient with
RL loss and imitation learning loss.

5.3 NETWORK ARCHITECTURE

Our neural network is based on an encoder-decoder architecture (a detailed description is given in
appendix). The encoder learns representations that embed graph topology. We create node features
X e RIVIx3 (x-coordinate, y-coordinate, and demand rate), edge features E € RIAIx2 (euclidean
distance and radian angle between each edge and x-axis), and import them into the Residual E-GAT
(Lei et al., |2021) for feature extraction. Given these representations, the policy decoder samples
action indices a1, as, ..., ax sequentially for k-opt. We aim to learn the parameters of a stochastic
policy mg(a|s) that, given a state s, assigns high probabilities to moves that reduce the cost of a
tour. Our architecture uses a chain rule to factorize the probability of a k-opt move as my(als) =

Hle po(a;|s). We use a pointing mechanism (da Costa et al.,2021)) to predict a distribution over
node outputs given encoded actions (nodes) and a state representation (query vector). The value
decoder operates on the same encoder outputs but outputs real-valued estimates of state values. We
give more details of network architecture in Appendix

5.4 LoSSs FUNCTION

We use PPO (Schulman et al) [2017) for policy gradient optimization with the loss function
Er, [LEFC]. We also add an imitation loss to for imitation learning, leading to the following overall
loss

ﬁgL — EfQPO +ecrr {n%in]Ewe [log (Ds (s,a))] + E, [log (1 — Ds (s,a))]}

Where the first term is the PPO loss from standard RL policy and the second term (with weight
parameter cyy,) is from the imitation learning model. By optimizing maxg]ET[E%L], we seek for a
policy that both maximizes the standard long-term reward function of the RL policy and mimics the
heuristics’ policy. Intuitively, the first term of the loss function is to encourage exploration of new
solutions and the second term is to exploit high-quality solutions from heuristics.

6 EXPERIMENTS AND RESULTS

We provide extensive experimental results based on some large-scale well-known CVRP datasets,
targeting the following questions.

(i) By using heuristic methods as an expert/teacher for the policy model, can our Imitation
Improvement Learning framework outperform the standing-alone heuristics?

(i) Can the Clockwise Clustering and Imitation Improvement Learning frameworks help us
solve very-large-scale instances with competitive performance?

(iii)) Can our frameworks generalize to other instance sets of similar distributions?
(iv) Can our algorithms offer new state-of-the-art (SOTA) solutions for some popular CVRP

instances?

Below, we present our datasets and our comparison results. Other details can be found in the ap-
pendix.

Under review as a conference paper at ICLR 2023

6.1 DATASET

We benchmark our frameworks using large-scale instances from three recent datasets from CVR-
PLIB (http://vrp.atd-lab.inf.puc-rio.br/index.php/en/), which is known to
be challenging for both heuristic and learning-based methods. To test the generalizability of our
clockwise clustering (CC) and IIL method, we experiment on an uniform dataset from |Li et al.
(2021). We also benchmark on constrained electrical vehicle routing (CEVRP) datasets, a CVRP
variant for electrical vehicles with battery constraints. For this, Mavrovouniotis et al.| (2020) con-
tribute a large-scale CEVRP dataset containing 17 instances. Same as CVRP, we test the general-
izability of our approaches in CEVRP by using this dataset to train the RL policy and uniformly
generating 238 new instances to serve as a test set.

Six datasets used for benchmarking are listed in Table[1} First, we try to test the efficiency of our
algorithms, compared to the heuristic counterparts, using Dataset 1. Next, we test the generaliz-
ability of our model by learning with a train set and evaluating with another test set of Dataset 2.
We then benchmark our algorithms with two real-world large-scale datasets, called as Dataset 3&4,
which are collected in Brazil and Belgium, respectively. Although most of the CVRP datasets use
2D euclidean distances, the DIMACS dataset (Dataset 3) use weights specifically defined for pairs
of nodes. For CEVRP, we benchmark with instances from Mavrovouniotis et al.| (2020) (named as
Dataset 5) and our newly generated instances (Dataset 6).

Table 1: Datasets.

Dataset Source VRP Type | Distance Space | #instances | # customers
1 Uchoa et al.|(2017) CVRP Euclidean 100 100-1000
2 Li et al.[(2021) CVRP Euclidean 2000/40/40 500-2000
3 DIMACSﬂ CVRP Explicit 12 241-1000
4 | |Arnold et al.[(2019) CVRP Euclidean 10 3000-30000
5 | Mavrovouniotis et al.| (2020) CEVRP Euclidean 17 21-1000
6 Ours CEVRP Euclidean 238 21-1000

6.2 EXPERIMENTAL RESULTS AND ANALYSIS

With Dataset 1, we compare our methods with OR-tools, VNS, HILS [Subramanian et al.| (2013)),
KGLS |Arnold & Sorensen| (2019), SISR |Christiaens & Berghe| (2020), and HGS |Vidal| (2022). In-
stead of running HGS with full settings, we compare with HGS 30k steps and HGS 95% solution
quality, similarly to|Li et al| (2021). Table 2]reports the results from previous works and our results,
compared to the best known solutions (BKS) by GAP (percentage) scores, where IIL stands for our
Imitation Improvement Learning method and RL stands for our learning-based framework but with-
out the imitation learning loss. Our methods are clearly better than the corresponding standing-alone
heuristics (i.e., RL+VNS and IIL+VNS versus VNS, and RL+HGS and IIL+HGS versus HGS). For
instance, with HGS, our IIL method get —0.27% GAP vs BKS, better than —0.30% of HGS 30k
steps. In terms of running time, our algorithms need about 10 hours while HGS takes about 16 to
40 hours to finish. We do not report the running times of the other methods because they are not
reported in their respective papers, and these methods are clearly outperformed by our algorithms in
terms of solution quality. The results also indicate that our IIL framework works the best with HGS
sub-solver.

Table [3|shows a comparison of our best method IIL+HGS with previous results reported for Dataset
2 (Lietal.l[2021)). Note that all cost scores are divided by 1e5. Our costs are better than the previous
SOTA results obtained by Learning-to-delegate (L2D) (Li et al., [2021) for all the three sub-datasets.
Although we use only one CPU worker without GPU for evaluating but the running time of our
algorithm is just slightly longer than L2D (short).

Table[d)shows the results for Dataset 3 & 4. For Dataset 3, the classical HGS’s score is slightly better
than that of the IIL+HGS. Note that it’s a non-euclidean dataset so we are not able to set correctly the
node and edge features for our E-GAT encoder. It might affect the performance of our framework.

'The 12th DIMACS Implementation Challenge (http://dimacs.rutgers.edu/programs/
challenge/vrp/cvrp/cvrp—competition)

http://vrp.atd-lab.inf.puc-rio.br/index.php/en/
http://dimacs.rutgers.edu/programs/challenge/vrp/cvrp/cvrp-competition
http://dimacs.rutgers.edu/programs/challenge/vrp/cvrp/cvrp-competition

Under review as a conference paper at ICLR 2023

Table 2: Experimental results for Dataset 1.

Method GAP vs BKS
OR-tools -4.01%
VNS -3.08%
HILS -1.00%
KGLS -0.66%
SISR -0.54%
HGS (30k) -0.30%
HGS (95%) -0.48%
RL+VNS (ours) -2.15%
RL+HGS (ours) -0.31%
IIL+VNS (ours) -1.79%
IIL+HGS (ours) -0.27 %

Table 3: Experimental results for Dataset 2.

Method N=500. N=1000_ N=ZOOQ
Cost Time Cost Time Cost Time

LKH-3 (95%) 62.0 | 44min | 120.02 | 18min | 234.89 | 52min
LKH-3 (30k) 61.87 | 30min | 119.88 | 77min | 234.65 | 149min
OR-tools 65.59 | 15min | 126.52 | 15min | 244.65 | 15min
AM sampling 69.08 | 4.70s | 151.01 | 17.40s | 356.69 | 32.29s
AM greedy 68.58 | 25ms | 142.84 | S6ms | 307.86 | 147ms
NeuRewriter 73.6 58s 136.29 | 2.3min | 257.61 | 8.1min
Random 61.99 71s 120.02 | 3.2min | 234.88 | 6.4min
Count-based 61.99 59s 120.02 | 2.1min | 234.88 | 5.3min
Max Min 61.99 59s 120.02 | 2.5min | 234.89 | 5.2min
L2D (short) 61.99 38s 119.87 | 1.5min | 234.89 | 3.4min
L2D (long) 61.7 76s 119.55 | 3.0min | 233.86 | 6.8min
IIL+HGS (ours) | 60.49 68s 118.37 | 2.6min | 225.43 | 6.3min

In addition, initial solutions created by our clock-hand could be worst, making it difficult for our
Clockwise Clustering framework to split nodes into sub-instances. Nevertheless, we achieved a
new SOTA result for Loggi-n501-k24 instance; our solution cost is 177078, better than the previous
one 177176 reported by the CVRPLIB authors (http://vrp.galgos.inf.puc-rio.br/
index.php/en/updates/). For Dataset 4, even-though it contains very-large-scale instances
of sizes up to 30k, our IIL+HGS performs better than the classical HGS and any other methods.
We illustrate initial solutions (from the Clock-hand initializer) and our best solutions for two large
instances from Dataset 3&4 in Figure [3|and [4]

Table 4: GAP vs BKS (percentage) for two real-world datasets.

Methods Dataset 3 | Dataset 4
CW - -8.00%
MDM -0.05% -3.63%
HGS -0.05% -4.89%
IIL+VNS (ours) -0.77% -6.71%
IIL+HGS (ours) -0.09% -2.95%

@ 9

Table 5] reports results for large-scale CEVRP instances from Dataset 5& 6, where “-” indicates that
the information is not available from previous works. For these instances, battery information is
added to the node features. IIL+HGS outperforms other classical heuristics. Specifically, IL+HGS
gets a new SOTA results with 1.88% GAP vs BKS. Note that HGS does not support the CEVRP
variant with battery constraints, so we are not able to embed directly HGS library to our IIL frame-
work. To make it work, we add a post-processing step, similarly to the GRASP (Woller et al.,|2020),
to rebuild feasible solutions that fit the battery constraints. To test the generalizability of our ap-

http://vrp.galgos.inf.puc-rio.br/index.php/en/updates/
http://vrp.galgos.inf.puc-rio.br/index.php/en/updates/

Under review as a conference paper at ICLR 2023

Initial solution - cost: 1406303 IIL+VNS - cost: 288820 IIL+HGS - cost: 285021

Figure 3: Instance Loggi-n1001-k31 from Dataset 3, which does not support 2D Euclidean space.

Brussels Flanders

Figure 4: Solutions generated by IIL+HGS for two very-large-scale instances of Dataset 4, which
represent the real-world maps of Brussels & Flanders, Belgium with sizes up to 30k.

proach, we run our IIL algorithms on Dataset 6 and compare the results with VNS and BACO (.e.,
SOTA algorithms for the CEVRP instances), which clearly shows that IIL+HGS is much better than
the heuristics in terms of both solution quality and running time.

Table 5: Experimental results for CEVRP datasets

Methods Dataset 5 ‘ Dataset 6]

GAP vs BKS | Time | GAP vs BKS Time

GA -4.57% - - -

SA -2.65% - - -
VNS -1.08% 5.5h 0.00% 77.7h
BACO -0.43% 16.7h 0.13% 113.2h
IIL+VNS (ours) 0.43% 6.1h 1.36% 39.2h
TIL+HGS (ours) 1.88% 2.5h 2.15% 31.3h

7 CONCLUSION

We proposed a new learning-based framework for CVRP, which employs heuristic methods as an
expert to teach the RL policy model to generate high-quality solutions. To enhance the scalability
and take the advantage of the RL approaches in learning from similar instances, we propose the
Clockwise Clustering framework that offers good initial solutions and a nature way to decompose
the whole instances into sub-instances of similar distributions. We benchmarked on several popular
large-scale CVRP instances of sizes up to 30k, showing that our proposed algorithms outperform
the respective standing-alone heuristics and offer competitive solutions, compared to previous SOTA
algorithms. Our methods also archive new best solutions for several instances and generalize for a
wide range of CVRP distributions and solvers.

Our work highlights the effectiveness of using generative adversarial imitation learning to help RL
and heuristic methods work together in an iterative manner. An interesting direction for future work
may extend our frameworks to other challenging combinatorial optimization problems.

Under review as a conference paper at ICLR 2023

REFERENCES

Francesco Alesiani, Giilcin Ermis, and Konstantinos Gkiotsalitis. Constrained clustering for the
capacitated vehicle routing problem (cc-cvrp). Applied Artificial Intelligence, 2022.

Florian Arnold and Kenneth Sérensen. What makes a vrp solution good? the generation of problem-
specific knowledge for heuristics. Comput. Oper. Res., 106:280-288, 2019.

Florian Arnold, Michel Gendreau, and Kenneth Sorensen. Efficiently solving very large-scale rout-
ing problems. Comput. Oper. Res., 107:32-42, 2019.

Irwan Bello, Hieu Pham, Quoc V. Le, Mohammad Norouzi, and Samy Bengio. Neural combinatorial
optimization with reinforcement learning. ArXiv, abs/1611.09940, 2017.

Xinyun Chen and Yuandong Tian. Learning to perform local rewriting for combinatorial optimiza-
tion. In NeurIPS, 2019.

Johan Christiaens and Greet Vanden Berghe. Slack induction by string removals for vehicle routing
problems. Transp. Sci., 54:417-433, 2020.

Yves Crama, Antoon W. J. Kolen, and Erwin Pesch. Local search in combinatorial optimization. In
Artificial Neural Networks, 1995.

G. A. Croes. A method for solving traveling-salesman problems. Operations Research, 6:791-812,
1958.

Paulo da Costa, Jason Rhuggenaath, Yingqian Zhang, Alp Eren Akcay, and Uzay Kaymak. Learning
2-opt heuristics for routing problems via deep reinforcement learning. SN Comput. Sci., 2:388,
2021.

G. B. Dantzig and J. H. Ramser. The truck dispatching problem. Management Science, 6(1):80-91,
1959. doi: 10.1287/mnsc.6.1.80.

Bruce L. Golden, Sriram Raghavan, and Edward A. Wasil. The vehicle routing problem : latest
advances and new challenges. 2008.

Pierre Hansen and Nenad Mladenovi¢. First vs. best improvement: An empirical study. Discret.
Appl. Math., 154:802-817, 2006.

Dorothea Heiss-Czedik. An introduction to genetic algorithms. Artificial Life, 3:63-65, 1997.

Keld Helsgaun. An extension of the lin-kernighan-helsgaun tsp solver for constrained traveling
salesman and vehicle routing problems. 12 2017. doi: 10.13140/RG.2.2.25569.40807.

Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. Advances in neural
information processing systems, 29, 2016.

André Hottung and Kevin Tierney. Neural large neighborhood search for the capacitated vehicle
routing problem. arXiv preprint arXiv:1911.09539, 2019.

Elias Boutros Khalil, Hanjun Dai, Yuyu Zhang, Bistra N. Dilkina, and Le Song. Learning combina-
torial optimization algorithms over graphs. In NIPS, 2017.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. CoRR,
abs/1412.6980, 2015.

Wouter Kool, Herke van Hoof, and Max Welling. Attention, learn to solve routing problems! In
ICLR, 2019.

Suresh Kumar and Ramasamy Panneerselvam. A survey on the vehicle routing problem and its
variants. Intelligent Information Management, 4:66-74, 2012.

Yeong-Dae Kwon, Jinho Choo, Byoungjip Kim, Iljoo Yoon, Youngjune Gwon, and Seungjai Min.
Pomo: Policy optimization with multiple optima for reinforcement learning. Advances in Neural
Information Processing Systems, 33:21188-21198, 2020.

10

Under review as a conference paper at ICLR 2023

Gilbert Laporte. Fifty years of vehicle routing. Transportation science, 43(4):408—416, 2009.

Kun Lei, Peng Guo, Yi Wang, Xiao Wu, and Wenchao Zhao. Solve routing problems with a residual
edge-graph attention neural network. ArXiv, abs/2105.02730, 2021.

Jan Karel Lenstra and Alexander H. G. Rinnooy Kan. Complexity of vehicle routing and scheduling
problems. Networks, 11:221-227, 1981.

Sirui Li, Zhongxia Yan, and Cathy Wu. Learning to delegate for large-scale vehicle routing. In
NeurlPS, 2021.

S. Lin and Brian W. Kernighan. An effective heuristic algorithm for the traveling-salesman problem.
Oper. Res., 21:498-516, 1973.

Manuel Lépez-Ibafiez. Ant colony optimization. In GECCO 10, 2010.
Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In ICLR, 2019.

Hao Lu, Xingwen Zhang, and Shuang Yang. A learning-based iterative method for solving vehicle
routing problems. In ICLR, 2020.

Michalis Mavrovouniotis, Charalambos Menelaou, Stelios Timotheou, Christos G. Panayiotou,
Georgios Ellinas, and Marios M. Polycarpou. Benchmark set for the ieee wcci-2020 competi-
tion on evolutionary computation for the electric vehicle routing problem. 2020.

M. Nazari, Afshin Oroojlooy, Lawrence V. Snyder, and Martin Takdc. Reinforcement learning for
solving the vehicle routing problem. In NeurIPS, 2018.

Marcelo Prates, Pedro Avelar, Henrique Lemos, Luis Lamb, and Moshe Vardi. Learning to solve np-
complete problems: A graph neural network for decision tsp. Proceedings of the AAAI Conference
on Artificial Intelligence, 33:4731-4738, 07 2019. doi: 10.1609/aaai.v33i01.33014731.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. ArXiv, abs/1707.06347, 2017.

Mohamed A. Wahby Shalaby, Ayman R. Mohammed, and Sally S. Kassem. Supervised fuzzy c-
means techniques to solve the capacitated vehicle routing problem. Int. Arab J. Inf. Technol., 18:
452463, 2021.

Paul Shaw. Using constraint programming and local search methods to solve vehicle routing prob-
lems. In Michael Maher and Jean-Francois Puget (eds.), Principles and Practice of Constraint
Programming — CP98, pp. 417-431, Berlin, Heidelberg, 1998. Springer Berlin Heidelberg. ISBN
978-3-540-49481-2.

Anand Subramanian, Eduardo Uchoa, and Luiz Satoru Ochi. A hybrid algorithm for a class of
vehicle routing problems. Comput. Oper. Res., 40:2519-2531, 2013.

Alex Syrichas and Alan Crispin. Large-scale vehicle routing problems: Quantum annealing, tunings
and results. Comput. Oper. Res., 87:52-62, 2017.

Eric D. Taillard, Luca Maria Gambardella, Michel Gendreau, and Jean-Yves Potvin. Adaptive
memory programming: A unified view of metaheuristics. Eur. J. Oper. Res., 135:1-16, 2001.

Paolo Toth and Daniele Vigo. Vehicle routing: Problems, methods, and applications, second edition.
2014.

Wei Tu, Qingquan Li, Qiuping Li, Jiasong Zhu, Baoding Zhou, and Bi Yu Chen. A spatial parallel
heuristic approach for solving very large-scale vehicle routing problems. Transactions in GIS, 21:
1130 - 1147, 2017.

Eduardo Uchoa, Diego Pecin, Artur Alves Pessoa, Marcus Poggi de Aragdo, Thibaut Vidal, and

Anand Subramanian. New benchmark instances for the capacitated vehicle routing problem. Eur.
J. Oper. Res., 257:845-858, 2017.

11

Under review as a conference paper at ICLR 2023

Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio’, and Yoshua
Bengio. Graph attention networks. ArXiv, abs/1710.10903, 2018.

Thibaut Vidal. Hybrid genetic search for the cvrp: Open-source implementation and swap* neigh-
borhood. Computers & Operations Research, 140:105643, 2022. ISSN 0305-0548. doi:
https://doi.org/10.1016/j.cor.2021.105643.

Thibaut Vidal, Teodor Gabriel Crainic, Michel Gendreau, Nadia Lahrichi, and Walter Rei. A hybrid
genetic algorithm for multidepot and periodic vehicle routing problems. Oper. Res., 60:611-624,
2012.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. In C. Cortes, N. Lawrence,
D. Lee, M. Sugiyama, and R. Garnett (eds.), Advances in Neural Information Processing Systems,
volume 28. Curran Associates, Inc., 2015.

Christos Voudouris and Edward P. K. Tsang. Guided Local Search, pp. 185-218. Springer US,
Boston, MA, 2003. ISBN 978-0-306-48056-0. doi: 10.1007/0-306-48056-5_7. URL https:
//doi.org/10.1007/0-306-48056-5_7.

David Woller, Viktor Kozak, and Miroslav Kulich. The grasp metaheuristic for the electric vehicle
routing problem. In MESAS, 2020.

Cathy Wu, Kalyanaraman Shankari, Ece Kamar, Randy H. Katz, David E. Culler, Christos H. Pa-
padimitriou, Eric Horvitz, and Alexandre M. Bayen. Optimizing the diamond lane: A more
tractable carpool problem and algorithms. 2016 IEEE 19th International Conference on Intelli-
gent Transportation Systems (ITSC), pp. 1389-1396, 2016.

A APPENDIX

A.1 MIXED-INTEGER PROGRAMMING MODEL FOR THE CVRP

With a fully connected weighted graph G = (V, A), the CVRP can be mathematically formulated as
follows:

min Y dijag, (1)
i€V, jEV, itj
S.t

> m=1Viel, (2)

JEV,i#j
Z Tij — Z .’Eji:O,ViEV, 3)

JEV,i#j JEV,i#j
uj <uy — bz +C(1—a45),VieV,VjeV,i#j,)
0<u; <C,ieV, (5)
zi; €{0,1},i€V,jeV,i#j (6)

where equation[T]defines the CVRP objective function, equation [2]ensures every customer is entered
once, equation [3establishes flow conservation by guaranteeing the number of times a vehicle enters
a node is equal to the number of times it leaves that node. equation {] and equation [5] guarantee
demand fulfillment at all customers by assuring a non-negative carrying load upon arrival at any
node including the depot, and equation [6] define a set of binary decision variables which each one
equal to 1 if an arc is traveled and O otherwise. Variables u; denote the remaining carrying capacity
of a vehicle on its arrival at node ¢ € V.

A.2 ALGORITHMS

The pseudo-code of the Clockwise Clustering framework is provided in Algorithm|I} We first em-
ploy Clock-hand initializer for creating initial solution S and send it into a loop to find the best

12

https://doi.org/10.1007/0-306-48056-5_7
https://doi.org/10.1007/0-306-48056-5_7

Under review as a conference paper at ICLR 2023

improvement solution S*. Inspired by the Divide-and-Conquer mechanism, we select the first u
tours of S to be a sub-problem S, forward it to the Imitation Improvement Learning framework
to find its optimal solution S?,,, and select its first v tours for a solution buffer S’. After that, we
combine all unprocessed nodes of G into S and continue find improved solution until the stack S’
is full. Section [A.4] below indicates how we specify « and v in our experiment settings. Figure [3]
also provides an overview of our frameworks, showing how the Clockwise Clustering and Imita-
tion Improvement Learning frameworks work together. Detailed steps of the Imitation Improvement

Learning framework are provided in Algorithm[2}

Solution

Student Expert
(RL policy) (heuristics)

Large-scale instance

Clockhand initializer

\/

Best solution

e L.
i i e c ” "
@ | Firstu tours Ttizztem U S Sub-solution
e sub-solver L g buffer .
3 g 2 58
]] 2 3
£ Eel B 2
Other tours @ Other tours €9
ﬁ Q
~— Sort tours in =2
clockwise order Large-scale
solution

. Y one more step? ‘
if not empty %ﬁ] <)
)

Figure 5: An overview of our Clockwise Clustering platform.

Best solution

Algorithm 1 Clockwise Clustering

S < ClockHandInitializer(G, B, C') > Initial solution for G
S*+ S > Best solution
S+] > Solution buffer for G
while repeat a certain number of times do
Soub < Suw> Sother < Su: > Select first u tours for sub-problem
S < ILSolver(Squp, B, C)
cub < Seub oo Sother < Stub.v: > Select first v tours for G solution
S S eSS,
S < Sother B S her > Combine all unprocessed nodes
if S is empty then > All nodes of G are processed
if Cost(S”) < Cost(S*) then
S* 5 > Best solution ever
end if
S+ S*
end if
end while
return S*

A.3 MODEL ARCHITECTURE

A.3.1 PoLicYy ENCODER

With each input state s(G, S, B, C), the encoder embeds the raw features of them into a higher-
dimensional space. We create a node feature z; € R3 by the values of x-coordinate, y-coordinate,

and demand rate b; of each node i in V, where b; = b /C. For each edge (i, j) in A, we also create

13

Under review as a conference paper at ICLR 2023

Algorithm 2 Imitation Improvement Learning

S < InitSolution(G, B, C) > Global solution
D« > Replay buffer
while repeat a certain number of times do > Number of global loops
s + InputFeatures(S, G, B, C) > State
a < SampleActionFromPolicy(s) > Action
Sstudent < ProcessOperators(.S, a) > k-opt operation
Sh Sstudent > Initiate heuristic solution
while repeat a certain number of times do > Number of heuristic loops

S}, < LocalSearch(Sj,)
S} < Perturbation(S}))
Sh, < AcceptanceCriterion(.S,, S})

end while

Sempert < Sh

1 = Cost(Sstudent) — Cost(Sexpert) > Reward
D+ D'append((87 a,T, Sstudenta Sewpert))

S < Sezpert > Update global solution

if |D| > np then
UpdateRLWithImitation(D)
D+ | > Clear replay buffer
end if
end while
return S

>
o
a
>
a
a
g
a

Residual I

E-GAT '

G
G
CH-C
S =

[Pointer Attention }

(@]
o
5l
) li)
State l

Figure 6: Model architecture of the RL policy.

niey
wng
<
SE
[}

an edge feature e;; € R? by the euclidean distance d;; and angle value 6;; between node i and j,
where 6,; = arctan (%)
i J

Both node and edge features are imported into Residual E-GAT (Lei et al, 2021)) for feature ex-
traction. Output of this layer is a set of representation vectors {Z;|i € V}, which embedded the
information of G, B, and C. To represent the input solution S, we generate a context vector H by
mean pooling of each tour ¢ in .S:

(zzwz)wh,

tesS et
where W, and by, are trainable parameters.
A.3.2 PoOLICY DECODER

We aim to learn the parameters of a stochastic policy my(a|s) that, given a state s, assigns high
probabilities to moves that reduce the cost of a tour. Our architecture uses a chain rule to factorize the

probability of a k-opt move as my(als) = Hle po(a;|s). We use a pointing mechanism (da Costa

14

Under review as a conference paper at ICLR 2023

et al., |2021) to predict a distribution over node outputs given encoded actions (nodes) and a state
representation (query vector).

Decoder predicts sequentially action 7y € V at time step ¢ € {1, ..., k}. Probability of action 7 is
~ o exp(W;,¢) . . oy eqs
p(7]s) = arg max; ey oy explu) where u; is the attention compatibility vectors of all nodes at

time ¢t. We set M is a set of different nodes allowed at time t. M; = {i|i € S,i # 7 Vt’ < t}.
Attention compatibility of node ¢ at time ¢ is

T .
tanh (QK) ifi € M,
Uit =

)
)

-0 , otherwise

where K, Q, and d are key, query, and its dimension of this attention layer; K; = Wg&;; Qi+ =
MHA (W yeryCt, Wiey @i, Waaiue®;) is an output of a multi-head attention layer; context vector
¢t = h+ W.Z;,_, + be, where W, and b, are trainable parameters. At time ¢t = 1, 7,_1 is set to
the depot 0.

A.3.3 VALUE DECODER AND DISCRIMINATION MODEL

Besides policy decoder, we also create neural networks for value decoder and discrimination model
by using representation vectors from policy encoder. Value decoder Vi(s) uses two convolution
layers with ReLLU and sum pooling as activation functions of each layer respectively:

Vy(s) = Z Conv(ReLU(Conv(&;)))
iev

Discriminator Dg(7) is a logistic classification model with a learned function f5 predicts the prob-
ability of an input trajectory 7 is student’s or expert’s. We uses multi-layer perceptron (MLP)
with two fully connected layers for the discrimination network Ds(7) = 1/(1 + exp(—f5(7))) =
o(MLP;s(7)), where o is logistic sigmoid function.

A.4 HYPERPARAMETER SETTINGS

All our experiments use the same set of hyperparameters given below.

Network architecture:

* Encoder: Two GATConv layers; hidden dim 128.
* Decoder: k-opt with & = 3; using 8 heads on multi-head attention layers; hidden dim 256.

PPO hyperparameters:

* Clipping version, € = 0.2

e v=10.995,A=0.95

¢ Value coefficient ¢; = 0.5

* Entropy coefficient co = 0.01

* Clipping gradient norm with max norm 0.5 to avoid exploding gradients.
Clockwise Cluster settings:

e Initializer: Clockhand method
* Number of repeating solving a sub-problem: 128 (VNS) or 24 (HGS)

* Number of nodes collected for sub-problems of each loop: 1024 (for very-large scale in-
stance) or 256 (otherwise)

* Number of the last tours removed in sub-problem solutions: 2 (if number of tours is greater
than 4) or 0 (otherwise)

IIL settings:

15

Under review as a conference paper at ICLR 2023

¢ (Classical heuristic sub-solvers: VNS/HGS
* Number of training policy steps when the replay buffer is full: 64
* Number of heuristic steps of each loop: 128 (VNS) or 32 (HGS)

Training settings:

* Adam optimization (Kingma & Bal [2015)) with weight decay (Loshchilov & Hutter, [2019)
A=0.01

* Learning rate [r = 3e-4

* Imitation coefficient c;;, = 0.1 (if use imitation loss) else 0.0 (otherwise)

e Number of workers n,orkers = 32

e Buffer size np = 16ny0rkers

¢ Use CUDA for GPU acceleration

e Number of random seeds: 20
Evaluating settings:

* Number of workers nyorkers = 1
* Use CPU only

Device specifications:

¢ CPU: Intel Xeon Silver xxx Processor, 24 cores, 48 threads
¢ GPU: NVIDIA GeForce RTX 3080 Ti 12GB
* Memory: 64GB of RAM

Model configuration for experiments:

¢ RL+VNS: ¢;;, = 0.0, VNS sub-solver
e RL+HGS: ¢;;, = 0.0, HGS sub-solver
e [IL+VNS: ¢;;, = 0.1, VNS sub-solver
e IIL+HGS: ¢;;, = 0.1, HGS sub-solver

A.5 MORE EXPERIMENTAL RESULTS

We give more details for the experiments reported in the main body of the paper.

16

Under review as a conference paper at ICLR 2023

Table 6: Experimental results with Dataset 3

Instance BKS MDM HGS | IIL+VNS | IIL+HGS
(ours) (ours)
ORTEC-n242-k12 | 123750 | 123750 | 123750 124456 123808
ORTEC-n323-k21 | 214071 | 214071 | 214071 215394 214125
ORTEC-n405-k18 | 200986 | 200986 | 200986 | 202962 200986
ORTEC-n455-k41 | 292485 | 292516 | 292516 | 294470 292516
ORTEC-n510-k23 | 184529 | 184529 | 184529 185507 184746
ORTEC-n701-k64 | 445543 | 445601 | 445541 450240 446537
Loggi-n401-k23 | 336903 | 336963 | 337065 337497 337206
Loggi-n501-k24 | 177176 | 177466 | 177428 178067 177078
Loggi-n601-k19 113155 | 113174 | 113181 113707 113225
Loggi-n601-k42 | 347059 | 347046 | 347052 349414 347082
Loggi-n901-k42 | 246301 | 246360 | 246441 249671 247143
Loggi-n1001-k31 | 284356 | 285521 | 285362 | 288820 285021
GAP (vs BKS) 0.00% | -0.05% | -0.05% -0.77% -0.09%

Table 7: Experimental results with Dataset 4

Instance Cw MDM HGS IIL+VNS | IIL+HGS
Antwerpl 498422 | 486497 | 486959 490436 489367
Antwerp2 322902 305039 305190 307696 299575
Brusselsl 532558 520643 527068 550138 522275
Brussels2 386048 366817 368166 375128 360741
Flanders1 7525575 | 7407580 | 7567917 | 8051525 7442533
Flanders2 4805608 | 4603333 | 4950737 | 4921000 4567692

Ghentl 490783 | 482315 | 485713 492605 482492
Ghent2 287371 272117 | 272165 275536 264491
Leuvenl 200971 195102 | 194813 196665 195906
Leuven2 125613 114412 114458 114708 112974

GAP (vs BKS) | -8.00% -3.63% -4.89% -6.71% -2.95%

Table 8: Experimental results with Dataset 5

Instance GA SA VNS BACO | IIL+VNS | IIL+HGS
X-nl143-k7 16489 16610 16028 15901 15884 15865
X-n214-k11 11762 11404 11324 11133 11152 10992
X-n351-k40 28008 27223 27065 26478 26654 26173
X-n459-k26 26048 27223 25371 24764 24906 24263
X-n573-k30 54190 | 51929 52182 | 53823 51663 51138
X-n685-k75 73926 | 72550 | 71345 70835 70043 69071
X-n749-k98 84035 81393 81002 80300 79794 78684

X-n819-k171 | 170966 | 165070 | 164290 | 164721 161833 159396
X-n916-k207 | 357392 | 342797 | 341650 | 342993 | 335912 334087

X-n1001-k43 | 78833 | 78054 | 77476 | 76297 76145 74097
GAP vs BKS | -4.57% | -2.65% | -1.08% | -0.43% 0.43% 1.88%
Running Time - - 5.5h 16.7h 6.1h 2.5h

Table 9: Experimental results with Dataset 6

Method GAP vs Baseline | Running Time
VNS (baseline) 0.00% 77.7h
BACO 0.13% 113.2h
RL+VNS 1.33% 30.9h
RL+HGS 2.10% 26.2h
IRL+VNS 1.36% 39.2h
IRL+HGS 2.15% 31.3h

17

Under review as a conference paper at ICLR 2023

Table 10: Detail scores for Dataset 3 (part I)

Instance VNS OR- HGS HGS RL+ IIL+ RL+ IIL+
Tools (30k) (95%) VNS VNS HGS HGS
X-n101-k25 | 28588 | 27977 | 27591 | 27591 27858 | 28027 | 27591 27591
X-n106-k14 | 26740 | 26758 | 26421 26421 26419 | 26583 | 26397 | 26375
X-n110-k13 | 15264 | 15100 | 14971 14971 14985 15121 14971 14971
X-n115-k10 | 12823 12808 12747 12747 12816 12823 12747 12747
X-n120-k6 13746 13502 13332 13332 13429 13418 13332 13332
X-n125-k30 | 56555 | 56853 | 55542 | 55546 | 56448 | 56348 | 55549 | 55542
X-n129-k18 | 29709 | 29722 | 28940 | 28940 | 29007 | 29018 | 28940 | 28940
X-n134-k13 | 11206 11171 10916 10916 11010 11003 10916 10916
X-n139-k10 | 13793 13741 13590 13590 | 13704 13738 13590 | 13590
X-n143-k7 16432 16136 15700 15700 | 15786 15879 15700 | 15700
X-n148-k46 | 43986 | 44599 | 43448 | 43448 | 43962 | 43741 | 43448 | 43448
X-nl53-k22 | 22292 | 21789 | 21225 | 21225 | 22032 | 21589 | 21225 | 21225
X-n157-k13 | 16972 17138 16876 16876 16894 16923 16876 16876
X-n162-k11 | 14263 14262 14138 14138 14174 14179 14138 14138
X-n167-k10 | 21143 | 21176 | 20557 | 20557 | 20969 | 20949 | 20557 | 20557
X-nl172-k51 | 46543 | 46875 | 45607 | 45607 | 46223 | 45812 | 45607 | 45607
X-nl176-k26 | 48971 | 49260 | 47812 | 47812 | 48888 | 48865 | 47815 | 47837
X-n181-k23 | 25828 | 25936 | 25569 | 25579 | 25681 25637 | 25575 | 25575
X-n186-k15 | 24787 | 24908 | 24145 | 24147 | 24662 | 24542 | 24145 | 24145
X-n190-k8 17432 17422 17011 17039 17323 17276 17017 17029
X-n195-k51 | 45297 | 46151 | 44225 | 44274 | 44767 | 44651 | 44225 | 44225
X-n200-k36 | 60127 | 60448 | 58624 | 58632 | 60034 | 59952 | 58623 | 58608
X-n204-k19 | 19960 | 20348 19570 19570 | 19820 19809 19566 19565
X-n209-k16 | 31658 | 31776 | 30676 | 30680 | 31302 | 31141 30659 | 30683
X-n214-k11 | 11296 11374 | 10880 10932 11180 11076 10873 10863
X-n219-k73 | 117935 | 118038 | 117606 | 117626 | 117819 | 117700 | 117595 | 117610
X-n223-k34 | 41540 | 42047 | 40437 | 40497 | 41135 | 41024 | 40496 | 40559
X-n228-k23 | 26199 | 26613 | 25743 | 25745 | 26472 | 26325 | 25743 | 25745
X-n233-k16 | 19833 19884 19230 19255 19588 19405 19230 | 19234
X-n237-k14 | 27647 | 27928 | 27042 | 27042 | 27549 | 27437 | 27042 | 27044
X-n242-k48 | 84081 85518 | 82846 | 83103 | 84164 | 83799 | 82898 | 83239
X-n247-k50 | 38533 | 38283 | 37302 | 37377 | 38096 | 38075 | 37299 | 37300
X-n251-k28 | 39552 | 40088 | 38805 | 38886 | 39418 | 39217 | 38724 | 38776
X-n256-k16 | 19283 19295 18880 18880 | 19107 19120 18876 18880
X-n261-k13 | 27352 | 27921 26621 | 26652 | 27170 | 27073 | 26627 | 26621
X-n266-k58 | 77507 | 77661 75811 | 76122 | 76814 | 76751 | 75886 | 75867
X-n270-k35 | 36111 36701 35303 | 35356 | 35935 | 35868 | 35319 | 35304
X-n275-k28 | 21815 | 22087 | 21245 | 21271 21554 | 21453 | 21245 | 21250
X-n280-k17 | 34659 | 35056 | 33558 | 33601 34320 | 34203 | 33551 33615
X-n284-k15 | 20878 | 21138 | 20288 | 20299 | 20901 20730 | 20327 | 20317
X-n289-k60 | 97897 | 98561 95530 | 95738 | 96986 | 96906 | 95665 | 95408
X-n294-k50 | 48203 | 49302 | 47225 | 47247 | 48052 | 47755 | 47227 | 47222
X-n298-k31 | 35532 | 36971 34291 34291 34985 | 35324 | 34240 | 34275
X-n303-k21 | 22543 | 22574 | 21843 | 21867 | 22137 | 22081 | 21797 | 21763
X-n308-k13 | 26605 | 27141 25891 | 25906 | 26426 | 26667 | 25890 | 25920
X-n313-k71 | 96628 | 97497 | 94284 | 94458 | 95776 | 95709 | 94207 | 94090
X-n317-k53 | 79129 | 79211 78400 | 78420 | 78671 78612 | 78400 | 78379
X-n322-k28 | 30991 31489 | 29941 | 29965 | 30560 | 30324 | 29908 | 29834
X-n327-k20 | 28867 | 28778 | 27582 | 27608 | 28450 | 28103 | 27587 | 27592
X-n331-k15 | 32125 | 32648 | 31116 | 31150 | 31877 | 31623 | 31152 | 31105

18

Under review as a conference paper at ICLR 2023

Table 11: Detail scores for Dataset 3 (part II)

Instance VNS OR- HGS HGS RL+ IIL+ RL+ L+
Tools 30k) | (95%) VNS VNS HGS HGS
X-n336-k84 | 142258 | 143295 | 140048 | 140414 | 141908 | 141476 | 139671 | 139295
X-n344-k43 | 43368 | 44036 | 42147 | 42147 | 43075 | 43041 | 42091 | 42080
X-n351-k40 | 26578 | 27434 | 26023 | 26046 | 26594 | 26472 | 25990 | 25959
X-n359-k29 | 53538 | 53858 | 51788 | 52080 | 52792 | 52652 | 51844 | 51727
X-n367-k17 | 23987 | 23874 | 22814 | 22818 | 23605 | 23306 | 22828 | 22822
X-n376-k94 | 148355 | 148776 | 147757 | 147946 | 148256 | 148054 | 147823 | 147749
X-n384-k52 | 68423 | 69022 | 66118 | 66233 | 67711 | 67239 | 66171 | 66115
X-n393-k38 | 39856 | 40786 | 38319 | 38527 | 39375 | 39131 38298 | 38373
X-n401-k29 | 67771 | 68249 | 66365 | 66487 | 67478 | 67053 | 66450 | 66431
X-n411-k19 | 20624 | 20811 19751 19797 | 20190 | 20095 19751 19736
X-n420-k130 | 110505 | 111594 | 107937 | 108084 | 109704 | 109127 | 107917 | 107890
X-n429-k61 | 67499 | 68858 | 65622 | 65810 | 67093 | 66602 | 65554 | 65518
X-n439-k37 | 37074 | 37655 | 36430 | 36431 37063 | 36870 | 36417 | 36434
X-n449-k29 | 58101 | 58427 | 55693 | 55852 | 57179 | 56968 | 55777 | 55562
X-n459-k26 | 25535 | 25835 | 24211 | 24236 | 24921 | 24783 | 24176 | 24160
X-n469-k138 | 230351 | 230963 | 223359 | 224071 | 227018 | 225629 | 222876 | 222550
X-n480-k70 | 91887 | 92923 | 89775 | 89876 | 91496 | 90952 | 89691 89897
X-n491-k59 | 68555 | 70817 | 66911 | 67208 | 68399 | 67880 | 67042 | 66802
X-n502-k39 | 69971 | 70167 | 69272 | 69312 | 69680 | 69615 | 69276 | 69315
X-n513-k21 | 25414 | 25846 | 24236 | 24236 | 24776 | 24731 | 24259 | 24281
X-n524-k153 | 157354 | 156897 | 154898 | 155103 | 157963 | 157243 | 154714 | 154859
X-n536-k96 | 98060 | 99576 | 95293 | 95653 | 97051 | 96391 | 95395 | 95141
X-n548-k50 | 88752 | 89383 | 86974 | 87065 | 88131 | 87860 | 86883 | 87009
X-n561-k42 | 44378 | 45759 | 42809 | 42829 | 44003 | 43931 | 42762 | 42819
X-n573-k30 | 52059 | 52437 | 50909 | 51110 | 51405 | 51393 | 50969 | 50871
X-n586-k159 | 197669 | 198347 | 191043 | 191890 | 193932 | 193017 | 190960 | 191168
X-n599-k92 | 112460 | 113381 | 109467 | 109966 | 111220 | 110622 | 108933 | 108700
X-n613-k62 | 62205 | 64074 | 59865 | 60105 | 61308 | 61045 | 59907 | 59735
X-n627-k43 | 64805 | 64898 | 62558 | 62760 | 64502 | 64064 | 62704 | 62561
X-n641-k35 | 66801 | 66862 | 64217 | 64485 | 66165 | 65965 | 64275 | 64015
X-n655-k131 | 107469 | 107816 | 106857 | 106961 | 107367 | 107200 | 106925 | 106961
X-n670-k130 | 150623 | 151874 | 146838 | 147390 | 152982 | 152381 | 146856 | 146720
X-n685-k75 | 71130 | 74086 | 68502 | 68676 | 70005 | 69826 | 68536 | 68518
X-n701-k44 | 85231 87060 | 82852 | 83175 | 84531 84458 | 82830 | 83026
X-n716-k35 | 45519 | 46013 | 43640 | 43791 | 44990 | 44535 | 44032 | 43919
X-n733-k159 | 139838 | 143829 | 136613 | 137173 | 139030 | 138475 | 136653 | 136841
X-n749-k98 | 80269 | 82813 | 78113 | 78459 | 79526 | 79287 | 78162 | 77896
X-n766-k71 119155 | 123106 | 114965 | 115425 | 118121 | 117951 | 115346 | 115237
X-n783-k48 | 76475 | 77519 | 73457 | 73812 | 75216 | 74739 | 73232 | 73086
X-n801-k40 | 76461 76428 | 73617 | 73934 | 75811 75076 | 73686 | 73703
X-n819-k171 | 164244 | 165074 | 158870 | 159631 | 161557 | 161126 | 159037 | 158729
X-n837-k142 | 199937 | 201837 | 195237 | 196195 | 197979 | 196878 | 195398 | 195419
X-n856-k95 | 90906 | 91614 | 89060 | 89126 | 90240 | 89948 | 89085 | 89208
X-n876-k59 | 102839 | 103576 | 100317 | 100769 | 101791 | 101339 | 100376 | 100433
X-n895-k37 | 57365 | 58192 | 54320 | 54588 | 56280 | 56209 | 54308 | 54190
X-n916-k207 | 340623 | 342127 | 331472 | 331993 | 335394 | 333588 | 331754 | 331691
X-n936-k151 | 138629 | 140479 | 133426 | 133754 | 139309 | 137563 | 133279 | 133113
X-n957-k87 | 88487 | 88603 | 85821 86086 | 87295 | 86765 | 85605 | 85757
X-n979-k58 122827 | 123885 | 120070 | 120255 | 123360 | 122935 | 119927 | 119697
X-n1001-k43 | 76363 | 78085 | 73509 | 74002 | 75588 | 75011 | 73411 | 73354

19

Under review as a conference paper at ICLR 2023

Table 12: Detail scores for Dataset 5.

Instance Index VNS BACO | RL+VNS | IIL+VNS | RL+HGS | IIL+HGS
min 16028.1 15901.2 15894.6 15883.7 15865.2 15865.2
X-n143-k7 mean | 16459.3 16031.5 15935.5 16068.3 15877.8 15878.6
std 242.6 262.5 48.0 117.1 5.7 5.0
min 11323.6 | 11133.1 11199.3 11152.3 11018.9 10991.8
X-n214-k11 | mean | 114822 | 11219.7 11277.7 11274.2 11026.7 11025.6
std 76.1 46.3 63.3 67.8 8.2 14.0
min 27064.9 | 26478.3 26806.1 26653.6 26280.5 26172.8
X-n351-k40 | mean | 27217.8 | 26593.2 26831.3 26792.2 263224 26271.0
std 86.2 72.9 21.6 79.1 26.5 42.1
min 25370.8 | 24763.9 25050.8 24905.7 24338.1 24263.3
X-n459-k26 | mean | 25582.3 | 24916.6 25080.6 25046.9 24363.2 24357.2
std 106.9 94.1 28.6 81.2 19.1 55.0
min 52181.5 | 538229 51774.5 51662.6 51264.7 51138.1
X-n573-k30 | mean | 52548.1 | 54567.2 51942.9 51861.3 51342.6 513614
std 278.9 231.1 133.9 131.6 52.0 113.7
min 71345.4 | 708349 | 70265.6 70043.2 69197.4 69071.4
X-n685-k75 | mean | 71770.6 | 71440.6 70527.3 70415.3 69244.6 69185.4
std 197.1 281.8 169.3 177.4 42.3 65.6
min 81002.0 | 80299.8 79989.7 79794.3 79001.3 78683.9
X-n749-k98 | mean | 81327.4 | 80694.5 80274.1 80074.2 79062.5 78899.5
std 176.2 2239 166.4 138.3 79.7 104.8
min | 164290.0 | 164720.8 | 162261.4 | 161832.7 | 159766.9 | 159396.0
X-n819-k171 | mean | 81327.4 | 80694.5 | 162611.1 | 162093.5 | 159852.6 | 159607.8
std 176.2 2239 181.4 146.7 53.9 103.0
min | 341649.9 | 342993.0 | 337513.5 | 335911.8 | 333647.2 | 334086.8
X-n916-k207 | mean | 342460.7 | 345000.0 | 337977.5 | 336633.8 | 333990.3 | 334554.1
std 510.7 905.7 252.8 350.0 158.2 254.6
min 774764 | 76297.1 76543.9 76145.4 74231.4 74097.1
X-n1001-k43 | mean | 77920.5 | 77434.3 76778.8 76538.8 74485.5 74483.4
std 234.7 719.9 127.4 257.1 1614 167.9

20

Under review as a conference paper at ICLR 2023

X-n101-k25 X-n120-k6 X-n957-k87 X-n1001-k43
(a) Dataset 1

Loggi-n501-k24 Loggi-n1001-k31 ORTEC-n405-k18 ORTEC-n701-k64
(b) Dataset 3

N

(A

Leuvenl

Leuven2 Brussels2

(c) Dataset 4

. , = =7
= L/LQ

X-n143-k7 X-n214-k11 X-n685-k75 X-n1001-k43
(d) Dataset 5

Figure 7: Visualization of several optimal solutions found by our methods

21

	Introduction
	Related Work
	Background
	Capacitated Vehicle Routing Problems
	k-Opt Heuristic for the CVRP

	Clockwise Clustering
	Imitation Improvement Learning
	Imitation Learning with Experts
	Improvement Learning with k-opt moves
	Network Architecture
	Loss Function

	Experiments and Results
	Dataset
	Experimental Results and Analysis

	Conclusion
	Appendix
	Mixed-integer programming model for the CVRP
	Algorithms
	Model Architecture
	Policy Encoder
	Policy Decoder
	Value Decoder and Discrimination Model

	Hyperparameter Settings
	More experimental results

