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Abstract

Partial orders are a natural model for the social hier-
archies that may constrain “queue-like” rank-order
data. However, the computational cost of counting
the linear extensions of a general partial order on a
ground set with more than a few tens of elements
is prohibitive. Vertex-series-parallel partial orders
(VSPs) are a subclass of partial orders which admit
rapid counting and represent the sorts of relations
we expect to see in a social hierarchy. However,
no Bayesian analysis of VSPs has been given to
date. We construct a marginally consistent family
of priors over VSPs with a parameter controlling
the prior distribution over VSP depth. The prior
for VSPs is given in closed form. We extend an ex-
isting observation model for queue-like rank-order
data to represent noise in our data and carry out
Bayesian inference on “Royal Acta” data and For-
mula 1 race data. Model comparison shows our
model is a better fit to the data than Plackett-Luce
mixtures, Mallows mixtures, and “bucket order”
models and competitive with more complex mod-
els fitting general partial orders.

1 INTRODUCTION

Rank-order data are lists in which a set of elements are
ranked. They are analysed in a wide range of areas, includ-
ing decision support [Beichl et al., 2017], medical research
[Beerenwinkel et al., 2007] and chemistry [Pavan and To-
deschini, 2008]. We classify ranking methods into two cat-
egories - total order ranking and partial order ranking.

Total order models seek a ranking of the elements of the
ground set (in our setting, the labels of a group of actors we
want to rank) that is “central” to the rank-lists in the data.
These models are suitable when we believe that an order
relation exists between every pair of actors. The Mallows

model [Mallows, 1957], the Plackett-Luce model [Plackett,
1975, Luce, 1959] and related mixture models are models
for total orders. However, the real-world relations we are
looking to recover may be weaker than a total order: perhaps
relations between pairs of actors are not simply weak or
uncertain, they don’t actually exist. We expect this for some
precedence relations that define some social hierarchies.

If we want to learn social-order relations between actors by
observing their behavior, then the elements of the model
we fit should correspond to elements of reality: if relations
are incomplete then we should fit a partial order. A partial
order h = {[n],≺h} is a (possibly incomplete) set of binary
order relations ≺h over a “ground set” of actors with labels
[n] = {1, . . . , n}. Our data are records of queues of actors
constrained by a social hierarchy h, which is unknown. If we
see enough queue realisations we can identify the hierarchy.
In this setting the queue is just a linear extension (LE) of
h, that is, a permutation of actors in [n] that doesn’t put an
actor ahead of someone of higher precedence.

Partial orders are widely used as a ranking summary tool,
or to support efficient computation. For example, partial
orders and LEs support efficient computation of marginals
in Bayesian networks [Cano et al., 2011, Smail, 2018]. By
contrast, in our work the partial order h is the object of
inference, so it is a parameter in the likelihood: the data are
LEs and the likelihood depends on the number of LEs of
h. Counting LEs is an #P-complete task [Brightwell and
Winkler, 1991], so work to date in this setting either restricts
the class of partial orders [Mannila and Meek, 2000, Gionis
et al., 2006, Mannila, 2008] to orders which admit fast count-
ing or works with orders of manageable size [Beerenwinkel
et al., 2007, Sakoparnig and Beerenwinkel, 2012, Nicholls
and Muir Watt, 2011, Nicholls et al., 2022]. This approach
does not scale well with n. We follow Mannila and Meek
[2000] and work with vertex-series-parallel partial orders
(VSPs). These orders are a sub-class of partial orders which
can be formed by repeated series and parallel operations
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on smaller VSPs. They include bucket orders 1 as a special
case. Valdes et al. [1979] represent VSPs using binary de-
composition trees (BDTs). These support counting in a time
linear in n [Wells, 1971] and scale to VSPs with hundreds
of actors.

VSPs are a well characterised combinatorial class [Wells,
1971, Valdes et al., 1979]. However, work on fitting VSPs
to data is limited. Mannila and Meek [2000] learn VSPs
from LEs by adapting a greedy search over VSPs. However,
there is to date no Bayesian inference and hence no one has
given a prior probability distributions over VSPs with good
properties for inference. Mannila [2008] gave Bayesian in-
ference for bucket orders, a subclass of VSP, and Sakoparnig
and Beerenwinkel [2012] for partial orders, a super-set that
doesn’t scale.

Contributions. This is the first Bayesian inference for VSPs
from LEs and presents some useful new priors and likeli-
hoods. VSPs are equivalent to “transitively closed” Directed
Acyclic Graphs (DAGs); when we specify priors over ob-
jects of this sort we have to be careful to ensure the prior
doesn’t impose unwanted weighting and inconsistency.

We specify a prior and give its probability mass function
in a simple closed form. Our prior (Sec. 2) is marginally
consistent. This property (defined in Definition 1 below)
is needed for the model to make sense in our setting. Our
prior also represents the information available well: it is
non-informative with respect to VSP depth, one of the most
interesting summary statistics for a social hierarchy.

Our new observation model (Sec. 3) generalises earlier mod-
els for observation noise in records for queue-like data and
has a natural physical interpretation in terms of “queue
jumping” and “arriving late”.

We give MCMC algorithms in Appendix C which target
the VSP posterior. We carry out model comparison with
the Plackett-Luce and Mallows mixture models in Ap-
pendix E.1. We further compare our model with a simple
restriction to Bucket-Order models in Appendix E.2 and we
compare it with a more general partial order model [Nicholls
et al., 2022] in Appendix E.3.

Finally, our reconstruction of relations between witnesses
appearing in Royal Acta (Sec. 5.2) is new. Historians are
interested in these relations, but it wasn’t possible to recon-
struct them all till now as the partial orders were too big
to count their LEs (Nicholls et al. [2022] analyse a subset,
working in a time-series setting; we give timing comparis-
ons in Appendix F). Our models are relevant for any ranking
problem where relations may be partial: in Appendix D.2
we fit Formula 1 race results for the 2021 season. These data
show the same preference for our model over other models.

1Actors are grouped in buckets - every actor is ordered with
respect to actors in other groups, and any pair of actors in the same
group are incomparible.

1.1 BACKGROUND

A partial order h = {V,≺h} is a binary relation2 ≺h over
a “ground set” of actors V . In our setting the actor labels
are V = [n] where [n] = {1, 2, ..., n} or some subset. Two
actors i, j ∈ [n] are incomparable i∥hj, if neither i ≺h j
nor i ≻h j. Partial orders on [n] are in one-to-one corres-
pondence with transitively-closed DAGs ([n], E) with edges
E = {⟨i, j⟩ ∈ [n] × [n] : i ≻h j}. Denote by H[n] the set
of all partial orders on actor labels [n]. Let P[n] be the set
of all permutations of [n]. A linear extension lh ∈ P[n] is
a permutation of actors in [n] that does not violate partial
order h. See Fig. 1 for an example partial order3 and its
LEs. We denote the set of all LEs for partial order h as L[h].
A sub-order h[o] = (o,≺h) of a partial order h ∈ H[n]

restricts h to a subset o ⊆ [n], o = {o1, ..., om}: all order
relations in h are inherited by h[o] so its DAG representation
(o,E[o]) has edges E[o] = {e ∈ E : e ∈ o × o}; directed
edges incident vertices in [n] \ o are removed and all others
remain. A chain of h ∈ H[n] is a sub-order h[o] that is also
a total order. The length of a chain is the number of nodes
|o| in the sub-order. The depth D(h) of a partial order is the
length of its longest chain, with 1 ≤ D(h) ≤ n.

1

2

3

4

5

1

2

3

4

5

1

3

2

4

5

1

3

4

2

5

Figure 1: (left) A partial order with 5 actors and depth 4
which is also a VSP, v0 say, and (right) its three LEs.

The vertex-series-parallel partial orders (VSP) on [n] are
a class of partial orders V[n] ⊂ H[n] formed by repeated
series ⊗ and parallel ⊕ operations. For partial orders h1 and
h2, let V (h1) and V (h2) represent the ground sets of actors
for h1 and h2 respectively (which we assume are disjoint).

• A series partial order, h = h1 ⊗ h2, is the union of all
relations in h1 and h2, with additional relations i ≻h j
if i ∈ V (h1) and j ∈ V (h2).

• A parallel partial order, h = h1 ⊕ h2, is the union of
all relations in h1 and h2 with incomparability i∥hj if
i ∈ V (h1) and j ∈ V (h2).

The set of VSPs V[n] is defined recursively: if |V (h)| = 1
then h is a VSP; if h1 and h2 are VSPs then h1 ⊗ h2 and
h1 ⊕ h2 are VSPs. Valdes et al. [1979] show that a partial
order is a VSP if it does not contain the “forbidden sub-
graph” (Appendix G, Fig. G.1) as a subgraph isomorphism.

2The binary relation ≺h is both irreflexive (the relation i ≺h i
does not exist) and transitive (if i ≺h j and j ≺h k, then i ≺h k),
where i, j, k ∈ [n] and i ̸= j ̸= k.

3In this article, we visualise a partial order via its transitive re-
duction - this omits all edges implied by transitivity and is unique.



The partial order v0 in Fig. 1 is a VSP. It can be constructed
using the series and parallel operations in Fig. 2.
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Figure 2: One possible construction procedure for the VSP
v0 shown in Fig. 1.

A VSP on n actors can be parameterised as a Binary De-
composition Tree (BDT) Valdes et al. [1979] - a binary tree
t ∈ T[n] with n leaves in which nodes have additional attrib-
utes (listed below) and edges are directed from the root to
the leaves. Let F and A be the index sets for the n leaves
and n−1 internal nodes respectively, with F∪A = [2n−1].
Each leaf node index corresponds to a unique actor in the
VSP. It is convenient to distinguish between leaf nodes in-
dices and the actor labels to which they correspond. For
each leaf node i ∈ F , let Fi(t) ∈ [n] give the actor label
for the actor corresponding to that leaf node. Internal nodes
i ∈ A are S nodes if the subtrees rooted by their child nodes
are merged in series, otherwise they are P nodes and the
subtrees are merged in parallel. Internal nodes with an S la-
bel have an additional attribute indicating which of its child
nodes is the “upper child”: the subtree of this child node
(indicated by a ‘+’ and a red edge in Fig. 3) is stacked above
the subtree rooted by the other child node (indicated by a
‘-’). As an example, the VSP v0 in Fig. 1 can be represented
by the BDT t0 in Fig. 3. Let S(t) ∈ [n− 1] be the number
of S-nodes in tree t.

A tree twith edge setE(t) is written t = (F (t), E(t), L(t)).
Here L(t) = {Li}i∈A with Li(t) = (j, j′) indicating that
internal node i is an S-node with child nodes j, j′ and the
subtree rooted by j is stacked above that rooted by j′, and
Li(t) = ∅ if i is a P -node. The map from a BDT to the
VSP v : T[n] → V[n] is not bijective: for a VSP v ∈ V[n],
there may exist many BDTs t ∈ T[n] which represent it.
Let t(v) = {t ∈ T[n] : v(t) = v} give the set of BDTs
representing VSP v ∈ V[n].
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3+ 4−

Figure 3: A BDT t0 representing v0 in Fig. 1, so that v(t0) =
v0. Red edges and ‘+’ signs indicate the upper child.

Brightwell and Winkler [1991] show that counting the num-
ber of LEs of a partial order is a #P-complete problem.
However, the subclass of VSP partial orders admits fast
counting. Wells [1971] gives

|L(h1 ⊗ h2)| =|L(h1)∥L(h2)| (1)

|L(h1 ⊕ h2)| =|L(h1)∥L(h2)|
(
|V (h1)|+ |V (h2)|

|V (h1)|

)
(2)

where |V (h1)| and |V (h2)| give the number of actors in h1
and h2. This may be evaluated recursively in O(n) steps.

In the following we make use of one more representation of
a VSP: the Multi-Decomposition Tree (MDT). These trees
are obtained by collapsing edges which connect internal
nodes of the same S/P -type in the BDT, as in Fig. 4. Let
M[n] be the set of all MDTs with n distinguisable leaves.
A formal definition is given in Appendix A.3.

S

S+ S−

6−5+1+ P−

P 4

2 3

S

1

1

P

2

5

3

6

4

2 3 4

mT (·)

Figure 4: An example BDT t1 (left) and its corresponding
MDT m1 (right). The child-nodes of any S-node in the
MDT are numbered to give the order in which their subtrees
are stacked by the BDT.

Valdes [1978] has shown that MDTs are one-to-one with
VSPs, so all the BDTs in t(v) representing the VSP v must
“collapse down” to give the same MDT. For m ∈ M[n] we
write v = v(m) for the map to VSPs (relations between any
pair of actors in the VSP are simply given by the type of
their Most Recent Common Ancestor (MRCA) in m). Let
mV(v) = {m ∈ M[n] : v(m) = v} be the set of MDTs
representing v ∈ V[n].

Lemma 1 The map mV : V[n] → M[n] is bijective (so that
|mV(v)| = 1). See Valdes [1978] for proof and Valdes et al.
[1979] for further discussion.

2 VSP PRIOR

In this section we give a marginally consistent prior
πV[n]

(v|q) over VSPs on actors in [n], controling the dis-
tribution over VSP-depth. We begin by defining a prior
probability distribution πT[n]

(t|q) over BDTs t ∈ T[n].

Our prior on T[n] has a uniform distribution over trees
([2n− 1], E(t)) with distinguishable leaves. Internal nodes
are labelled S with probability q and otherwise P . We
choose an “upper child” for each S node at random from its
two child nodes, so we have

πT[n]
(t|q) = 1

|T[n]|

(q
2

)S(t)

(1− q)n−S(t)−1, (3)



where S(t) is the number of S-nodes, |T[n]| = (2n− 3)!! ≡
(2n − 3) · (2n − 5)...3 · 1 is the number of binary tree
topologies with n distinguishable leaves, and the types of
the n−1 internal nodes are independent with a factor 2−S(t)

for the stacking order of the children of S-nodes.

We get the prior on VSPs v ∈ V[n] by summing over all
BDTs that represent v,

πV[n]
(v|q) =

∑
t∈t(v)

πT[n]
(t|q) (4)

This simple choice, based on a uniform distribution over
tree topologies, determines a prior for VSPs that represents
the prior knowledge we want to impose in our setting. If a
social hierarchy is built up by making comparisons between
groups of people, based for example on their profession,
then it will be a VSP. Secondly, the unknown true depth of
the social hierarchy we are trying to reconstruct (which is
the length of the longest chain in the VSP) is a feature of
particular interest, so we don’t want the prior to strongly in-
form depth. We choose a prior distribution over q so that the
marginal distribution πV[n]

(v) gives a reasonably flat prior
distribution for depth D(v) (see Appendix H and Fig.H.1).

We assume that relations between two actors are determ-
ined by (unknown) properties intrinsic to those actors (for
example, their professions, or ancestry). If that is true then
the presence or absence of a third actor should not affect the
relations between the first two. It is not straightforward to
get this property and transitivity. If two actors 1∥2 are un-
ordered and we add actor 3 with relations 1 ≻ 3 and 3 ≻ 2
then 1 ≻ 2 by transitivity: the presence of actor 3 changes
the relation between actors 1 and 2. Random VSPs can be
built up in many different ways (that is, they are represented
by many different BDTs), so we want the prior probability
that 1 ≻w 2 in a random VSP w ∼ πV[2]

to be the same as
the prior probability that 1 ≻v 2 in a random VSP v ∼ πV[3]

.
This adds a consistency restriction on any family of prior
distributions πV[n], n ≥ 1 we write down.

A family of priors like πT[n]
(t|q) or πV[n]

(v|q), n ≥ 1 is
marginally consistent (also known as projective) if every
marginal of every distribution in the family is also in the
family. Marginal consistency is not a property we get for
free from the axioms of probability: the uniform distribution
on partial orders h ∼ U(H[n]) is not consistent: there are
3 partial orders on the labels {1, 2} and 19 on {1, 2, 3};
since 19 is not divisible by 3, the probability for 1 ≻h 2
in h ∼ U(H[2]) cannot equal the marginal probability for
1 ≻g 2 in g ∼ U(H[3]).

Definition 1 (Marginal consistency) Let O[n] = {o ⊆
[n] : |o| > 0} be the set of all subsets of [n] with at
least one element. The family of VSP priors πVo(v|q), o ∈
O[n], n ≥ 1 is marginally consistent if, for all n ≥ 1 and

all o, õ ∈ O[n] with o ⊆ õ, distributions in the family satisfy

πVo
(w|q) =

∑
v∈Võ

v[o]=w

πVõ
(v|q) for all w ∈ Vo. (5)

If marginal consistency holds for all q then it holds for
marginals πo(w) by taking expectations over q in (5).

The following Theorem is our first main result: we give
a closed form expression for the prior for a VSP (we cal-
culate the sum in (4)) and show that the family of priors
is marginally consistent. For v ∈ V[n], let t ∈ t(v) be
some tree representing v. Partition the internal nodes A
of t into S-clusters C(S)

k , k = 1, ...,KS and P -clusters
C

(P )
k , k = 1, ...,KP . An S-cluster is a maximal set of in-

ternal nodes of type S which are connected by edges in
E(t) and corresponds to a node in the MDT-representation.
The P -clusters are defined similarly. We will see (in Ap-
pendix A.2, proof of Proposition 5) that two BDTs repres-
enting the same VSP have the same numbers of S and P
clusters, with the same sizes.

Theorem 1 The family, πVo
(v|q), o ∈ O[n] n ≥ 1, of VSP

priors is marginally consistent. The probability distribution
over VSPs v ∈ V[n] in (4) is

πV[n]
(v|q)=πT[n]

(t|q)
KP∏
k=1

(2|C(P )
k |−1)!!

KS∏
k′=1

C|C(S)

k′ | (6)

where t may be taken to be any tree t ∈ t(v) with P - and
S-clusters defined above, πT[n]

(t|q) is given in (3) and

Cs =
1

s+ 1

(
2s

s

)
, s ≥ 0 (7)

is the s’th Catalan number [Stanley and Weisstein, 2002].

Proof 1 (Theorem 1) The proof of Theorem 1 is given in
two parts in Appendix A. In Proposition 3 in Appendix A.1
we show that the family of tree-priors πT[n]

(t|q), o ∈
O[n], n ≥ 1 is marginally consistent. This result is used
in Proposition 4 in A.1 to show that VSPs are marginally
consistent - the first part of Theorem 1.

The proof of the second part is given in Appendix A.2. We
show in Proposition 5 that all trees t ∈ t(v) have equal
values of πT[n]

(t|q), so that πV[n]
(v|q) = |t(v)|πT[n]

(t|q)
for any t ∈ t(v). This is straightforward, as they must all
collapse down to the same MDT. Finally, in Proposition 6,
we give a formula for |t(v)|. We count the number of BDTs
that collapse down to a given MDT. Any P -cluster CP

k of a
BDT corresponds to a P -node in its MDT and covers a small
sub-tree of the BDT representing an empty partial order on
its |CP

k |+ 1 labeled leaves. It can be replaced in the BDT
by any sub-tree representing the empty partial order without



changing the MDT, and there are (2|C(P )
k |−1)!! such trees.

Similarly, any S-cluster CS
k corresponds to a S-node in the

MDT and covers a sub-tree of the BDT representing a total
order on its leaves. It can be replaced in the BDT by any sub-
tree representing the same total order. The Catalan numbers
enter because Cs−1 gives the number of BDTs representing a
total order on s elements (see proof Proposition 6). This last
result is new, gives (6) and completes the proof of Theorem 1.

Theorem 1 gives the prior for a VSP in terms of the prior
for one of the BDTs that represent that VSP. We can also
parameterise VSPs using MDTs and this leads to the second
MCMC scheme given in Appendix C.2.

Corollary 1 For m ∈ M[n] with internal nodes A, let ci
give the number of children of node i ∈ A and let P (m) =
{i ∈ A : Li(m) = ∅} and S(m) = A \ P (m) give the sets
of P− and S−node labels. The prior for VSPs given in (6)
is equivalently a prior for MDTs,

πV[n]
(v(m)|q) = πM[n]

(m|q) (8)

=
1

(2n− 3)!!

∏
i∈P (m)

(1− q)ci−1(2ci − 3)!!

×
∏

j∈S(m)

(q
2

)cj−1

Ccj−1.

Proof 2 (Corollary 1) Substitute (3) into (6) and note a
tree with ci leaves has ci − 1 internal nodes. This result
gives a convenient representation for prior evaluation.

3 BI-DIRECTIONAL QUEUE-JUMPING
OBSERVATION MODEL

Our data is a collection of N lists. For j ∈ [N ] let
oj ⊆ [n], oj = {o1, ..., onj} be the actors present when
the j’th ranking list was observed and let yj ∈ Poj , yj =
(yj,1, ..., yj,nj

) be the observed list, just an ordered version
of oj . Let y = (y1, ..., yN ) be the list of lists. The ‘queue-
based’ observation model given in Nicholls and Muir Watt
[2011] models list data as a realisation of a random queue
constrained to put higher status individuals before those of
lower status. In this model the queue is dynamic. It forms
and then unconstrained pairs of actors swap places at ran-
dom. If this process reaches equilibrium before the queue
is read off then the resulting list is a uniform draw from
the linear extensions of the constraining social hierarchy
[Karzanov and Khachiyan, 1991]. In this noise-free model
yj ∼ U(L[v[oj ]]) independently for j ∈ [N ].

It is unlikely the observations are “error free”. In a “queue-
jumping” model (QJ-U, see Appendix B.1and Nicholls and
Muir Watt [2011] for details) the queue is read from the
top: with probability p ∈ [0, 1] the “next” person in the

queue is drawn at random from those remaining, ignoring
the social hierarchy; otherwise they are the first person in
the remaining LE. The queue can also be read from the
bottom up. In this model (QJ-D) actors fall down the queue.
We think of these events as actors arriving while the queue
is being read.

We would like to have a queue-based model in which dis-
placement in both directions is possible. The resulting “bi-
directional queue-jumping” model (QJ-B) is not simply a
mixture of QJ-U and QJ-D, as it allows displacement in both
directions within a single realisation. The cost of evaluating
a QJ-B likelihood is exponential in n. However, for the ap-
plication in Section 5.1 there is a subset of actors (bishops)
known a priori to appear as a group. Separate modelling
of this manageable subset (n ≃ 20) is well-motivated. Al-
though QJ-B cannot be evaluated for a general partial order
(counting LEs is prohibitive) it is fine for a VSP.

Like QJ-U, QJ-B ranks by repeated selection. Fig. 5 provides
an example QJ-B list-realisation from VSP v0. A generic
list x ∈ P[n] is built up from both ends (see Appendix
B.2). Let z ∈ {0, 1}n−1 with zk ∼ Bern(ϕ). Here zk = 0
indicates the k’th actor to be added to the list was placed
bottom-up in the QJ-D model and zk = 1 indicates they
were placed top-down in the QJ-U model. In Fig. 5, z =
(1, 0, 0, 1). If we let U0 = 0 then Uk = Uk−1 + zk gives
the number of places filled from the top after the k’th actor
has arrived, so if zk = 1 then the k’th actor was placed
into position ik = Uk in x. Similarly, if D0 = n + 1 then
Dk = Dk−1− (1− zk) tracks places filled from the bottom
and gives the placement index ik = Dk in x when zk = 0,
so ik = zkUk + (1 − zk)Dk gives the position in x into
which the k’th actor was added. If z = (1, 0, 0, 1), then
(i1, ..., i4) = (1, 5, 4, 2) (and i5 = 3, the only remaining
place).

Definition 2 (Bi-Directional Queue-Jumping Model)
Let LT (v) = |L[v]| be the number of LEs of VSP v ∈ V[n]

and for i ∈ [n] let Ti(v) = |{l ∈ L[v] : l1 = i}|
give the number of LEs with actor i at the top. Let
Bi(v) = |{l ∈ L[v] : ln = i}| give the number of LEs
with actor i at the bottom. If z ∈ {0, 1}n−1 is given then
ik = ik(z), k = 1, ..., n is given above. The observation
model for QJ-B for a list x ∈ P[n] given z is

Qbi(x|z, v, p, ϕ)=
n−1∏
k=1

[ϕ1{zk=0}Qbi(xik |xi1:k−1
, zk, v, p)

+ (1− ϕ)1{zk=1}Qbi(xik |xi1:k−1
, zk, v, p)],

where

Qbi(xik |xi1:k−1
, zk = 0, v, p) =

p

n− k + 1
+ (1− p)

Txik
(v[x[n]\{i1,...,ik−1}])

LT (v[x[n]\{i1,...,ik−1}])
,
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Figure 5: One example list simulation process from the VSP v0 (left) via the QJ-B observation model. The simulated list is
displayed on the right.

Qbi(xik |xi1:k−1, zk = 1, v, p) =

p

n− k + 1
+ (1− p)

Bxik
(v[x[n]\{i1,...,ik−1}])

LT (v[x[n]\{i1,...,ik−1}])
,

and marginally,

Qbi(x|v, p, ϕ) =
∑

z∈{0,1}n

Qbi(x|z, v, p, ϕ)p(z|ϕ) (9)

where p(z|ϕ) = ϕ
∑

i zi(1− ϕ)n−
∑

i zi .

We give a generative model realising x ∼ Qbi in Appendix
B.2. This distribution reduces to Qup/QJ-U in Appendix
B.1 when ϕ = 1 (and Qdown/QJ-D when ϕ = 0). We
use this nesting to investigate whether QJ-U or QJ-D or
QJ-B fits the data better. This is of interest in our applica-
tion as different error types correspond to obvious physical
mechanisms (downwards displacement may be “arrived late”
and upwards displacement may be “my friend the King is
present”). When p = 0 this is the noise free model for every
ϕ ∈ [0, 1], so ϕ is not identifiable in the noise free setting.

Counting LEs of a VSP (evaluating LT (v) etc) is O(n) so
the computational complexity for naive evaluation of Qbi

using (9) is O(n22n). We used a recursion (Algorithm B.3)
of computational complexity O(n2n). This avoids repeated
evaluation of LE-counts for the same suborders and (by
Proposition 7 in Appendix B.3) evaluates Qbi.

4 SUMMARISING THE VSP POSTERIOR

Bayesian inference is straightforward in principle given an
explicit prior distribution over VSPs and an observation
model Q = Qup or Q = Qbi for our N ranking-lists. We
can represent a VSP as a MDT (since the mapping is one-
to-one) or carry out Bayesian inference on the latent space
of BDTs t ∈ T[n] and use the fact that they marginalise to
MDTs. We present the posteriors for BDT and VSP. Let
ψ = (p, ϕ) for QJ-B and ψ = p for QJ-U.

The posterior for the BDT t ∈ T[n] is

πT[n]
(t, q, ψ|y) ∝ πT[n]

(t|q)π(q, ψ)Q(y|v(t), ψ) (10)

The posterior distribution for the VSP v ∈ V[n] is

πV[n]
(v, q, ψ|y) ∝ πV[n]

(v|q)π(q, ψ)Q(y|v, ψ), (11)

where we use the equivalent MDT posterior with prior given
in Corollary 1 for VSPs in (11).

Proposition 1 (Posterior Marginals) Sampling the BDT
posterior (t, q, ψ) ∼ πT[n]

(·|y) gives samples (v(t), q, ψ) ∼
πV[n]

(·|y) from the VSP posterior (see Appendix A.4 for
proof).

We implemented separate MCMC samplers targeting both
(10) and (11). Our MCMC algorithms are given in Ap-
pendix C. We checked that the VSP-posterior marginals for
the two implementations were equal (up to Monte-Carlo er-
ror). We implemented MCMC targeting the BDT posterior
(10) first, as BDT data structures are slightly more straight-
forward to handle than the MDT data structures needed
to target the VSP posterior in (11). All results in the next
section were computed using the BDT-MCMC.

5 APPLICATIONS

5.1 DATA AND ANALYSES

We analyse a dataset accessed through a database made for
“The Charters of William II and Henry I” project by Pro-
fessor Richard Sharpe and Dr Nicholas Karn [Sharpe et al.,
2014]. These data collect witness lists from legal documents
from England and Wales in the eleventh and twelfth century.
Witness lists respect a rigid social hierarchy: higher status
individuals come ahead of lower status individuals in the
lists. Fig. D.1 is an example list.

We represent the hierarchy on actors [n] appearing in the
lists as a partial order which is a VSP v ∈ V[n] and model a



list as the outcome of one of the queuing processes described
in Section 3. We imagine the actors lining up to witness the
document in a virtual queue.

Lists are witnessed by people from all walks of life and we
have their titles. These include “others” (actors who lack
titles). Historians are interested in social hierarchies and
how they change over time. For illustration we reconstruct
hierarchies in three snapshots: the years 1080-84, 1126-30
and 1134-38. The last two cover periods shortly before and
after Stephen became King, a time of great change. The
5-year intervals are short enough for any changes in the
hierarchy to be slight [Nicholls et al., 2022]. For ease of
visualisation we present results for individuals appearing
in at least 5 lists (5LPA data) here and results on all actors
(1LPA data) in Appendix D.1.1. We fit VSP/QJ-U to all data
and fit VSP/QJ-B to 2 of the 3 5LPA data sets (not 1134-38,
as QJ-B has runtime growing exponentially with the length
of the longest list). However, relations between bishops in
1134-38 are of particular interest so we present VSP/QJ-B
results for this subgroup. Table D.1 summarises the data in
the different experiments on the Royal Acta data.

In a separate analysis illustrating how our methods apply
more generally to any rank-order data, we give an analysis
of Formula 1 race outcomes for the 2021 season. Data and
results are given in Appendix D.2.

The prior for error probability p and for q (probability for an
S-node) is given in Fig. 8. All fitting is done using MCMC
in the BDT representation, Algorithm C.1. For any given
model we draw MCMC samples t(k), p(k), q(k), ϕ(k) ∼
πT[n]

(·|y) for k = 1, ...,K and set v(k) = v(t(k)) per
Proposition 1. Example MCMC traces are given in the
supplement with Effective Sample Size (ESS) values (Ap-
pendix D.1). Sampled VSPs are summarised using con-
sensus VSPs: V con(ϵ) includes order relation/edge ⟨i, j⟩ if
the relation appears more than ϵK times in the MCMC out-
put. We color edges black if they are in V con(ϵ) at ϵ = 0.5
but not ϵ = 0.9 and red if they are supported at ϵ = 0.9.
We plot transitive reductions. These omit strongly supported
edges from the top to the bottom of the DAG for clarity.

In Sec. 5.2, we fit the QJ-U and QJ-B models to the
5LPA data and make a model comparison using Bayes
factors. Consensus orders for the 1LPA data are given in Ap-
pendix D.1.1. We additionally compare these models with
bucket order models, a Plackett-Luce mixture, Mallows mix-
ture and latent partial order model in Appendix E. We carry
out these tests on both the Royal Acta data and the F1 race
result data. We report computing time measurements for
counting LEs for the latent partial order model and the VSP.
They are compared empirically in Appendix F.

5.2 RESULTS

We begin by making reconstruction-accuracy tests on syn-

thetic data. Our list data are incomplete, in the sense that
the membership in list i = 1, ..., N is oi not [n] and the
N -values in Table D.1 are not much larger than the number
of actors n. In order to measure the reliability of the re-
constructions which follow we take representative paramet-
ers (parameters sampled from the corresponding posterior,
the last sampled state v(K), p(K), q(K), ϕ(K)) and generate
synthetic data with the same list-membership and length
structures as the real data. The ROC curves in Fig. D.12
(5LPA data and QJ-U) and D.15 (5LPA data and QJ-B) for
consensus orders V con(ϵ) show the proportion of inferred
false-positive and true-positive relations increasing with
decreasing ϵ from (0, 0) at ϵ = 1 (the consensus order is
empty) to (1, 1) at ϵ = 0 (complete graph). For each sim-
ulated data set there is ϵ giving high true-positive and low
false-positive reconstructed relation fractions: if our model
is accurate then we reconstruct relations well.

We next report consensus partial orders. Consensus orders
for actors color-coded by their professions are shown in
Fig. 6 and 7. For both QJ-U and QJ-B models, we observe
three clear social hierarchies: King ≻ Queen ≻ Duke appear
at the top, in that order (when they are in the 5LPA data, in
1180-84 and 1134-38); then archbishop/prince ≻ bishops;
the remaining professions (earl, count, chancellor, other) are
ranked lower than bishops in a relatively complex hierarchy.

King

Queen

Son of King

Archbishop

Bishop

Duke
Chancellor
Earl
Count
Other

Figure 6: VSP/QJ-U model. Consensus order for 1134-38
5LPA data. Significant/strong order relations are indicated
by black/red edges respectively.

Some of this is common sense. However, the web of strongly
attested relations between earls and others in 1134-38 is new.
There is clear evidence for hierarchies within professions.
The bishop-only QJ-U analysis in 1134-38 (top-right graph
in Fig. 7) is similar to the bishop subgraph of the full QJ-U
analysis for the same period (pink nodes in Fig. 6). The prior
is marginally consistent, but information is shared across
lists so removing actors changes the data and changes es-
timated order relations between those that remain. However,
the bishops appear as a group in the lists and in Fig. 6 and
there are few non-bishops “between” bishops in lists, so this
effect is slight. We can attach names to nodes: for example,



King

Queen

Son of King

Archbishop

Bishop

Duke
Earl
Count
Other

Figure 7: VSP/QJ-U (top row) and VSP/QJ-B (bottom row).
Consensus orders for 1080-84, 1126-30 and 1134-38 (bish-
ops) (left to right columns) 5LPA data.

the top three bishops in 34-38 (in Fig. 6 and in both QJ-U
and QJ-B analyses in the rightmost column of Fig. 7) are
Henry, de Blois, Bishop of Wincester ≻ Roger, Bishop of
Salisbury ≻ Alexander, Bishop of Lincoln.

The status hierarchies fitted using by QJ-B (bottom row
Fig. 7) are simpler and deeper than QJ-U (top row Fig. 7).
The data must contain a small number of errors in both
directions. A uni-directional model must fit a shallower
VSP as it accommodates errors in the “wrong” direction by
removing order relations in the reconstructed VSP.

We summarise the status of “professions” within VSPs by
averaging ranks. Given a partial order v ∈ V[n], the rank of
actor i ∈ [n] is the number of actors above them, ranki(v) =
1 + |{⟨e1, e2⟩ ∈ E(v) : e2 = i}|, and take as our summary
the average rank of actors in the profession. The posterior
mean ranks given in Table D.5 and D.7 match our remarks
on consensus orders.

We next report parameter distributions. Prior and posterior
distributions for the probability q for a serial node, error
probability p and QJ-B parameter ϕ (equal one for QJ-U
and zero for QJ-D) for the three periods are shown in Fig. 8.
The p-posteriors are weighted toward smaller values and
overlap, though errors are low in 1126-30 and higher in
1180-84 indicating greater respect for the rules of preced-
ence in 1126-30 than in 1180-84. Prior and posterior depth
distributions are shown in Fig. D.11 and D.14. The prior
depth distributions are fairly flat so any depth-structure in
the posterior comes from the data. The probability for a
series node in the BDT (q) controls the depth of the fitted
order relation. For example, in 1180-84 a relatively high
q for QJ-U is associated with relatively high depth VSPs
with a mean depth of 14 relative to maximum depth 17 (the
number of actors). In contrast, the posterior probabilities for
S and P nodes are almost equal in 1134-38 and so we get a
relatively shallower hierarchy: the posterior mean depth is
about 23 relative to a maximum depth 49 in Fig. D.11.

The QJ-B model for noise in the list data allows actors to
jump up or down from a queue-position appropriate for their

Figure 8: Posterior distributions for q = P (S) (left), error
probability p (middle) and QJ-B probability ϕ (right) for the
time periods 1180-1184 (blue), 1126-1130 (red), 1134-1138
(green) and 1134-1138(b) (yellow) from both the VSP/QJ-U
(solid) and VSP/QJ-B (dashed) models. The prior is repres-
ented in grey in all figures.

status. QJ-U is favored if ϕ > 1/2 and otherwise QJ-D so
we see from Fig. 8 that QJ-U is favored in 1134-38(b), while
the 1080-84 data supports QJ-D. However, the p-posteriors
both favor small p. The displacement direction controlled
by ϕ is hard to measure and not identifiable at p = 0 so the
ϕ-distributions are correspondingly broad.

We next report results of model selection between different
queue jumping error models. Preference shifts from down-
wards to bidirectional to upwards displacement error models
over the period 1080-1140. We justify this reading of the
results using Bayes factors below. In summary, QJ-D is
slightly favored over QJ-B (so we write “D > B”) in 1080-
84 while in 1126-30 models QJ-D and QJ-B are equally
good (D ≈ B). Both are clearly favored over QJ-U in these
periods (D,B ≫ U ). In 34-38(b) we have U ≈ B and
U,B ≫ D.

We can read the Bayes factors we need off Fig. 8 because
the models QJ-U and QJ-D are nested in the model QJ-B.
The Bayes factor BU,B for QJ-U over QJ-B is

BU,B = lim
δ→0

p(y|ϕ > 1− δ)

p(y|ϕ ∈ (0, 1))

= lim
δ→0

π(ϕ > 1− δ|y)
π(ϕ ∈ (0, 1)|y)

π(ϕ ∈ (0, 1))

π(ϕ > 1− δ)

= lim
δ→0

π(ϕ > 1− δ|y)
π(ϕ > 1− δ)

,

since ϕ ∈ (0, 1) with probability one. Similarly,

BD,B = lim
δ→0

π(ϕ < δ|y)
π(ϕ < δ)

,

and then BU,D = BU,B/BD,B . From Fig. 8, BU,B is close
to 0 in periods 1180-84 and 1126-30 as the posterior dens-
ity is well below the prior density at ϕ → 1, providing
strong support for QJ-B over QJ-U. In 1134-38(b), we see
BU,B ≈ 1, as the curves meet as ϕ→ 1 so there is no clear
signal from the data. The other comparisons may be justified
similarly.

Finally we make model comparisons with other models.
Comparisons with a Plackett-Luce mixture model and a



Mallows mixture model are given in Appendix E.1, the
latent partial order model from Nicholls and Muir Watt
[2011] in Appendix E.3 and a simple Bucket Order model
in Appendix E.2. When models are nested (Bucket Order)
we estimate a Bayes factor. When they are not, we use the
Expected Log Pointwise Predictive Density (ELPD, Vehtari
et al. [2017]) as our criterion. This is a predictive loss which
can be estimated using LOOCV or the WAIC [Watanabe,
2013]. On this basis VSP/QJ (-U and -B) is clearly favoured
over Placket-Luce mixture models and Mallows mixture
model in Table E.1 (“Royal Acta”) and E.3 (Formula 1 race
data). With Bayes factors around 2 or 3, Bucket orders are
equal or slightly preferred over VSPs in the QJ-B model
(Table E.3). Our VSP-based model QJ-U is clearly preferred
over Bucket orders in the QJ-U fit (some very large Bayes
factors in favor of VSP).

The support of our VSP model is a subset of the PO support,
as POs containing the forbidden sub-graph (Appendix G) are
not VSPs. The PO/QJ-U has a slightly larger ELPD (−36.7,
see Table E.4) than VSP/QJ-U (−37.8) on the 1126-1130
data with 5LPA. However, the difference is not significant at
the precision (±10) of these estimates so we conclude that
VSP/QJ-U models these data as well as PO/QJ-U. It gives
similar consensus orders (Fig. E.2) and profession rankings
(Table E.5).

A VSP-based analysis is far more computationally efficient
than a PO-based model when the number of actors is large.
The computing time for counting the LEs of a VSP rises
linearly with the number of actors (Fig. F.1) while it in-
creases exponentially for PO (using the best code we could
find, LEcount, Kangas et al. [2016], but inevitable given
Brightwell and Winkler [1991]). We have to count LEs of
random POs. In our experience counting LEs on random
POs with up to about 25-30 actors is feasible. However, at
larger numbers we encounter occasional random POs which
are especially “hard” to count and VSP-based analysis is
the only way forward at present.

6 DISCUSSION AND CONCLUSION

Our work was motivated by the need to fit relatively large
partial orders (up to 200 nodes) to noisy linear-extension
data. We saw that, for data on this scale, counting linear
extensions in the VSP-tree representation is much faster
than current state-of-art counting for general partial orders,
enabling our methods to scale. We gave a new consistent
and closed form prior distribution over VSPs with a para-
meter q controlling VSP depth, and a new observation model
QJ-B for noisy LEs which generalises QJ-U [Nicholls and
Muir Watt, 2011]. We fit the new model to some of the
smaller data sets and the old model to all data sets. Neither
of these analyses would be possible without the VSP-setup.
The data support the new observation model in our applic-
ation. Our elpdwaic-based model comparisons also clearly

favor VSP/QJ-U and VSP/QJ-B over a Plackett-Luce mix-
ture or a Mallows Mixture. Although we could fit the large
data sets, visualising consensus partial orders proved chal-
lenging (compare Fig. 7 (top left corner) and Fig. D.4).

We gave MCMC algorithms targeting the posterior for VSPs
in both the latent-space (BDT) parameterisation and the in-
tegrated MDT parameterisation. We found the BDT-MCMC
adequate, though it would be good to make an efficiency
comparison with MDT-MCMC, which we expect to be more
efficient. These comparisons are underway. BDT updates
which don’t change the VSP are fast so BDT-MCMC seems
to be competitive. For code see https://github.com
/JessieJ315/Bayesian-Inference-for-Ver
tex-Series-Parallel-Partial-Orders.git.

In future work we would like to compare our fit with
the recently-proposed contextual repeated selection (CRS)
model (Seshadri et al. [2020] and Ragain and Ugander
[2018]). This is a rich class of models for rank-order data.
The elements of the model are not essentially physical, in
the sense that a VSP represents a social hierarchy relation
by relation. Also, CRS models do not encode transitivity. It
is easy to show VSP models cannot be represented as CRS
models with “cliques” of size two. CRS models may fit the
data well, and a comparison would be worthwhile. However,
there is currently no Bayesian CRS analysis so we leave that
for future work.
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