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ABSTRACT

Empirical risk minimization (ERM) is typically designed to perform well on the
average loss, which can result in estimators that are sensitive to outliers, generalize
poorly, or treat subgroups unfairly. While many methods aim to address these
problems individually, in this work, we explore them through a unified framework—
tilted empirical risk minimization (TERM). In particular, we show that it is possible
to flexibly tune the impact of individual losses through a straightforward extension
to ERM using a hyperparameter called the tilt. We provide several interpretations
of the resulting framework: We show that TERM can increase or decrease the
influence of outliers, respectively, to enable fairness or robustness; has variance-
reduction properties that can benefit generalization; and can be viewed as a smooth
approximation to a superquantile method. We develop batch and stochastic first-
order optimization methods for solving TERM, and show that the problem can
be efficiently solved relative to common alternatives. Finally, we demonstrate
that TERM can be used for a multitude of applications, such as enforcing fairness
between subgroups, mitigating the effect of outliers, and handling class imbalance.
TERM is not only competitive with existing solutions tailored to these individual
problems, but can also enable entirely new applications, such as simultaneously
addressing outliers and promoting fairness.

1 INTRODUCTION

Many statistical estimation procedures rely on the concept of empirical risk minimization (ERM), in
which the parameter of interest, θPΘĎRd, is estimated by minimizing an average loss over the data:

Rpθq :“
1

N

ÿ

iPrNs

fpxi; θq . (1)

While ERM is widely used and has nice statistical properties, it can perform poorly in situations
where average performance is not an appropriate surrogate for the problem of interest. Significant
research has thus been devoted to developing alternatives to traditional ERM for diverse applications,
such as learning in the presence of noisy/corrupted data (Jiang et al., 2018; Khetan et al., 2018),
performing classification with imbalanced data (Lin et al., 2017; Malisiewicz et al., 2011), ensuring
that subgroups within a population are treated fairly (Hashimoto et al., 2018; Samadi et al., 2018), or
developing solutions with favorable out-of-sample performance (Namkoong & Duchi, 2017).

In this paper, we suggest that deficiencies in ERM can be flexibly addressed via a unified framework,
tilted empirical risk minimization (TERM). TERM encompasses a family of objectives, parameterized
by a real-valued hyperparameter, t. For t P Rz0, the t-tilted loss (TERM objective) is given by:

rRpt; θq :“
1

t
log

ˆ

1

N

ÿ

iPrNs

etfpxi;θq
˙

. (2)

TERM generalizes ERM as the 0-tilted loss recovers the average loss, i.e., rRp0, θq“Rpθq.1 It also
recovers other popular alternatives such as the max-loss (tÑ`8) and min-loss (tÑ´8) (Lemma 2).
For tą0, the objective is a common form of exponential smoothing, used to approximate the max (Kort
& Bertsekas, 1972; Pee & Royset, 2011). Variants of tilting have been studied in several contexts,

˚Equal contribution.
1
rRp0; θq is defined in (14) via the continuous extension of Rpt; θq.
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Figure 1: Toy examples illustrating TERM as a function of t: (a) finding a point estimate from a set of 2D
samples, (b) linear regression with outliers, and (c) logistic regression with imbalanced classes. While positive
values of tmagnify outliers, negative values suppress them. Setting t“0 recovers the original ERM objective (1).

including robust regression (Wang et al., 2013) ptă0q, importance sampling (Wainwright et al., 2005),
sequential decision making (Howard & Matheson, 1972; Nass et al., 2019), and large deviations
theory (Beirami et al., 2018). However, despite the rich history of tilted objectives, they have not
seen widespread use in machine learning. In this work, we aim to bridge this gap by: (i) rigorously
studying the objective in a general form, and (ii) exploring its utility for a number of ML applications.
Surprisingly, we find that this simple extension to ERM is competitive for a wide range of problems.

To highlight how the TERM objective can help with issues such as outliers or imbalanced classes, we
discuss three motivating examples below, which are illustrated in Figure 1.

(a) Point estimation: As a first example, consider determining a point estimate from a set of samples
that contain some outliers. We plot an example 2D dataset in Figure 1a, with data centered at (1,1).
Using traditional ERM (i.e., TERM with t “ 0) recovers the sample mean, which can be biased
towards outlier data. By setting t ă 0, TERM can suppress outliers by reducing the relative impact
of the largest losses (i.e., points that are far from the estimate) in (2). A specific value of t ă 0
can in fact approximately recover the geometric median, as the objective in (2) can be viewed as
approximately optimizing specific loss quantiles (a connection which we make explicit in Section 2).
In contrast, if these ‘outlier’ points are important to estimate, setting t ą 0 will push the solution
towards a point that aims to minimize variance, as we prove more rigorously in Section 2, Theorem 4.

(b) Linear regression: A similar interpretation holds for the case of linear regression (Figure 2b).
As tÑ ´8, TERM finds a line of best while ignoring outliers. However, this solution may not be
preferred if we have reason to believe that these ‘outliers’ should not be ignored. As tÑ `8, TERM
recovers the min-max solution, which aims to minimize the worst loss, thus ensuring the model is a
reasonable fit for all samples (at the expense of possibly being a worse fit for many). Similar criteria
have been used, e.g., in defining notions of fairness (Hashimoto et al., 2018; Samadi et al., 2018). We
explore several use-cases involving robust regression and fairness in more detail in Section 5.

(c) Logistic regression: Finally, we consider a binary classification problem using logistic regression
(Figure 2c). For t P R, the TERM solution varies from the nearest cluster center (tÑ´8), to the
logistic regression classifier (t“0), towards a classifier that magnifies the misclassified data (tÑ`8).
We note that it is common to modify logistic regression classifiers by adjusting the decision threshold
from 0.5, which is equivalent to moving the intercept of the decision boundary. This is fundamentally
different than what is offered by TERM (where the slope is changing). As we show in Section 5, this
added flexibility affords TERM with competitive performance on a number of classification problems,
such as those involving noisy data, class imbalance, or a combination of the two.

Contributions. In this work, we explore TERM as a simple, unified framework to flexibly address
various challenges with empirical risk minimization. We first analyze the objective and its solutions,
showcasing the behavior of TERM with varying t (Section 2). Our analysis provides novel connections
between tilted objectives and superquantile methods. We develop efficient methods for solving TERM
(Section 4), and show via numerous case studies that TERM is competitive with existing, problem-
specific state-of-the-art solutions (Section 5). We also extend TERM to handle compound issues,
such as the simultaneous existence of noisy samples and imbalanced classes (Section 3). Our results
demonstrate the effectiveness and versatility of tilted objectives in machine learning.
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2 TERM: PROPERTIES & INTERPRETATIONS

To better understand the performance of the t-tilted losses in (2), we provide several interpretations of
the TERM solutions, leaving the full statements of theorems and proofs to the appendix. We make no
distributional assumptions on the data, and study properties of TERM under the assumption that the
loss function forms a generalized linear model, e.g., L2 loss and logistic loss (Appendix D). However,
we also obtain favorable empirical results using TERM with other objectives such as deep neural
networks and PCA in Section 5, motivating the extension of our theory beyond GLMs in future work.
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Figure 2: TERM objectives for a squared loss
problem with N “ 3. As t moves from ´8
to `8, t-tilted losses recover min-loss, avg-
loss, and max-loss. TERM is smooth for all
finite t and convex for positive t.

General properties. We begin by noting several gen-
eral properties of the TERM objective (2). Given a
smooth fpx; θq, the t-tilted loss is smooth for all finite t
(Lemma 4). If fpx; θq is strongly convex, the t-tilted loss
is strongly convex for t ą 0 (Lemma 5). We visualize the
solutions to TERM for a toy problem in Figure 2, which
allows us to illustrate several special cases of the general
framework. As discussed in Section 1, TERM can recover
traditional ERM (t“0), the max-loss (tÑ`8), and the
min-loss (tÑ´8). As we demonstrate in Section 5, pro-
viding a smooth tradeoff between these specific losses
can be beneficial for a number of practical use-cases—
both in terms of the resulting solution and the difficulty of
solving the problem itself. Interestingly, we additionally
show that the TERM solution can be viewed as a smooth
approximation to a superquantile method, which aims to
minimize quantiles of losses such as the median loss. In
Figure 2, it is clear to see why this may be beneficial, as
the median loss (orange) can be highly non-smooth in
practice. We make these rough connections more explicit
via the interpretations below.

(Interpretation 1) Re-weighting samples to magnify/suppress outliers. As discussed via the toy
examples in Section 1, the TERM objective can be tuned (using t) to magnify or suppress the influence
of outliers. We make this notion rigorous by exploring the gradient of the t-tilted loss in order to
reason about the solutions to the objective defined in (2).
Lemma 1 (Tilted gradient, proof in Appendix B). For a smooth loss function fpx; θq,

∇θ rRpt;θq“
ÿ

iPrNs

wipt;θq∇θfpxi;θq, where wipt;θq:“
etfpxi;θq

ř

jPrNse
tfpxj ;θq

“
1

N
etpfpxi;θq´

rRpt;θqq. (3)

From this, we can observe that the tilted gradient is a weighted average of the gradients of the original
individual losses, where each data point is weighted exponentially proportional to the value of its
loss. Note that t “ 0 recovers the uniform weighting associated with ERM, i.e., wipt; θq “ 1{N . For
positive t, it magnifies the outliers—samples with large losses—by assigning more weight to them,
and for negative t, it suppresses the outliers by assigning less weight to them.

(Interpretation 2) Tradeoff between average-loss and min/max-loss. To put Interpretation 1 in
context and understand the limits of TERM, a benefit of the framework is that it offers a continuum
of solutions between the min and max losses. Indeed, for positive values of t, TERM enables a
smooth tradeoff between the average-loss and max-loss (as we demonstrate in Figure 10, Appendix I).
Hence, TERM can selectively improve the worst-performing losses by paying a penalty on average
performance, thus promoting a notion of uniformity or fairness (Hashimoto et al., 2018). On the other
hand, for negative t, the solutions achieve a smooth tradeoff between average-loss and min-loss, which
can have the benefit of focusing on the ‘best’ losses, or ignoring outliers (Theorem 3, Appendix D).
Theorem (Formal statement and proof in Appendix D, Theorem 3). Let θ̆ptq be the minimizer of
rRpt; θq, referred to as t-tilted solution. Then, for t ą 0, max-loss, pRpθ̆ptqq, is non-increasing with t
while the average loss, Rpθ̆ptqq, is non-decreasing with t.

(Interpretation 3) Empirical bias/variance tradeoff. Another key property of the TERM solutions
is that the empirical variance of the loss across all samples decreases as t increases (Theorem 4).
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Hence, by increasing t, it is possible to trade off between optimizing the average loss vs. reducing
variance, allowing the solutions to potentially achieve a better bias-variance tradeoff for generaliza-
tion (Bennett, 1962; Hoeffding, 1994; Maurer & Pontil, 2009) (Figure 10, Appendix I). We use this
property to achieve better generalization in classification in Section 5. We also prove that the cosine
similarity between the loss vector and the all-ones vector monotonically increases with t (Theorem 5),
which shows that larger t promotes a more uniform performance across all losses and can have
implications for fairness defined as representation disparity (Hashimoto et al., 2018) (Section 5.2).

Theorem (Formal statement and proof in Appendix D, Theorem 4). Let fpθq :“
pfpx1; θqq, . . . , fpxN ; θqq be the loss vector for parameter θ. Then, the variance of the vector
fpθ̆ptqq is non-increasing with t while its average, i.e., Rpθ̆ptqq, is non-decreasing with t.

(Interpretation 4) Approximate superquantile method. Finally, we show that TERM is related to
superquantile-based objectives, which aim to minimize specific quantiles of the individual losses that
exceed a certain value (Rockafellar et al., 2000). For example, optimizing for 90% of the individual
losses (ignoring the worst-performing 10%) could be a more reasonable practical objective than the
pessimistic min-max objective. Another common application of this is to use the median in contrast
to the mean in the presence of noisy outliers. As we discuss in Appendix G, superquantile methods
can be reinterpreted as minimizing the k-loss, defined as the k-th smallest loss of N (i.e., 1-loss is the
min-loss, N -loss is the max-loss, pN´1q{2-loss is the median-loss). While minimizing the k-loss is
more desirable than ERM in many applications, the k-loss is non-smooth (and generally non-convex),
and is challenging to solve for large-scale problems (Jin et al., 2020; Nouiehed et al., 2019b).

Theorem (Formal statement and proof in Appendix G, Theorem 10). The quantile of the losses that
exceed a given value is upper bounded by a smooth function of the TERM objective. Further, the
t-tilted solutions are good approximate solutions of the superquantile (k-loss) optimization.

3 TERM EXTENDED: HIERARCHICAL MULTI-OBJECTIVE TILTING

We also consider an extension of TERM that can be used to address practical applications requiring
multiple objectives, e.g., simultaneously achieving robustness to noisy data and ensuring fair perfor-
mance across subgroups. Existing approaches typically aim to address such problems in isolation.
To handle multiple objectives with TERM, let each sample x be associated with a group g P rGs,
i.e., x P g. These groups could be related to the labels (e.g., classes in a classification task), or may
depend only on features. For any t, τ P R, we define multi-objective TERM as:

rJpt, τ ; θq :“
1

t
log

¨

˝

1

N

ÿ

gPrGs

|g|et
rRgpτ ;θq

˛

‚ , where rRgpτ ; θq :“
1

τ
log

˜

1

|g|

ÿ

xPg

eτfpx;θq

¸

, (4)

and |g| is the size of group g. Multi-objective TERM recovers sample-level TERM as a special
case for τ “ t (Appendix, Lemma 7), and reduces to group-level TERM with τ Ñ 0. Note that all
properties discussed in Section 2 carry over to group-level TERM. Similar to the tilted gradient (3),
the multi-objective tilted gradient is a weighted sum of the gradients (Appendix, Lemma 6), making
it similarly efficient to solve. We validate the effectiveness of hierarchical tilting empirically in
Section 5.3, where we show that TERM can significantly outperform baselines to handle class
imbalance and noisy outliers simultaneously.

4 SOLVING TERM

To solve TERM, we suggest batch and stochastic variants of traditional first-order gradient-based
optimization methods. TERM in the batch setting (Batch TERM) is summarized in Algorithm 1 in the
context of solving multi-objective hierarchical TERM (4) for full generality. The main steps include
computing the tilted gradients of the hierarchical objective defined in (4). Note that Batch TERM with
t “ τ reduces to solving the sample-level tilted objective (2). We also provide a stochastic variant
in Algorithm 2, Appendix H. At a high level, at each iteration, group-level tilting is addressed by
choosing a group based on the tilted weight vector estimated via stochastic dynamics. Sample-level
tilting is then incorporated by re-weighting the samples in a uniformly drawn mini-batch. We find
that these methods perform well empirically on a variety of tasks (Section 5).
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Algorithm 1: Batch TERM
Input: t, τ, α
while stopping criteria not reached do

for g P rGs do
compute the loss fpx; θq and gradient ∇θfpx; θq for all x P g
rRg,τ Ð τ -tilted loss (4) on group g, ∇θ rRg,τ Ð 1

|g|

ř

xPg e
τfpx;θq´τ rRg,τ∇θfpx; θq

end
rJt,τ Ð

1
t log

´

1
N

ř

gPrGs |g|e
t rRgpτ ;θq

¯

, wt,τ,g Ð |g|et
rRτ,g´t rJt,τ

θ Ð θ ´ α
N

ř

gPrGs wt,τ,g∇θ rRg,τ
end

We defer readers to Appendix H for general properties of TERM (smoothness, convexity) that may
vary with t and affect the convergence of gradient-based methods used to solve the objective.

5 TERM IN PRACTICE: USE CASES

In this section, we showcase the flexibility, wide applicability, and competitive performance of the
TERM framework through empirical results on a variety of real-world problems such as handling
outliers (Section 5.1), ensuring fairness and improving generalization (Section 5.2), and addressing
compound issues (Section 5.3). Despite the relatively straightforward modification TERM makes to
traditional ERM, we show that t-tilted losses not only outperform ERM, but either outperform or are
competitive with state-of-the-art, problem-specific tailored baselines on a wide range of applications.

We provide implementation details in Appendix J. All code, datasets, and experiments are publicly
available at github.com/litian96/TERM. For experiments with positive t (Section 5.2),
we tune t P t0.1, 0.5, 1, 5, 10, 50, 100, 200u on the validation set. In our initial robust regression
experiments, we find that the performance is robust to various t’s, and we thus use a fixed t “ ´2
for all experiments involving negative t (Section 5.1 and Section 5.3). For all values of t tested, the
number of iterations required to solve TERM is within 2ˆ that of standard ERM.

5.1 MITIGATING NOISY OUTLIERS

We begin by investigating TERM’s ability to find robust solutions that reduce the effect of noisy
outliers. We note that we specifically focus on the setting of ‘robustness’ involving random additive
noise; the applicability of TERM to more adversarial forms of robustness would be an interesting
direction of future work. We do not compare with approaches that require additional clean validation
data (e.g., Hendrycks et al., 2018; Ren et al., 2018; Roh et al., 2020; Veit et al., 2017), as such data
can be costly to obtain in practice.

Robust regression. We first consider a regression task with noise corrupted targets, where we aim to
minimize the root mean square error (RMSE) on samples from the Drug Discovery dataset (Diakoniko-
las et al., 2019; Olier et al., 2018). The task is to predict the bioactivities given a set of chemical
compounds. We compare against linear regression with an L2 loss, which we view as the ‘standard’
ERM solution for regression, as well as with losses commonly used to mitigate outliers—the L1 loss
and Huber loss (Huber, 1964). We also compare with consistent robust regression (CRR) (Bhatia
et al., 2017) and STIR (Mukhoty et al., 2019), recent state-of-the-art methods specifically designed
for label noise in robust regression. In this particular problem, TERM is equivalent to exponential
squared loss, studied in (Wang et al., 2013). We apply TERM at the sample level with an L2 loss, and
generate noisy outliers by assigning random targets drawn from N p5, 5q on a fraction of the samples.

In Table 1, we report RMSE on clean test data for each objective and under different noise levels.
We also present the performance of an oracle method (Genie ERM) which has access to all of
the clean data samples with the noisy samples removed. Note that Genie ERM is not a practical
algorithm and is solely presented to set the expected performance limit in the noisy setting. The
results indicate that TERM is competitive with baselines on the 20% noise level, and achieves better
robustness with moderate-to-extreme noise. We observe similar trends in scenarios involving both
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noisy features and targets (Appendix I.2). CRR tends to run slowly as it scales cubicly with the
number of dimensions (Bhatia et al., 2017), while solving TERM is roughly as efficient as ERM.

Table 1: TERM is competitive with robust regres-
sion baselines, particularly in high noise regimes.

objectives test RMSE (Drug Discovery)

20% noise 40% noise 80% noise

ERM 1.87 (.05) 2.83 (.06) 4.74 (.06)

L1 1.15 (.07) 1.70 (.12) 4.78 (.08)

Huber (Huber, 1964) 1.16 (.07) 1.78 (.11) 4.74 (.07)

STIR (Mukhoty et al., 2019) 1.16 (.07) 1.75 (.12) 4.74 (.06)

CRR (Bhatia et al., 2017) 1.10 (.07) 1.51 (.08) 4.07 (.06)

TERM 1.08 (.05) 1.10 (.04) 1.68 (.03)

Genie ERM 1.02 (.04) 1.07 (.04) 1.04 (.03)

Table 2: TERM is competitive with robust classification
baselines, and is superior in high noise regimes.

objectives test accuracy (CIFAR10, Inception)

20% noise 40% noise 80% noise

ERM 0.775 (.004) 0.719 (.004) 0.284 (.004)

RandomRect (Ren et al., 2018) 0.744 (.004) 0.699 (.005) 0.384 (.005)

SelfPaced (Kumar et al., 2010) 0.784 (.004) 0.733 (.004) 0.272 (.004)

MentorNet-PD (Jiang et al., 2018) 0.798 (.004) 0.731 (.004) 0.312 (.005)

GCE (Zhang & Sabuncu, 2018) 0.805 (.004) 0.750 (.004) 0.433 (.005)

TERM 0.795 (.004) 0.768 (.004) 0.455 (.005)

Genie ERM 0.828 (.004) 0.820 (.004) 0.792 (.004)

Note that the outliers considered here are unstructured with random noise, and not adversarial. This
makes it possible for the methods to find the underlying structure of clean data even if the majority
of the samples are noisy outliers. To gain more intuition on these cases, we also generate synthetic
two-dimensional data points and test the performance of TERM under 0%, 20%, 40%, and 80% noise
for linear regression. TERM with t “ ´2 performs well in all noise levels (Figure 11 and 12 in
Appendix I.2). However, as might be expected, in Figure 14 (Appendix I.2) we show that TERM
may overfit to noisy samples when the noise is structured and the noise values are large (e.g., 80%).

Robust classification. It is well-known that deep neural networks can easily overfit to corrupted
labels (e.g., Zhang et al., 2017). While the theoretical properties we study for TERM (Section 2) do
not directly cover objectives with neural network function approximations, we show that TERM can
be applied empirically to DNNs to achieve robustness to noisy training labels. MentorNet (Jiang
et al., 2018) is a popular method in this setting, which learns to assign weights to samples based on
feedback from a student net. Following the setup in Jiang et al. (2018), we explore classification on
CIFAR10 (Krizhevsky et al., 2009) when a fraction of the training labels are corrupted with uniform
noise—comparing TERM with ERM and several state-of-the-art approaches (Krizhevsky et al., 2009;
Kumar et al., 2010; Ren et al., 2018; Zhang & Sabuncu, 2018). As shown in Table 2, TERM performs
competitively with 20% noise, and outperforms all baselines in the high noise regimes. We use
MentorNet-PD as a baseline since it does not require clean validation data. In Appendix I.2, we show
that TERM also matches the performance of MentorNet-DD, which requires clean validation data.
To help reason about the performance of TERM, we also explore a simpler, two-dimensional logistic
regression problem in Figure 13, Appendix I.2, finding that TERM with t=´2 is similarly robust
across the considered noise regimes.

Low-quality annotators. It is not uncommon for practitioners to obtain human-labeled data for
their learning tasks from crowd-sourcing platforms. However, these labels are usually noisy in
part due to the varying quality of the human annotators. Given a collection of labeled samples
from crowd-workers, we aim to learn statistical models that are robust to the potentially low-quality
annotators. As a case study, following the setup of (Khetan et al., 2018), we take the CIFAR-10
dataset and simulate 100 annotators where 20 of them are hammers (i.e., always correct) and 80 of
them are spammers (i.e., assigning labels uniformly at random). We apply TERM at the annotator
group level in (4), which is equivalent to assigning annotator-level weights based on the aggregate
value of their loss. As shown in Figure 3, TERM is able to achieve the test accuracy limit set by
Genie ERM, i.e., the ideal performance obtained by completely removing the known outliers. We
note in particular that the accuracy reported by (Khetan et al., 2018) (0.777) is lower than TERM
(0.825) in the same setup, even though their approach is a two-pass algorithm requiring at least to
double the training time. We provide full empirical details and investigate additional noisy annotator
scenarios in Appendix I.2.

5.2 FAIRNESS AND GENERALIZATION

In this section, we show that positive values of t in TERM can help promote fairness (e.g., via
learning fair representations), and offer variance reduction for better generalization.
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Fair principal component analysis (PCA). We explore the flexibility of TERM in learning fair
representations using PCA. In fair PCA, the goal is to learn low-dimensional representations which
are fair to all considered subgroups (e.g., yielding similar reconstruction errors) (Kamani et al., 2019;
Samadi et al., 2018; Tantipongpipat et al., 2019). Despite the non-convexity of the fair PCA problem,
we apply TERM to this task, referring to the resulting objective as TERM-PCA. We tilt the same
loss function as in (Samadi et al., 2018): fpX;Uq “ 1

|X|

´

}X ´XUUJ}2F ´ }X ´ X̂}
2
F

¯

, where

X P Rnˆd is a subset (group) of data, U P Rdˆr is the current projection, and X̂ P Rnˆd is the
optimal rank-r approximation of X . Instead of solving a more complex min-max problem using
semi-definite programming as in (Samadi et al., 2018), which scales poorly with problem dimension,
we apply gradient-based methods, re-weighting the gradients at each iteration based on the loss on
each group. In Figure 4, we plot the aggregate loss for two groups (high vs. low education) in the
Default Credit dataset (Yeh & Lien, 2009) for different target dimensions r. By varying t, we achieve
varying degrees of performance improvement on different groups—TERM (t “ 200) recovers the
min-max results of (Samadi et al., 2018) by forcing the losses on both groups to be (almost) identical,
while TERM (t “ 10) offers the flexibility of reducing the performance gap less aggressively.

Handling class imbalance. Next, we show that TERM can reduce the performance variance across
classes with extremely imbalanced data when training deep neural networks. We compare TERM
with several baselines which re-weight samples during training, including assigning weights inversely
proportional to the class size (InverseRatio), focal loss (Lin et al., 2017), HardMine (Malisiewicz
et al., 2011), and LearnReweight (Ren et al., 2018). Following (Ren et al., 2018), the datasets are
composed of imbalanced 4 and 9 digits from MNIST (LeCun et al., 1998). In Figure 5, we see that
TERM obtains similar (or higher) final accuracy on the clean test data as the state-of-the-art methods.
We note that compared with LearnReweight, which optimizes the model over an additional balanced
validation set and requires three gradient calculations for each update, TERM neither requires such
balanced validation data nor does it increase the per-iteration complexity.

Improving generalization via variance reduction. A common alternative to ERM is to consider a
distributionally robust objective, which optimizes for the worst-case training loss over a set of distri-
butions, and has been shown to offer variance-reduction properties that benefit generalization (e.g.,
Namkoong & Duchi, 2017; Sinha et al., 2018). While not directly developed for distributional robust-
ness, TERM also enables variance reduction for positive values of t (Theorem 4), which can be used
to strike a better bias-variance tradeoff for generalization. We compare TERM with several baselines
including robustly regularized risk (RobustRegRisk) (Namkoong & Duchi, 2017), linear SVM (Ren
et al., 2018), LearnRewight (Ren et al., 2018), FocalLoss (Lin et al., 2017), and HRM (Leqi et al.,
2019). The results and detailed discussions are presented in Appendix I.2.

5.3 SOLVING COMPOUND ISSUES: HIERARCHICAL MULTI-OBJECTIVE TILTING

Finally, in this section, we focus on settings where multiple issues, e.g., class imbalance and label
noise, exist in the data simultaneously. We discuss two possible instances of hierarchical multi-
objective TERM to tackle such problems. One can think of other variants in this hierarchical tilting
space which could be useful depending on applications at hand. However, we are not aware of other
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prior work that aims to simultaneously handle multiple goals, e.g., suppressing noisy samples and
addressing class imbalance, in a unified framework without additional validation data.

We explore the HIV-1 dataset (Rögnvaldsson, 2013), as in Section 5.2. We report both overall
accuracy and accuracy on the rare class in four scenarios: (a) clean and 1:4, the original dataset
that is naturally slightly imbalanced with rare samples represented 1:4 with respect to the common
class; (b) clean and 1:20, where we subsample to introduce a 1:20 imbalance ratio; (c) noisy and
1:4, which is the original dataset with labels associated with 30% of the samples randomly reshuffled;
and (d) noisy and 1:20, where 30% of the labels of the 1:20 imbalanced dataset are reshuffled.

Table 3: Hierarchical TERM can address both class imbalance and noisy samples.

objectives
test accuracy (HIV-1)

clean data 30% noise

1:4 1:20 1:4 1:20

Y “ 0 overall Y “ 0 overall Y “ 0 overall Y “ 0 overall
ERM 0.822 (.009) 0.934 (.003) 0.503 (.013) 0.888 (.006) 0.656 (.014) 0.911 (.006) 0.240 (.018) 0.831 (.011)

GCE (Zhang & Sabuncu, 2018) 0.822 (.009) 0.934 (.003) 0.503 (.013) 0.888 (.006) 0.732 (.021) 0.925 (.005) 0.324 (.017) 0.849 (.008)

LearnReweight (Ren et al., 2018) 0.841 (.014) 0.934 (.004) 0.800 (.022) 0.904 (.003) 0.721 (.034) 0.856 (.008) 0.532 (.054) 0.856 (.013)

RobustRegRisk (Namkoong & Duchi, 2017) 0.844 (.010) 0.939 (.004) 0.622 (.011) 0.906 (.005) 0.634 (.014) 0.907 (.006) 0.051 (.014) 0.792 (.012)

FocalLoss (Lin et al., 2017) 0.834 (.013) 0.937 (.004) 0.806 (.020) 0.918 (.003) 0.638 (.008) 0.908 (.005) 0.565 (.027) 0.890 (.009)

TERMsc 0.840 (.010) 0.937 (.004) 0.836 (.018) 0.921 (.002) 0.852 (.010) 0.924 (.004) 0.778 (.008) 0.900 (.005)

TERMca 0.844 (.014) 0.938 (.004) 0.834 (.021) 0.918 (.003) 0.846 (.015) 0.933 (.003) 0.806 (.020) 0.901 (.010)

In Table 3, hierarchical TERM is applied at the sample level and class level (TERMsc), where we use
the sample-level tilt of τ“´2 for noisy data. We use class-level tilt of t“0.1 for the 1:4 case and
t“50 for the 1:20 case. We compare against baselines for robust classification and class imbalance
(discussed previously in Sections 5.1 and 5.2), where we tune them for best performance (Appendix J).
Similar to the experiments in Section 5.1, we avoid using baselines that require clean validation
data (e.g., Roh et al., 2020). While different baselines perform well in their respective problem
settings, TERM is far superior to all baselines when considering noisy samples and class imbalance
simultaneously (rightmost column in Table 3). Finally, in the last row of Table 3, we simulate the
noisy annotator setting of Section 5.1 assuming that the data is coming from 10 annotators, i.e., in the
30% noise case we have 7 hammers and 3 spammers. In this case, we apply hierarchical TERM at
both class and annotator levels (TERMca), where we perform the higher level tilt at the annotator
(group) level and the lower level tilt at the class level (with no sample-level tilting). We show that this
approach can benefit noisy/imbalanced data even further (far right, Table 3), while suffering only a
small performance drop on the clean and noiseless data (far left, Table 3).

6 RELATED WORK

Alternate aggregation schemes: exponential smoothing/superquantile methods. A common
alternative to the standard average loss in empirical risk minimization is to consider a min-max
objective, which aims to minimize the max-loss. Min-max objectives are commonplace in machine
learning, and have been used for a wide range of applications, such as ensuring fairness across
subgroups (Hashimoto et al., 2018; Mohri et al., 2019; Samadi et al., 2018; Stelmakh et al., 2019;
Tantipongpipat et al., 2019), enabling robustness under small perturbations (Sinha et al., 2018), or
generalizing to unseen domains (Volpi et al., 2018). As discussed in Section 2, the TERM objective
can be viewed as a minimax smoothing (Kort & Bertsekas, 1972; Pee & Royset, 2011) with the
added flexibility of a tunable t to allow the user to optimize utility for different quantiles of loss
similar to superquantile approaches (Laguel et al., 2021; Rockafellar et al., 2000), directly trading
off between robustness/fairness and utility for positive and negative values of t (see Appendix G
for these connections). However, the TERM objective remains smooth (and efficiently solvable) for
moderate values of t, resulting in faster convergence even when the resulting solutions are effectively
the same as the min-max solution or other desired quantiles of the loss (as we demonstrate in the
experiments of Section 5). Such smooth approximations to the max often appear through LogSumExp
functions, with applications in geometric programming (Calafiore & El Ghaoui, 2014, Sec. 9.7), and
boosting (Mason et al., 1999; Shen & Li, 2010). Interestingly, Cohen et al. introduce Simnets (Cohen
& Shashua, 2014; Cohen et al., 2016), with a similar exponential smoothing operator, though for a
differing purpose of achieving layer-wise operations between sum and max in deep neural networks.
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Alternate loss functions. Rather than modifying the way the losses are aggregated, as in (smoothed)
min-max or superquantile methods, it is also quite common to modify the losses themselves. For
example, in robust regression, it is common to consider losses such as the L1 loss, Huber loss, or
general M -estimators (Holland & Ikeda, 2019) as a way to mitigate the effect of outliers (Bhatia
et al., 2015). (Wang et al., 2013) studies a similar exponentially tilted loss for robust regression,
though it is limited to the squared loss and only corresponds to tă0. Losses can also be modified
to address outliers by favoring small losses (Yu et al., 2012; Zhang & Sabuncu, 2018) or gradient
clipping (Menon et al., 2020). On the other extreme, the largest losses can be magnified to encourage
focus on hard samples (Li et al., 2020b; Lin et al., 2017; Wang et al., 2016), which is a popular
approach for curriculum learning. Constraints could also be imposed to promote fairness (Baharlouei
et al., 2020; Donini et al., 2018; Hardt et al., 2016; Rezaei et al., 2020; Zafar et al., 2017). Ignoring
the log portion of the objective in (2), TERM can be viewed as an alternate loss function exponentially
shaping the loss to achieve both of these goals with a single objective, i.e., magnifying hard examples
with t ą 0 and suppressing outliers with t ă 0. In addition, we show that TERM can even achieve
both goals simultaneously with hierarchical multi-objective optimization (Section 5.3).

Sample re-weighting schemes. Finally, there exist approaches that implicitly modify the underlying
ERM objective by re-weighting the influence of the samples themselves. These re-weighting schemes
can be enforced in many ways. A simple and widely used example is to subsample training points in
different classes. Alternatively, one can re-weight examples according to their loss function when
using a stochastic optimizer, which can be used to put more emphasis on “hard” examples (Jiang
et al., 2019; Katharopoulos & Fleuret, 2017; Leqi et al., 2019; Shrivastava et al., 2016). Re-weighting
can also be implicitly enforced via the inclusion of a regularization parameter (Abdelkarim et al.,
2020), loss clipping (Yang et al., 2010), or modelling crowd-worker qualities (Khetan et al., 2018).
Such an explicit re-weighting has been explored for other applications (e.g., Chang et al., 2017; Gao
et al., 2015; Jiang et al., 2018; Lin et al., 2017; Ren et al., 2018; Shu et al., 2019), though in contrast
to these methods, TERM is applicable to a general class of loss functions, with theoretical guarantees.
TERM is equivalent to a dynamic re-weighting of the samples based on the values of the objectives
(Lemma 1), which could be viewed as a convexified version of loss clipping. We compare to several
sample re-weighting schemes empirically in Section 5.

7 CONCLUSION

In this paper, we examined tilted empirical risk minimization (TERM) as a flexible extension to the
ERM framework. We explored, both theoretically and empirically, TERM’s ability to handle various
known issues with ERM, such as robustness to noise, class imbalance, fairness, and generalization,
as well as more complex issues like the simultaneous existence of class imbalance and noisy outliers.
Despite the straightforward modification TERM makes to traditional ERM objectives, the framework
consistently outperforms ERM and delivers competitive performance with state-of-the-art, problem-
specific methods on a wide range of applications. Our work highlights the effectiveness and versatility
of tilted objectives in machine learning. Building on the analyses and empirical study provided herein,
in future work, it would be interesting to investigate generalization bounds for TERM as a function
of t, and to derive theoretical convergence guarantees for our proposed stochastic solvers.
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APPENDIX

In this appendix we provide full statements and proofs of the analyses presented in Section 2
(Appendix A—G); details on the methods we propose for solving TERM (Appendix H); complete
empirical results and details of our empirical setup (Appendix I—J), and a discussion on the broader
impacts (both positive and negative) of TERM and the research herein (Appendix K). We provide a
table of contents below for easier navigation.
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A NOTATION & ASSUMPTIONS

In this section, we provide the notation and the assumptions that are used throughout our theoretical
analyses.

The results in this paper are derived under one of the following four assumptions:

Assumption 1 (Smoothness condition). We assume that for i P rN s, loss function fpxi; θq is in
differentiability class C1 (i.e., continuously differentiable) with respect to θ P Θ Ď Rd.
Assumption 2 (Strong convexity condition). We assume that Assumption 1 is satisfied. In addition,
we assume that for any i P rN s, fpxi; θq is in differentiability class C2 (i.e., twice differentiable with
continuous Hessian) with respect to θ. We further assume that there exist βmin, βmax P R` such that
for i P rN s and any θ P Θ Ď Rd,

βminI ĺ ∇2
θθJfpxi; θq ĺ βmaxI, (5)

where I is the identity matrix of appropriate size (in this case dˆ d). We further assume that there
does not exist any θ P Θ, such that∇θfpxi; θq “ 0 for all i P rN s.

Assumption 3 (Generalized linear model condition (Wainwright & Jordan, 2008)). We assume that
Assumption 2 is satisfied. We further assume that the loss function fpx; θq is given by

fpx; θq “ Apθq ´ θJT pxq, (6)

where Ap¨q is a convex function such that there exists βmax such that for any θ P Θ Ď Rd,

βminI ĺ ∇2
θθJApθq ĺ βmaxI. (7)

We also assume that
ÿ

iPrNs

T pxiqT pxiq
J ą 0. (8)

This nest set of assumptions become the most restrictive with Assumption 3, which essentially
requires that the loss be the negative log-likelihood of an exponential family. While the assumption is
stated using the natural parameter of an exponential family for ease of presentation, the results hold
for a bijective and smooth reparameterization of the exponential family. Assumption 3 is satisfied
by the commonly used L2 loss for regression and logistic loss for classification (see toy examples
(b) and (c) in Figure 1). While the assumption is not satisfied when we use neural network function
approximators in Section 5.1, we observe favorable numerical results motivating the extension of
these results beyond the cases that are theoretically studied in this paper.

In the sequel, many of the results are concerned with characterizing the t-tilted solutions defined as
the parametric set of solutions of t-tiled losses by sweeping t P R,

θ̆ptq P arg min
θPΘ

rRpt; θq, (9)

where Θ Ď Rd is an open subset of Rd. We state an assumption on this set below.

Assumption 4 (Strict saddle property (Definition 4 in (Ge et al., 2015))). We assume that the set
arg minθPΘ rRpt; θq is non-empty for all t P R. Further, we assume that for all t P R, rRpt; θq is a

“strict saddle” as a function of θ, i.e., for all local minima,∇2
θθJ

rRpt; θqą0, and for all other stationary
solutions, λminp∇2

θθJ
rRpt; θqq ă 0, where λminp¨q is the minimum eigenvalue of the matrix.

We use the strict saddle property in order to reason about the properties of the t-tilted solutions. In
particular, since we are solely interested in the local minima of rRpt; θq, the strict saddle property
implies that for every θ̆ptq P arg minθPΘ rRpt; θq, for a sufficiently small r, for all θ P Bpθ̆ptq, rq,

∇2
θθJ

rRpt; θq ą 0, (10)

where Bpθ̆ptq, rq denotes a d-ball of radius r around θ̆ptq.

We will show later that the strict saddle property is readily verified for t P R` under Assumption 2.

15



Published as a conference paper at ICLR 2021

B BASIC PROPERTIES OF THE TERM OBJECTIVE

In this section, we provide the basic properties of the TERM objective.

Proof of Lemma 1. Lemma 1, which provides the gradient of the tilted objective, has been studied
previously in the context of exponential smoothing (see (Pee & Royset, 2011, Proposition 2.1)). We
provide a brief derivation here under Assumption 1 for completeness. We have:

∇θ rRpt; θq “ ∇θ

$

&

%

1

t
log

¨

˝

1

N

ÿ

iPrNs

etfpxi;θq

˛

‚

,

.

-

(11)

“

ř

iPrNs∇θfpxi; θqetfpxi;θq
ř

iPrNs e
tfpxi;θq

. (12)

Lemma 2. Under Assumption 1,

rRp´8; θq :“ lim
tÑ´8

rRpt; θq “ qRpθq, (13)

rRp0; θq :“ lim
tÑ0

rRpt; θq “ Rpθq, (14)

rRp`8; θq :“ lim
tÑ`8

rRpt; θq “ pRpθq, (15)

where pRpθq is the max-loss and qRpθq is the min-loss2:

pRpθq :“ max
iPrNs

fpxi; θq, qRpθq :“ min
iPrNs

fpxi; θq. (16)

Proof. For tÑ 0,

lim
tÑ0

rRpt; θq “ lim
tÑ0

1

t
log

¨

˝

1

N

ÿ

iPrNs

etfpxi;θq

˛

‚

“ lim
tÑ0

ř

iPrNs fpxi; θqe
tfpxi;θq

ř

iPrNs e
tfpxi;θq

(17)

“
1

N

ÿ

iPrNs

fpxi; θq, (18)

where (17) is due to L’Hôpital’s rule applied to t as the denominator and log
´

1
N

ř

iPrNs e
tfpxi;θq

¯

as the numerator.

For tÑ ´8, we proceed as follows:

lim
tÑ´8

rRpt; θq “ lim
tÑ´8

1

t
log

¨

˝

1

N

ÿ

iPrNs

etfpxi;θq

˛

‚

ě lim
tÑ´8

1

t
log

¨

˝

1

N

ÿ

iPrNs

etminjPrNs fpxj ;θq

˛

‚ (19)

“ min
iPrNs

fpxi; θq. (20)

2When the argument of the max-loss or the min-loss is not unique, for the purpose of differentiating the loss
function, we define pRpθq as the average of the individual losses that achieve the maximum, and qRpθq as the
average of the individual losses that achieve the minimum.
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On the other hand,

lim
tÑ´8

rRpt; θq “ lim
tÑ´8

1

t
log

¨

˝

1

N

ÿ

iPrNs

etfpxi;θq

˛

‚

ď lim
tÑ´8

1

t
log

ˆ

1

N
etminjPrNs fpxj ;θq

˙

(21)

“ min
iPrNs

fpxi; θq ´ lim
tÑ´8

"

1

t
logN

*

(22)

“ min
iPrNs

fpxi; θq. (23)

Hence, the proof follows by putting together (20) and (23).

The proof proceeds similarly to tÑ ´8 for tÑ `8 and is omitted for brevity.

Note that Lemma 2 has been previously observed in (Cohen & Shashua, 2014). This lemma also
implies that rθp0q is the ERM solution, rθp`8q is the min-max solution, and rθp´8q is the min-min
solution.

Lemma 3 (Tilted Hessian and strong convexity for t P R`). Under Assumption 2, for any t P R,

∇2
θθJ

rRpt; θq “ t
ÿ

iPrNs

p∇θfpxi; θq ´∇θ rRpt; θqqp∇θfpxi; θq ´∇θ rRpt; θqqJetpfpxi;θq´ rRpt;θqq

(24)

`
ÿ

iPrNs

∇2
θθJfpxi; θqe

tpfpxi;θq´ rRpt;θqq. (25)

In particular, for all θ P Θ and all t P R`, the t-tilted objective is strongly convex. That is

∇2
θθJ

rRpt; θq ą βminI. (26)

Proof. Recall that

∇θ rRpt; θq “
ř

iPrNs∇θfpxi; θqetfpxi;θq
ř

iPrNs e
tfpxi;θq

(27)

“
ÿ

iPrNs

∇θfpxi; θqetpfpxi;θq´ rRpt;θqq. (28)

The proof of the first part is completed by differentiating again with respect to θ, followed by algebraic
manipulation. To prove the second part, notice that the term in (24) is positive semi-definite, whereas
the term in (25) is positive definite and lower bounded by βminI (see Assumption 2, Eq. (5)).

Lemma 4 (Smoothness of rRpt; θq in the vicinity of the final solution θ̆ptq). For any t P R, let βptq
be the smoothness parameter in the vicinity of the final solution:

βptq :“ sup
θPBpθ̆ptq,rq

λmax

´

∇2
θθJ

rRpt; θq
¯

, (29)

where∇2
θθJ

rRpt; θq is the Hessian of rRpt; θq at θ, λmaxp¨q denotes the largest eigenvalue, and Bpθ, rq
denotes a d-ball of radius r around θ. Under Assumption 2, for any t P R, rRpt; θq is a βptq-smooth
function of θ. Further, for t P R´, at the vicinity of θ̆ptq,

βptq ă βmax, (30)

and for t P R`,

0 ă lim
tÑ`8

βptq

t
ă `8. (31)
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Proof. Let us first provide a proof for t P R´. Invoking Lemma 3 and Weyl’s inequality (Weyl,
1912), we have

λmax

´

∇2
θθJ

rRpt; θq
¯

ď λmax

¨

˝t
ÿ

iPrNs

p∇θfpxi; θq ´∇θ rRpt; θqqp∇θfpxi; θq ´∇θ rRpt; θqqJetpfpxi;θq´ rRpt;θqq

˛

‚

(32)

` λmax

¨

˝

ÿ

iPrNs

∇2
θθJfpxi; θqe

tpfpxi;θq´ rRpt;θqq

˛

‚ (33)

ď βmax, (34)
where we have used the fact that the term in (24) is negative semi-definite for t ă 0, and that the term
in (25) is positive definite for all t with smoothness bounded by βmax (see Assumption 2, Eq. (5)).

For t P R`, following Lemma 3 and Weyl’s inequality (Weyl, 1912), we have
ˆ

1

t

˙

λmax

´

∇2
θθJ

rRpt; θq
¯

ď λmax

¨

˝

ÿ

iPrNs

p∇θfpxi; θq ´∇θ rRpt; θqqp∇θfpxi; θq ´∇θ rRpt; θqqJetpfpxi;θq´ rRpt;θqq

˛

‚

(35)

`

ˆ

1

t

˙

λmax

¨

˝

ÿ

iPrNs

∇2
θθJfpxi; θqe

tpfpxi;θq´ rRpt;θqq

˛

‚. (36)

Consequently,

lim
tÑ`8

ˆ

1

t

˙

λmax

´

∇2
θθJ

rRpt; θq
¯

ă `8. (37)

On the other hand, following Weyl’s inequality (Weyl, 1912),

λmax

´

∇2
θθJ

rRpt; θq
¯

ě tλmax

¨

˝

ÿ

iPrNs

p∇θfpxi; θq ´∇θ rRpt; θqqp∇θfpxi; θq ´∇θ rRpt; θqqJetpfpxi;θq´ rRpt;θqq

˛

‚,

(38)
and hence,

lim
tÑ`8

ˆ

1

t

˙

λmax

´

∇2
θθJ

rRpt; θq
¯

ą 0, (39)

where we have used the fact that no solution θ exists that would make all fi’s vanish (Assumption 2).

Under the strict saddle property (Assumption 4), it is known that gradient-based methods would con-
verge to a local minimum (Ge et al., 2015), i.e., θ̆ptq would be obtained using gradient descent (GD).
The rate of convergence of GD scales linearly with the smoothness parameter of the optimization
landscape, which is characterized by Lemma 4.

Lemma 5 (Strong convexity of rRpt; θq in R`). Under Assumption 2, for any t P R`, rRpt; θq is a
strongly convex function of θ. That is for t P R`,

∇2
θθJ

rRpt; θq ą βminI. (40)

Proof. The result follows by invoking Lemma 3 with t P R`, and considering (5) (Assumption 2).

This lemma also implies that under Assumption 2, the strict saddle assumption (Assumption 4) is
readily verified.
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C HIERARCHICAL MULTI-OBJECTIVE TILTING

We start by stating the hierarchical multi-objective tilting for a hierarchy of depth 3. While we don’t
directly use this form, it is stated to clarify the experiments in Section 5 where tilting is done at class
level and annotator level, and the sample-level tilt value could be understood to be 0.

rJpm, t, τ ; θq :“
1

m
log

¨

˝

1

N

ÿ

GPrGGs

¨

˝

ÿ

gPrGs

|g|

˛

‚em
rJGpτ ;θq

˛

‚ (41)

rJGpt, τ ; θq :“
1

t
log

¨

˝

1
ř

gPrGs |g|

ÿ

gPrGs

|g|et
rRgpτ ;θq

˛

‚ (42)

rRgpτ ; θq :“
1

τ
log

˜

1

|g|

ÿ

xPg

eτfpx;θq

¸

, (43)

Next, we continue by evaluating the gradient of the hierarchical multi-objective tilt for a hierarchy of
depth 2.

Lemma 6 (Hierarchical multi-objective tilted gradient). Under Assumption 1,

∇θ rJpt, τ ; θq “
ÿ

gPrGs

ÿ

xPg

wg,xpt, τ ; θq∇θfpx; θq (44)

where

wg,xpt, τ ; θq :“

´

1
|g|

ř

yPg e
τfpy;θq

¯p tτ´1q

ř

g1PrGs |g
1|

´

1
|g1|

ř

yPg1 e
τfpy;θq

¯
t
τ

eτfpx;θq. (45)

Proof. We proceed as follows. First notice that by invoking Lemma 1,

∇θ rJpt, τ ; θq “
ÿ

gPrGs

wgpt, τ ; θq∇θ rRgpτ ; θq (46)

where

wgpt, τ ; θq :“
|g|et

rRgpτ ;θq

ř

g1PrGs |g
1|et

rRg1 pτ ;θq
. (47)

where rRgpτ ; θq is defined in (4), and is reproduced here:

rRgpτ ; θq :“
1

τ
log

˜

1

|g|

ÿ

xPg

eτfpx;θq

¸

. (48)

On the other hand, by invoking Lemma 1,

∇θ rRgpτ ; θq “
ÿ

xPg

wg,xpτ ; θq∇θfpx; θq (49)

where

wg,xpτ ; θq :“
eτfpx;θq

ř

yPg e
τfpy;θq

. (50)

Hence, combining (46) and (49),

∇θ rJpt, τ ; θq “
ÿ

gPrGs

ÿ

xPg

wgpt, τ ; θqwg,xpτ ; θq∇θfpx; θq. (51)

The proof is completed by algebraic manipulations to show that

wg,xpt, τ ; θq “ wgpt, τ ; θqwg,xpτ ; θq. (52)
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Lemma 7 (Sample-level TERM is a special case of hierarchical multi-objective TERM). Under
Assumption 1, hierarchical multi-objective TERM recovers TERM as a special case for t “ τ . That is

rJpt, t; θq “ rRpt; θq. (53)

Proof. The proof is completed by noticing that setting t “ τ in (45) (Lemma 6) recovers the original
sample-level tilted gradient.
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D GENERAL PROPERTIES OF THE OBJECTIVE FOR GLMS

In this section, even if not explicitly stated, all results are derived under Assumption 3 with a
generalized linear model and loss function of the form (6), effectively assuming that the loss function
is the negative log-likelihood of an exponential family (Wainwright & Jordan, 2008).
Definition 1 (Empirical cumulant generating function). Let

Λpt; θq :“ t rRpt; θq. (54)

Definition 2 (Empirical log-partition function (Wainwright et al., 2005)). Let Γpt; θq be

Γpt; θq :“ log

¨

˝

1

N

ÿ

iPrNs

e´tθ
JT pxiq

˛

‚. (55)

Thus, we have

rRpt; θq “ Apθq `
1

t
log

¨

˝

1

N

ÿ

iPrNs

e´tθ
JT pxiq

˛

‚“ Apθq `
1

t
Γpt; θq. (56)

Definition 3 (Empirical mean and empirical variance of the sufficient statistic). LetM and V denote
the mean and the variance of the sufficient statistic, and be given by

Mpt; θq :“
1

N

ÿ

iPrNs

T pxiqe
´tθJT pxiq´Γpt;θq, (57)

Vpt; θq :“
1

N

ÿ

iPrNs

pT pxiq ´Mpt; θqqpT pxiq ´Mpt; θqqJe´tθ
JT pxiq´Γpt;θq. (58)

Lemma 8. For all t P R, we have Vpt; θq ą 0.

Next we state a few key relationships that we will use in our characterizations. The proofs are
straightforward and omitted for brevity.
Lemma 9 (Partial derivatives of Γ). For all t P R and all θ P Θ,

B

Bt
Γpt; θq “ ´θJMpt; θq, (59)

∇θΓpt; θq “ ´tMpt; θq. (60)

Lemma 10 (Partial derivatives ofM). For all t P R and all θ P Θ,

B

Bt
Mpt; θq “ ´Vpt; θqθ, (61)

∇θMpt; θq “ ´tVpt; θq. (62)

The next few lemmas characterize the partial derivatives of the cumulant generating function.
Lemma 11. (Derivative of Λ with t) For all t P R and all θ P Θ,

B

Bt
Λpt; θq “ Apθq ´ θJMpt; θq. (63)

Proof. The proof is carried out by

B

Bt
Λpt; θq “ Apθq ´ θJ

ÿ

iPrNs

T pxiqe
´tθJT pxiq´Γpt;θq “ Apθq ´ θJMpt; θq. (64)

Lemma 12 (Second derivative of Λ with t). For all t P R and all θ P Θ,

B2

Bt2
Λpt; θq “ θJVpt; θqθ. (65)
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Lemma 13 (Gradient of Λ with θ). For all t P R and all θ P Θ,

∇θΛpt; θq “ t∇θApθq ´ tMpt; θq. (66)

Lemma 14 (Hessian of Λ with θ). For all t P R and all θ P Θ,

∇2
θθJΛpt; θq “ t∇2

θθJApθq ` t
2Vpt; θq. (67)

Lemma 15 (Gradient of Λ with respect to t and θ). For all t P R and all θ P Θ,

B

Bt
∇θΛpt; θq “ ∇θApθq ´Mpt; θq ` tVpt; θqθ. (68)
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E GENERAL PROPERTIES OF TERM SOLUTIONS FOR GLMS

Next, we characterize some of the general properties of the solutions of TERM objectives. Note that
these properties are established under Assumptions 3 and 4.

Lemma 16. For all t P R,

∇θΛpt; θ̆ptqq “ 0. (69)

Proof. The proof follows from definition and the assumption that Θ is an open set.

Lemma 17. For all t P R,

∇θApθ̆ptqq “Mpt; θ̆ptqq. (70)

Proof. The proof is completed by noting Lemma 16 and Lemma 13.

Lemma 18 (Derivative of the solution with respect to tilt). Under Assumption 4, for all t P R,

B

Bt
θ̆ptq “ ´

´

∇2
θθJApθ̆ptqq ` tVpt; θ̆ptqq

¯´1

Vpt; θ̆ptqqθ̆ptq, (71)

where

∇2
θθJApθ̆ptqq ` tVpt; θ̆ptqq ą 0. (72)

Proof. By noting Lemma 16, and further differentiating with respect to t, we have

0 “
B

Bt
∇θΛpt; θ̆ptqq (73)

“
B

Bτ
∇θΛpτ ; θ̆ptqq

ˇ

ˇ

ˇ

ˇ

τ“t

`∇2
θθJΛpt; θ̆ptqq

ˆ

B

Bt
θ̆ptq

˙

(74)

“ tVpt; θ̆ptqqθ̆ptq `
`

t∇2
θθJApθq ` t

2Vpt; θq
˘

ˆ

B

Bt
θ̆ptq

˙

, (75)

where (74) follows from the chain rule, (75) follows from Lemmas 15 and 17 and 14. The proof is
completed by noting that∇2

θθJΛpt; θ̆ptqq ą 0 for all t P R under Assumption 4.

Finally, we state an auxiliary lemma that will be used in the proof of the main theorem.

Lemma 19. For all t, τ P R and all θ P Θ,

Mpτ ; θq ´Mpt; θq “ ´
ˆ
ż τ

t

Vpν; θqdν

˙

θ. (76)

Proof. The proof is completed by noting that

Mpτ ; θq ´Mpt; θq “
ż τ

t

B

Bν
Mpν; θqdν “ ´

ˆ
ż τ

t

Vpν; θqdν

˙

θ. (77)

Theorem 1. Under Assumption 3 and Assumption 4, for any t, τ P R,
(a) B

Bt
rRpτ ; θ̆ptqq ă 0 iff t ă τ ; (b) B

Bt
rRpτ ; θ̆ptqq “ 0 iff t “ τ ; (c) B

Bt
rRpτ ; θ̆ptqq ą 0 iff t ą τ .
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Proof. The proof proceeds as follows. Notice that

B

Bτ
rRpt; θ̆pτqq “

1

t

ˆ

B

Bτ
θ̆pτq

˙J

∇θΛpt; θ̆pτqq (78)

“ ´θ̆JpτqVpτ ; θ̆pτqq
´

∇2
θθJApθ̆pτqq ` τVpτ ; θ̆pτqq

¯´1

ˆ

´

∇θApθ̆pτqq ´Mpt; θ̆pτqq
¯

(79)

“ ´θ̆JpτqVpτ ; θ̆pτqq
´

∇2
θθJApθ̆pτqq ` τVpτ ; θ̆pτqq

¯´1

ˆ

´

Mpτ ; θ̆pτqq ´Mpt; θ̆pτqq
¯

(80)

“ θ̆JpτqVpτ ; θ̆pτqq
´

∇2
θθJApθ̆pτqq ` τVpτ ; θ̆pτqq

¯´1

ˆ

ˆ
ż τ

t

Vpν; θ̆pτqqdν

˙

θ̆pτq, (81)

where (78) follows from the chain rule and (54), (79) follows from Lemma 18 and Lemma 13, (80)
follows from Lemma 17, and (81) follows from Lemma 19. Now notice that invoking Lemma 8, and
noticing that following the strict saddle property

∇2
θθJ

rRpt; θq
ˇ

ˇ

ˇ

θ“θ̆pτq
“ ∇2

θθJApθ̆pτqq ` τVpτ ; θ̆pτqq ą 0, (82)

we have

(a)
şτ

t
Vpν; θ̆pτqqdν ă 0 iff t ă τ ;

(b)
şτ

t
Vpν; θ̆pτqqdν “ 0 iff t “ τ ;

(c)
şτ

t
Vpν; θ̆pτqqdν ą 0 iff t ą τ ,

which completes the proof.

Theorem 2 (Average- vs. max-loss tradeoff). Under Assumption 3 and Assumption 4, for any
t P R`,

B

Bt
pRpθ̆ptqq ď 0, (83)

B

Bt
Rpθ̆ptqq ě 0. (84)

Proof of Theorem 2. To prove (83), first notice that from Lemma 2,

pRpθq “ lim
tÑ`8

rRpt; θq. (85)

Now, invoking Theorem 1 (Appendix D), for any τ, t P R` such that τ ă t

B

Bτ
rRpt; θ̆pτqq ă 0, (86)

In particular, by taking the limit as tÑ `8,

lim
tÑ`8

B

Bτ
rRpt; θ̆pτqq ď 0. (87)
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Notice that

0 ě lim
tÑ`8

B

Bτ
rRpt; θ̆pτqq “ lim

tÑ`8

ˆ

B

Bτ
θ̆pτq

˙J

∇θ rRpt; θ̆pτqq (88)

“

ˆ

B

Bτ
θ̆pτq

˙J

lim
tÑ`8

∇θ rRpt; θ̆pτqq (89)

“

ˆ

B

Bτ
θ̆pτq

˙J

∇θ pRpθ̆pτqq (90)

“
B

Bτ
pRpθ̆pτqq (91)

where (90) holds because ∇θ rRpt; θ̆pτqq is a finite weighted sum of the gradients of the individual
losses with weights bounded in r0, 1s, per Lemma 1, completing the proof of the first part.

To prove (84), notice that by Lemma 2,

Rpθq “ lim
tÑ0

rRpt; θq. (92)

Now, invoking Theorem 1 (Appendix D), for any τ, t P R` such that τ ą t

B

Bτ
rRpt; θ̆pτqq ą 0. (93)

In particular, by taking the limit as tÑ 0,

B

Bτ
Rpθ̆pτqq “ lim

tÑ0

B

Bτ
rRpt; θ̆pτqq ą 0, (94)

completing the proof.

Theorem 3 (Average- vs. min-loss tradeoff). Under Assumption 3 and Assumption 4, for any t P R´,
B

Bt
qRprθptqq ě 0, (95)

B

Bt
Rprθptqq ď 0. (96)

Proof of Theorem 3. To prove (95), first notice that from Lemma 2,

pRpθq “ lim
tÑ´8

rRpt; θq. (97)

Now, invoking Theorem 1 (Appendix D), for any τ, t P R` such that τ ą t

B

Bτ
rRpt; θ̆pτqq ą 0. (98)

In particular, by taking the limit as tÑ ´8,

B

Bτ
qRpθ̆pτqq “ lim

tÑ´8

B

Bτ
rRpt; θ̆pτqq ą 0, (99)

completing the proof of the first part.

To prove (96), notice that by Lemma 2,

Rpθq “ lim
tÑ0

rRpt; θq. (100)

Now, invoking Theorem 1 (Appendix D), for any τ, t P R` such that τ ă t

B

Bτ
rRpt; θ̆pτqq ă 0. (101)

In particular, by taking the limit as tÑ 0,

B

Bτ
Rpθ̆pτqq “ lim

tÑ0

B

Bτ
rRpt; θ̆pτqq ă 0, (102)

completing the proof.
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Theorem 1 is concerned with characterizing the impact that TERM solutions for different t P R have
on the objective rRpτ ; θ̆ptqq for some fixed τ P R. Recall that τ “ ´8 recovers the min-loss, τ “ 0

is the average-loss, and τ “ `8 is the max-loss. By definition, if t “ τ , θ̆pτq is the minimizer of
rRpτ ; θ̆ptqq. Theorem 1 shows that for t P p´8, τq the objective is decreasing; while for t P pτ,`8q
the objective increasing. Recall that for any fixed τ P R, rRpτ ; θq is also related to the k-th smallest
loss of the population (Appendix G). Hence, the solution θ̆ptq is approximately minimizing the
kptq-th smallest loss where kptq is increasing from 1 to N by sweeping t in p´8,`8q.
Theorem 4 (Variance reduction). Let fpθq :“ pfpx1; θqq, . . . , fpxN ; θqq. For any u P RN , let

meanpuq :“
1

N

ÿ

iPrNs

ui, varpuq :“
1

N

ÿ

iPrNs

pui ´meanpuqq2. (103)

Then, under Assumption 3 and Assumption 4, for any t P R,
B

Bt

!

varpfpθ̆ptqqq
)

ă 0. (104)

Proof. Recall that fpxi; θq “ Apθq ´ θJT pxiq. Thus,

meanpfq “
1

N

ÿ

iPrNs

fpxi; θq “ Apθq ´
1

N
θJ

ÿ

iPrNs

T pxiq “ Apθq ´Mp0; θq (105)

Consequently,

varpfpθqq “
1

N

ÿ

iPrNs

¨

˝fpxi; θq ´
1

N

ÿ

jPrNs

fpxj ; θq

˛

‚

2

(106)

“
1

N

ÿ

iPrNs

¨

˝θJT pxiq ´
1

N
θJ

ÿ

jPrNs

T pxjq

˛

‚

2

(107)

“
1

N
θJ

¨

˝

ÿ

iPrNs

pT pxiq ´
1

N

ÿ

jPrNs

T pxjqqpT pxiq ´
1

N

ÿ

jPrNs

T pxjqq
J

˛

‚θ (108)

“ θJV0θ, (109)

where

V0 “ Vp0; θq “
1

N

ÿ

iPrNs

pT pxiq ´
1

N

ÿ

jPrNs

T pxjqqpT pxiq ´
1

N

ÿ

jPrNs

T pxjqq
J. (110)

Hence,

B

Bτ

!

varpfpθ̆pτqqq
)

“

ˆ

B

Bτ
θ̆pτq

˙J

∇θ
!

varpfpθ̆pτqqq
)

(111)

“ 2

ˆ

B

Bτ
θ̆pτq

˙J

V0θ̆pτq (112)

“ ´2θ̆JpτqVpτ ; θ̆pτqq
´

∇2
θθApθ̆pτqq ` τVpτ ; θ̆pτqq

¯´1

V0θ̆pτq (113)

ă 0, (114)

completing the proof.

Theorem 5 (Cosine similarity of the loss vector and the all-ones vector increases with t). For
u,v P RN , let cosine similarity be defined as

spu,vq :“
uJv

}u}2}v}2
. (115)
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Let fpθq :“ pfpx1; θqq, . . . , fpxN ; θqq and let 1N denote the all-1 vector of length N . Then, under
Assumption 3 and Assumption 4, for any t P R,

B

Bt

!

spfpθ̆ptqq,1N q
)

ą 0. (116)

Proof. Notice that

spfpθq,1N q “

1
N

ř

iPrNs fpxi; θq
b

1
N

ř

iPrNs f
2pxi; θq

. (117)

LetM0 :“Mp0; θq and V0 :“ Vp0; θq. Hence,
1

N

ÿ

iPrNs

fpxi; θq “ Apθq ´ θJM0, (118)

1

N

ÿ

iPrNs

f2pxi; θq “ pApθq ´ θ
JM0q

2 ` θJV0θ (119)

Notice that

∇θ
 

s2pfpθq,1N q
(

“ ∇θ

$

’

&

’

%

´

1
N

ř

iPrNs fpxi; θq
¯2

1
N

ř

iPrNs f
2pxi; θq

,

/

.

/

-

(120)

“ ∇θ
"

pApθq ´ θJM0q
2

pApθq ´ θJM0q
2 ` θJV0θ

*

(121)

“
2pApθq ´ θJM0qp∇θApθq ´M0qθ

JV0θ ´ 2pApθq ´ θJM0q
2V0θ

ppApθq ´ θJM0q
2 ` θJV0θq

2

(122)

“
2pApθq ´ θJM0q

`

θJp∇θApθq ´M0q ´Apθq ` θ
JM0

˘

V0θ

ppApθq ´ θJM0q
2 ` θJV0θq

2 (123)

“
2pApθq ´ θJM0q

`

θJ∇θApθq ´Apθq
˘

V0θ

ppApθq ´ θJM0q
2 ` θJV0θq

2 (124)

“ ´
2pApθq ´ θJM0q

2V0θ

ppApθq ´ θJM0q
2 ` θJV0θq

2 . (125)

Hence,

B

Bτ

!

s2pfpθ̆pτqq,1N q
)

“

ˆ

B

Bτ
θ̆pτq

˙J

∇θ
!

s2pfpθ̆pτqq,1N q
)

(126)

“ ´θ̆JpτqVpτ ; θ̆pτqq
´

∇2
θθApθ̆pτqq ` τVpτ ; θ̆pτqq

¯´1

ˆ´
2pApθ̆pτqq ´ θ̆pτqJM0q

2

´

pApθ̆pτqq ´ θ̆pτqJM0q
2 ` θ̆pτqJV0θ

¯2V0θ̆pτq (127)

ą 0, (128)

completing the proof.

Theorem 6 (Gradient weights become more uniform by increasing t). Under Assumption 3 and
Assumption 4, for any τ, t P R,

B

Bt
Hpwpτ ; θ̆ptqqq ą 0, (129)

where Hp¨q denotes the Shannon entropy function measured in nats,

H pwpt; θqq :“ ´
ÿ

iPrNs

wipt; θq logwipt; θq. (130)
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Proof. Notice that

H pwpt; θqq “ ´
ÿ

iPrNs

wipt; θq logwipt; θq (131)

“ ´
ÿ

iPrNs

ptfpxi; θq ´ Λpt; θqqetfpxi;θq´Λpt;θq (132)

“ Λpt; θq ´ t
ÿ

iPrNs

fpxi; θqe
tfpxi;θq´Λpt;θq (133)

“ Λpt; θq ´ tApθq ` tθJMpt; θq. (134)

Thus,

∇θH pwpt; θqq “ ∇θ
`

Λpt; θq ´ tApθq ` tθJMpt; θq
˘

(135)

“ t∇θApθq ´ tMpt; θq ´ t∇θApθq ` tMpt; θq ´ t2Vpt; θqθ (136)

“ ´t2Vpt; θqθ. (137)

Hence,

B

Bτ
H

´

wpt; θ̆pτqq
¯

“

ˆ

B

Bτ
θ̆pτq

˙J

∇θH
´

wpt; θ̆pτqq
¯

(138)

“ ∇θ
`

Λpt; θq ´ tApθq ` tθJMpt; θq
˘

(139)

“ t2θ̆JpτqVpτ ; θ̆pτqq
´

∇2
θθApθ̆pτqq ` τVpτ ; θ̆pτqq

¯´1

Vpt; θ̆pτqqθ̆pτq (140)

ě 0, (141)

completing the proof.

Theorem 7 (Tilted objective is increasing with t). Under Assumption 3, for all t P R, and all θ P Θ,

B

Bt
rRpt; θq ě 0. (142)

Proof. Following (56),

B

Bt
rRpt; θq “

B

Bt

"

1

t
Γpt; θq

*

(143)

“ ´
1

t2
Γpt; θq ´

1

t
θJMpt; θq, (144)

“: gpt; θq, (145)

where (144) follows from Lemma 9, and (145) defines gpt; θq.

Let gp0; θq :“ limtÑ0 gpt; θq Notice that

gp0; θq “ lim
tÑ0

"

´
1

t2
Γpt; θq ´

1

t
θJMpt; θq

*

(146)

“ ´ lim
tÑ0

" 1
tΓpt; θq ` θ

JMpt; θq
t

*

(147)

“ θJVp0; θqθ, (148)

where (148) is due to L’H0̂pital’s rule and Lemma 12. Now consider

B

Bt

 

t2gpt; θq
(

“
B

Bt

 

´Γpt; θq ´ tθJMpt; θq
(

(149)

“ θJMpt; θq (150)

´ θJMpt; θq ` tθJVpt; θqθ (151)

“ tθJVpt; θqθ (152)

28



Published as a conference paper at ICLR 2021

where gpt; θq “ B
Bt
rRpt; θq, (150) follows from Lemma 9, (151) follows from the chain rule and

Lemma 10. Hence, t2gpt; θq is an increasing function of t for t P R`, and a decreasing function
of t for t P R´, taking its minimum at t “ 0. Hence, t2gpt; θq ě 0 for all t P R. This implies that
gpt; θq ě 0 for all t P R, which in conjunction with (145) implies the statement of the theorem.

Definition 4 (Optimal tilted objective). Let the optimal tilted objective be defined as

rF ptq :“ rRpt; θ̆ptqq. (153)

Theorem 8 (Optimal tilted objective is increasing with t). Under Assumption 3, for all t P R, and
all θ P Θ,

B

Bt
rF ptq “

B

Bt
rRpt; θ̆ptqq ě 0. (154)

Proof. Notice that for all θ, and all ε P R`,

rRpt` ε; θq ě rRpt; θq (155)

ě rRpt; θ̆ptqq, (156)

where (155) follows from Theorem 7 and (156) follows from the definition of θ̆ptq. Hence,

rRpt` ε; θ̆pt` εqq “ min
θPBpθ̆ptq,rq

rRpt` ε; θq ě rRpt; θ̆ptqq, (157)

which completes the proof.
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F CONNECTIONS BETWEEN TERM AND EXPONENTIAL TILTING

Here we provide connections between TERM and exponential tilting, a concept previously explored
in the context of importance sampling and the theory of large deviations (Beirami et al., 2018; Dembo
& Zeitouni, 2009; Wainwright et al., 2005). To do so, suppose that X is drawn from distribution pp¨q.
Let us study the distribution of random variable Y “ fpX; θq. Let ΛY ptq be the cumulant generating
function (Dembo & Zeitouni, 2009, Sectiom 2.2). That is

ΛY ptq :“ log
`

Ep
 

etY
(˘

(158)

“ log
´

Ep

!

etfpX;θq
)¯

. (159)

Now, suppose that x1, . . . , xN are drawn i.i.d. from pp¨q. Note that this distributional assumption is
made solely for providing intuition on the tilted objectives and is not needed in any of the proofs in
this paper. Hence, rRpt; θq can be viewed as an empirical approximation to the cumulant generating
function:

ΛY ptq « t rRpt; θq. (160)

Hence, rRpt; θq provides an approximate characterization of the distribution of fpX; θq. Thus, mini-
mizing rRpt; θq is approximately equivalent to minimizing the complementary cumulative distribution
function (CDF) of fpX; θq. In other words, this is equivalent to minimizing P tfpX; θq ą au for
some a, which is a function of t.

In the next section, we will explore these connections with tail probabilities dropping the distributional
assumptions, effectively drawing connections between superquantile methods and TERM.
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G TERM AS AN APPROXIMATE SUPERQUANTILE METHOD

For all a P R, let Qpa; θq denote the quantile of the losses that are no smaller than a, i.e.,

Qpa; θq :“
1

N

ÿ

iPrNs

I tfpxi; θq ě au , (161)

where It¨u is the indicator function. Notice that Qpa; θq P
 

0, 1
N , . . . , 1

(

quantifies the fraction of
the data for which loss is at least a. In this section, we further assume that f is such that fpxi; θq ě 0
for all θ.

Suppose that we are interested in choosing θ in a way that for a given a P R, we minimize the fraction
of the losses that are larger than a. That is

Q0paq :“ min
θ
Qpa; θq “ Qpa; θ0paqq, (162)

where
θ0paq :“ arg min

θ
Qpa; θq. (163)

This is a non-smooth non-convex problem and solving it to global optimality is very challenging. In
this section, we argue that TERM provides a reasonable approximate solution to this problem, which
is computationally feasible.

Notice that we have the following simple relation:

Lemma 20. If a ă rF p´8q then Q0paq “ 1. Further, if a ą rF p`8q then Q0paq “ 0, where rF p¨q
is defined in Definition 4, and is reproduced here:

rF p´8q “ lim
tÑ´8

rRpt; θ̆ptqq “ min
θ

min
iPrNs

fpxi; θq, (164)

rF p`8q “ lim
tÑ`8

rRpt; θ̆ptqq “ min
θ

max
iPrNs

fpxi; θq. (165)

Next, we present our main result on the connection between the superquantile method and TERM.

Theorem 9. For all t P R, and all θ, and all a P p rF p´8q, rF p`8qq,3

Qpa; θq ď rQpa; t, θq :“
e
rRpt;θqt ´ e

rF p´8qt

eat ´ e rF p´8qt
. (166)

Proof. We have

Qpa; θq “

1
N

ř

iPrNs e
pa´ rF p´8qqtI

"

fpxi;θq´
ĂF p´8q

a´ĂF p´8q
ě1

*

´ 1

epa´ rF p´8qqt ´ 1
(167)

ď

1
N

ř

iPrNs e
pfpxi;θq´ rF p´8qqt ´ 1

epa´ rF p´8qqt ´ 1
(168)

“
e
rRpt;θqt ´ e

rF p´8qt

eat ´ e rF p´8qt
, (169)

where (167) follows from Lemma 21, (168) follows from Lemma 22, the fact that etx is strictly
increasing (resp. decreasing) for t ą 0 (resp. t ă 0) and pepa´ rF p´8qqt´1q is positive (resp. negative)
for t ą 0 (resp. t ă 0), and (169) follows from definition.

Lemma 21. For all t P R, and all θ,4

Qpa; θq “

1
N

ř

iPrNs e
pa´ rF p´8qqtItfpxi;θqěau ´ 1

epa´ rF p´8qqt ´ 1
. (170)

3We define the RHS at t “ 0 via continuous extension.
4We define the RHS at t “ 0 via continuous extension.
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Proof. The proof is completed following this identity:

1

N

ÿ

iPrNs

epa´
rF p´8qqItfpxi;θqěaut “ Qpa; θqepa´

rF p´8qqt ` p1´Qpa; θqq. (171)

Lemma 22. For x ě 0, we have Itx ě 1u ď x.

Theorem 9 directly leads to the following result.

Theorem 10. For all a P p rF p´8q, rF p`8qq, we have

Q0paq ď Q1paq ď Q2paq ď Q3paq “ inf
tPR

#

e
rF ptqt ´ e

rF p´8qt

eat ´ e rF p´8qt

+

, (172)

where

Q1paq :“ inf
tPR

Qpa; θ̆ptqq (173)

Q2paq :“ Qpa; θ̆prtpaqqq (174)

Q3paq :“ rQpa;rtpaq, θ̆prtpaqqq (175)

and

rtpaq :“ arg inf
tPR

!

rQpa; t, θ̆ptqq
)

“ arg inf
tPR

#

e
rF ptqt ´ e

rF p´8qt

eat ´ e rF p´8qt

+

. (176)

Proof. The only non-trivial step is to show that Q2paq ď Q3paq. Following Theorem 9,

Q2paq “ Qpa; θ̆prtpaqq (177)

ď inf
tPR

rQpa; t, θ̆ptqq (178)

“ Q3paq, (179)

which completes the proof.

Theorem 10 motivates us with the following approximation on the solutions of the superquantile
method.
Approximation 1. For all a P p rF p´8q, rF p`8qq,

Qpa; θ0paqq “ Q0paq « Q2paq “ Qpa; θ̆prtpaqq, (180)

and hence, θ̆prtpaq is an approximate solution to the superquantile optimization problem.

While we have not characterized how tight this approximation is for a P p rF p´8q, rF p`8qq, we
believe that Approximation 1 provides a reasonable solution to the superquantile optimization problem
in general. This is evidenced empirically when the approximation is evaluated on the toy examples of
Figure 1, and compared with the global solutions of the superquantile method. The results are shown
in Figure 6. As can be seen, Q0paq « Q2paq as suggested by Approximation 1. Also, we can see
that while the bound in Theorem 10 is not tight, the solution that is obtained from solving it results in
a good approximation to the superquantile optimization.

Finally, we draw connections between these results and the k-loss. Notice that minimizing Qpa; θq
for a fixed a is equivalent to minimizing a for a fixed Qpa; θq. If we fix Qpa; θq “ pN ´ kq{N,
minimizing a would be equivalent to minimizing the k-loss. Formally, let Rpkqpθq be the k-th order
statistc of the loss vector. Hence, Rpkq is the k-th smallest loss, and particularly

Rp1qpθq “ qRpθq, (181)

RpNqpθq “ pRpθq. (182)

32



Published as a conference paper at ICLR 2021

0.2 0.4 0.6 0.8 1.0

quantiles

−4

−3

−2

−1

0

a

Qi(a), point estimation

Q0(a)

Q1(a)

Q2(a)

Q3(a)

(a) Numerical results showing the bounds
Q1
paq, Q2

paq, and Q3
paq for Q0

paq on the point
estimation example.

0.0 0.2 0.4 0.6 0.8 1.0

quantiles

0.00

0.05

0.10

0.15

0.20

a

Qi(a), linear regression

Q0(a)

Q1(a)

Q2(a)

Q3(a)

(b) Numerical results showing the bounds
Q1
paq, Q2

paq, and Q3
paq for Q0

paq on the linear
regression example.

Figure 6: Q1paq and Q2paq are close to Q0paq, which indicates that the solution obtained from
solving Q3paq (which is Q2paq) is a tight approximation of the globally optimal solution of Q0paq.

Thus, for any k P rN s, we define
R˚
pkq :“ min

θ
Rpkqpθq. (183)

θ˚pkq :“ arg min
θ
Rpkqpθq. (184)

Note that

R˚
p1q “

rF p´8q, (185)

R˚
pNq “

rF p`8q. (186)

Theorem 9 directly implies the following result:
Corollary 11. For all k P t2, . . . , N ´ 1u, and all t P R` :

ˇ

ˇ

ˇ
epRpkqpθq´

rF p´8qqt ´ 1
ˇ

ˇ

ˇ
ď

ˆ

N

N ´ k

˙

ˇ

ˇ

ˇ
ep

rRpt;θq´ rF p´8qqt ´ 1
ˇ

ˇ

ˇ
. (187)

Proof. We proceed by setting Qpa; θq “ N´k
N and a “ Rpkqpθq in Theorem 9, which implies the

result.

While the bound is left implicit in Corollary 11, we can obtain an explicit bound if we only consider
t P R` (i.e., we are interested in k-losses for larger k):
Corollary 12. For all k P t2, . . . , N ´ 1u, and all t P R` :

Rpkqpθq ď rF p´8q `
1

t
log

˜

ep
rRpt;θq´ rF p´8qqt ´ k

N

1´ k
N

¸

. (188)

Proof. The statement follows by algebraic manipulation of Corollary 11.
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H ALGORITHMS FOR SOLVING TERM
In the main text, we present TERM in the batch setting (Algorithm 1). Here we provide the stochastic
variants of the solvers in the context of hierarchical multi-objective tilting (see Eq. (4)).

There are a few points to note about stochastic solvers (Algorithm 2):

1. It is intractable to compute the exact normalization weights for the samples in the minibatch.
Hence, we use rRg,τ , a term that incorporates stochastic dynamics, to follow the tilted objective
for each group g, which is used for normalizing the weights as in (3).

2. While we sample the group from which we draw the minibatch, for small number of groups, one
might want to draw one minibatch per each group and weight the resulting gradients accordingly.

3. The second last line in Algorithm 2, concerning the update of rRg,τ is not a trivial linear averaging.
Instead, we use a tilted averaging to ensure an unbiased estimator (if θ is not being updated).

Algorithm 2: Stochastic TERM

Initialize : rRg,τ “ 0 @g P rGs
Input: t, τ, α, λ
while stopping criteria not reached do

sample g on rGs from a Gumbel-Softmax distribution with logits rRg,τ `
1
t log |g| and

temperature 1
t

sample minibatch B uniformly at random within group g
compute the loss fpx; θq and gradient ∇θfpx; θq for all x P B
rRB,τ Ð τ -tilted loss (2) on minibatch B
rRg,τ Ð

1
τ log

´

p1´ λqeτ
rRg,τ ` λeτ

rRB,τ
¯

, wτ,x Ð eτfpx;θq´τ rRg,τ

θ Ð θ ´ α
|B|

ř

xPB wτ,x∇θfpx; θq

end

The stochatic algorithm above requires roughly the same time/space complexity as mini-batch SGD,
and thus scales similarly for large-scale problems. TERM for the non-hierarchical cases can be
recovered from Algorithm 1 and 2 by setting the inner-level tilt parameter τ “ 0. For completeness,
we also describe them here. Algorithm 3 is the sample-level tilting algorithm in the batch setting, and
Algorithm 4 is its stochastic variant.

Algorithm 3: Batch Non-Hierarchical TERM
Input: t, α
while stopping criteria not reached do

compute the loss fpxi; θq and gradient ∇θfpxi; θq for all i P rN s
rRpt; θq Ð t-tilted loss (2) on all i P rN s
wipt; θq Ð etpfpxi;θq´

rRpt;θqq

θ Ð θ ´ α
N

ř

iPrNs wipt; θq∇θfpxi; θq
end

In order to verify the correctness of Algorithm 4, we plot the distance of the solution θ to the solution
θ˚ obtained by running the full gradient method (Algorithm 1) in terms of the number of iterations.
In Figure 7, we see that θ can be arbitrarily close to θ˚, and Algorithm 4 with t ‰ 0 converges
similarly to mini-batch SGD with t “ 0. As mentioned in the main text, theoretically analyze the
convergence of stochastic solvers would be interesting direction of future work. The challenges
would be to characterize the tightness of the estimator rR to the true risk R at each iteration leveraging
the proposed tilted averaging structure.

We summarize the applications we solve TERM for and the algorithms we use in Table 4 below on
the left.
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Algorithm 4: Stochastic Non-Hierarchical TERM

Initialize : rRt “ 0
Input: t, α, λ
while stopping criteria not reached do

sample minibatch B uniformly at random from rN s
compute the loss fpx; θq and gradient ∇θfpx; θq for all x P B
rRB,t Ð t-tilted loss (2) on minibatch B
rRt Ð

1
t log

´

p1´ λqet
rRt ` λet

rRB,t
¯

, wt,x Ð etfpx;θq´t rRt

θ Ð θ ´ α
|B|

ř

xPB wt,x∇θfpx; θq

end
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Figure 7: Correctness of Algorithm 4. The y-axis is the
normalized distance between θ obtained by running Alg. 4
and the optimal solution θ˚ via the full batch method. For
different values of t, θ can be arbitrarily close to θ˚.

Three toy examples (Figure 1) Algorithm 3
Robust Regression (Table 1) Algorithm 3
Robust Classification (Table 2) Algorithm 4
Low-quality Annotators (Figure 3) Algorithm 2 (τ “ 0)
Fair PCA (Figure 4) Algorithm 1 (τ “ 0)
Class Imbalance (Figure 5) Algorithm 2 (τ “ 0)
Variance Reduction (Table 8) Algorithm 1 (τ “ 0)
Hierarchical TERM (Table 3) Algorithm 1

Table 4: Applications and their corresponding
solvers.

H.1 CONVERGENCE WITH t

First, we note that t-tilted losses are βptq-smooth for all t. In a small neighborhood around the tilted
solution, βptq is bounded for all negative t and moderately positive t, whereas it scales linearly with
t as t Ñ `8, which has been previously studied in the context of exponential smoothing of the
max (Kort & Bertsekas, 1972; Pee & Royset, 2011). We prove this formally in Appendix B, Lemma 4,
but it can also be observed visually via the toy example in Figure 2. Based on this, we provide a
convergence result below for Algorithm 3.
Theorem 13. Under Assumption 2, there exist C1, C2 ă 8 that do not depend on t such that for any
t P R`, setting the step size α “ 1

C1`C2t
, after m iterations:

rRpt, θmq ´ rRpt, θ̆ptqq ď

ˆ

1´
βmin

C1 ` C2t

˙m
´

rRpt, θ0q ´ rRpt, θ̆ptqq
¯

. (189)

Proof. First observe that by Lemma 5, rRpt, θq is βmin-strongly convex for all t P R`. Next, notice
that by Lemma 4, there exist C1, C2 ă 8 such that rRpt; θq has a pC1 ` C2tq-Lipschitz gradient for
all t P R`. Then, the result follows directly from (Karimi et al., 2016)[Theorem 1].
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Figure 8: As t Ñ `8, the objective becomes less
smooth in the vicinity of the final solution, hence suf-
fering from slower convergence. For negative values of
t, TERM converges fast due to the smoothness in the
vicinity of solutions despite its non-convexity.

Theorem 13 indicates that solving TERM to a lo-
cal optimum using gradient-based methods will
tend to be as efficient as traditional ERM for
small-to-moderate values of t (Jin et al., 2017),
which we corroborate via experiments on mul-
tiple real-world datasets in Section 5. This is
in contrast to solving for the min-max solution,
which would be similar to solving TERM as
t Ñ `8 (Kort & Bertsekas, 1972; Ostrovskii
et al., 2020; Pee & Royset, 2011).

Second, recall that the t-tilted loss remains
strongly convex for t ą 0, so long as the origi-
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nal loss function is strongly convex. On the other hand, for sufficiently large negative t, the t-tilted
loss becomes non-convex. Hence, while the t-tilted solutions for positive t are unique, the objective
may have multiple (spurious) local minima for negative t even if the original loss function is strongly
convex. For negative t, we seek the solution for which the parametric set of t-tilted solutions obtained
by sweeping t P R remains continuous (as in Figure 1a-c). To this end, for negative t, we solve
TERM by smoothly decreasing t from 0 ensuring that the solutions form a continuum in Rd. Despite
the non-convexity of TERM with t ă 0, we find that this approach produces effective solutions to
multiple real-world problems in Section 5. Additionally, as the objective remains smooth, it is still
relatively efficient to solve. We plot the convergence with t on a toy problem in Figure 8.
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I ADDITIONAL EXPERIMENTS

In this section we provide complete experimental results showcasing the properties of TERM
(Appendix I.1) and the use-cases covered in Section 5 (Appendix I.2). Details on how the experiments
themselves were executed are provided in Appendix J.

I.1 EXPERIMENTS TO SHOWCASE PROPERTIES OF TERM

Recall that in Section 2, Interpretation 1 is that TERM can be tuned to re-weight samples to magnify
or suppress the influence of outliers. In Figure 9 below, we visually show this effect by highlighting
the samples with the largest weight for t Ñ `8 and t Ñ ´8 on the logistic regression example
previously described in Figure 1.
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(a) Samples with the largest weights when tÑ `8.
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(b) Samples with the largest weights when tÑ ´8.

Figure 9: For positive values of t, TERM focuses on the samples with relatively large losses (rare instances).
When tÑ `8 (left), a few misclassified samples have the largest weights and are highlighted. On the other
hand, for negative values of t, TERM suppresses the effect of the outliers, and as tÑ ´8 (right), samples with
the smallest losses hold the the largest weights.

Interpretation 2 is concerned with smooth tradeoffs between the average-loss and max/min-loss. In
Figure 10 below, we show that (1) tilted solutions with positive t’s achieve a smooth tradeoff between
average-loss and max-loss, (2) similarly, negative t’s result in a smooth tradeoff between average-loss
and min-loss, and (3) increasing t from ´8 to `8 reduces the variance of the losses.
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Figure 10: The tradeoffs between the average-loss and the max/min-loss offered by TERM on the point
estimation (top) and logistic regression (bottom) toy examples presented in Figure 1, empirically validating
Theorems 1– 4. Positive values of t trade the average-loss for the max-loss, while negative values of t trade the
average-loss for the min-loss. Increasing t from ´8 to `8 results in the reduction of loss variance, allowing
the solution to tradeoff between bias/variance and potentially improve generalization.
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I.2 COMPLETE CASE STUDIES

Here we provide complete results obtained from applying TERM to a diverse set of applications.
We either present full metrics of the empirical results discussed in Section 5, or provide additional
experiments demonstrating the effects of TERM in new settings.

Robust regression. In Section 5.1, we focused on noise scenarios with random label noise. Here,
we present results involving both feature noise and target noise. We investigate the performance of
TERM on two datasets (cal-housing (Pace & Barry, 1997) and abalone (Dua & Graff, 2019)) used
in (Yu et al., 2012). Both datasets have features with 8 dimensions. We generate noisy samples
following the setup in (Yu et al., 2012)—sampling 100 training samples, and randomly corrupting
5% of them by multiplying their features by 100 and multiply their targets by 10,000. From Table 5
below, we see that TERM significantly outperforms the baseline objectives in the noisy regime on
both datasets.

Table 5: An alternative noise setup involving both feature noise and label noise. Similarly, TERM with t ă 0
significantly outperforms several baseline objectives for noisy outlier mitigation.

objectives test RMSE (cal-housing) test RMSE (abalone)

clean noisy clean noisy
ERM 0.766 (0.023) 239 (9) 2.444 (0.105) 1013 (72)

L1 0.759 (0.019) 139 (11) 2.435 (0.021) 1008 (117)

Huber (Huber, 1964) 0.762 (0.009) 163 (7) 2.449 (0.018) 922 (45)

CRR (Bhatia et al., 2017) 0.766 (0.024) 245 (8) 2.444 (0.021) 986 (146)

TERM 0.745 (0.007) 0.753 (0.016) 2.477 (0.041) 2.449 (0.028)

Genie ERM 0.766 (0.023) 0.766 (0.028) 2.444 (0.105) 2.450 (0.109)

We also provide results on synthetic data across different noise levels in two settings. In Figure 11,
the mean of the noise is different from the mean of the clean data, and in Figure 12, the mean of
two groups of data are the same. Similarly, TERM (t “ ´2) can effectively remove outliers in the
presence of random noise.
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Figure 11: Robust regression on synthetic data. In the presence of random noise, TERM with negative t’s (blue,
t “ ´2) can fit structured clean data at all noise levels, while ERM (purple) and TERM with positive t’s (red)
overfit to corrupted data. We color inliers in green and outliers in brown for visualization purposes.
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Figure 12: In the presence of random noise with the same mean as that of clean data, TERM with negative
t’s (blue) can still surpass outliers in all cases, while ERM (purple) and TERM with positive t’s (red) overfit
to corrupted data. While the performance drops for 80% noise, TERM can still learn useful information, and
achieves much lower error than ERM.
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Robust classification. Recall that in Section 5.1, for classification in the presence of label noise,
we only compare with baselines which do not require clean validation data. In Table 6 below, we
report the complete results of comparing TERM with all baselines, including MentorNet-DD (Jiang
et al., 2018) which needs additional clean data. In particular, in contrast to the other methods,
MentorNet-DD uses 5,000 clean validation images. TERM is competitive with can even exceed the
performance of MentorNet-DD, even though it does not have access to this clean data.

Table 6: A complete comparison including two MentorNet variants. TERM is able to match the performance of
MentorNet-DD, which needs additional clean labels.

objectives test accuracy (CIFAR-10, Inception)

20% noise 40% noise 80% noise

ERM 0.775 (.004) 0.719 (.004) 0.284 (.004)

RandomRect (Ren et al., 2018) 0.744 (.004) 0.699 (.005) 0.384 (.005)

SelfPaced (Kumar et al., 2010) 0.784 (.004) 0.733 (.004) 0.272 (.004)

MentorNet-PD (Jiang et al., 2018) 0.798 (.004) 0.731 (.004) 0.312 (.005)

GCE (Zhang & Sabuncu, 2018) 0.805 (.004) 0.750 (.004) 0.433 (.005)

MentorNet-DD (Jiang et al., 2018) 0.800 (.004) 0.763 (.004) 0.461(.005)

TERM 0.795 (.004) 0.768 (.004) 0.455 (.005)

Genie ERM 0.828 (.004) 0.820 (.004) 0.792 (.004)

To interpret the noise more easily, we provide a toy logistic regression example with synthetic data
here. In Figure 13, we see that TERM with t “ ´2 (blue) can converge to the correct classifier under
20%, 40%, and 80% noise.
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Figure 13: Robust classification using synthetic data. On this toy problem, we show that TERM with negative
t’s (blue) can be robust to random noisy samples. The green line corresponds to the solution of the generalized
cross entropy (GCE) baseline (Zhang & Sabuncu, 2018). Note that on this toy problem, GCE is as good as
TERM with negative t’s, despite its inferior performance on the real-world CIFAR10 dataset.

(Adversarial or structured noise.) As a word of caution, we note that the experiments thus far have
focused on random noise; as one might expect, TERM with negative t’s could potentially overfit to
outliers if they are constructed in an adversarial way. In the examples shown in Figure 14, under 40%
noise and 80% noise, TERM has a high error measured on the clean data (green dots).
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Figure 14: TERM with negative t’s (blue) cannot fit clean data if the noisy samples (brown) are adversarial or
structured in a manner that differs substantially from the underlying true distribution.

Low-quality annotators. In Section 5.1, we demonstrate that TERM can be used to mitigate the
effect of noisy annotators, and we assume each annotator is either always correct, or always uniformly
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Figure 15: TERM achieves higher test accuracy
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combined).
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assigning random labels. Here, we explore a different and possibly more practical scenario where
there are four noisy annotators who corrupt 0%, 20%, 40%, and 100% of their data by assigning
labels uniformly at random, and there is one additional adversarial annotator who always assigns
wrong labels. We assume the data points labeled by each annotator do not overlap, since (Khetan
et al., 2018) show that obtaining one label per sample is optimal for the data collectors under a fixed
annotation budget. We compare TERM with several baselines: (a) training without the data coming
from the adversarial annotator, (b) training without the data coming from the worst two annotators,
and (c) training with all the clean data combined (Genie ERM). The results are shown in Figure 15.
We see that TERM outperforms the strong baselines of removing one or two noisy annotators, and
closely matches the performance of training with all the available clean data.

Fair federated learning. Federated learning involves learning statistical models across massively
distributed networks of remote devices or isolated organizations (Li et al., 2020a; McMahan et al.,
2017). Ensuring fair (i.e., uniform) performance distribution across the devices is a major concern in
federated settings (Li et al., 2020b; Mohri et al., 2019), as using current approaches for federated
learning (FedAvg (McMahan et al., 2017)) may result in highly variable performance across the
network. (Li et al., 2020b) consider solving an alternate objective for federated learning, called q-FFL,
to dynamically emphasize the worst-performing devices, which is conceptually similar to the goal of
TERM, though it is applied specifically to the problem of federated learning and limited to the case
of positive t. Here, we compare TERM with q-FFL in their setup on the vehicle dataset (Duarte &
Hu, 2004) consisting of data collected from 23 distributed sensors (hence 23 devices). We tilt the L2

regularized linear SVM objective at the device level. At each communication round, we re-weight
the accumulated local model updates from each selected device based on the weights estimated via
Algorithm 2. From Figure 16, we see that similar to q-FFL, TERM (t “ 0.1) can also significantly
promote the accuracy on the worst device while maintaining the overall performance. The statistics
of the accuracy distribution are reported in Table 7 below.

Table 7: Both q-FFL and TERM can encourage more uniform accuracy distributions across the devices in
federated networks while maintaining similar average performance.

objectives test accuracy

average worst 10% best 10% standard deviation
FedAvg 0.853 (0.173) 0.421 (0.016) 0.951 (0.008) 0.173 (0.003)

q-FFL (q “ 5) 0.862 (0.065) 0.704 (0.033) 0.929 (0.006) 0.064 (0.011)

TERM (t “ 0.1) 0.853 (0.061) 0.707 (0.021) 0.926 (0.006) 0.061 (0.006)

Improving generalization via variance reduction. We compare TERM (applied at the class-level
as in (4), with logistic loss) with robustly regularized risk (RobustRegRisk) as in (Namkoong &
Duchi, 2017) on the HIV-1 (Dua & Graff, 2019; Rögnvaldsson, 2013) dataset originally investigated
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by (Namkoong & Duchi, 2017). We examine the accuracy on the rare class (Y “ 0), the common
class (Y “ 1), and overall accuracy.

The mean and standard error of accuracies are reported in Table 8. RobustRegRisk and TERM
offer similar performance improvements compared with other baselines, such as linear SVM, Learn-
Rewight (Ren et al., 2018), FocalLoss (Lin et al., 2017), and HRM (Leqi et al., 2019). For larger
t, TERM achieves similar accuracy in both classes, while RobustRegRisk does not show similar
trends by sweeping its hyperparameters. It is common to adjust the decision threshold to boost the
accuracy on the rare class. We do this for ERM and RobustRegRisk and optimize the threshold so
that ERM` and RobustRegRisk` result in the same validation accuracy on the rare class as TERM
(t “ 50). TERM achieves similar performance to RobustRegRisk`, without the need for an extra
tuned hyperparameter.

Table 8: TERM (t “ 0.1) is competitive with strong baselines in generalization. TERM (t “ 50) outperforms
ERM` (with decision threshold changed for providing fairness) and is competitive with RobustRegRisk` with
no need for extra hyperparameter tuning.

objectives accuracy (Y “ 0) accuracy (Y “ 1) overall accuracy (%)

train test train test train test
ERM 0.841 (.005) 0.822 (.009) 0.971 (.000) 0.966 (.002) 0.944 (.000) 0.934 (.003)

Linear SVM 0.873 (.003) 0.838 (.013) 0.965 (.000) 0.964 (.002) 0.951 (.001) 0.937 (.004)

LearnReweight (Ren et al., 2018) 0.860 (.004) 0.841 (.014) 0.960 (.002) 0.961 (.004) 0.940 (.001) 0.934 (.004)

FocalLoss (Lin et al., 2017) 0.871 (.003) 0.834 (.013) 0.970 (.000) 0.966 (.003) 0.949 (.001) 0.937 (.004)

HRM (Leqi et al., 2019) 0.875 (.003) 0.839 (.012) 0.972 (.000) 0.965 (.003) 0.952 (.001) 0.937 (.003)

RobustRegRisk (Namkoong & Duchi, 2017) 0.875 (.003) 0.844 (.010) 0.971 (.000) 0.966 (.003) 0.951 (.001) 0.939 (.004)

TERM (t “ 0.1) 0.864 (.003) 0.840 (.011) 0.970 (.000) 0.964 (.003) 0.949 (.001) 0.937 (.004)

ERM` (thresh = 0.26) 0.943 (.001) 0.916 (.008) 0.919 (.001) 0.917 (.003) 0.924 (.001) 0.917 (.002)

RobustRegRisk` (thresh=0.49) 0.943 (.000) 0.917 (.005) 0.928 (.001) 0.928 (.002) 0.931 (.001) 0.924 (.001)

TERM (t “ 50) 0.942 (.001) 0.917 (.005) 0.926 (.001) 0.925 (.002) 0.929 (.001) 0.924 (.001)
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J EXPERIMENTAL DETAILS

We first describe the datasets and models used in each experiment presented in Section 5, and then
provide a detailed setup including the choices of hyperparameters. All code and datasets are publicly
available at github.com/litian96/TERM.

J.1 DATASETS AND MODELS

We apply TERM to a diverse set of real-world applications, datasets, and models.

In Section 5.1, for regression tasks, we use the drug discovery data extracted from (Diakonikolas
et al., 2019) which is originally curated from (Olier et al., 2018) and train linear regression models
with different losses. There are 4,085 samples in total with each having 411 features. We randomly
split the dataset into 80% training set, 10% validation set, and 10% testing set. For mitigating noise
on classification tasks, we use the standard CIFAR-10 data and their standard train/val/test partitions
along with a standard inception network (Szegedy et al., 2016). For experiments regarding mitigating
noisy annotators, we again use the CIFAR-10 data and their standard partitions with a ResNet20
model. The noise generation procedure is described in Section 5.1.

In Section 5.2, for fair PCA experiments, we use the complete Default Credit data to learn low-
dimensional approximations and the loss is computed on the full training set. We follow the exact
data processing steps described in the work (Samadi et al., 2018) we compare with. There are 30,000
total data points with 21-dimensional features (after preprocessing). Among them, the high education
group has 24,629 samples and the low education group has 5,371 samples. For class imbalance
experiments, we directly take the unbalanced data extracted from MNIST (LeCun et al., 1998) used
in (Ren et al., 2018). When demonstrating the variance reduction of TERM, we use the HIV-1
dataset (Rögnvaldsson, 2013) as in (Namkoong & Duchi, 2017) and randomly split it into 80% train,
10% validation, and 10% test set. There are 6,590 total samples and each has 160 features. We report
results based on five such random partitions of the data. We train logistic regression models (without
any regularization) for this binary classification task for TERM and the baseline methods. We also
investigate the performance of a linear SVM.

In Section 5.3, the HIV-1 data are the same as that in Section 5.2. We also manually subsample the
data to make it more imbalanced, or inject random noise, as described in Section 5.3.

J.2 HYPERPARAMETERS

Selecting t. In Section 5.2 where we consider positive t’s, we select t from a limited candidate
set of t0.1, 0.5, 1, 5, 10, 50, 100, 200u on the held-out validation set. For initial robust regression
experiments, RMSE changed by only 0.08 on average across t; we thus used t “ ´2 for all
experiments involving noisy training samples (Section 5.1 and Section 5.3).

Other parameters. For all experiments, we tune all other hyperparameters (the learning rates, the
regularization parameters, the decision threshold for ERM`, ρ for (Namkoong & Duchi, 2017), α and
γ for focal loss (Lin et al., 2017)) based on a validation set, and select the best one. For experiments
regarding focal loss (Lin et al., 2017), we select the class balancing parameter (α in the original focal
loss paper) from rangep0.05, 0.95, 0.05q and select the main parameter γ from t0.5, 1, 2, 3, 4, 5u.
We tune ρ in (Namkoong & Duchi, 2017) such that ρn is selected from t0.5, 1, 2, 3, 4, 5, 10u where
n is the training set size. All regularization parameters including regularization for linear SVM
are selected from t0.0001, 0.01, 0.1, 1, 2u. For all experiments on the baseline methods, we use the
default hyperparameters in the original paper (or the open-sourced code).

We summarize a complete list of main hyperparameter values as follows.

Section 5.1:

• Robust regression. The threshold parameter δ for Huber loss for all noisy levels is 1, the corruption
parameter k for CRR is: 500 (20% noise), 1000 (40% noise), and 3000 (80% noise); and TERM
uses t “ ´2.

• Robust classification. The results are all based on the default hyperparameters provided by the
open-sourced code of MentorNet (Jiang et al., 2018), if applicable. We tune the q parameter for
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generalized cross entropy (GCE) from t0.4, 0.8, 1.0u and select a best one for each noise level.
For TERM, we scale t linearly as the number of iterations from 0 to -2 for all noise levels.

• Low-quality annotators. For all methods, we use the same set of hyperparameters. The initial
step-size is set to 0.1 and decayed to 0.01 at epoch 50. The batch size is 100.

Section 5.2:

• Fair PCA. We use the default hyperparameters and directly run the public code of (Samadi et al.,
2018) to get the results on the min-max fairness baseline. We use a learning rate of 0.001 for our
gradient-based solver for all target dimensions.

• Handling class imbalance. We take the open-sourced code of LearnReweight (Ren et al., 2018)
and use the default hyperparameters for the baselines of LearnReweight, HardMine, and ERM. We
implement focal loss, and select α “ 0.05, γ “ 2.

• Variance reduction. The regularization parameter for linear SVM is 1. γ for focal loss is 2. We
perform binary search on the decision thresholds for ERM` and RobustRegRisk`, and choose
0.26 and 0.49, respectively.

Section 5.3:

• We tune the q parameter for GCE based on validation data. We use q “ 0, 0, 0.7, 0.3 respectively
for the four scenarios we consider. For RobustlyRegRisk, we use ρ

n “ 10 (where n is the training
sample size) and we find that the performance is not sensitive to the choice of ρ. For focal loss, we
tune the hyperparameters for best performance and select γ “ 2, α “0.5, 0.1, 0.5, and 0.2 for four
scenarios. We use t “ ´2 for TERM in the presence of noise, and tune the positive t’s based on
the validation data. In particular, the values of tilts under four cases are: (0, 0.1), (0, 50), (-2, 5),
and (-2, 10) for TERMsc and (0.1, 0), (50, 0), (1, -2) and (50, -2) for TERMca.
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K DISCUSSION

Our proposed work provides an alternative to empirical risk minimization (ERM), which is ubiquitous
throughout machine learning. As such, our framework (TERM) could be widely used for applications
both positive and negative. However, our hope is that the TERM framework will allow machine learn-
ing practitioners to easily modify the ERM objective to handle practical concerns such as enforcing
fairness amongst subgroups, mitigating the effect of outliers, and ensuring robust performance on
new, unseen data. One potential downside of the TERM objective is that if the underlying dataset is
not well-understood, incorrectly tuning t could have the unintended consequence of magnifying the
impact of biased/corrupted data in comparison to traditional ERM. Indeed, critical to the success of
such a framework is understanding the implications of the modified objective, both theoretically and
empirically. The goal of this work is therefore to explore these implications so that it is clear when
such a modified objective would be appropriate.

In terms of the use-cases explored with the TERM framework, we relied on benchmark datasets that
have been commonly explored in prior work (e.g., Samadi et al., 2018; Tantipongpipat et al., 2019;
Yang et al., 2010; Yu et al., 2012). However, we note that some of these common benchmarks, such
as cal-housing (Pace & Barry, 1997) and Credit (Yeh & Lien, 2009), contain potentially sensitive
information. While the goal of our experiments was to showcase that the TERM framework could
be useful in learning fair representations that suppress membership bias and hence promote fairer
performance, developing an understanding for—and removing—such membership biases requires a
more comprehensive treatment of the problem that is outside the scope of this work.
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