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Abstract

Out-of-distribution (OOD) generalization is indispensable for learning models
in the wild, where testing distribution typically unknown and different from the
training. Recent methods derived from causality have shown great potential in
achieving OOD generalization. However, existing methods mainly focus on the
invariance property of causes, while largely overlooking the property of sufficiency
and necessity conditions. Namely, a necessary but insufficient cause (feature) is
invariant to distribution shift, yet it may not have required accuracy. By contrast,
a sufficient yet unnecessary cause (feature) tends to fit specific data well but may
have a risk of adapting to a new domain. To capture the information of sufficient
and necessary causes, we employ a classical concept, the probability of sufficiency
and necessary causes (PNS), which indicates the probability of whether one is the
necessary and sufficient cause. To associate PNS with OOD generalization, we
propose PNS risk and formulate an algorithm to learn representation with a high
PNS value. We theoretically analyze and prove the generalizability of the PNS
risk. Experiments on both synthetic and real-world benchmarks demonstrate the
effectiveness of the proposed method. The detailed implementation can be found
at the GitHub repository: https://github.com/ymy4323460/CaSN.

1 Introduction

The traditional supervised learning methods heavily depend on the in-distribution (ID) assumption,
where the training data and test data are sampled from the same data distribution (Shen et al., 2021;
Peters et al., 2016). However, the ID assumption may not be satisfied in some practical scenarios
like distribution shift (Zhang et al., 2013; Sagawa et al., 2019), which leads to the failure of these
traditional supervised learning methods. To relax the ID assumption, researchers have recently
started to study a different learning setting called out-of-distribution (OOD) generalization. OOD
generalization aims to train a model using the ID data such that the model generalizes well in the
unseen test data that share the same semantics with ID data (Li et al., 2018b; Ahuja et al., 2021).

Recent works have proposed to solve the OOD generalization problem through the lens of causality
(Peters et al., 2016; Pfister et al., 2019; Rothenhäusler et al., 2018; Heinze-Deml et al., 2018; Gamella
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Figure 1: (a) Examples for causal sufficiency and necessity in the cat classification. (b) The causal
graph for OOD generalization problem. The arrows denote the causal generative direction and the
dashed line connects the spurious correlated variables. Notations are formally defined in Section 2.1.
& Heinze-Deml, 2020; Oberst et al., 2021; Chen et al., 2022a). These works focus on learning
invariant representation, aiming to capture the cause of the labels. By learning this representation,
one can bridge the gap between the ID training data and unknown OOD test data, and thus mitigate
the negative impacts on the distribution shift between ID and OOD distributions. Among these works,
invariant risk minimization (IRM) (Arjovsky et al., 2019) is the most representative method, targeting
to identify invariant representation and classifier using a bi-level optimization algorithm. Following
works, many efforts have been devoted to further extending the original invariant learning framework
(Chen et al., 2022b; Ahuja et al., 2020a; Lu et al., 2021; Liu et al., 2021b; Lin et al., 2022).

Noticeably, the aforementioned invariant learning methods mainly focus on learning the invariant
causal representation, which may contain non-essential information that is not necessary nor sufficient
information (Pearl, 2009). In image classification tasks, necessity describes the label is not true if
the features disappear, and sufficiency describes the presence of a feature helps us determine the
correctness of the label. If the feature extractor only learns a representation that is invariant but
fails to satisfy the sufficiency or necessity, the model’s generalisation ability may deteriorate. As an
illustrative example (see Figure 1(a)), suppose that the training data only contains images of cats with
feet and that we are interested in learning a model for a cat prediction task. If the model captures
the invariant information (feature) “cat feet”, then the learned model is likely to make a mistake
in the OOD data containing cats without “cat feet” features. The example “cat feet” demonstrates
the representation contains sufficient but unnecessary causal information because using “cat feet”
can predict the label “cat” but a cat image might not contain “cat feet”. Analogously, there are also
representations that are necessary but not sufficient (the feature “pointy ear” in Figure 1(a)). In
Section 2.2, we present more examples to enhance the understanding of sufficiency and necessity.

This paper proposes achieving OOD generalization using essential causal information, which builds
upon the probability of necessarity and sufficiency (PNS) (Pearl, 2009). In this paper, we introduce the
PNS risk. A low PNS risk implies that the representation contains both the necessary and sufficient
causal information from the observation data with a high level of confidence. We provide some
theoretical analysis that establishes the approximation of the risk on unseen test domains by the
risk on source data. Based on these theoretical results, we discuss PNS risk in the context of a
semantic separable representation space and propose an algorithm for learning the representation
which contains the information of both sufficient and necessary causes from training data (ID data)
under different causal assumptions in Figure 1(b). The main contributions of this paper are as follows:

Firstly, we propose a new learning risk—PNS risk—to estimate the sufficiency and necessity of
information contained in the learned representation. Secondly, we theoretically analyze the PNS
risk under OOD problem and bound the gap between PNS risk on the test domain distribution and
the risk on source data. Lastly, we propose an algorithm that captures sufficient and necessary
causal representation with low PNS risk on test domains. Experiments on synthetic and real-world
benchmarks are conducted to show the effectiveness of the algorithm over state-of-the-art methods.

2 Preliminaries

2.1 Learning Setups

Domains. Let X ∈ X ⊂ RD be the observable feature variable and Y ∈ Y be the label. In this
paper, we mainly focus on binary classification task2, i.e., the label space Y = {0, 1}. S is a joint

2We extend the binary classification to multi-classification in experiments.
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distribution Ps(X, Y ) defined over X × Y in source domain. Equivalently, the unseen test domain is
T := Pt(X, Y ). We also set TX := Pt(X) to be the marginal distribution over variable X on test
domain. Similarly, SX := Ps(X) is the marginal distributions on source domain over X.

Assumption and model. We conclude the causal graph in OOD generalization in Figure 1(b), inspired
by the content (invariant) features and style (variant) features partition (Zhang et al., 2022). There are
the invariant feature C ∈ Rd and domain specific variable (i.e. domain indicator) V ∈ {1, · · · , n}
A common assumption of OOD generalization is that there exists latent causal variable C ∈ Rd

that maintains the invariance property across domains (see Figure 1(b)), i.e., Ps(Y |C = c) =
Pt(Y |C = c) (Arjovsky et al., 2019). Built upon this assumption, we define an invariant predictor by
using a simple linear classifier w : Rd → Y on the causal features to get label y = sign(w⊤c). Since
the causal variable C cannot be directly observed, we infer C from the observational data x ∼ X.
Then, the invariant predictor with the invariant representation inference model is defined as below.

y = sign[Ec∼Pt(C|X=x)w
⊤c]. (1)

2.2 Probability of Sufficient and Necessary Cause

Existing invariant learning strategies (Rojas-Carulla et al., 2018; Pfister et al., 2019; Arjovsky et al.,
2019) only consider the invariant property. However, the invariant representation can be further
divided into three parts, each containing the different sufficient and necessary causal information.

(i) Sufficient but unnecessary causes A: The cause A leads to the effect B, but when observing the
effect B, it is hard to confirm A is the actual cause (See example in Figure 1(a)). (ii) Necessary but
insufficient causes A: Knowing effect B we confirm the cause is A, but cause A might not lead to
effect B. “pointy ear” in cat prediction is selected as a typical example. Because when the ear shape
is not pointy, we can confirm it is not a cat. However, a fox has a similar ear shape to a cat. Thus
“pointy ear” is not a stable feature to predict cats. (iii) Necessary and sufficient causes A: Knowing
the effect B confirms the cause A, while observing A leads to B. In the cat and fox classification
task, “short mouth” could be a necessary and sufficient cause. It is because the feature “short mouth”
allows us to distinguish a cat from a fox, and when know there is a cat, “short mouth” must exist.

In order to learn invariant representations C contains both sufficient and necessary causal information,
we refer to the concept of Probability of Sufficient and Necessary (PNS) (Chapter 9 in (Pearl, 2009),
which is formally defined as below.
Definition 2.1 (Probability of Necessary and Sufficient (PNS) (Pearl, 2009)). Let the specific
implementations of causal variable C as c and c̄, where c̄ ̸= c. The probability that C is the
necessary and sufficiency cause of Y on test domain T is

PNS(c, c̄) :=Pt(Ydo(C=c) = y | C = c̄, Y ̸= y)︸ ︷︷ ︸
sufficiency

Pt(C = c̄, Y ̸= y)

+Pt(Ydo(C=c̄) ̸= y | C = c, Y = y)︸ ︷︷ ︸
necessity

Pt(C = c, Y = y).
(2)

In the above definition, the notion P (Ydo(C=c̄) ̸= y|C = c, Y = y) means that we study the
probability of Y ̸= y when we force the manipulable variable C to be a fixed value do(C = c̄)
(do-operator) given a certain factual observation Y = y and C = c. The first and second terms in
PNS correspond to the probabilities of sufficiency and necessity, respectively. Variable C has a high
probability to be the sufficient and necessary cause of Y when the PNS value is large. Computing the
counterfactual probability is a challenging problem since collecting the counterfactual data is difficult,
or even impossible in real-world systems. Fortunately, PNS defined on counterfactual distribution
can be directly estimated by the data under proper conditions, i.e., Exogeneity and Monotonicity.
Definition 2.2 (Exogeneity (Pearl, 2009)). Variable C is exogenous relative to variable Y w.r.t. source
and test domains S and T , if the intervention probability is identified by conditional probability
Ps(Ydo(C=c) = y) = Ps(Y = y|C = c) and Pt(Ydo(C=c) = y) = Pt(Y = y|C = c).

Definition 2.3 (Monotonicity 3(Pearl, 2009)). Y is monotonic relative to X if and only if either
P (Ydo(C=c) = y, Ydo(C=c̄) ̸= y) = 0 or P (Ydo(C=c) ̸= y, Ydo(C=c̄) = y) = 0

3We rewrite logic expression Ydo(C=c̄) = ȳ ∧ Ydo(C=c) = y is false or Ydo(C=c̄) = y ∧ Ydo(C=c) = ȳ is
false in original Monotonicity by the probabilistic formulation.
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The definition of Exogeineity describes the gap between the intervention and conditional distributions
vanishes when C is exogenous relative to Y and the definition of Monotonicity demonstrates the
monotonic effective on Y of causal variable C. Based on Definitions 2.2 and 2.3, the identifiability
of PNS in Definition 2.1 is described as the following lemma.
Lemma 2.4 (Pearl (2009)). If C is exogenous relative to Y , and Y is monotonic relative to C, then

PNS(c, c̄) = Pt(Y = y|C = c)︸ ︷︷ ︸
sufficiency

−Pt(Y = y|C = c̄)︸ ︷︷ ︸
necessity

. (3)

According to Lemma 2.4, the computation of PNS is feasible through the observation data under
Exogeneity and Monotonicity. This allows us to quantify PNS when counterfactual data is unavailable.
The proof of Lemma 2.4 is provided by Pearl (2009). Wang & Jordan (2021) further extend the proof
by incorporating probabilistic computation, as opposed to the logical calculation used in Pearl (2009).

3 PNS Risk Modeling

This section presents the PNS-based risk for invariant learning in OOD problem. The risk on test
domains is a PNS-value evaluator, which is bounded by the tractable risk on the training domain.

3.1 PNS Risk

In this section, we introduce the PNS risk, which is a PNS-value estimator. The risk estimates the PNS
value of the representation distribution Pt(C|X = x) inferred from X on an unseen test domain T .
The risk increases when the representation contains less necessary and sufficient information, which
can be caused by data distribution shifts. The PNS risk is based on the definition of PNS(c, c̄). As c̄
represents the intervention value, it is not necessary for it to be a sample from the same distribution
as the causal variable C. Thus, we define an auxiliary variable C̄ ∈ Rd (same as the range of C)
and sample c̄ from its distribution Pt(C̄|X = x). In the learning method, we use the notations
Pϕ
t (C|X = x) and P ξ

t (C̄|X = x) to present the estimated distributions, which are parameterized
by ϕ and ξ, separately. Let I(A) be an indicator function, where I(A) = 1 if A is true; otherwise,
I(A) = 0. PNS risk based on Definition 2.1 and Lamma 2.4 is formally defined as Eq. (4) below.

Rt(w, ϕ, ξ) := E(x,y)∼T
[
Ec∼Pt(C|X=x)I[sign(w

⊤c) ̸= y]

+Ec̄∼Pt(C̄|X=x)I[sign(w
⊤c̄) = y]

]
.

(4)

As the identifiability result in Lemma 2.4 is based on the Exogeneity 2.2 and Monotonicity 2.3, we
modify the original risk equation, Eq. (4), to ensure compliance with these conditions. Below, we
provide Monotonicity measurement and discuss the satisfaction of Exogeneity in Section 4.3.

Satisfaction of monotonicity. We naturally introduce the measurement of Monotonicity into PNS
risk by deriving an upper bound of Eq. (4), which is given below.
Proposition 3.1. Given a test domain T , we define the sufficient and necessary risks as:

SF t(w, ϕ) := E(x,y)∼T Ec∼Pϕ
t (C|X=x)I[sign(w

⊤c) ̸= y]︸ ︷︷ ︸
sufficiency term

,

NCt(w, ξ) := E(x,y)∼T Ec̄∼P ξ
t (C̄|X=x)I[sign(w

⊤c̄) = y]︸ ︷︷ ︸
necessity term

,

and let the Monotonicity measurement be

Mw
t (ϕ, ξ) := E(x,y)∼T Ec∼Pϕ

t (C|X=x)Ec̄∼P ξ
t (C̄|X=x)I[sign(w

⊤c) = sign(w⊤c̄)],

then we have

Rt(w, ϕ, ξ) = Mw
t (ϕ, ξ) + 2SF t(w, ϕ)NCt(w, ξ) ≤ Mw

t (ϕ, ξ) + 2SF t(w, ϕ). (5)

The upper bound for PNS risk in Eq. (5) consists of two terms: (i) the evaluator of sufficiency
SF t(w, ϕ) and (ii) the Monotonicity measurement Mw

t (ϕ, ξ). In the upper bound, the necessary
term NCt(w, ξ) is considered to be absorbed into measurement of Monotonicity Mw

t (ϕ, ξ). The
minimization process of Eq. (4) on its upper bound (5) considers the satisfaction of Monotonicity.
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3.2 OOD Generalization with PNS risk

In OOD generalization tasks, only source data collected from S is provided, while the test domain
T is unavailable during the optimization process. As a result, it is not possible to directly evaluate
the risk on the test domain, i.e. Rt(w, ϕ, ξ). To estimate Rt(w, ϕ, ξ), we have a two-step process:
(i) Firstly, since the test-domain distribution T is not available during the training process, We aim
to establish a connection between the risk on the test domain Rt(w, ϕ, ξ) and the risk on the source
domain Rs(w, ϕ, ξ) in Theorem 3.2. (ii) Furthermore, in practical scenarios where only a finite
number of samples are available, we demonstrate the bound of the gap between the expected risk on
the domain distribution and the empirical risk on the source domain data in Theorem 3.3.

Connecting the PNS risks, i.e., Rt(w, ϕ, ξ) and Rs(w, ϕ, ξ). We introduce divergence measurement
β divergence (Ganin et al., 2016) and weigh the Rs(w, ϕ, ξ) term by variational approximation. β
divergence measures the distance between domain T and S, which is formally defined below.

βk(T ∥S) =

[
E

(x,y)∼S

(
T (x, y)

S(x, y)

)k
] 1

k

. (6)

Based on βk(T ∥S), we connect the risks on the source and test domains by Theorem 3.2.
Theorem 3.2. The risk on the test domain is bounded by the risk on the source domain, i.e.,

Rt(w, ϕ, ξ) ≤ lim
k→+∞

βk(T ∥S)([Mw
s (ϕ, ξ)]1−

1
k + 2[SF s(w, ϕ)]1−

1
k ) + ηt\s(X, Y ),

where
ηt\s(X, Y ) := Pt(X× Y /∈ supp(S)) · supRt\s(w, ϕ, ξ).

Here supp(S) is the support set of source domain distribution Ps(X),

Rt\s(w, ϕ, ξ) := E(x,y)∼Pt(X×Y /∈supp(S))

[
Ec∼Pt(C|X=x)I[sign(w

⊤c) ̸= y]

+Ec̄∼Pt(C̄|X=x)I[sign(w
⊤c̄) = y]

]
.

In Theorem 3.2, ηt\s(X, Y ) describes the expectation of worst risk for unknown area i.e. the data
sample (x, y) does not include in the source domain support set supp(S). Theorem 3.2 connects the
source-domain risk and the test-domain risk. In the ideal case, where C is the invariant representation,
i.e. Ps(Y |C = c) = Pt(Y |C = c), the bound is reformed as below.

Rt(w, ϕ, ξ) ≤ lim
k→+∞

βk(TX∥SX)([Mw
s (ϕ, T )]1−

1
k + 2[SF s(w, ϕ)]1−

1
k ) + ηt\s(X, Y ). (7)

When the observations X in S and T share the same support set, the term ηt\s(X, Y ) approaches
to 0. In domain generalization tasks, the term βk(TX|SX) is treated as a hyperparameter, as the
test domain TX is not available during training. However, in domain adaptation tasks where TX is
provided, βk(TX|SX) and the test-domain Monotonicity measurement Mw

t (ϕ, ξ) can be directly
estimated. Further details of the discussion on domain adaptation are provided in Appendix A.3.

Connecting empirical risk to the expected risk. In most real-world scenarios where distribution S
is not directly provided, we consider the relationship of expected risk on source domain distribution
and empirical risk on source domain data Sn := {(xi, yi)}ni=1. We also define the empirical risks
w.r.t. ŜF s(w, ϕ), M̂w

s (ϕ, ξ) as follows:

ŜF s(w, ϕ) := ESnEc∼P̂ϕ
s (C|X=x)I[sign(w

⊤c) ̸= y],

M̂w
s (ϕ, ξ) := ESnEc∼P̂ϕ

s (C|X=x)Ec̄∼P̂ ξ
s (C̄|X=x)I[sign(w

⊤c) = sign(w⊤c̄)],

where P̂ϕ
s (C|X = x) and P̂ ξ

s (C̄|X = x) describe the estimated distribution on dataset Sn.

Then, we use PAC-learning (Shalev-Shwartz & Ben-David, 2014) tools to formulate the upper bound
of gap between empirical risk and expected risk as a theorem below.
Theorem 3.3. Given parameters ϕ, ξ, for any w : Rd → Y , prior distribution πC := Ps(C) and
πC̄ := Ps(C̄) which make ESKL(Pϕ

s (C|X = x)∥πC) and ESKL(P ξ
s (C̄|X = x)∥πC̄) both lower

than a positive constant C, then with a probability at least 1− ϵ over source domain data Sn,
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(1) |SF s(w, ϕ)− ŜF s(w, ϕ)| is upper bounded by

ESnKL(P̂ϕ
s (C|X = x)∥πC) +

ln(n/ϵ)

4(n− 1)
+ C.

(2) |Mw
s (ϕ, ξ)− M̂w

s (ϕ, ξ)| is upper bounded by

ESnKL(P̂ϕ
s (C|X = x)∥πC) + ESnKL(P̂ ξ

s (C̄|X = x)∥πC̄) +
ln(n/ϵ)

4(n− 1)
+ 2C.

Theorem 3.3 demonstrates that as the sample size increases and the terms with KL divergence
decrease, the empirical risk on the source domain dataset becomes closer to the expected risk.
Combining Theorems 3.2 and 3.3, we can evaluate the expected PNS risk on the test distribution
using the empirical risk on the source dataset. In the next section, we present a representation learning
objective based on the results of Theorems 3.2 and 3.3 and introduce the satisfaction of Exogeneity.

4 Learning to Minimizing PNS Risk

In this section, we propose a learning objective built upon the PNS risk that is used to capture the
essential representation having a high PNS value from observational data.

4.1 The Semantic Separability of PNS

In Section 3, we present PNS risk and Monotonicity measurement. Furthermore, to ensure that finding
interpretable representations is feasible, we need to make certain assumptions that the representation
of the data retains its semantic meaning under minor perturbations. Specifically, we define the
variable C as Semantic Separability relative to Y if and only if the following assumption is satisfied:
Assumption 4.1 (δ-Semantic Separability). For any domain index d ∈ {s, t}, the variable C is
δ-semantic separable, if for any c ∼ Pd(C|Y = y) and c̄ ∼ Pd(C|Y ̸= y), the following inequality
holds almost surely: ∥c̄− c∥2 > δ.

δ-Semantic Separability refers to the semantic meaning being distinguishable between c and c̄
when the distance between them is large enough, i.e., ∥c̄ − c∥2 > δ. This assumption is widely
accepted because, without it, nearly identical values would correspond to entirely different semantic
information, leading to inherently unstable and chaotic data. If C satisfies Assumption 4.1, then
considering the PNS value in a small intervention, such as ∥c − c̄∥2 < δ, will lead failure in
representation learning. Therefore, during the learning process, we add the penalty of ∥c− c̄∥2 > δ.

4.2 Overall Objective

Depending on the diverse selections of P ξ(C̄|X = x), there are multiple potential PNS risks. In
the learning process, we consider minimizing the risk in the worst-case scenario lead by C̄, i.e., the
maximal PNS risk lead by the selection of P ξ(C̄|X = x). Minimizing the upper bounds in Theorems
3.2 and 3.3 can be simulated by the following optimization process

min
ϕ,w

max
ξ

M̂w
s (ϕ, ξ) + ŜF s(w, ϕ) + λLKL, subject to ∥c− c̄∥2 > δ, (8)

where LKL := ESnKL(P̂ϕ
s (C|X = x)∥πC)) + ESnKL(P̂ ξ

s (C̄|X = x)∥πC̄)). The constraint ∥c−
c̄∥2 > δ is set because of the Semantic Separability assumption. We name the algorithm of optimizing
Eq. (8) as CaSN (Causal Representation of Sufficiency and Necessity).

4.3 Satisfaction of Exogeneity

In the previous sections, we introduced an objective to satisfy monotonicity. Identifying PNS values
not only needs to satisfy monotonicity but also exogeneity. In this part, we discuss the satisfaction of
Exogeneity and provide the solution to find the representation under three causal assumptions below.
Assumption 4.2. The Exogeneity of C holds, if and only if the following invariant conditions are
satisfied separately under three causal assumptions in Figure 1(b): (1) X ⊥ Y |C (2) C ⊥ V (3)
V ⊥ Y |C (for assumption in Figure 1(b).1, 2 and 3, respectively).
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The above three assumptions are commonly accepted by the OOD generalization (Lu et al., 2021; Liu
et al., 2021a; Ahuja et al., 2021). To satisfy the Exogeneity, we use different objective functions to
identify C over three invariant causal assumptions. For Assumption 4.2 (1), we provide the following
theorem showing the equivalence between optimizing Eq.8 and identifying invariant representation.
Theorem 4.3. The optimal solution of learned C is obtained by optimizing the following objective
(the key part of the objective in Eq. (8))

min
ϕ,w

ŜF s(w, ϕ) + λESnKL(P̂ϕ
s (C|X = x)∥πC)

satisfies the conditional independence X ⊥ Y |C.

Theorem 4.3, details of the proof are shown in Appendix E, indicates optimizing overall objective Eq.
(8) implicitly makes C satisfy the property of Exogeneity under causal assumption X ⊥ Y |C. For
Assumption 4.2 (2), to identify the invariant assumption C ⊥ V (Li et al., 2018b), we introduce the
following Maximum Mean Discrepancy (MMD) penalty to the minimization process in Eq. (8),

Lmmd =
∑
vi

∑
vj

Exi∼P (X|V=vi)Eci∼P̂ϕ
s (C|X=xi)

Exj∼P (X|V=vj)Ecj∼P̂ϕ
s (C|X=xj)

∥ci − cj∥2 .

For Assumption 4.2 (3), to specify the representation of C and allows the Exogeneity when the
assumption V ⊥ Y |C holds, we introduce the IRM-based (Arjovsky et al., 2019) penalty into Eq.(8).

Lirm =
∑
v

E(x,y)∼Ps(X,Y |V=v)

∥∥∥∇w|w=1.0Ec∼P̂ϕ
s (C|X=x)I[sign(w

⊤c) ̸= y]
∥∥∥2

Noticebly, to address the issue of invariant learning and satisfy the Exogeneity under Assumptions
4.2 (2) and (3), it is necessary to introduce additional domain information, such as domain index.

5 Related Work
In this section, we review the progress of OOD prediction tasks. A research perspective for OOD
prediction is from a causality viewpoint (Zhou et al., 2021; Shen et al., 2021). Based on the postulate
that the causal variables are invariant and less vulnerable to distribution shifts, a bunch of methods
identify the invariant causal features behind the observation data by enforcing invariance in the
learning process. Different works consider causality across multiple domains in different ways. One
series of research called the causal inference-based methods model the invariance across domains
by causality explanation, which builds a causal graph of data generative process (Pfister et al.,
2019; Rothenhäusler et al., 2018; Heinze-Deml et al., 2018; Gamella & Heinze-Deml, 2020; Oberst
et al., 2021; Zhang et al., 2015). The other series of methods consider invariant learning from a
causality aspect. They formulate the invariant causal mechanisms by representation rather than causal
variables. Invariant risk minimization (IRM) methods (Arjovsky et al., 2019) provide a solution for
learning invariant variables and functions. Under this viewpoint, some pioneering work (Ahuja et al.,
2020a; Chen et al., 2022b; Krueger et al., 2021; Lu et al., 2021; Ahuja et al., 2021; Lin et al., 2022)
further extend the IRM framework by considering game theory, variance penalization, information
theory, nonlinear prediction functions, and some recent works apply the IRM framework to large
neural networks (Jin et al., 2020; Gulrajani & Lopez-Paz, 2020). In this paper, different from the
aforementioned works which consider to learn the invariant information, we think that information
satisfying invariance is not enough to be most appropriate for the generalization task. We thus focus
on learning to extract the most essential information from observations with a ground on the sufficient
and necessary causal theorem. In the main text, we only provide a review of OOD prediction. We
further elaborate on the correlation with other lines of work, such as domain adaptation, causal
discovery, representation learning, causal disentanglement, and contrastive learning, in Appendix F.

6 Experiments
In this section, we verify the effectiveness of CaSN using synthetic and real-world OOD datasets.

6.1 Setups
Synthetic data. The effectiveness of the proposed method is demonstrated by examining whether it
can learn the essential information (i.e., sufficient and necessary causes) from source data. To this
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Figure 2: The synthetic results for validating the property of learned representation under different
spurious degrees in data, s = 0.1 for (a) and s = 0.7 for (b), the x-axis shows different causal
information y-axis shows the choice of δ. (c) The results of the feature identification when s = 0.7.

end, based on the causal graph in Figure 1(b).1 we designed a synthetic data generator that produced
a sample set {xi}ni=1 with corresponding labels {yi}ni=1. Four types of information were considered,
including: (i) SN: Sufficient and Necessary Cause sni of yi. The value of yi is directly calculated as
yi = sni

⊕
B(0.15), where

⊕
represents the XOR operation and B(0.15) is a Bernoulli distribution

with a probability of 0.15 to generate 1. (ii) SF: sufficient and unnecessary cause sfi of yi. sfi is
a transformation of sni. We set sfi = B(0.1) when sni = 0, and sfi = sni when sni = 1. SF is
designed to decrease the probability of necessity (i.e. P (Y = 0|SN = 0)). (iii) NC: insufficient
and necessary cause nci of yi. We set nci = I(sni = 1) · B(0.9). NC is designed to decrease the
probability of sufficiency (i.e. P (Y = 1|SN = 1)). (iv) Spurious: spurious correlation information
spi. Spurious correlated information is generated by s ∗ sni ∗ 1d + (1− s)N (0, 1), where d denotes
dimension and s denotes the spurious degree. When s gets higher, the spurious correlation becomes
stronger in data x. We select d = 5 and s ∈ {0.1, 0.7}. in the synthetic generative process and
develop a non-linear function to generate x from [sni, sfi, nci, spi]. We use Distance Correlation
(Jones et al., 1995) as evaluation metrics to measure the correlation between the learned representation
C and ground information (i.e. SN,SF,NC,SP). We provide an ablation study of CaSN without the
Monotonicity evaluator CaSN(-m) in comparison results, which evaluates the effectiveness of CaSN.

Performance on OOD prediction task. The proposed method CaSN is implemented based on
codebase DomainBed (Gulrajani & Lopez-Paz, 2020). We provide three implementations of our
method, which are CaSN, CaSN(irm) and CaSN(mmd) with the same architecture but using Eq.(8),
Eq.(8) +Lirm and Eq.(8) +Lmmd as their final objective, respectively. We compare CaSN with
several common baselines, including ERM(Vapnik, 1999), IRM (Arjovsky et al., 2019), GroupDRO
(Sagawa et al., 2019), Mixup (Xu et al., 2020), MLDG (Li et al., 2018a), MMD (Li et al., 2018b),
DANN (Ganin et al., 2016) and CDANN (Li et al., 2018c), where the best accuracy scores are directly
given by training-domain-validation in Gulrajani & Lopez-Paz (2020). We test the performance
on commonly used ColoredMnist (Ahuja et al., 2020a), PACS (Li et al., 2017), and VLCS (Fang
et al., 2013) datasets. During the experiment process, we adjust the hyperparameters provided by
DomainBed and extra hyperparameters δ and λ in CaSN. The results show the mean and standard error
of accuracy by executing the experiments randomly 2 times on 40 randomly selected hyperparameters.
We also provide the extra experiments on large-scale spurious correlation dataset SpuCo (Joshi et al.,
2023). Due to the page limitation, more experiment setups and results are provided in Appendix B.

6.2 Learning Sufficient and Necessary Causal Representations

We conducted experiments on synthetic data to verify the effectiveness of the learned representation.
In experiments, we use single domain with different degrees of spurious correlation. The experiments
aimed to demonstrate the properties of the learned representation and answer the following question:

Does CaSN capture the sufficient and necessary causes? We present the results in Figure 2 (a) and
(b), which show the distance correlation between the learned representation and four ground truths:
Sufficient and Necessary cause (SN, SF, NC and Spurious). A higher distance correlation indicates
a better representation. From both Figure 2 (a) (b), we found that CaSN achieves higher distance
correlations with the ground truths (e.g., SN, SF, and NC) and lower correlations with spurious factors
compared to other methods. As an example, we consider Figure 2 (a) with δ = 1.1. We obtain
distance correlations of {0.90, 0.65, 0.67, 0.13} for SN, SF, NC, and spurious factors, respectively.
We found that when we set δ as a large value 1.1, CaSN captures more essential information SN.
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Table 1: Results on PACS and VLCS dataset

Dataset PACS VLCS
Algorithm A C P S Avg Min C L S V Avg Min
ERM 84.7 ± 0.4 80.8 ± 0.6 97.2 ± 0.3 79.3 ± 1.0 85.5 79.3 97.7 ± 0.4 64.3 ± 0.9 73.4 ± 0.5 74.6 ± 1.3 77.5 64.3
IRM 84.8 ± 1.3 76.4 ± 1.1 96.7 ± 0.6 76.1 ± 1.0 83.5 76.4 98.6 ± 0.1 64.9 ± 0.9 73.4 ± 0.6 77.3 ± 0.9 78.5 64.9
GroupDRO 83.5 ± 0.9 79.1 ± 0.6 96.7 ± 0.3 78.3 ± 2.0 84.4 79.1 97.3 ± 0.3 63.4 ± 0.9 69.5 ± 0.8 76.7 ± 0.7 76.7 63.4
Mixup 86.1 ± 0.5 78.9 ± 0.8 97.6 ± 0.1 75.8 ± 1.8 84.6 78.9 98.3 ± 0.6 64.8 ± 1.0 72.1 ± 0.5 74.3 ± 0.8 77.4 64.8
MLDG 86.4 ± 0.8 77.4 ± 0.8 97.3 ± 0.4 73.5 ± 2.3 83.6 77.4 97.4 ± 0.2 65.2 ± 0.7 71.0 ± 1.4 75.3 ± 1.0 77.2 65.2
MMD 86.1 ± 1.4 79.4 ± 0.9 96.6 ± 0.2 76.5 ± 0.5 84.6 79.4 97.7 ± 0.1 64.0 ± 1.1 72.8 ± 0.2 75.3 ± 3.3 77.5 64.0
DANN 86.4 ± 0.8 77.4 ± 0.8 97.3 ± 0.4 73.5 ± 2.3 83.6 77.4 99.0 ± 0.3 65.1 ± 1.4 73.1 ± 0.3 77.2 ± 0.6 78.6 65.1
CDANN 84.6 ± 1.8 75.5 ± 0.9 96.8 ± 0.3 73.5 ± 0.6 82.6 75.5 97.1 ± 0.3 65.1 ± 1.2 70.7 ± 0.8 77.1 ± 1.5 77.5 65.1

CaSN (base) 87.1 ± 0.6 80.2 ± 0.6 96.2 ± 0.8 80.4 ± 0.2 86.0 80.2 97.5 ± 0.6 64.8 ± 1.9 70.2 ± 0.5 76.4 ± 1.7 77.2 64.8
CaSN (irm) 82.1 ± 0.3 77.9 ± 1.8 93.3 ± 0.8 80.6 ± 1.0 83.5 77.9 97.8 ± 0.3 65.7 ± 0.8 72.3 ± 0.4 77.0 ± 1.4 78.2 65.7
CaSN (mmd) 84.7 ± 0.1 81.4 ± 1.2 95.7 ± 0.2 80.2 ± 0.6 85.5 81.4 98.2 ± 0.7 65.9 ± 0.6 71.2 ± 0.3 76.9 ± 0.7 78.1 65.9

However, the result of CaSN decreases when δ = 0.1, which suggests that CaSN tends to capture the
most essential information when δ is set to a larger value. This phenomenon aligns with Semantic
Separability. We then compare Figure 2 (a) and (b). As an example, when δ = 1.1, CaSN achieves
distance correlations of 0.9 and 0.91 for SN on s = 0.1 and s = 0.7, respectively. The distance
correlation with spurious information is 0.13 and 0.37 for s = 0.1 and s = 0.7, respectively. The
results show that when more spurious correlations are in data, CaSN tends to capture information
from those spurious correlations, but the algorithm is still able to get sufficient and necessary causes.

Ablation study. In Figure 2(c), we provide the comparison results between CaSN and the CaSN(-m)
that removes the Monotonicity measurement on synthetic data. The figure demonstrates the distance
correlation recorded over 5 experiments. The green bars indicate the distance correlation between
learned representation and ground truth by CaSN. CaSN can capture the desired information SN
compared to others. As the blue bars show, the CaSN(-m) can better capture the causal information
(e.g. SN, SF and NC) rather than spurious correlation. It can not stably identify SN, compared to
SF. CaSN(-m) can be regarded as the method that only cares Exogeneity. The results support the
theoretical results in Theorem 4.3, which show the effectiveness of introducing Monotonicity term.

6.3 Generelization to Unseen Domain
The results of the OOD generalization experiments on PACS and VLCS datasets are presented in
Tables 1. Due to page limitation, we provide the results on ColoredMNIST in Table 2. The baseline
method results are from Kilbertus et al. (2018). The proposed CaSN method exhibits good OOD
generalization capability on both PACS and VLCS datasets. In Table 1, CaSN achieves the best
average performance over 4 domains by 86.0 on PACS. On the VLCS, CaSN(irm) achieves a good
average performance of 78.2, which is close to the best state-of-the-art performance achieved by
DANN. For worst-domain test accuracies, the proposed method CaSN outperforms all the baseline
methods. An intuitive explanation for the good performance of CaSN is that it aims to identify and
extract the most essential information from observation data, excluding unnecessary or insufficient
information from the optimal solution. This enables CaSN to better generalize on the worst domain.

7 Conclusion

In this paper, we consider the problem of learning causal representation from observation data for
generalization on OOD prediction tasks. We propose a risk based on the probability of sufficient and
necessary causes (Pearl, 2009), which is applicable OOD generalization tasks. The learning principle
leads to practical learning algorithms for causal representation learning. Theoretical results on the
computability of PNS from the source data and the generalization ability of the learned representation
are presented. Experimental results demonstrate its effectiveness on OOD generalization.
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A Discussion

In this section, we provide discussions of how to better understand PNS value, the understanding of
Theorem 4.3, the connection on domain generalization, and the limitations of this work.

A.1 Examples to Understand PNS Value

The ‘cat feet’ patch
is sufficient but 

unnecessary

The ‘ear shape’ patch 
is necessary but 

insufficient

Figure 3: Example for causal sufficiency and necessity in image classification problem. The images
on the left are for training and the rights are for OOD tests.

We provided two examples to help understand the PNS (Probability of Necessity and Sufficiency)
value. We will add the following explanations to our revision.

Example.1. We use the feature ’has cat legs’ represented by the variable C (taking binary values 1 or
0) to predict the label of being a cat or a fox. ’has cat legs’ is the sufficient but unnecessary cause
because the image contains cat legs must have cat but cat image might not contain cat leg.

We assume P (Ydo(C=1) = 1) = 1 and P (Ydo(C=0) = 0) = 0.5, P (Y = 1) = 0.75, P (C = 1, Y =
1) = 0.5, P (C = 0, Y = 0) = 0.25, P (C = 0, Y = 1) = 0.25.

Now, applying the concept of the probability of sufficiency and necessity, we obtain:

Probability of necessity: P (Ydo(C=0) = 0|Y = 1, C = 1) =
P (Y=1)−P (Ydo(C=0)=1)

P (Y=1,C=1) =
0.75−0.5

P (Y=1,C=1) = 0.5

Probability of sufficiency: P (Ydo(C=1) = 1|Y = 0, C = 0) =
P (Ydo(C=1)=1)−P (Y=1)

P (Y=0,C=0) =
1−0.75

P (Y=1,C=1) = 1

In this example, we can state that variable C has a probability of being a sufficient cause. Note that
the calculation of PN and PS are from eq.9.29 and eq.9.30 in Chapter 9 at (Pearl, 2009).

Example.2. If we use feature ’pointy ear’ C (taking values 1, 0. Value 1 means pointy ear), to predict
Y (cat 1, other animal 0). Since a cat must have pointy ears but if an animal has pointy ears, it should
not be a cat, we assume P (Ydo(C=1) = 1) = 0.5 and P (Ydo(C=0) = 0) = 1, P (Y = 1) = 0.25,
P (C = 1, Y = 1) = 0.25, P (C = 0, Y = 0) = 0.5, P (C = 0, Y = 1) = 0.25.

Now, applying the concept of the probability of sufficiency and necessity, we obtain:

Probability of necessity: P (Ydo(C=0) = 0|Y = 1, X = 1) = 1

Probability of sufficiency: P (Ydo(C=1) = 1|Y = 0, X = 0) = 0.5

In this example, we can state that variable C has a probability of being a necessary cause.

Example.3. If we use feature ’eye size’ C (taking values 1, 0.5 or 0 with the probability of 1
3 ,

respectively, the lower value means smaller eye size on face), to predict Y (cat 1 or fox 0). Assuming
P (Ydo(C=1) = 1) = 1, P (Ydo(C=0.5) = 1) = 0.5 and P (Ydo(C=0) = 1) = 0 (cat have larger
eye size than fox). In this example, we have P (C = 0, Y = 0) = P (C = 1, Y = 1) = 1

3 and
P (C = 0.5, Y = 0) = P (C = 0.5, Y = 1) = 1

6 .
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In Definition 2.1, PNS(c, c̄) can take multiple choice. We provide Case.1: c = 1 and c̄ = 0.5 and
Case.2: c = 1 and c̄ = 0.

Case.1 In this case, PN = P (Ydo(C=0.5) = 0|C = 1, Y = 1) = 0

PS = P (Ydo(C=1) = 1|Y = 0, C = 0.5) = 3

PNS(1, 0.5) = PNP (C = 1, Y = 1) + PSP (Y = 0, C = 0.5) = 0.5

Case.2 In this case, PN = P (Ydo(C=0) = 0|C = 1, Y = 1) = 1.5

PS = P (Ydo(C=1) = 1|Y = 0, C = 0) = 1.5

PNS(1, 0) = P (C = 1, Y = 1) + PSP (Y = 0, C = 0) = 1.

We note that Case.1 indicate the feature C has more sufficiency than necessity. Thus, if C is not
binary, we should consider the worst-case PNS value.

We introduced a PNS risk to investigate the PNS value between the representation and Y. When the
algorithm optimizes the objective function to minimize the PNS risk, it indicates that the representation
we found contains more sufficient and necessary causal information.

Considering there are multiple choices of c and c̄ (like Example.2), we extend our algorithm by
min-max optimization (Eq. 8 in the main text), which aims to find the worst c̄ for c with highest PNS
risk.

A.2 Causal Assumptions and Invariant Learning

Our assumption of the causal graph in Figure 1 is based on previous works on out-of-distribution
(OOD) generalization, such as the causal graph in (Liu et al., 2021a; Ahuja et al., 2020b, 2021), they
conclude the assumptions in OOD generalization task as (1) fully informative invariant features (FIIF):
Feature contains all the information about the label that is contained in input. (2) Non-spurious:
The environment information is not correlated with the causal information. (2) partially informative
invariant features (PIIF). Our assumption X ⊥ Y | C holds in the case of FIIF. As presented in Ahuja
et al. (2021) page 3, IRM is based on the assumption of PIIF, where X ⊥ Y | C does not hold and
IRM fails in the case of FIIF. These three causal assumptions are shown in Figure 1 (b).

Given that in the domain generalization problem, the target domain is unavailable, βk and η cannot
be optimized directly. Thus, instead of directly optimizing the term βk, we address the OOD
generalization problem based on theoretical results in Theorem 4.3, which shows that the algorithm
can identify the invariant features. We will then take the invariant learning under Assumption 4.2(1)
as an example to show the relationship between invariant learning and satisfaction of Exogeneity.
Theorem 4.3 establishes the equivalence between learning to optimize the Eq. (8) and intuitively
demonstrates that by optimizing the objective function, the method learns representation C that
satisfies conditional independence. Specifically, the logic is as follows:

i) In Section 4.3, we describe that our paper is based on the assumption of conditional independence
X ⊥ Y |C (PIIF assumption in Ahuja et al. (2021)), where C is the invariant variable.

ii) Theorem 4.3 describes that the proposed algorithm makes representation satisfy such conditional
independence. The proof of Theorem 4.3 indicates the learned representation is minimal suffi-
cient statistics of Y (Definition E.2). Therefore, the learned representation identifies the essential
information relative to Y in cause C theoretically.

Combining the above two points, the conclusion of Theorem 4.3 implies that the invariant variable
can be learned by objective function Eq. (8).

A.3 Framework on Domain Adaptation

In the main text, we provide the learning framework by PNS on OOD generalization task with
the practical algorithm. Compared with OOD generalization, Domain adaptation is a task with
the data from test distributions provided in the learning process. The framework can be extended
to the Domain Adaptation task, extra samples from the test domain help the method to get better
generalization performance. Same with the learning framework for OOD generalization, we start
from Proposition 3.1. The Eq. (5) is adoptable in the domain adaptation tasks. In that case, the
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observation data x in the test domain is provided during the source process. Therefore, the terms in
Eq. (5) which do not require the label information Y can be directly evaluated on the test domain.
The same with OOD Generalization, for the terms which need to be calculated from label information,
we link the test risk Rt and source risk Rs by the divergent measurement βk(T ∥S). The divergence
between T and S in infinite norm measures support of the source domain that is included in the
test domain. We define t\s as the distribution of the part of test domain distribution T which is not
included in S, we give the upper bound of the worst risk below.

ηt\s(X, Y ) := Pt(X× Y /∈ supp(S)) · supRt\s(w, ϕ, ξ).

The value of ηs is always lower than P(x,y,)∼T ((x, y) /∈ supp(t)), which indicates the data distribu-
tion for domain t not covered by domain s.

Theorem A.1. Given a source domain S and a test domain T , when T (x) is provided then the risk
on the test domain is bounded by the risk on source domain as follows.

Rt(w, ϕ, ξ) ≤ lim
k→+∞

Mw
t (ϕ, ξ) + βk(T ∥S)(2[SF s(w, ϕ)]1−

1
k ) + ηt\s(X, Y ). (9)

Theorem A.1 shows the face of our proposed framework under a domain adaptation perspective. In
domain adaptation task, we can evaluate the are not available in real-world scenarios, we only have
the data samples from the test domain. The proof of Theorem A.1 is similar to Theorem 3.2, the
difference is that in domain adaptation, the term Mw

t (ϕ, ξ)) can be directly estimated on the provided
test data. Because this term does not require the label information.

A.4 Limitations

Firstly, we propose a risk satisfying the identification condition Exogeneity under the assumption of a
common causal graph in OOD generalization. However, there exist corner cases of causal assumption
like anti-causal and confounder, etc. Hence, we plan to extend our framework with more causal
assumptions. In addition, the theorem in our paper is based on the linear classification function.
Future work would look into more complex functions in non-linear settings. We leave this exciting
direction for future work as it is out of the scope of this paper.

B Implementation Details

In this section, we introduce the experimental setups and implementation details include the generate
rules of synthetic dataset, real-world benchmarks, evaluation strategies, model architecture and
hyperparameters setting.

B.1 Synthetic Dataset

In order to evaluate whether the proposed method captures the most essential information sufficient
and necessary causes or not, we design synthetic data which contains four part of variables:

• Sufficient and necessary cause (SN): the sufficient and necessary cause is generated from a
Bernoulli distribution sni ∼ B(0.5), and the label yi is generated based on the sufficient and
necessary cause where yi = sni

⊕
B(0.15). Since Y is generated from SN ∈ {0, 1}. The sufficient

and necessary cause has high probability of P (Y = 0|do(SN = 0)) + P (Y = 1|do(SN = 1)).

• Sufficient and unnecessary cause (SF): From the definition and identifiability results of PNS,
the sufficient and unnecessary cause SF ∈ {0, 1} in synthetic data has the same probability with
SN, i.e. P (Y = 1|do(SF = 1)) = P (Y = 1|do(SN = 1)), but has lower the probability of
P (Y = 0|do(SF = 0)) than P (Y = 0|do(SN = 0)). To generate the value of sfi, we design a
transformation function fsf : {0, 1} → {0, 1} to generate sfi from sufficient and necessary cause
value sni.

sfi = fsf(sni) :=

{
B(0.1) where sni = 0

sni where sni = 1
. (10)

From the functional intervention defined by (Puli et al., 2020; Pearl, 2009; Wang & Jordan, 2021),
we demonstrate the identifiability property to connect the SF and Y in following lemma:
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Lemma B.1. Let SF := fsf(SN), the intervention distribution P (Y |do(SF = sfi)) is identified by
the condition distribution P (Y |SF = sfi).

proof:

P (Y |do(SF = sfi)) =
∫

SN
p(y|do(SN))p(SN|fsf(SN) = sfi)d SN

=

∫
SN

p(y|SN)p(SN|fsf(SN) = sfi)d SN.

(11)

The lemma shows that even Y is only generated from SN in our synthetic simulator, the sufficient
cause SF is exogenous relative to Y .

• Insufficient and necessary cause (NC): From the definition and identifiability results of PNS, the
insufficient and necessary cause has the same probability of P (Y = 0|do(NC = 0)) with P (Y =
0|do(SN = 0)) but lower the probability of P (Y = 1|do(NC = 1)) than P (Y = 1|do(SN = 1)).
To generate the value of NC, we design a transformation function fnc : {0, 1} → {0, 1} to generate
nci from sufficient and necessary cause sni. The generating process of nci is defined below, and
nci is the cause of y. Similar with identifiability result of SF in Lemma B.1, NC is exogenous
relative to Y .

nci = fnc(sni) := sni ∗B(0.9) (12)

• Spurious: We also generate the variable with spurious corrlated with sufficient and necessary
cause. We set the degree of spurious correlation as s, the generator is defind as spi = s ∗ sni ∗ 1d +
(1 − s)N (0, 1), where N (0, 1) denotes the Gaussian distribution, we select d = 5 in synthetic
generative process. When s gets higher, the spurious correlation becomes stronger in the data
sample. We select s = 0.1 and s = 0.7 in synthetic experiments.

To make the data more complex, we apply a non-linear function to generate x from
{sni, SF i, nci, spi}. We fistly generate a temporary vector, which is defind as t = [sni ∗ 1d, SF i ∗
1d, nci ∗ 1d, spi ∗ 1d] +N (0, 0.3). Then we define functions κ1(t) = t − 0.5 if t > 0, otherwise
κ1(t) = 0 and κ2(t) = t+0.5 if t < 0, otherwise κ2(t) = 0. x is generated by x = σ(κ1(t)·κ1(t)),
where σ : R4d → R4d is sigmoid function. We generate 20000 data samples for training and 500
data samples for evaluation.

B.2 Experiment setup on synthetic data

Methods. In the synthetic experiment, we compare the proposed CaSN with the reduced method
CaSN (-m). In the CaSN(-m), we remove the monotonicity evaluator Mw

s (ϕ, ξ) and the δ’s constraint
∥c− c̄∥2 ≥ δ from the objective Eq. (8).

Evaluation. We evaluate the distance correlation (Jones et al., 1995) between the learned represen-
tation ĉi and four features {sni, sfi, nci, spi}. For example, the larger distance correlation value
between ĉi and sni means ĉi contains more information of sni.

Model Architecture. For the synthetic dataset, we use the three-layer MLP networks with an
activate function as the feature inference model. Denoting Vk as weighting parameters, the neural
network is designed as V1ELU(V2ELU(V3[x])), where ELU() is the activation function (Clevert
et al., 2015). The dimension of hidden vectors calculated from V1, V2, V3 are specified as 64, 32, 128
separately. Since the output of the feature learning network is consist of the mean and variance
vector, the dimension of representation is 64. The prediction neural networks w which predict y by
representation c.

B.3 Experiment setup on DomainBed

Dataset. In addition to the experiments on synthetic data, we also evaluate the proposed method on
real-world OOD generalization datasets. We use the code from the popular repository DomainBed
(Gulrajani & Lopez-Paz, 2020), and use the dataset which is downloaded or generated by the
DomainBed code. The dataset includes the following three:

• PACS (Li et al., 2017): PACS dataset contains overall 9, 991 data samples with dimension (3, 224,
224). There are 7 classes in the dataset. The datasets have four domains art, cartoons, photos,
sketches.
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• VLCS (Fang et al., 2013): VLCS dataset contains overall 10, 729 data samples with dimension (3,
224, 224). There are 5 classes in the dataset. The datasets have four domains Caltech101, LabelMe,
SUN09, VOC2007.

The DomainBed randomly split the whole dataset as training, validation and test dataset.

Baselines. For OOD Generalization task, we consider following baselines realized by DomainBed.

• Empirical Risk Minimization (ERM) (Vapnik, 1999) (ERM, Vapnik [1998]) is a common
baseline that minimizes the risk on all the domain data.

• Invariant Risk Minimization (IRM) (Arjovsky et al., 2019) minimize the the risk for different
domains separately. It extract the representation on all the domains and project them on a shared
representation space. Then, all the domain share one prediction model. The algorithm is formed as
bi-level optimization objective.

• Group Distributionally Robust Optimization (DRO) (Sagawa et al., 2019) weigh the different
domains by their evaluated error. It reweights the optimization of domains in objective. The domain
with a larger error gets a larger weight.

• Inter-domain Mixup (Mixup) (Xu et al., 2020; Yan et al., 2020; Wang et al., 2020), ERM is
performed for linear interpolation of samples of random pairs from domains and their labels.

• Meta-Learning for Domain Generalization (MLDG) (Li et al., 2018a) uses meta learning strategy
(Finn et al., 2017) to learn the cross domain generalization.

• MMD method for domain generalization (Li et al., 2018b) method uses the MMD (Gretton et al.,
2012) of the feature distribution to measure the distance of domain representation. They learn the
invariant representation across domains by minimize MMD.

• Domain-Adversarial Neural Networks DANN (Ganin et al., 2016) uses adversarial networks to
learn the invariant features across domains.

• Class-conditional DANN CDANN (Li et al., 2018c) is an extension of DANN, which is learned to
match the conditional distribution by giving the label information.

Evaluation. All the evaluation results are reported from the DomainBed paper (Gulrajani & Lopez-
Paz, 2020). We use the evaluation strategy from DomainBed. DomainBed provides the evaluation
strategy Training-domain validation set. The training dataset is randomly split as training and
validation datasets, the hyperparameters are selected on the validation dataset, which maximizes the
performance of the validation dataset. The overall accuracy results are evaluated on the test dataset
rather than the validation dataset.

All the experiments are conducted based on a server with a 16-core CPU, 128g memory and RTX
5000 GPU.

Implementation Details. We implement CaSN based on the DomainBed repository. The feature
extractor and classifier use different neural networks across different datasets.

We set distribution of representation C as P̂ϕ
s (C|X = x) = N (µ(x;ϕ), σ(x;ϕ)) and its prior as

πC = N (µ0, σ0). µ0 and σ0 are pre-defined and not updated in the learning process. Similarly, for
C̄, we define P̂ ξ

s (C̄|X = x) = N (µ̄(x; ξ), σ̄(x; ξ)) and πC̄ = N (µ̄0, σ̄0). Colored Mnist: The
model architecture on Colored Mnist dataset is given by DomainBed repository. We use MNIST
ConvNet for feature extraction. The details of the layers are referred from Table 7 in Gulrajani &
Lopez-Paz (2020). We simply use a linear function as the label prediction network and transformation
function T . In the Colored Mnist dataset, the variance of c is fixed as 0.001.

PACS and VLCS: The model architecture on PACS and VLCS datasets are both given by DomainBed
repository. They use ResNet-50 for feature extraction. In DomainBed, they replace the last layer of a
ResNet50 pre-trained on ImageNet and fine-tune and freeze all the bach normalization layer before
fine-tune. We simply use a linear function as the label prediction network w and transformation
function T . In the PACS and VLCS datasets, the variances of c are also fixed as 0.001

The Hyperparameters are shown in Table 3. The general hyperparameters (e.g. ResNet, Mnist, Not
Minist) are directly given from Table 8 in Gulrajani & Lopez-Paz (2020). All the experiments run for
2 times.
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Table 2: Results on Colored Mnist

Condition +90% +80% -90% Avg Min
ERM 71.7 ± 0.1 72.9 ± 0.2 10.0 ± 0.1 51.5 10.0
IRM 72.5 ± 0.1 73.3 ± 0.5 10.2 ± 0.3 52.0 10.2
GroupDRO 73.1 ± 0.3 73.2 ± 0.2 10.0 ± 0.2 52.1 10.0
Mixup 72.7 ± 0.4 73.4 ± 0.1 10.1 ± 0.1 52.1 10.1
MLDG 71.5 ± 0.2 73.1 ± 0.2 9.8 ± 0.1 51.5 9.8
MMD 71.4 ± 0.3 73.1 ± 0.2 9.9 ± 0.3 51.5 9.9
DANN 71.4 ± 0.9 73.1 ± 0.1 10.0 ± 0.0 51.5 10.0
CDANN 72.0 ± 0.2 73.0 ± 0.2 10.2 ± 0.1 51.7 10.2
CaSN (Ours) 72.6 ± 0.1 73.7 ± 0.1 10.3 ± 0.3 52.2 10.3

Table 3: Hyperparameters setting

Parameter Default value Random distribution

Basic
batch size 32 2Uniform (3,5.5)

minimization process learning rate 0.0001 10Uniform (−5,−3.5)

maxmization process learning rate 0.00001 10Uniform (−6,−4)

Not Mnist weight decay 0 10Uniform (−6,−2)
generator weight decav 0 10Uniform (−6,−2)

Mnist weight decay 0 0
generator weight decav 0 0

CaSN
δ 0.7 {0.3, 0.7, 1.0, 1.5, 3.0}
λ 0.01 {0.001, 0.01, 0.1}

Weight of constraint ∥c− c̄∥2 0.1 {0.001, 0.01, 0.1, 0.5, 0.7}

CaSN(irm)

δ 0.7 {0.3, 0.7, 1.0, 1.5, 3.0}
λ 0.01 {0.001, 0.01, 0.1, 0.5, 0.7}

Weight of constraint ∥c− c̄∥2 0.1 {0.001, 0.01, 0.1, 0.5, 0.7}
Weight of IRM penalty Lirm 0.001 {0.01, 0.001, 1e− 5}

IRM penalty iters 1000 {500, 1000}

CaSN(mmd)

δ 0.7 {0.3, 0.7, 1.0, 1.5, 3.0}
λ 0.01 {0.001, 0.01, 0.1, 0.5, 0.7}

Weight of constraint ∥c− c̄∥2 0.1 {0.001, 0.01, 0.1, 0.5, 0.7}
Weight of MMD penalty Lmmd 1 {1}

Adversarial Max optimization per iters 500 {500, 1000}

B.4 Experiment setup on SpuCo

We provide the experiment on the large scale spurious correlation dataset SpuCo (Joshi et al., 2023).
SpuCo is a Python package developed to address spurious correlations in the context of visual
prediction scenarios. It includes two datasets: the simulated dataset SpuCoMNIST and the large-scale
real-world dataset SpuCoANIMALS. This Python package provides code for benchmark methods on
these datasets, along with test results.

Dataset. We test CaSN on the large-scale real-world dataset SpuCoANIMALS, which is derived
from ImageNet (Russakovsky et al., 2015). This dataset captures spurious correlations in real-world
settings with greater fidelity compared to existing datasets. There are 4 classes in this dataset:
landbirds, waterbirds, small dog breeds and big dog breeds, which are spuriously correlated with
different backgrounds. Based on the different backgrounds, this dataset contains 8 groups with more
than 10, 000 samples.

Baselines. We realize CaSN based on the code of SpuCo. We have CaSN implementation, one is
based on ERM, the other is based on the strategy of Group Balance. We compare CaSN with ERM,
GroupDRO and Group Balance.
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Table 4: Results on SpuCo

ERM CaSN GroupDRO GB CaSN-GB
Average 80.26±4.1 84.34±0.6 50.7±4.2 49.9±1.4 50.54±7.6
Min 8.3±1.3 9.7±2.7 36.7±0.6 41.1±2.7 42.0±0.8

Hyperparameters. The hyperparameters employed for robust retraining are detailed as follows.
During the robust training phase, we set the hyperparameters as their default value:

When conducting training from scratch, we utilize SGD as the optimizer with a learning rate of
0.0001, a weight decay of 0.0001, a batch size of 128, and a momentum of 0.9. The model undergoes
training for 300 epochs, with early stopping applied based on its performance on the validation set.
In addition to the basic hyperparameters, we set δ = 3 and λ ∈ {0.005, 0.01}.

C Additional Results

C.1 OOD generalization results on Colored MNIST

Due to the page limitation in the main text, we show OOD generalization results on Colored Mnist
data in Table 2.

C.2 Domain generalization on SpuCo

The results on SpuCo (Joshi et al., 2023) based on the code SpuCo4. We test CaSN on SpuCoAnimal
which comprises 8 different spurious correlation groups.

We set hyperparameters as δ = 3 and λ ∈ 0.005, 0.01, while the remaining parameters followed
SpuCo’s default values. We conducted two types of experiments: the first involved training the
model without providing any additional information, and the second involved resampling based
on the spurious correlation group information, where the base models corresponded to ERM and
Group Balance (GB) as presented in SpuCo. We also include GroupDRO as one of the baselines, the
baseline performance is reported SpuCo. Data augmentation-based methods, ERM* and GB*, were
not included in these experiments.

We reported the results in Table 4, with each result obtained from 4 fixed random seeds. The baseline
results are directly taken from SpuCo. Our method showed higher average accuracy on average
accuracy compared to the baseline, and even the worst spurious correlation group exhibited higher
accuracy than the baseline.

D Proof of Theorems

In this section, we provide the proof of the risk bounds which include Proposition 3.1, Theorem 3.2
and Theorem 3.3 for OOD generalization task.

D.1 Proposition 3.1

To explicitly form the Monotonocity evaluator, we decompose the original objective by three terms de-
fined by sufficiency objective SFt(w, ϕ), necessity objective NCt(w, ξ) and Monotonicity evaluator
objective Mw

t (ϕ, ξ). The Monotonicity Mw
t (ϕ, ξ) term can be decomposed as

Mw
t (ϕ, ξ) = SFt(w, ϕ)(1−NCt(w, ξ)) + (1− SFt(w, ϕ))NCt(w, ξ). (13)

The following equation understands the above decomposition.

P (sign(w⊤c) = sign(w⊤c̄))

=P (sign(w⊤c) = y)P (sign(w⊤c̄) = y) + P (sign(w⊤c) ̸= y)P (sign(w⊤c̄) ̸= y).
(14)

4https://github.com/BigML-CS-UCLA/SpuCo
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We can further derive Eq.13 as follows.

Mw
t (ϕ, ξ) =SF t(w, ϕ)(1−NCt(w, ξ)) + (1− SF t(w, ϕ))NCt(w, ξ)

=SF t(w, ϕ) +NCt(w, ξ)︸ ︷︷ ︸
Rt(w,ϕ,T )

−2SF t(w, ϕ)NCt(w, ξ)

=Rt(w, ϕ, ξ)− 2SF t(w, ϕ)NCt(w, ξ).

(15)

Then we can rewrite the original objective Eq. (4) by

Rt(w, ϕ, ξ) = Mw
t (ϕ, ξ) + 2SF t(w, ϕ)NCt(w, ξ). (16)

Then we get the results of Proposition 3.1. The reasons why we need this proposition are because the
final objective need to explicitly evaluate the Monotonicity.

D.2 Theorem 3.2

The motivation of Theorem 3.2 is to bridge the gap between the risk on the source domain and the
risk on the test domain. To prove the result in Theorem 3.2, we refer to the technicals in Germain et al.
(2016), We first define o = E(x,y)∼T I[(x, y) /∈ sup(S)], then we can get the value of δ-Monotonicity
measurement on the samples from test domain that are not included in source domain is:

E(x,y)∼T I[(x, y) /∈ supp(S)]Ec∼Pϕ
t (C|X=x)Ec̄∼P ξ

t (C̄|X=x)I[sign(w
⊤c) = sign(w⊤c̄)]

=oEt\sEc∼Pϕ
t (C|X=x)Ec̄∼P ξ

t (C̄|X=x)I[sign(w
⊤c) = sign(w⊤c̄)] = oMw

t (ϕ, ξ).

Similarly, the overall risk on the samples from the test domain that is not included in the source
domain is ηt\s(X, Y ).

Then we change the distribution measure, we also take Mw
t (ϕ, ξ) of Eq. (5) as an example.

Mw
t (ϕ, ξ)

=E(x,y)∼T Ec∼Pϕ
t (C|X=x)Ec̄∼P ξ

t (C̄|X=x)I[sign(w
⊤c) = sign(w⊤c̄)]

=E(x,y)∼S
T
S
Ec∼Pϕ

t (C|X=x)Ec̄∼P ξ
t (C̄|X=x)I[sign(w

⊤c) = sign(w⊤c̄)] + oMw
t\s(ϕ, ξ)

≤βk(T ∥S)[Ec∼Pϕ
s (C|X=x)Ec̄∼P ξ

s (C̄|X=x)I[sign(w
⊤c) = sign(w⊤c̄)]

k
k−1 ]1−

1
k + oMw

t\s(ϕ, ξ)

=βk(T ∥S)[Ec∼Pϕ
s (C|X=x)Ec̄∼P ξ

s (C̄|X=x)I[sign(w
⊤c) = sign(w⊤c̄)]]1−

1
k + oMw

t\s(ϕ, ξ).

(17)

The third line is due to Hölder inequality. For the last line, we remove the exponential term k
k−1 in

I[sign(w⊤c) = sign(w⊤c̄)]
k

k−1 since the function take the results from {0, 1}. Similarily on term
SF s(w, ϕ), we can get the final bound of overall Rt(w, ϕ, ξ) as Eq. (7) shows.

D.3 Theorem 3.3

In this theorem, we study how the risk on distribution is bounded by empirical risk. The proof of
the theorem refers to popular inequality Jensen’s inequality, Markov inequality and Hoeffding’s
inequality. We first focus on the term SF s(w, ϕ). The sketch of the proof is that firstly we will
use the variational inference process to change the measure of distribution. Then, we use Markov’s
inequality to calculate the bound of risk.
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Define ∆(SF s(w, ϕ)) = ŜF s(w, ϕ)−SF s(w, ϕ). We apply the variational inference trick and use
Jensen’s inequality to get the following inequality:

∆(SF s(w, ϕ))

= ŜF s(w, ϕ)− SF s(w, ϕ)

≤ ESnKL(P̂ϕ
s (C|X = x)∥πC)− 2(n− 1)ESEPϕ

s (C|X=x) ln
Pϕ
s (C|X = x)

πC

+ lnEc∼πC
exp(ESnI[sign(w⊤c) ̸= y])

− lnEc∼πC
exp

(
ESI[sign(w

⊤c) ̸= y]
)
,

= ESnKL(P̂ϕ
s (C|X = x)∥πC)− ESEPϕ

s (C|X=x) ln
Pϕ
s (C|X = x)

πC

+ lnEc∼πC
exp (∆ (S)) ,

= ESnKL(P̂ϕ
s (C|X = x)∥πC)− ESKL(Pϕ

s (C|X = x)∥πC)

+ lnEc∼πC
exp (∆ (S)) ,

(18)

where ∆(S) = |ESnI[sign(w⊤c) ̸= y]− ESI[sign(w
⊤c) ̸= y]|. Recall that Hoeffding’s inequality,

we get the following inequality.

P [∆(S) ≥ η] ≤ exp(−2n)η2 (19)

Then, denoting the density function of ∆(S) as f(∆(S))

P [∆(S) ≥ η] = e−2nη2

⇒
∫ ∞

η

f(∆(S))d∆(S) = e−2nη2

⇒f(η) = 4nηe−2nη2

.

Then, we get

ES [exp(2(n− 1)∆2(S))]

=

∫ 1

0

f(∆(S)) exp(2(n− 1)∆2(S))d∆(S)

≤
∫ 1

0

4n∆(S) exp(−2n∆2(S)) exp(2(n− 1)∆2(S))d∆(S)

= −n exp (−2∆2(S))|10
= (1− e−2)n < n

(20)

Combining Eq. (20) with Eq. (18). Suppose g(∆(S)) = lnEπC
[exp(2(n− 1)∆2(S))]), since we

have,

ESEπC
[exp

(
2(n− 1)∆2 (S)

)
] ≤ n

by Markov’s inequality, we further get,

P(S)[g(∆(S)) ≥ η] ≤ n

eη
, (21)

Suppose that η = ln(n/ϵ), and with the probability of at least 1− ϵ, we have that for all πC,

⇒2(n− 1) lnEπC
[exp

(
∆2 (S)

)
] ≤ η = ln

n

ϵ
(22)

Since ∆S ∈ [0, 1], then we have,

exp(∆2(S)) ≤ (exp(∆(S)))2 ≤ e · exp(∆2(S)) (23)
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The last inequality due to exp(∆2(S))− (exp(∆(S)))2 is a monotonically decreasing when ∆S ∈
[0, 1]. Then, according to Jensen’s inequality, we conclude that

ln(Ec∼π(C) exp∆ (S))2 ≤ lnEc∼π(C)(exp∆ (S))2

≤ ln(e · Ec∼π(C) exp∆
2 (S)) ≤ 1

2(n− 1)
ln

n

ϵ
+ 1

⇒ ln(Ec∼π(C) exp∆ (S)) ≤ 1

4(n− 1)
ln

n

ϵ
+

1

2

(24)

Then,
|ŜF s(w, ϕ)− SFs(w, ϕ)|

≤|ESnKL(P̂ϕ
s (C|X = x)∥πC)− ESKL(Pϕ

s (C|X = x)∥πC) +
1

4(n− 1)
ln(n/ϵ) +

1

2
|

≤|ESnKL(P̂ϕ
s (C|X = x)∥πC) + ESKL(Pϕ

s (C|X = x)∥πC) +
1

4(n− 1)
ln(n/ϵ) +

1

2
|.

(25)

According to the assumption, we have

|ŜF s(w, ϕ)− SFs(w, ϕ)| ≤ ESnKL(P̂ϕ
s (C|X = x)∥πC) +

1

4(n− 1)
ln(n/ϵ) + C. (26)

We get the results demonstrated in Theorem 3.3 (1).

For the term Mw
s (ϕ, ξ), we define ∆(Ms) = Mw

s (ϕ, ξ) − M̂w
s (ϕ, ξ), where M̂w

s (ϕ, ξ) :=
ESnEc∼P̂ϕ

s (C|X=x)Ec̄∼P̂ ξ
s (C̄|X=x)I[sign(w

⊤c) = sign(w⊤c̄)]. Different from Theorem 3.3 (1),
the monotonicity measurement has an extra expectation on c̄. We apply Jensen’s inequality again and
then use the variational inference trick to get the derivation results.

4(n− 1)2∆(Ms)
2
= 4(n− 1)2

(
Mw

s (ϕ, ξ)− M̂w
s (ϕ, ξ)

)2
(27)

Then, we consider the term Mw
s (ϕ, ξ) and M̂w

s (ϕ, ξ) separately.
Mw

s (ϕ, ξ) = ESEc∼Pϕ
s (C|X=x)Ec̄∼P ξ

s (C̄|X=x)I[sign(w
⊤c) = sign(w⊤c̄)]

= ES [EcEc̄ ln
Pϕ
s (C|X = x)

πC
+ EcEc̄ ln

P ξ
s (C̄|X = x)

πC̄

+ EcEc̄ ln
πC

Pϕ
s (C|X = x)

πC̄

P ξ
s (C̄|X = x)

exp(I[sign(w⊤c) = sign(w⊤c̄)])]

≤ E(x,y)∼S [KL(Pϕ
s (C|X = x)∥πC) + KL(P ξ

s (C̄|X = x)∥πC̄)]

+ lnEc∼πC
Ec̄∼πC̄

exp(ESI[sign(w
⊤c) = sign(w⊤c̄)]).

(28)

Similarly, for the empirical risk M̂w
s (ϕ, ξ)

M̂w
s (ϕ, ξ) = E(x,y)∼SnEc∼P̂ϕ

s (C|X=x)Ec̄∼P̂ ξ
s (C̄|X=x)I[sign(w

⊤c) = sign(w⊤c̄)]

= ESn [EcEc̄ ln
P̂ϕ
s (C|X = x)

πC
+ EcEc̄ ln

P̂ ξ
s (C̄|X = x)

πC̄

+ EcEc̄ ln
πC

P̂ϕ
s (C|X = x)

πC̄

P̂ ξ
s (C̄|X = x)

exp(I[sign(w⊤c) = sign(w⊤c̄)])]

≤ E(x,y)∼Sn [KL(P̂ϕ
s (C|X = x)∥πC) + KL(P̂ ξ

s (C̄|X = x)∥πC̄)]

+ lnEc∼πC
Ec̄∼πC̄

exp(ESnI[sign(w⊤c) = sign(w⊤c̄)]).

(29)

Combining Eq. (29) with Eq. (28) and plugin to Eq. (27), we have

4(n− 1)2∆(Ms)
2
= 4(n− 1)2

(
Mw

s (ϕ, ξ)− M̂w
s (ϕ, ξ)

)2

≤ (2(n− 1)(ESnKL(P̂ϕ
s (C|X = x)∥πC) + ESnKL(P̂ ξ

s (C̄|X = x)∥πC̄)

+ lnEc∼πC
Ec∼πC̄

exp (2(n− 1)∆ (M ′
s)))

2,

where ∆(M ′
s) = |ESnI[sign(w⊤c) = sign(w⊤c̄)]− ESI[sign(w

⊤c) = sign(w⊤c̄)]|. The rest of
the proof is similar to Theorem 3.3 (1), thus we get the theoretical results of Theorem 3.3 (2).
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E Satisfaction of Exogeneity

In this section, we provide the proof of Theorem 4.3 and demonstrate why minimizing the objective
is equivalent to finding the C satisfying conditional independence.

The proof process consists of three steps: (i) proof the optimization of

min
ϕ,w

ŜF s(w, ϕ) + λESnKL(P̂ϕ
s (C|X = x)∥πC) (30)

is equivalent with the optimization of Information Bottleneck Shamir et al. (2010a) objective Lib =
max I(C, Y )− λI(X,C), where I(A,B) denotes the mutual information between A and B. X, Y
are from Sn. (ii) The optimal solution of Information Bottleneck satisfies X ⊥ Y |C. To simplify the
writing, we represent Ps(·) by P (·).
For step (i): The objective Eq. (30) is coincide with the objective of variational autoencoder (Doersch,
2016) which is proved to be equivalent to the IB objective. The theoretical results are provided in
Alemi et al. (2016), and we report the proof process from the notations in our paper. The derivation
starts with bound the I(C, Y ) and I(C,X) separately, for the term I(C, Y ),

I(C, Y ) =

∫
P (Y,C) log

P (Y,C)

P (Y )P (C)
dY dC =

∫
P (Y,C) log

P (Y | C)

P (Y )
dY dC. (31)

Decompose the P (Y | C) as below

P (Y | C) =

∫
dXP (X, Y | C) =

∫
dXP (Y | X)P (X | C) =

∫
dX

P (Y | X)P̂ϕ(C | X)P (X)

P (C)
.

In the process, the P (Y | C) is approximated by parameterized P̂ (Y | C). Since the KL divergence
is always larger than 0,

KL[P (Y | C), P̂ (Y | C)] ≥ 0 =⇒
∫

P (Y | C) logP (Y | C)dY ≥
∫

P (Y | C) log P̂ (Y | C)dY.

and hence

I(C, Y ) ≥
∫

P (Y,C) log
P̂ (Y | C)

P (Y )

=

∫
P (Y,C) log P̂ (Y | C)−

∫
dY P (Y ) logP (Y )dY dC

=

∫
P (Y,C) log P̂ (Y | C) +H(Y )dY dC

Then I(C, Y ) is lower bounded by follows:

I(C, Y ) ≥
∫

P (X)P (Y | X)P (C | dXdY dC) log P̂ϕ(Y | C)dXdY dC

Then, consider the term λI(C,X), it is decomposed by following equation:

I(C,X) =

∫
P̂ϕ(X,C) log

P̂ϕ(C | X)

P (C)
dCdX

=

∫
P̂ϕ(X,C) log P̂ϕ(C | X)dCdX−

∫
P (C) logP (C)dCdX.

(32)

It is upper bounded by

I(C,X) ≤
∫

P (X)P̂ϕ(C | X) log
P̂ϕ(C | X)

P (C)
dXdC

where P (C) is prior of C. Combining the upper bound of I(C,X) and the lower bound of I(C, Y )
together, the lower bound of IB objective is

I(C, Y )− λI(C,X) ≥
∫

P (X)P (Y | X)P (C | x) log P̂ (Y | C)dXdY dC

− λ

∫
P (X)P̂ϕ(C | X) log

P̂ϕ(C | X)

P (C)
dXdC

(33)
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From the results, we can draw a conclusion that maximizing the IB objective I(C, Y )− λI(C,X) is
equivalent to minimizing the objective Eq.(9) in Theorem 4.3.

For step (ii): The proof refers to the theoretical results in Shamir et al. (2010a), they correspond
the optimal solution of information bottleneck with minimal sufficient statistics defined below. We
first demonstrate the definition of Mininal Sufficient Statistic in Fisher (1922); Shamir et al. (2010a)
below.
Definition E.1 (Sufficient Statistic Fisher (1922); Shamir et al. (2010a)). Let Y be a parameter of
probability distributions and X is random variable drawn from a probability distribution determined
by Y . of C is a function of X, then C is sufficient for Y if

∀x ∈ X , c ∈ Rd, y ∈ Y P (X = x | C = c, Y = y) = P (X = x | C = c)

The definition indicates that the sufficient statistic C satisfy the conditional independency X ⊥ Y |C.
Definition E.2 (Minimal Sufficient Statistic Fisher (1922); Shamir et al. (2010a)). A sufficient
statistic C′ is minimal if and only if for any sufficient statistic C, there exists a deterministic function
f such that C′ = f(C) almost everywhere w.r.t X.

From Theorem 7 in Shamir et al. (2010a), the optimization of IB is correspond to finding the minimal
sufficient statistic. We show Theorem 7 as a lemme below.
Lemma E.3 (Shamir et al. (2010a)). Let X be a sample drawn according to a distribution determined
by the random variable Y . The set of solutions to

min
C

I(X,C) s.t. I(Y,C) = max
C′

I (Y ;C′)

is exactly the set of minimal sufficient statistics for Y based on the sample X.

From Lemma E.3, the process of optimizing the IB objective I(C, Y )− λI(C,X) is equivalent to
finding the minimal sufficient statistic. Then, the process of optimizing the IB objective is the process
to find a C satisfying conditional independency X ⊥ Y |C.

From Step (i) and (ii), we get the result in Theorem 4.3 that optimizing the objective minϕ,w,λ Lexo
is equivalent to finding a C satisfying conditional independency X ⊥ Y |C. Considering Assumption
4.2 in our paper, we can draw the conclusion that optimizing the objective Eq.(9) is equivalent to
satisfying the exogeneity.

F Additional Related Works

OOD generalization. In addition to the related works in main text, some works (Gong et al., 2016;
Li et al., 2018b; Magliacane et al., 2017; Lu et al., 2021; Rojas-Carulla et al., 2018; Meinshausen,
2018; Peters et al., 2016) solve the OOD generalization problem by learning causal representations
from source data by introducing invariance-based regularization into cross-domain representation
learning and consider the task labels across multi-domains.

Domain adaptation. Domain Adaptation aims at learning to generalize to the test domain where the
distribution is not the same as source domain, while the data from the test data is available during
traning process. Existing works on domain adaptation use a different way to achieve the goal (Pan
et al., 2010; You et al., 2019; Zhang et al., 2013). Magliacane et al. (2018) considers solving the
generalization problem from the causality perspective and Zhao et al. (2019) propose a framework of
invariant representation learning in domain adaptation. Furthermore, Zhang et al. (2019) provides
theoretical analysis of domain adaptation.

Causal discovery. In order to investigate the relationship between causally related variables in
real-world systems, traditional methods often employ principles such as the Markov condition and
the principle of conditional independence between cause and mechanism (ICM) to discover causal
structures or differentiate causes from effects (Mooij et al., 2016). Additionally, several studies have
focused on the inherent asymmetry between cause and effect, as seen in the works of Sontakke et al.
(2021); Steudel et al. (2010); Janzing & Schölkopf (2010), and Cover (1999). These ideas have also
been utilized by Parascandolo et al. (2018) and Steudel et al. (2010). Other research lines focus on
modeling structural causal models and discussing the identifiability of causal structures and functions
(Hoyer et al., 2008; Zhang & Hyvarinen, 2012). The task of causal discovery typically assumes that
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all variables are observable, aiming to identify the unknown causal graph. In contrast, our work
deals with causal factors that are hidden within observational data, given a known causal graph. Our
objective is to extract causal information from the observational data.

Causal Disentangled Representation Learning: Causal representation learning methods, such
as those discussed in Schölkopf et al. (2021), aim to find the disentanglement representation from
observational data with causal semantic meaning. Previous works have utilized structural causal
models to capture causal relationships within complex observational data, as seen in the works of
Yang et al. (2021); Shen et al. (2020); Lu et al. (2021); Wang et al. (2020); Yang et al. (2023),
which focus on disentangling causal concepts from the original inputs. While our work also aims
to specify causal representations from observational data, we distinguish ourselves by focusing
specifically on identifying sufficient and necessary causes. Wang & Jordan (2021) concentrate on
learning to disentangle causal representations using non-spurious and efficient information from
observational data. Their framework is inspired by the concept of PNS and extends it to a continuous
representation space. In contrast, our learning framework is based on the task of OOD generalization,
and our algorithms consider both monotonicity and exogeneity conditions. Additionally, we provide
a theoretical analysis of the generalization ability of our approach based on PAC learning frameworks,
as explored in the works of Shalev-Shwartz & Ben-David (2014) and Shamir et al. (2010b).

Contrastive Learning: The proposed method is also related to another line of research called
contrastive learning. These works often deal with the OOD generalization task by designing an
objective function that contrasts certain properties of the representation. Saunshi et al. (2022) argue
that the framework learns invariant information by introducing certain biases, and the core problem
of contrastive learning is the objective function (Xiao et al., 2020). Different from their approaches
that perform learning by contrastivity, we use counterfactual PNS reasoning as the function to be
optimized, which learns invariant causal information with an explicit stability guarantee for the
model’s performance.

G Broader Impacts

In this paper, we propose a method to specify the more critical representations based on invariant
learning, where we extract the representations from the invariant information that possess sufficient
and necessary causalities for the prediction task. This effectively helps improve the performance and
robustness of machine learning models in unknown domains. The application of this method can
promote reliability and usability in various real-world scenarios. Furthermore, through experiments
on real-world datasets, our method demonstrates the ability to enhance model performance even in the
worst-case scenarios. This highlights the potential of our method to enhance reliability and usability
in various out-of-distribution (OOD) settings. By extracting the essential causal representations
from the invariant information, our method provides valuable insights into the underlying causal
relationships in the data, leading to improved generalization and robustness in OOD scenarios. These
findings support the broader impact of our approach in enhancing the reliability and usability of
machine learning models across different domains and applications.
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