
United We Stand, Divided We Fall:
Networks to Graph (N2G) Abstraction for Robust Graph

Classification under Graph Label Corruption

Zhiwei Zhen
University of Texas at Dallas
zhiwei.zhen@utdallas.edu

Yuzhou Chen
Temple University

yuzhou.chen@temple.edu

Murat Kantarcioglu
University of Texas at Dallas
muratk@utdallas.edu

Kangkook Jee
University of Texas at Dallas

kangkook.jee@utdallas.edu

Yulia R. Gel
University of Texas at Dallas
National Science Foundation

ygl@utdallas.edu

Abstract
Nowadays, graph neural networks (GNN) are the primary machinery to tackle
(semi)-supervised graph classification tasks. The aim here is to predict classes
for unlabeled graphs, given a collection of graphs with known labels. However,
in many real-world applications, the available information on graph classes may
be distorted either due to incorrect labeling process (e.g., as in biochemistry and
bioinformatics) or may be subject to targeted attacks (e.g., as in network-based
customer attrition analytics). Over the past few years, the increasing number
of studies has indicated that GNNs are prone both to noisy node and noisy
graph labels, and while this problem has received noticeable attention for node
classification tasks, vulnerability of GNNs for graph classification with perturbed
graph labels still remains in its nascence. We hypothesize that this challenge can
be addressed by the universal principle United We Stand, Divided We Fall. In
particular, most GNNs view each graph as a standalone entity and, as a result,
are limited in their abilities to account for complex interdependencies among the
graphs. Inspired by the recent studies on molecular graph learning, we propose a
new robust knowledge representation called Networks to Graph (N2G). The key
N2G idea is to construct a new abstraction where each graph in the collection is
now represented by a node, while an edge then reflects some sort of similarity
among the graphs. As a result, the graph classification task can be then naturally
reformulated as a node classification problem. We show that the proposed N2G
representation approach does not only improve classification performance both
in binary and multi-class scenarios but also substantially enhances robustness
against noisy labels in the training data, leading to relative robustness gains up to
11.7% on social network benchmarks and up to 25.8% on bioinformatics graph
benchmarks under 10% of graph label corruption rate.

1 Introduction
Graph classification tasks spread a wide range of application domains, from analysis of social
networks to molecular structures, to cyber-security systems, and to financial risk management [28,
37, 44]. Currently, Graph Neural Networks (GNNs) are adopted as the primary state-of-the-art
methodology for graph classification. By incorporating the information on the structure space into the
learning process, GNNs allow for achieving significant gains in graph classification performance in
comparison with, for example, kernel-based techniques and other more traditional machine learning
tools. However, despite its competitive performance, one of the main limitations of GNNs is

Z. Zhen et al., United We Stand, Divided We Fall: Networks to Graph (N2G) Abstraction for Robust Graph
Classification under Graph Label Corruption. Proceedings of the Second Learning on Graphs Conference (LoG
2023), PMLR 231, Virtual Event, November 27–30, 2023.

N2G

sensitivity to various types of label perturbations. This issue has been recently observed in the context
of node classification in graphs [4, 5, 26, 42], and various techniques, including co-teaching and
loss correction have been developed to address noisy node labels in a given graph. However, the
sensitivity of GNN-based models to label perturbations in the case of graph classification remains in
its nascence [23]. We show that GNN-based models for graph classification are also prone to label
noise in the training data. In particular, having wrong labels for the 10% of the randomly chosen
training data, in some cases, may result in up to 20% reduction in overall test accuracy (that is, the
test accuracy reduces from 80.73% for clean graphs to 60.24% for perturbed graphs). Recently,
Dai et al. [4] argue that the conventional tools developed for addressing noisy labels for the node
classification tasks, such as loss correction techniques [25], co-teaching [40] and various forms of
sample selection, may not be directly applicable to the classification of graphs with perturbed labels.
Indeed, approaches, such as loss correction, assume that we classify independent and identically
distributed entities, for example, spatial processes in R2 for image dataset. However, in the case of
classification of such complex objects as graphs, it requires knowledge of the distribution of the graph
as a random object which involves often unrealistic assumptions on (joint) degree distribution and
distribution of higher-order graph structural properties (e.g., motifs) within the restrictive stochastic
block models and random dot product graph models. Clearly, even less can be said on systematic
validation of such distributional assumptions. In turn, the assumption of independence among
graphs is even more problematic. In many domains such as cybersecurity, system provenance graphs
generated by observing program execution may contain common subgraphs (e.g, MS Windows boot
sequence) violating independence assumption.

Inspired by the recent results on molecular graph learning [13, 30, 41], we propose a new robust
knowledge representation called Networks to Graph (N2G). Our key idea is motivated by the motto
United We Stand, Divided We Fall. That is, we propose to view a sequence of graphs to be classified
not as standalone entities with some structural and feature similarities as the current methods do,
but rather as a single graph-structured object where nodes correspond to the original graphs and
edges among them reflect some sort of similarity. As a result, our proposed N2G abstraction now
re-formulates the graph classification problem into a node classification task. We find that the N2G
not only leads to comparable or competitive performance on clean graphs but, most importantly,
results in substantial gains in robustness against various sorts of graph label noise in the training
data. Such phenomena in the robustness gains can be explained by the fact that N2G allows us
to explicitly integrate various types of interdependencies among the original graphs, including
higher-order polyadic relations, into graph classification tasks performed by GNNs. In contrast,
the conventional approaches are based on utilizing GNNs to learn the key similarity in each graph
individually, without accounting for graph interrelations. As such the conventional methods are more
prone to label perturbations (i.e., Divided We Fall), while N2G, viewing the set of graphs as a single
unified object which explicitly describes complex interdependencies, is substantially more resistant
to label perturbations (i.e., United We Stand).

Why N2G Works? The intuition behind N2G can be also explained through k-nearest neighbor
approaches (kNN). Suppose that each graph is associated with a person. We can train a model
to classify people based on their individual socio-demographic characteristics. Alternatively, we
can check how these people are related to each other, create a social network, and now classify
people, while accounting for their implicit and explicit similarities or relationships. Classification of
each individual is then no longer based only on his/her socio-demographic characteristics but also
on those of his/her peer circle (i.e., nearest neighbors). As shown by [33], robustness properties
of kNN inherently depend on the value of k (i.e., the depth of the peer circle). That is, the kNN
classifier tends to be non-robust for lower values of k and its robustness increases with fast-growing
k, approaching that of the Bayes Optimal classifier. In this sense, N2G may be viewed as inheriting
kNN robustness properties for higher values of k (i.e., deeper peer circle, for example, associated
with extended family, all friends and colleagues), since any graph (person) to be classified employs
information from all its neighbors with k being the maximum possible. Finally, the N2G approach
is also inherently connected to statistical relational learning (SRL) which aims to model a joint
distribution over relational data and often is represented via probabilistic graphical models such as
Bayesian networks [9, 14, 15]. However, in contrast to SRL, the focus of N2G is not on learning
probability models or logic reasoning.

The significance of our contributions can be summarized as follows:

2

N2G

• We investigate a largely unexplored problem of the impact of noisy graph labels on graph
classification performance delivered by graph neural networks.

• We propose a new robust knowledge representation for graph learning under noisy label scenarios
which explicitly accounts for complex interrelations among multiple graphs in a systematic and
unified manner.

• We show the proposed N2G abstraction results not only in on par or more competitive perfor-
mance on clean graphs (both in binary and multi-class cases) but, most importantly, leads to
substantially higher resistance to graph label noise in training data, with relative gains up to
11.7% on social network benchmarks and up to 25.8% on bioinformatics graph benchmarks
under 10% of graph label corruption rate.

2 Related Work
Graph of Graphs Representations The idea of integrating standalone entities into a single joint
complex entity is quite universal and spans a broad range of domains, from the System of Systems
(SoS) concept in engineering to the graph of graphs (GoG) in biochemistry and biomedicine. In
particular, in the last few years, this approach has been combined with GNNs to predict chemical
compounds [13]. The idea here is to form a hierarchical structure of compound graphs and an
inter-compound graph, integrated into a single network, which allows for learning both types of
graphs in an end-to-end manner. Also, in a hierarchical manner, GoGNN of [30] focuses on learning
local and global entity structure with the aim to predict chemical-chemical interactions and drug-drug
interactions. This idea is further extended by [31] for graph classification tasks, based on exploiting
two GNNs, one for for learning local entities and another one for learning structural interactions.
Edges in the interaction graph are formed if two local graphs share some joint information, for
example, two proteins are linked in the interaction graph if they are either connected or share at least
two common neighbors. In turn, [18] propose a semi-supervised graph learning approach SEAL
and the associated embedding procedure SAGE that first, embeds graph instances into vectors and
then adaptively update classifiers based on the selected most informative instances. Finally, [41]
construct a heterogeneous motif graph based on the motif-level relationships in smaller molecular
graphs, where each motif node is a motif in the vocabulary, each molecular node is a molecule, and
there are two types of links: motif-molecule and motif-motif edges. That is, loosely, speaking smaller
molecular graphs are connected if they share motif structure. The idea is further exploited by [34]
for graph classification under imbalanced settings, where the resulting model G2GNN aggregates
information from the neighboring graphs which are defined as the top k topologically similar graphs
via kNN. All of the considered approaches assume that the labels are trustworthy.

Another relevant approach called SPADE [2] presents a black-box method for assessing adversarial
robustness for robust image classification. The idea of SPADE is based on the following steps:
1) reshaping each image into a vector representation as an input sample and extracting a vector
representation before the softmax layer per image as the output sample; 2) forming input and output
graphs based on the input and output samples, respectively, using kNN; 3) examining the bijective
distance mappings between the input and output graph-based manifolds. In particular, the largest
generalized eigenvalue computed with the Laplacians of the input and output graphs, called the
SPADE score can be used to quantify the adversarial robustness, with higher scores implying higher
levels of vulnerability. The approach of SPADE can be extended to graphs and also combined with
N2G, including simultaneous integration of multiple graph distances via supra-Laplacian.

To the best of our knowledge, our N2G is the first time the GoG idea of integrating multiple standalone
entities into a joint network has been introduced to robustify graph learning under label perturbations.
Furthermore, as our numerical experiments show the non-hierarchical model architecture, with a
wide range of attributes from smaller graphs, rather than only from particular motifs or a subset of
joint nodes/edges, tends to deliver the most robust and stable performance under label perturbations.
This phenomenon is intuitive: the basic constructions are often more stable than more sophisticated
ones.

Finally, there exists a stream of studies in network sciences on the so called network of networks [3];
however, the nature of these concepts differs from the ideas discussed above in the sense that the
focus there is on the initially highly interconnected systems in the form of multilayer or multiplex
graphs, e.g., cyber-physical infrastructures such as highly interdependent power, transportation, and
communications networks, rather than on integrating multiple standalone entities into a joint system
based on some sort of similarity.

3

N2G

Graph Neural Networks for Graph Classification under Label Perturbations GNNs is currently
the primary machinery for both node and graph classification [28, 37, 38]. However, as the increasing
number of recent studies demonstrate [7, 19], GNNs tend to be vulnerable to corrupted node and
graph labels, which often results in substantial performance losses and overfitting [43]. Most existing
tools addressing GNNs for noisy labels focus on the node classification tasks. Such techniques
include, e.g., loss correction [10, 21], pseudo label miner [4], and sample selection [40]. However,
such remedial techniques for corrupted node labels tend to rely on the restrictive distributional
assumptions on the observed data which are particularly challenging to verify for graphs, thereby
making it harder to extend these approaches to graph classification tasks. In general, the problem of
GNN sensitivity to corrupted graph labels and the associated remedial techniques remains largely
unexplored. To the best of our knowledge, the only currently available approaches are loss correction
for graph classification tasks [23] and G-Mixup by [12]. In the case of G-Mixup, the idea is to view
two graph training sets as following two different graphon models and then to mix up these two
graphons into a joint mixed graphon which can then be used to generate synthetic graphs, aiming to
improve generalization and robustness of GNNs. This paper aims to further fill this gap and offers a
new robust N2G representation learning scheme with small-loss tricks, addressing corrupted labels in
the training set for graph classification tasks.

Figure 1: An illustration of N2G representation learning framework.

3 The N2G Knowledge Representation

Let G̃ = {G1,G2, . . . ,GN} be a set of graphs, where N is the number of observed graphs. For
each graph Gi = {Vi, Ei}, let Vi = {vi1, vi2, . . . , vipi

} be a set of nodes and Ei be the set of edges.
Some of the observed graphs in G̃ are also associated with the attached categorical label, while the
labels of other graphs are unknown. Here we primarily focus on graph classification with perturbed
training labels. That is, suppose that we are given a training set G̃train consisting of Ntrain graphs in
G̃ with perturbed labels l(s)∗ , s = 1, 2, . . . , Ntrain. Our goal is to build a model that learns a function
H({G(s)}Ntrain

s=1) which predicts unknown labels for graphs in G̃ \ G̃train (please refer to Appendix I for
the notation table). Algorithm 1 (in Appendix A) shows more details of our N2G algorithm.

3.1 The N2G Methodology

To address the sensitivity of GNNs to noisy graph labels, we construct a new graph-structured
object G called Network of Graphs (N2G). In particular, G is such that its node set V is formed by
{G1,G2, . . . ,GN}. In turn, an edge eij between Gi and Gj , i, j = 1, . . . , N , is defined by how similar
Gi and Gj are in terms of some suitable graph similarity metric. That is, let Dij = D(Gi,Gj) be a
distance between graphs Gi and Gj and let τ > 0 be a user-selected threshold (In our experiments
we select τ from the quantiles of the empirical distribution of Dij , i, j = 1, . . . , N , using the cross-
validation argument. We present a sensitivity study to the choice of τ in Appendix D.). Then we get
the following equation:

eij =

{
0, if D(Gi,Gj) > τ,

D(Gi,Gj), if D(Gi,Gj) ≤ τ,
(1)

where smaller values of D(Gi,Gj) imply higher similarity among Gi and Gj). That is, each Gi is
now a (super)-node in the N2G object G, and the set of weighted edges eij is the edge set E of
G (see Appendix A for the list of the considered graph similarity measures). Fig. 1 presents the
flowchart of the N2G idea. Furthermore, for each (super)-node i ∈ G (that is, for each graph Gi),

4

N2G

we also obtain its node features Xi (an N × F matrix) through calculating the network statistics
of the graph Gi, where F is the dimension of the node features. Here we use 7 network statistics:
average degree centrality, betweenness centrality, closeness centrality, eigenvector centrality, current
flow betweenness centrality, subgraph centrality, and current flow closeness centrality, and hence
F = 7. For the graph classification tasks, we then feed our N2G G = {V,E,X} into any type of
GNN-based model (check Appendix B for the experimental details and Appendix F on ablation study
for super-node feature Xi).

Nota Bene: Our goal here is to investigate the utility of the N2G abstraction as a general tool that
can be combined with any GNNs. As such, we focus on three (arguably) most widely used GNN
architectures (GCN, GAT, GRAPHSAGE) as well as consider integration of N2G with the emerging
GNNs (see Table 7 and Appendix C).

4 Experiments
Datasets, Experiment Setup, and Baselines We conduct experiments on (i) three social datasets,
i.e., IMDB-BINARY, IMDB-MULTI and REDDIT-BINARY, and (ii) three biological datasets, i.e.,
MUTAG, BZR, and COX2. All six datasets are homogeneous datasets. The statistics of six datasets
are summarized in Table 9 in Appendix B. Following the setup of [39], we use 90/10% random
training/test split and provide the average accuracy in 10 runs for model evaluation. Furthermore,
to evaluate the robustness of our proposed N2G framework, we perform robustness testing for all
six datasets with four settings, i.e., “uniform 10%”, “uniform 20%”, “biased 10%” and “biased
20%” corrupted training labels. We compare our method to the four fundamental GNN architectures,
namely (i) Graph Convolutional Networks [16], (ii) Graph Attention Networks (GAT) [29], (iii)
GraphSAGE [11], (iv) Graph Isomorphism Network (GIN) [39], as well as (v) the recent graph data
augmentation approach G-Mixup by [12]. Furthermore, we also integrate N2G algorithm into other
state-of-the-art GNN-based models (see Appendix B for more details of additional state-of-the-art
GNN-based models). To make a fair comparison, we re-produce the above GNNs on all datasets
and follow their settings by using the same optimized hyperparameters and experimented datasets
(including train/test splits). All experiments are conducted on one NVIDIA GetForce RTX 3090.
For dataset and coding details, please check https://anonymous.4open.science/r/N2G-6443/
README.md.

The N2G Setup We implement our N2G based on existing vanilla GNN architecture, i.e., applying a
vanilla GNN-based model on N2G instead of all graphs in the dataset. We consider three types of
GNNs based on three graph comparison metrics (see Section 3), including (i) Vertex-edge distance [1],
(ii) Lambda distance [6], and (iii) DeltaCon distance with ϵ = 0.3. Hence, for each GNN, we have
[GNN Name]-[N2G]-[Graph Comparison Metric]. For instance, N2G-GCN-VERTEX refers to
applying the GCN model on N2G, which is built upon the vertex-edge overlap distance metric. Note
that we ensure both the original and modified architectures have approximately the same number of
parameters. More details about datasets, experiments setup, and hyperparameters are in Appendix B.

Corrupted Labels Similar to [23], we assume that there is a noise process N corrupting the training
labels, where Na,b is the probability label a corrupted to label b. We further assume that there are 2
kinds of corrupted labels : (i) Uniformly corrupted and (ii) Biased corrupted labels. For uniformly
corrupted labels, the label noise is uniformly randomly distributed across the whole training dataset
i.e., Na,b = Nc,d for all a, b, c, d ∈ {1, 2, . . . , C}, where C is the number of labels classes. For
biased corrupted labels, the noise corrupts one label class i.e., for a certain class a, Na,b = Na,c ̸= 0
for all b, c ∈ {1, 2, . . . , C}, Na∗,b = 0 for all a∗ ̸= a, b ∈ {1, 2, . . . , C}, which aims to reflect a real
world scenario when one of the subpopulations is discriminated due to various types of subconscious
and other social biases. Without loss of generality, we apply the biased label noise to class “0”.

4.1 N2G Results on Bioinformatics Graphs

Table 1 reports graph classification results in terms of the mean accuracy and standard deviation
on clean graphs and graphs with noisy labels on three biochemical networks (i.e., “Uniform10”
and “Uniform20”). The results of our N2G-based model and baselines with biased noisy labels
are summarized in Table 2. Table 1 indicates that our proposed N2G outperforms all competing
models on all three datasets, both for clean and corrupted graphs. More specifically, for clean
graphs, N2G-GCN-VERTEX can improve upon GCN by a margin of 10.33%, 8.36%, and 10.36%
on MUTAG, BZR, and COX2, respectively. In turn, for corrupted graphs with uniform 10% noisy

5

https://anonymous.4open.science/r/N2G-6443/README.md
https://anonymous.4open.science/r/N2G-6443/README.md

N2G

Table 1: Average accuracy on clean bioinformatics graphs and their counterparts under uniform
corruption of graph labels. Corruption rates are 10% and 20%. Standard deviation is in (). The best
results are in bold.

Model MUTAG BZR COX2
Clean Uniform10 Uniform20 Clean Uniform10 Uniform20 Clean Uniform10 Uniform20

GCN 85.60 (5.80) 70.88 (2.99) 68.60 (4.02) 80.49 (3.22) 67.36 (3.74) 60.91 (3.25) 78.60 (1.52) 69.09 (5.28) 65.72 (6.25)
N2G-GCN-VERTEX 94.44 (2.98) 85.89 (3.82) 83.40 (4.58) 87.22 (3.71) 84.36 (4.12) 83.29 (3.10) 86.74 (4.63) 82.44 (4.07) 80.17(3.09)
N2G-GCN-LAMBDA 92.58 (4.85) 82.81 (3.55) 81.41 (3.08) 85.19 (1.93) 81.76 (3.30) 80.94 (2.66) 84.07 (1.69) 80.74 (3.99) 78.01 (4.94)

N2G-GCN-DELTACON 88.89 (3.62) 81.90 (4.22) 79.81 (3.94) 86.50 (3.96) 81.55 (4.67) 80.44 (2.37) 84.26 (3.66) 79.85 (4.91) 78.63 (4.17)

GAT 87.40 (5.31) 65.42 (3.11) 58.33 (4.31) 83.21 (4.52) 70.24 (4.97) 62.71 (3.22) 79.26 (3.54) 65.32 (7.76) 61.67 (2.49)
N2G-GAT-VERTEX 94.07 (1.88) 84.39 (3.92) 83.47 (3.58) 88.09 (2.43) 86.72 (2.91) 83.28 (2.91) 88.26 (3.17) 83.72 (2.91) 81.95 (3.42)
N2G-GAT-LAMBDA 90.71 (2.01) 84.07 (5.23) 82.19 (4.10) 84.21 (1.79) 82.90 (4.25) 81.02 (3.55) 85.34 (3.23) 82.07 (5.23) 80.26 (1.78)

N2G-GAT-DELTACON 92.50 (3.63) 82.83 (5.30) 79.55 (4.33) 85.97 (3.29) 83.47 (4.48) 82.09 (1.97) 84.69 (3.19) 82.08 (5.87) 81.04 (4.04)

GRAPHSAGE 85.73 (4.70) 77.11 (3.52) 70.70 (3.71) 77.53 (3.73) 70.15 (6.06) 65.48 (2.39) 79.01 (2.42) 63.21 (6.73) 59.74 (3.37)
N2G-GRAPHSAGE-VERTEX 91.97 (1.92) 82.10 (4.28) 79.53 (3.35) 89.14 (2.47) 82.68 (4.94) 78.03 (3.95) 83.93 (3.60) 81.07 (5.54) 80.47 (2.55)
N2G-GRAPHSAGE-LAMBDA 92.49 (2.19) 82.30 (2.69) 78.58 (5.67) 89.40 (1.83) 85.19 (2.41) 82.94 (1.87) 86.88 (4.51) 83.93 (3.60) 81.70 (3.17)

N2G-GRAPHSAGE-DELTACON 88.89 (2.93) 82.19 (5.58) 80.15 (3.67) 87.61 (2.55) 84.42 (4.85) 80.19 (5.75) 84.03 (2.33) 81.36 (4.06) 79.05 (3.65)

GIN 89.01 (6.02) 77.37 (5.54) 71.05 (7.89) 85.63 (2.59) 73.49 (3.79) 68.93 (4.15) 83.51 (4.75) 73.49 (3.79) 68.93 (4.15)

G-Mixup 87.54 (2.45) 77.25 (4.11) 71.22 (2.99) 80.11 (2.94) 74.82 (1.34) 69.54 (2.54) 80.23 (3.29) 71.74 (3.25) 63.57 (2.91)

Table 2: Average accuracy (%) on bioinformatics graphs under biased corruption of graph labels.
Standard deviation is in (). The best results are in bold.

Model MUTAG BZR COX2
Biased10 Biased20 Biased10 Biased20 Biased10 Biased20

GCN 68.95 (4.36) 68.16 (2.82) 64.61 (3.45) 57.16 (3.27) 66.91 (4.82) 60.52 (5.58)
N2G-GCN-VERTEX 85.89 (3.82) 82.44 (4.22) 81.42 (2.92) 80.38 (3.09) 79.84 (3.71) 76.78 (4.03)
N2G-GCN-LAMBDA 80.56 (4.83) 80.19 (4.22) 81.07 (2.83) 77.48 (3.08) 77.84 (4.54) 75.32 (3.59)

N2G-GCN-DELTACON 81.20 (2.82) 78.74 (4.95) 80.04 (3.97) 76.89 (3.71) 77.20 (3.19) 75.68 (4.22)

GAT 66.72 (4.14) 64.52 (2.59) 65.96 (3.47) 59.85 (1.85) 64.52 (4.93) 62.73 (5.82)
N2G-GAT-VERTEX 84.46 (3.52) 82.19 (2.36) 82.43 (3.55) 80.15 (4.10) 82.47 (1.29) 78.90 (4.06)
N2G-GAT-LAMBDA 82.91 (3.50) 80.43 (3.67) 81.19 (4.38) 79.55 (3.75) 80.05 (4.65) 77.06 (3.73)

N2G-GAT-DELTACON 84.43 (4.63) 81.54 (5.74) 81.94 (5.49) 78.63 (4.20) 80.73 (1.98) 77.85 (2.77)

GRAPHSAGE 68.42 (9.45) 61.58 (7.14) 67.30 (2.47) 65.61 (5.79) 68.54 (5.29) 64.01 (2.17)
N2G-GRAPHSAGE-VERTEX 82.43 (4.45) 80.48 (4.65) 81.97 (3.56) 78.88 (3.52) 79.03 (4.91) 77.84 (3.43)
N2G-GRAPHSAGE-LAMBDA 84.39 (3.85) 82.71 (4.84) 82.43 (5.25) 80.26 (4.71) 81.53 (2.82) 77.43 (4.63)

N2G-GRAPHSAGE-DELTACON 84.32 (4.43) 79.40 (5.47) 81.44 (5.49) 78.95 (3.53) 79.28 (3.80) 76.03 (4.06)

GIN 69.18 (4.33) 61.05 (4.74) 70.15 (4.10) 61.85 (5.07) 70.11 (1.98) 65.19 (4.44)

G-Mixup 72.44 (1.98) 68.79 (2.87) 73.45 (1.38) 68.34 (2.54) 68.97 (3.44) 59.03 (6.53)

Table 3: Average accuracy (%) on clean social networks and their counterparts with uniformly
corrupted graph labels. Corruption rates are 10% and 20%. Standard deviation is in (). The best
results are in bold.

Model IMDB-BINARY IMDB-MULTI REDDIT-BINARY
Clean Uniform10 Uniform20 Clean Uniform10 Uniform20 Clean Uniform10 Uniform20

GCN 78.18 (2.16) 64.11 (6.89) 60.32 (8.67) 49.33 (3.21) 43.23 (1.08) 40.50 (5.69) 82.37 (6.28) 75.33 (4.78) 69.54 (4.39)
N2G-GCN-VERTEX 80.36 (5.97) 74.82 (5.05) 70.33 (5.90) 56.81 (5.05) 50.00 (2.59) 47.01 (4.88) 86.28 (2.95) 80.13 (4.78) 76.91 (4.71)
N2G-GCN-LAMBDA 78.43 (3.34) 71.80 (3.03) 68.93 (5.90) 51.81 (5.05) 45.05 (5.44) 42.01 (4.16) 83.38 (4.91) 78.35 (5.98) 73.92 (4.67)

N2G-GCN-DELTACON 79.61 (5.91) 70.50 (4.48) 67.60 (7.67) 52.74 (3.47) 48.78 (4.94) 45.45 (5.09) 83.02 (4.97) 77.13 (6.78) 72.27 (3.97)

GAT 70.51 (4.92) 66.92 (8.89) 60.30 (9.67) 47.89 (2.55) 44.20 (4.48) 41.52 (5.67) 80.37 (3.79) 74.61 (4.36) 65.19 (6.71)
N2G-GAT-VERTEX 73.18 (5.13) 69.83 (5.01) 67.41 (6.77) 49.91 (5.66) 47.52 (4.25) 45.67 (3.73) 84.19 (6.37) 80.02 (3.17) 76.17 (2.98)
N2G-GAT-LAMBDA 71.22 (2.75) 67.91 (4.21) 64.02 (4.19) 49.16 (4.89) 45.33 (4.72) 43.51 (5.18) 82.75 (4.91) 77.33 (5.98) 73.46 (4.67)

N2G-GAT-DELTACON 70.92 (3.48) 67.30 (6.15) 63.30 (5.95) 48.93 (3.75) 44.67 (4.65) 41.89 (2.41) 81.78 (5.17) 76.97 (3.82) 74.09 (3.79)

GRAPHSAGE 72.31 (5.35) 66.91 (6.02) 64.10 (5.55) 48.40 (5.94) 45.61 (1.76) 43.73 (3.36) 85.21 (3.31) 76.52 (3.07) 68.40 (5.50)
N2G-GRAPHSAGE-VERTEX 75.33 (4.64) 68.62 (3.74) 65.98 (4.11) 51.32 (3.24) 49.65 (3.28) 46.75 (2.75) 85.43 (5.19) 77.44 (4.80) 71.81 (5.70)
N2G-GRAPHSAGE-LAMBDA 78.36 (5.97) 73.33 (4.64) 68.30 (4.66) 54.12 (3.52) 50.85 (3.88) 47.98 (5.12) 87.46 (2.71) 84.54 (3.20) 78.94 (2.98)

N2G-GRAPHSAGE-DELTACON 75.37 (6.30) 69.50 (5.52) 66.46 (4.56) 51.66 (3.75) 50.67 (4.65) 46.89 (2.41) 85.26 (6.01) 78.24 (4.93) 70.90 (5.80)

GIN 72.80 (3.91) 68.70 (4.15) 65.17 (5.44) 52.30 (3.82) 46.15 (4.10) 41.85 (5.07) 81.00 (3.11) 76.01 (2.96) 70.04 (4.82)

G-Mixup 79.18 (1.55) 70.60 (4.38) 64.70 (4.25) 50.79 (2.72) 46.12 (3.34) 42.68 (4.98) 82.82 (1.33) 76.80 (0.99) 70.28 (3.50)

Table 4: Average accuracy (%) on social graphs under biased corruption of graph labels. Standard
deviation is in (). The best results are in bold.

Model IMDB-BINARY IMDB-MULTI REDDIT-BINARY
Biased10 Biased20 Biased10 Biased20 Biased10 Biased20

GCN 67.73 (3.79) 63.95 (4.99) 45.07 (2.80) 42.69 (4.01) 70.40 (3.97) 62.08 (3.30)
N2G-GCN-VERTEX 73.53 (3.51) 70.90 (4.93) 51.33 (3.46) 48.89 (4.02) 77.14 (3.17) 75.90 (3.83)
N2G-GCN-LAMBDA 70.75 (2.78) 66.12 (1.09) 49.55 (1.68) 46.11 (1.02) 75.47 (1.95) 73.98 (2.00)

N2G-GCN-DELTACON 69.85 (2.26) 65.67 (1.15) 47.44 (1.39) 44.98 (1.47) 76.10 (3.17) 74.03 (1.67)

GAT 62.64(6.87) 54.73(1.07) 44.68(2.76) 39.13(1.27) 68.64(4.76) 62.30(5.33)
N2G-GAT-VERTEX 67.33 (1.15) 64.67 (1.57) 47.89 (2.04) 45.11 (3.36) 73.08(5.16) 69.13(4.93)
N2G-GAT-LAMBDA 65.55(2.01) 62.35(1.73) 46.33 (3.71) 41.56 (1.54) 71.99 (3.77) 65.89 (3.74)

N2G-GAT-DELTACON 63.67(1.53) 61.33(4.04) 44.56(3.42) 43.00(2.31) 72.21(4.08) 66.47(2.71)

GRAPHSAGE 63.14(9.39) 60.93(1.43) 45.67(1.70) 39.14(1.26) 70.83(3.99) 63.17(4.70)
N2G-GRAPHSAGE-VERTEX 65.29 (4.30) 62.53 (2.33) 46.81(1.89) 41.55(2.11) 71.18(4.03) 69.92(2.04)
N2G-GRAPHSAGE-LAMBDA 68.76 (2.65) 66.16 (3.83) 49.08 (2.76) 45.80 (3.01) 73.57 (4.09) 70.70 (3.55)

N2G-GRAPHSAGE-DELTACON 68.22(3.09) 62.17(4.00) 46.03(3.90) 42.11(3.44) 70.98(3.69) 67.93(2.44)

GIN 66.47 (3.25) 63.70 (3.98) 44.85 (1.80) 41.72 (4.25) 71.52 (4.71) 65.03 (3.77)

G-Mixup 65.97 (3.99) 62.25 (5.14) 44.03 (2.55) 41.90 (4.05) 73.22 (1.58) 65.28 (3.50)

labels (i.e., “Uniform10”), N2G-GCN-VERTEX can improve upon GCN by a margin of 21.18%,
25.24%, and 19.32% on MUTAG, BZR, and COX2 respectively; for corrupted graphs with uniform
20% noisy labels (i.e., “Uniform20”), N2G-GCN-VERTEX can improve upon GCN by a margin of

6

N2G

Table 5: N2G vs. other SOTA GoGs on MUTAG with clean and uniformly corrupted graph labels.
The best results are in bold.

Model MUTAG
Clean Uniform10 Uniform20

HM-GNN 96.32 (2.61) 86.31 (2.88) 82.11 (7.06)
SAGE 67.22 (3.68) 53.01 (7.59) 48.54 (10.22)

G2GNN 87.23 (1.36) 76.98 (3.47) 71.85 (4.12)
N2G-GCN-VERTEX 94.44 (2.98) 85.89 (3.82) 83.40 (4.58)

N2G-PathNNs-VERTEX 96.78 (3.05) 92.72 (1.11) 88.58 (1.69)

21.93%, 36.74%, and 21.99% on MUTAG, BZR, and COX2 respectively. Moreover, we observe
a similar trend for N2G-LAMBDA (including N2G-GCN-LAMBDA, N2G-GAT-LAMBDA, and
N2G-GRAPHSAGE-LAMBDA) and N2G-DELTACON (including N2G-GCN-DELTACON, N2G-
GAT-DELTACON, and N2G-GRAPHSAGE-DELTACON): (i) vanilla GNN-based model suffers
from performance drop under noisy labels, (ii) all N2G-based models significantly outperform vanilla
model on both clean and corrupted graphs, and (iii) our N2G framework can substantially enhance
the robustness of vanilla GNN-based model under noisy labels.

Moreover, Table 2 indicates that as the biased noise ratio increases, the gaps in the performances
between vanilla GNN-based and N2G-based models enlarge in all cases, which confirms the
premise that N2G is robust against perturbation in labels. The accuracy of the vanilla GNN-
based models deteriorates significantly as the noise rate increases. In contrast, N2G-based mod-
els remain substantially more resistant to different noise levels on all three biochemical datasets.

0.00 0.05 0.10 0.15 0.20

50
60

70
80

90
10

0

Noise Rate

A
cc

ur
ac

y(
%

)

N2G−PathNN
HM−GNN
SAGE

Figure 2: G2N vs. SOTA GoGs HM-
GNN and SAGE.

Finally, we conduct experiments on corrupted graphs using
coteaching and DGNN, which are specially designed to
classify data with corrupted labels. Table 13 suggests that
the updating and comparison mechanism in Coteaching
and the loss correction method in DGNN further enhance
the N2G performance and robustness. Compared with the
D-GNN method brought by [23], Table 6 shows that N2G
outperforms D-GNN by 18.64% on MUTAG.

Our G2N versus other GoG approaches To illustrate
efficiency of our G2N, we compare G2N with other state-
of-the-art (SOTA) GoG approaches (i.e., heterogeneous
motif graph neural network (HM-GNN) [41], self-attentive
graph embedding (SAGE) [18]), and G2GNN [34]. For
the G2N algorithm, here we consider N2G-GCN-VERTEX
and N2G-PathNNs-VERTEX (i.e., we integrate N2G with
the path neural networks (PathNNs) [22]). Table 5 shows
that our G2N-based models can achieve competitive perfor-
mances on both clean and perturbed MUTAG datasets. Specifically, we observe that N2G-PathNNs-
VERTEX always outperforms all models on all datasets. Furthermore, we also compare N2G with
the powerful graph of graphs neural network (PGON) [31], graph of graphs neural network (GoGNN;
which is a GNN model built on the hierarchical graph structure) [30] on MUTAG. As suggested
by Table 1 in [31], our N2G (e.g., N2G-GCN-VERTEX with the accuracy 94.44%) significantly
outperforms both PGON (accuracy is 91.15%) and GoGNN (accuracy is 88.53%).

4.2 N2G Results on Social Graphs
Table 3 shows classification performance on clean social networks and their counterparts with
corrupted labels. Table 3 indicates that N2G outperforms all competitors on all three clean datasets.
To evaluate the robustness of N2G against label perturbation, we consider a scenario of uniformly
corrupted graph labels. Table 3 shows that the N2G approach outperforms all GNN-based models.
Specifically, (i) When setting the ratio of noise labels of 0.1, our N2G-GRAPHSAGE-LAMBDA
achieves relative gains of 9.59%, 11.49% and 11.78% over runner-ups (i.e., GRAPHSAGE) on
IMDB-BINARY, IMDB-MULTI and REDDIT-BINARY, respectively, and (ii) When setting the ratio
of noise labels of 0.2, our N2G-GRAPHSAGE-LAMBDA achieves relative gains of 6.55%, 9.71%

7

N2G

and 13.52% over runner-ups (i.e., GRAPHSAGE, GRAPHSAGE and GCN) on IMDB-BINARY,
IMDB-MULTI and REDDIT-BINARY, respectively.

Table 6: Average accuracy (%) on MUTAG, IMDB-
BINARY and IMDB-MULTI with 20% uniform corruption.
DGNN results are from [23].

Model MUTAG IMDB-BINARY IMDB-MULTI
DGNN-A 71.02 70.88 45.05
DGNN-C 57.27 69.40 47.47
DGNN-E 70.02 70.88 46.33

N2G (ours) 84.26 73.93 51.42

The results of our N2G-based model
with biased noisy labels are summa-
rized in Table 4. As Table 4 indicates,
N2G-based models always outperform
GNN-based models and achieve rela-
tive gain ranging from 86% to 22.26%
in all cases on three datasets with
biased corruption. Hence, we can
conclude that our N2G representation
substantially enhances the robustness
of various vanilla GNN-based models
against graph label perturbations. The

results from IMDB-MULTI dataset indicate that the superiority of our N2G representation method
is not limited to binary classification tasks, but also can be extended to multi-class classification
problems.

Furthermore, we validate our N2G methods on corrupted social graphs using Coteaching and DGNN
(regarding DGNN, we consider three variants, i.e., Conservative (DGNN-C), Anchors (DGNN-A),
and Exact (DGNN-E)).

Bioinformatics vs. Social Networks Note that N2G achieves the highest gains in robustness in
bioinformatics graphs (MUTAG, BZR, and COX2) and the social network REDDIT-BINARY, while
the lowest gains are delivered on IMDB-BINARY and IMDB-MULTI. This phenomenon can be
attributed to much higher density exhibited by IMDB-BINARY and IMDB-MULTI, compared to
that of the bioinformatics graphs and REDDIT-BINARY (see Table 1 in the supplementary material).
In this case, for graph classification tasks, we can infer that sparser networks benefit more from the
integration of information of similar graphs.

Which Graph Distance to Choose? Our studies suggest that both the type of GNN model and
the type of graphs are important factors impacting the N2G performance. For instance, we find the
Vertex-Edge distance is the most promising choice for GCN and GAT across all bioinformatics and
social graphs, also yielding a competitive performance for GRAPHSAGE on MUTAG and BZR. In
turn, Lambda distance appears to be the winner for GRAPHSAGE on both bioinformatics and social
datasets. In general, the performance of various distances in social networks appears to be more
scattered than in bioinformatics graphs, which may be due to the more heterogeneous graph structures
of social networks. Similarly to the results of [20], such differences among N2G based on various
graph similarity measures can be attributed to the underlying network density and homophily of the
resulting N2G, as well as to the structural properties that each GNN tends to focus on. Nevertheless,
regardless of the graph similarity measure, all variants of N2G are more competitive, particularly, in
terms of robustness than their conventional counterparts.

N2G Versatility Note that N2G can be combined with any node classification approach. To illustrate
the N2G versatility, we now integrate N2G with the most recent SOTA GNNs for node classification
(the PathNNs model) and compare it to other SOTA baselines for graph classification (i.e., GIN
and persistent Weisfeiler-Lehman random walk (PWLR) [24]). As Table 7 suggests, PathNNs-N2G
always outperforms both GIN and PWLR on clean and perturbed MUTAG datasets. Moreover, we
find that the PathNNs-N2G-VERTEX consistently achieves the best performance on all datasets.

Inductive Learning vs. Transductive Learning We now assess the performance of N2G in inductive
and transductive settings. That is, by the inductive setting we consider the following scenario: 1)
choose a fraction r = {0.7, 0.8, 0.9} of available graphs (all graphs in this training subset are labeled),
2) construct N2G based on the selected r fraction of labeled graphs; 3) train a GNN; 4) connect 1− r
fraction of the remaining unlabelled graphs to N2G; 5) use the pre-trained GNN for node classification
to identify labels of the remaining 1− r fraction of unlabelled graphs. That is, here N2G in steps 2-3
is not allowed to integrate 1− r fraction of the unlabelled training set prior to GNN training. In the
transductive setting, step 2 above is changed to using all labeled and unlabelled graphs to construct
a joint N2G. Figure 3 shows the performance of N2G-GCN-VERTEX and GCN in the inductive
learning of MUTAG and IMDB-MULTI. We find that in all inductive splitting scenarios, N2G-GCN
delivers a more competitive performance than GCN. Furthermore, clearly, N2G-GCN performs better

8

N2G

Table 7: SOTA GNN for graph classification vs. N2G with SOTA GNN for node classification on
MUTAG with clean and uniformly corrupted labels. Corruption rates are 10% and 20%. The best
results are in bold.

Model MUTAG
Clean Uniform10 Uniform20

GIN 89.01 (6.02) 77.37 (11.54) 71.05 (7.89)
PWLR 89.73 (1.01) 82.29 (1.49) 78.25 (2.55)

N2G-PathNNs-VERTEX 96.78 (3.05) 92.72 (1.11) 88.58 (1.69)
N2G-PathNNs-LAMBDA 95.18 (2.84) 88.76 (0.69) 85.70 (0.70)

N2G-PathNNs-DELTACON 95.98 (1.95) 89.96 (1.26) 86.42 (2.03)

in transductive than in inductive settings (see Fig. 5). However, the drop in performance is minor,
indicating the overall stability of N2G. (See Appendix H for additional experiments.)

5 Limitations

Figure 3: Inductive learning with N2G-GCN-VERTEX and GCN on
clean graphs (left: MUTAG and right: IMDB-MULTI.). Fractions of
training sets are 0.9,0.8, and 0.7.

There are two primary
limitations of the current
N2G approach. First,
while we consider three
different similarity mea-
sures among graphs, we
select only one of them
and, hence, may lose po-
tentially useful informa-
tion yielded by other sim-
ilarity measures. This lim-
itation can be addressed
by the incorporation of
an attention mechanism to
automatically choose the
most suitable measure. Alternatively, N2G can be extended to a multiplex N2G where all available
distances are fed into the corresponding multi-graph neural networks [27]. The second limitation
is that we do not incorporate the node features of individual graphs Gi, i = 1, 2, . . . , N (wherever
available). From one point of view, it implies that we use less information for graph classification
tasks than conventional GNNs do, but still achieve competitive and robust performance, which is
highly promising. Nevertheless, such important information as node features of individual graphs Gi

shall not be lost. This direction can be addressed by embedding such node feature information and
considering the similarity between the associated embeddings, following the ideas of [18]. While
this constitutes a future research direction, we present a pilot study on these ideas in Appendix G.
Finally, it is important to note that not all graph similarity measures may be uniformly feasible, as,
e.g., the Vertex-Edge distance requires user-prespecified node IDs that may not be readily available
in all applications.

6 Conclusion

We have proposed a new robust representation approach for graph learning under corrupted label
scenarios, Networks to Graph (N2G). N2G reformulates the task of multiple graph classification as a
node classification problem. Our results have indicated that N2G does not only improve performance
but substantially enhances robustness with respect to the perturbation of graph labels. In the future,
we will expand N2G to label prediction tasks for time-evolving graphs as well as advance N2G by
integrating multiple graph distances simultaneously. Finally, the same idea can be applied to the
classification of other objects such as images, time series, and texts, resulting in the entities to graph.

9

N2G

7 Acknowledgements
This project has been supported by NSF grants OAC-2115094, CNS-2029661, ECCS 2039701,
DMS-2335846, TIP-2333703, and ONR grant N00014-21-1-2530. Also, the paper is based upon
work supported by (while Y.R.G. was serving at) the NSF. The views expressed in the article do not
necessarily represent the views of NSF or ONR.

References

[1] John Adrian Bondy. Graph theory with applications. 1982.

[2] Wuxinlin Cheng, Chenhui Deng, Zhiqiang Zhao, Yaohui Cai, Zhiru Zhang, and Zhuo Feng.
Spade: A spectral method for black-box adversarial robustness evaluation. In ICML, pages
1814–1824, 2021.

[3] Gregorio D’Agostino and Antonio Scala. Networks of networks: the last frontier of complexity,
volume 340. Springer, 2014.

[4] Enyan Dai, Charu Aggarwal, and Suhang Wang. NRGNN: learning a label noise resistant
graph neural network on sparsely and noisily labeled graphs. In Feida Zhu, Beng Chin Ooi, and
Chunyan Miao, editors, SIGKDD, pages 227–236, 2021.

[5] Enyan Dai, Wei Jin, Hui Liu, and Suhang Wang. Towards robust graph neural networks for
noisy graphs with sparse labels. In WSDM, pages 181–191, 2022.

[6] Siemon C de Lange, Marcel A de Reus, and Martijn P van den Heuvel. The laplacian spectrum
of neural networks. Frontiers in computational neuroscience, 7:189, 2014.

[7] Xuefeng Du, Tian Bian, Yu Rong, Bo Han, Tongliang Liu, Tingyang Xu, Wenbing Huang,
Yixuan Li, and Junzhou Huang. Noise-robust graph learning by estimating and leveraging
pairwise interactions. Transactions on Machine Learning Research, 2023.

[8] Robert W Floyd. Algorithm 97: shortest path. Communications of the ACM, 5(6):345, 1962.

[9] Lise Getoor and Ben Taskar. Introduction to statistical relational learning. MIT press, 2007.

[10] Jacob Goldberger and Ehud Ben-Reuven. Training deep neural-networks using a noise adapta-
tion layer. In ICLR, 2017.

[11] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large
graphs. NIPS, 30, 2017.

[12] Xiaotian Han, Zhimeng Jiang, Ninghao Liu, and Xia Hu. G-mixup: Graph data augmentation
for graph classification. In ICML, pages 8230–8248, 2022.

[13] Shonosuke Harada, Hirotaka Akita, Masashi Tsubaki, Yukino Baba, Ichigaku Takigawa, Yoshi-
hiro Yamanishi, and Hisashi Kashima. Dual graph convolutional neural network for predicting
chemical networks. BMC Bioinformatics, 21:1–13, 2020.

[14] Manfred Jaeger. Learning and reasoning with graph data: Neural and statistical-relational
approaches. In AiB. Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2022.

[15] Hassan Khosravi and Bahareh Bina. A survey on statistical relational learning. In Advances in
Artificial Intelligence: 23rd Canadian Conference on Artificial Intelligence, pages 256–268,
2010.

[16] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. ICLR, 2017.

[17] Danai Koutra, Joshua T Vogelstein, and Christos Faloutsos. Deltacon: A principled massive-
graph similarity function. In SDM, pages 162–170. SIAM, 2013.

[18] Jia Li, Yu Rong, Hong Cheng, Helen Meng, Wenbing Huang, and Junzhou Huang. Semi-
supervised graph classification: A hierarchical graph perspective. In The World Wide Web
Conference, pages 972–982, 2019.

[19] Yuwen Li, Miao Xiong, and Bryan Hooi. Graphcleaner: Detecting mislabelled samples in
popular graph learning benchmarks. In ICML, 2023.

[20] Pengqian Lu. A Homophilous and Dense Graph is Robust to Label Noise. PhD thesis, The
University of Sydney, 2022.

10

N2G

[21] Xingjun Ma, Yisen Wang, Michael E Houle, Shuo Zhou, Sarah Erfani, Shutao Xia, Sudanthi
Wijewickrema, and James Bailey. Dimensionality-driven learning with noisy labels. In ICML,
pages 3355–3364, 2018.

[22] Gaspard Michel, Giannis Nikolentzos, Johannes F Lutzeyer, and Michalis Vazirgiannis. Path
neural networks: Expressive and accurate graph neural networks. In International Conference
on Machine Learning, pages 24737–24755. PMLR, 2023.

[23] Hoang NT, Choong Jun Jin, and Tsuyoshi Murata. Learning graph neural networks with noisy
labels. arXiv:1905.01591, 2019.

[24] Sun Woo Park, Yun Young Choi, Dosang Joe, U Jin Choi, and Youngho Woo. The pwlr
graph representation: A persistent weisfeiler-lehman scheme with random walks for graph
classification. In Topological, Algebraic and Geometric Learning Workshops 2022, pages
287–297. PMLR, 2022.

[25] Giorgio Patrini, Alessandro Rozza, Aditya Krishna Menon, Richard Nock, and Lizhen Qu.
Making deep neural networks robust to label noise: A loss correction approach. In IEEE CVPR,
pages 1944–1952, 2017.

[26] Siyi Qian, Haochao Ying, Renjun Hu, Jingbo Zhou, Jintai Chen, Danny Z Chen, and Jian Wu.
Robust training of graph neural networks via noise governance. In WSDM, pages 607–615,
2023.

[27] Josephine M Thomas, Alice Moallemy-Oureh, Silvia Beddar-Wiesing, and Clara Holzhüter.
Graph neural networks designed for different graph types: A survey. Transactions on Machine
Learning Research, 2023.

[28] Petar Veličković. Everything is connected: Graph neural networks. Current Opinion in
Structural Biology, 79:102538, 2023.

[29] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. ICLR, 2018.

[30] Hanchen Wang, Defu Lian, Ying Zhang, Lu Qin, and Xuemin Lin. Gognn: Graph of graphs
neural network for predicting structured entity interactions. arXiv preprint arXiv:2005.05537,
2020.

[31] Hanchen Wang, Defu Lian, Wanqi Liu, Dong Wen, Chen Chen, and Xiaoyang Wang. Powerful
graph of graphs neural network for structured entity analysis. World Wide Web, 25(2):609–629,
2022.

[32] Xiao Wang, Meiqi Zhu, Deyu Bo, Peng Cui, Chuan Shi, and Jian Pei. AM-GCN: Adaptive
multi-channel graph convolutional networks. In SIGKDD, pages 1243–1253, 2020.

[33] Yizhen Wang, Somesh Jha, and Kamalika Chaudhuri. Analyzing the robustness of nearest
neighbors to adversarial examples. In ICML, pages 5133–5142, 2018.

[34] Yu Wang, Yuying Zhao, Neil Shah, and Tyler Derr. Imbalanced graph classification via
graph-of-graph neural networks. In CIKM, pages 2067–2076, 2022.

[35] Peter Wills and François G. Meyer. Metrics for graph comparison: A practitioner’s guide.
PLOS ONE, 15(2):e0228728, 2020. doi: 10.1371/journal.pone.0228728. URL https://app.
dimensions.ai/details/publication/pub.1124845369.

[36] Richard C Wilson and Ping Zhu. A study of graph spectra for comparing graphs and trees.
Pattern Recognition, 41(9):2833–2841, 2008.

[37] Lingfei Wu, Peng Cui, Jian Pei, and Liang Zhao. Graph Neural Networks: Foundations,
Frontiers, and Applications. Springer, 2022.

[38] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu Philip. A
comprehensive survey on graph neural networks. IEEE transactions on neural networks and
learning systems, 32(1):4–24, 2020.

[39] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In ICLR, 2019.

[40] Xingrui Yu, Bo Han, Jiangchao Yao, Gang Niu, Ivor Tsang, and Masashi Sugiyama. How does
disagreement help generalization against label corruption? In ICML, pages 7164–7173, 2019.

[41] Zhaoning Yu and Hongyang Gao. Molecular representation learning via heterogeneous motif
graph neural networks. In ICML, pages 25581–25594, 2022.

11

https://app.dimensions.ai/details/publication/pub.1124845369
https://app.dimensions.ai/details/publication/pub.1124845369

N2G

[42] Jingyang Yuan, Xiao Luo, Yifang Qin, Yusheng Zhao, Wei Ju, and Ming Zhang. Learning on
graphs under label noise. In ICASSP, pages 1–5. IEEE, 2023.

[43] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
deep learning (still) requires rethinking generalization. Communications of the ACM, 64(3):
107–115, 2021.

[44] Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng
Wang, Changcheng Li, and Maosong Sun. Graph neural networks: A review of methods and
applications. AI open, 1:57–81, 2020.

12

N2G

A Graph Similarity Measures
To define weighted edges eij , we consider three graph similarity measures as possible choices for
D(·, ·) (here the lower the distance is, the more similar the two graphs are):

Vertex-Edge distance is the inversion of the vertex-edge overlap, which is formulated with:

DVERTEX(Gi,Gj)) =
(1− V EO(Gi,Gj))

V EO(Gi,Gj)
,

where the vertex-edge overlap is defined as:

V EO(Gi,Gj)) =
|Vi ∩ Vj |+ |Ei ∩ Ej |

|Vi|+ |Vj |+ |Ei|+ |Ej |
.

Here |Vi∩Vj | and |Ei∩Ej | are the common vertices and edges between graphs Gi and Gj , respectively.
As such, the Vertex-Edge distance measures the graph similarity based on their vertex-edge overlap
(for more details see [8]).

Remark. The important limitations of the Vertex-Edge distance is that it requires pre-specified node
IDs that typically come from the expert knowledge. However, it is important to note that such node
IDs may not be available in all applications or may require resource-intensive labelling process. As an
alternative, we can use the modified Vertex-Edge distance where the overlap (intersection of sets) is
substituted by a union. Our numerical results suggest that using such modified Vertex-Edge distance
still result in competitive performance.

Lambda distance is the Euclidean norm of the difference among the eigenvalues of the normalized
graph Laplacians of Gi and Gj :

DLAMBDA(Gi,Gj)) = ||Ls
i − Ls

j ||,

where Ls
i and Ls

j are the top s eigenvalues of the normalized graph Laplacian matrices of graphs Gi

and Gj (for more details see [36]).

DeltaCon distance [17] is the Matusita difference of the fast belief propagation matrix, which
weights the information from neighbors with parameter ϵ ∈ (0, 1):

DDELTACON(Gi,Gj) =

√√√√∑
n,m

(√
sin,m −

√
sjn,m

)2

.

Here sin,m is the element in the faster belief propagation matrix Si =
[
I + ϵ2Di − ϵAi

]−1
, where

Ai and Di are the adjacency and degree matrices of graph Gi. (For the more detailed discussion of
graph distances see [35].)

13

N2G

B Datasets and Experimental Details
Hyperparameters Similar to [16], We use (ℓ+ 2)-layers learning structures consisting of 1 input
layer, ℓ hidden layer (where ℓ ∈ {3, 4, 5, 6}), and 1 output layer for all models. For search area,
we set the learning rate(lr) ∈ {0.1, 0.01, 0.001}, hidden units (nhid) ∈ {32, 64, 128, 256, 512},
the threshold of N2G construction τ ∈ {0.25, 0.5, 0.75} for MUTAG, BZR, and COX2 datasets,
and τ ∈ {0.05, 0.1, 0.25, 0.5, 0.75} for IMDB-BINARY, IMDB-MULTI, and REDDIT-BINARY
datasets, and the batch size ∈ {24, 32, 64, 128}. For optimization, we use Adam optimizer and set
the number of epochs ranging from 500 to 1500 depending on the convergence rate.

Baselines The proposed N2G is compared or integrated with the following state-of-the-art models:

• Graph Convolutional Network (GCN) [16]: GCN is a semi-supervised graph convolutional
network.

• Graph Isomorphism Network (GIN) [39]: GIN is the graph neural network model which is as
expressive as the Weisfeiler-Lehman graph isomorphism test.

• Graph Attention Networks (GAT) [29]: GAT leverages the attention mechanism for the homoge-
neous graph which includes only one type of nodes or links.

• GraphSAGE [11]: GraphSAGE learns node representations through aggregation of neighbor-
hood information.

• Adaptive Multi-channel Graph Convolutional Networks (AM-GCN) [32]: AM-GCN is the graph
neural network model which uses the attention mechanism to learn adaptive importance weights
of the embeddings.

• Denoising Graph Neural Network (DGNN) [23]: DGNN takes noise-correction approach (i.e., a
noise estimator) to train a graph neural network with noisy labels.

• Persistent Weisfeiler-Lehman Random Walk (PWLR) [24]: PWLR is a mathematical framework
which produces a collection of explainable low-dimensional representations of graphs with
discrete and continuous node features.

• Heterogeneous Motif Graph Neural Network (HM-GNN) [41]: HM-GNN learns node feature
representations for each node in the heterogeneous motif graph.

• Self-Attentive Graph Embedding (SAGE) [18]: SAGE embeds graph instances of arbitrary size
into fixed-length vectors.

• Path Neural Networks (PathNNs) [22]: PathNNs updates node representations by aggregating
paths emanating from nodes.

• G-Mixup [12]: G-Mixup augments graphs for graph classification by interpolating the generator
(i.e., graphon) of different classes of graphs. In G-Mixup, it uses GCN/GIN as the base
architecture.

• G2GNN [34]: G2GNN alleviates the graph imbalance issue by deriving extra supervision
globally from neighboring graphs and locally from stochastic augmentations of graphs.

Table 9: Dataset Summaries.

Dataset # Graphs Avg. |V| Avg. |E| Avg. Density # Class
MUTAG 188 17.93 19.79 0.1304 2
BZR 405 35.75 38.35 0.0617 2
COX2 467 41.22 43.45 0.0524 2
IMDB-BINARY 1000 19.77 96.53 0.5203 2
IMDB-MULTI 1500 13.00 65.94 0.8454 3
REDDIT-BINARY 2000 429.63 497.75 0.0005 2

C How Does N2G Work with the Additional GNN Architecture?
As we noted before, our primary goal is to evaluate the utility of N2G as a general tool that can be
coupled with any GNNs, rather than to promote a particular GNN model. In the main body, we

14

N2G

illustrate the integration of N2G with three (arguably) most popular vanilla GNN architectures (GCN,
GAT, GRAPHSAGE) as well as with one of the most currently competitive GNN models for node
classification PathNNs. Here we provide additional results on PathNNs-N2G on BZR and COX2
(see Table 10). Similar as in the case of MUTAG (see Table 7), N2G tends to yield the competitive
performance both in terms of classification accuracy and robustness across all considered scenarios.
The best results are achieved by N2G with vertex similarity.

Table 10: SOTA GNN for graph classification vs. N2G with SOTA GNN for node classification on
BZR, COX2 and their counterparts under uniform corruption of graph labels. Corruption rates are
10% and 20%. Standard deviation is in (). The best results are in bold.

Model BZR COX2
Clean Uniform10 Uniform20 Clean Uniform10 Uniform20

GIN 85.63 (2.59) 73.49 (3.79) 68.93 (4.15) 83.51 (4.75) 73.49 (3.79) 68.93 (4.15)
PWLR 85.46 (0.55) 79.31 (1.57) 72.74 (0.80) 79.94 (0.58) 73.48 (1.79) 69.14 (3.38)

N2G-PathNN-VERTEX 90.39 (2.74) 88.94 (1.18) 85.18 (0.98) 90.41 (4.02) 88.19 (0.54) 85.55 (0.94)
N2G-PathNN-LAMBDA 88.96 (3.19) 85.12 (4.12) 82.61 (0.99) 88.02 (0.55) 84.50 (0.20) 83.77 (0.65)

N2G-PathNN-DELTACON 88.16 (3.45) 86.77 (1.69) 83.07 (1.07) 88.89 (1.18) 86.95 (2.03) 83.48 (1.98)

We also present a study on the utility of our N2G approach when it is combined with another
powerful GNN model – the AM-GCN [32]. In particular, we select AM-GCN due to its capability to
adaptively learn deep correlation information from both topological information and node features.
Table 11 indicates that compared with AM-GCN1, N2G coupled with AM-GCN delivers consistently
competitive results on both clean and corrupted MUTAG, thereby reconfirming the important role of
the essential relational information and broader utility of N2G.

Table 11: Performance of N2G coupled with AM-GCN on on clean and uniformly corrupted MUTAG.
Corruption rates are 10% and 20%. Standard deviation is in (). Corruption rates are 10% and 20%.
Standard deviation is in (). Best results are in bold.

Model MUTAG
Clean Uniform10 Uniform20

AM-GCN 85.73 (7.38) 80.16 (6.46) 74.28 (4.98)
N2G-AM-GCN-VERTEX 92.76 (2.78) 85.31 (1.87) 81.30 (3.45)
N2G-AM-GCN-LAMBDA 90.39 (3.02) 84.72 (2.88) 79.10 (1.95)
N2G-AM-GCN-DELTACON 90.71 (1.87) 84.02 (3.47) 80.10 (2.11)

D Sensitivity to the Threshold Selection

In our experiments, we select threshold τ for the edge construction from the quantile set of the
empirical distribution of the graph distances

{
Dij

}N

i,j=1
, via the cross-validation. To evaluate

sensitivity of N2G to the choice of τ , we consider performance of N2G-GCN on clean MUTAG
and its counterparts under uniform corruption of graph labels with rates of 10% and 20%. Here
τ undertakes values from the quartile set (i.e., 25%, 50%, and 75%). As Table 12 shows, the
N2G performance tends to be stable across various selections of τ and graph distances, with highly
competitive results corresponding to lower values of τ for larger graphs (i.e., larger graphs tend
to result in sparser G). This phenomenon may be potentially attributed to the fact that for larger
individual graphs dependence among graphs plays a less significant role, and N2G inherently tends
to focus on the most essential similarities and prunes less important ones.

1Note that, for vanilla AM-GCN, we consider the original adjacency matrix and latent node embedding as
input.

15

N2G

Table 12: Sensitivity of performance with respect to threshold τ . Average accuracy on clean
bioinformatics graphs and their counterparts under uniform corruption of graph labels. Corruption
rates are 10% and 20%. Standard deviation is in ().

Model MUTAG τ = 25% MUTAG τ = 50% MUTAG τ = 75%
Clean Uniform10 Uniform20 Clean Uniform10 Uniform20 Clean Uniform10 Uniform20

GCN 85.60 (5.80) 70.88 (2.99) 68.60 (4.02) 85.60 (5.80) 70.88 (2.99) 68.60 (4.02) 85.60 (5.80) 70.88 (2.99) 68.60 (4.02)
N2G-GCN-VERTEX 94.44 (2.98) 85.89 (3.82) 83.40 (4.58) 92.12 (2.09) 84.16 (4.54) 81.90 (3.40) 89.47 (3.41) 82.78 (4.07) 77.72 (1.95)
N2G-GCN-LAMBDA 92.58 (4.85) 82.81 (3.55) 81.41 (3.08) 90.17 (1.73) 81.44 (2.69) 79.14 (2.76) 87.07 (1.69) 80.14 (2.60) 77.08 (3.48)

N2G-GCN-DELTACON 89.19 (2.88) 80.17 (3.14) 78.64 (2.48) 87.49 (3.57) 82.23 (3.19) 78.85 (3.22) 86.16 (2.96) 78.42 (2.01) 75.43 (3.72)

E N2G with Coteaching and Loss Correction
In addition, to resist noisy labels, we have applied the coteaching and loss correction to our N2G
model. Since D-GNN [23] involves loss correction and we use the same approach to corrupt graph
labels, we consider here integration of N2G with D-GNN [23].

Table 14 indicates that coteaching and the loss correction method in DGNN incorporated with N2G
method can further improve the classification performance over different types of label corruption. In
particular, N2G-DGNN outperforms DGNN on both IMDB-BINARY and IMDB-MULTI datasets
under all scenarios of label corruption.

Table 13: N2G with coteaching on bioinformatics graphs with noisy graph labels. Label corruptions
are either uniform or biased, with rates of 10% and 20%. Standard deviation is in (). The best results
are in bold.

Model MUTAG BZR COX2
Uniform10 Uniform20 Biased10 Biased20 Uniform10 Uniform20 Biased10 Biased20 Uniform10 Uniform20 Biased10 Biased20

N2G-Coteaching-VERTEX 87.42 (2.36) 85.42 (3.67) 79.29 (4.56) 76.28 (4.35) 86.91 (2.12) 84.79 (3.42) 81.19 (4.30) 77.10 (3.45) 83.82 (3.12) 81.12 (2.80) 80.27 (4.19) 78.82 (2.51)
N2G-Coteaching-LAMBDA 83.45 (2.89) 82.34 (3.70) 78.57 (3.01) 74.45 (4.80) 84.67 (3.95) 83.62 (1.93) 81.26 (3.68) 78.35 (4.22) 83.28 (4.20) 81.16 (3.65) 79.41 (3.29) 76.95 (3.57)

N2G-Coteaching-DELTACON 82.48 (4.96) 79.89 (3.67) 78.99 (2.79) 72.34 (3.88) 85.94 (2.59) 84.58 (4.75) 80.45 (3.69) 79.54 (2.93) 83.71 (2.85) 80.62 (3.56) 80.24 (2.97) 78.05 (3.74)

N2G-DGNN-VERTEX 86.35 (2.88) 84.26 (2.93) 79.11 (5.07) 77.82 (2.51) 83.17 (4.85) 82.55 (3.79) 79.50 (3.91) 77.82 (2.51) 81.90 (2.78) 80.89 (4.75) 80.27 (4.19) 77.82 (2.51)
N2G-DGNN-LAMBDA 83.38 (4.17) 82.26 (3.13) 78.24 (1.35) 76.95 (3.57) 81.79 (3.50) 80.98 (4.08) 79.11 (2.82) 76.95 (3.57) 81.29 (3.25) 80.05 (3.22) 79.41 (3.29) 76.95 (3.57)

N2G-DGNN-DELTANCON 83.14 (4.06) 81.04 (3.77) 79.05 (3.46) 77.06 (3.74) 82.96 (4.91) 81.77 (3.60) 77.82 (3.80) 77.05 (3.74) 81.46 (2.85) 80.62 (3.56) 80.24 (2.97) 77.62 (3.56)

Table 14: N2G with coteaching on social graphs with noisy graph labels. Label corruptions are either
uniform or biased, with rates of 10% and 20%. Standard deviation is in (). The best results are in
bold.

Model IMDB-BINARY IMDB-MULTI REDDIT-BINARY
Uniform10 Uniform20 Biased10 Biased20 Uniform10 Uniform20 Biased10 Biased20 Uniform10 Uniform20 Biased10 Biased20

N2G-Coteaching-VERTEX 76.38 (4.48) 73.93 (5.04) 75.84 (4.73) 72.14 (3.84) 53.41 (3.78) 51.42 (5.78) 53.17 (4.01) 50.90 (3.83) 82.34 (5.53) 80.14 (4.77) 80.47 (5.07) 77.41 (4.45)
N2G-Coteaching-LAMBDA 75.21 (4.05) 72.44 (3.99) 73.89 (4.82) 71.33 (5.66) 52.15 (5.00) 50.11 (1.92) 48.75 (3.04) 46.33 (4.60) 80.41 (4.04) 77.26 (5.16) 77.32 (2.24) 76.08 (3.41)

N2G-Coteaching-DELTACON 75.05 (5.53) 72.60 (4.63) 70.85 (4.76) 68.67 (2.95) 52.41 (3.77) 49.04 (4.05) 49.22 (4.18) 46.03 (3.76) 78.74 (4.53) 76.01 (2.87) 76.85 (4.27) 75.12 (4.75)

N2G-DGNN-VERTEX 76.14 (3.90) 73.42 (5.17) 73.88 (4.02) 71.12 (4.23) 53.14 (5.23) 50.51 (4.90) 52.03 (1.80) 49.11 (5.43) 83.85 (3.93) 80.24 (5.10) 77.74 (5.26) 76.12 (2.04)
N2G-DGNN-LAMBDA 74.12 (4.55) 72.10 (3.53) 71.87 (3.96) 66.54 (3.24) 48.44 (3.86) 45.86 (2.98) 51.42 (4.70) 49.04 (2.15) 80.48 (3.25) 77.49 (4.66) 76.87 (5.01) 74.01 (3.25)

N2G-DGNN-DELTACON 76.47 (4.77) 72.88 (6.04) 70.14 (2.49) 67.20 (2.88) 50.84 (3.46) 47.64 (3.28) 49.81 (3.71) 46.01 (3.74) 80.23 (5.10) 78.94 (4.44) 76.18 (5.22) 75.01 (3.21)

F Ablation Study on Super-Node Features
Each super-node of N2G (i.e., graph Gi, i = 1, 2, . . . , N) is associated with features which are
various network statistics. We consider average degree centrality, betweenness centrality, closeness
centrality, eigenvector centrality, current flow betweenness centrality, subgraph centrality, and current
flow closeness centrality. Figure 4 presents an ablation study on the contribution of average degree
centrality and betweenness centrality for N2G with GCN over various graph distances for clean and
perturbed MUTAG. (Results for other network statistics and models are analogous and omitted for
brevity.) Figure 4 indicates the following:

• Accuracy Across all scenarios, MUTAG N2G with all super-node features yields more accurate
results than N2G with solely degree centrality or betweenness centrality. The gains of N2G with
all super-node features vs. its counterparts solely feature range from 2% to 36.77% on clean
graphs.

• Robustness It appears that using all super-node features is most beneficial in a case of perturbed
graphs. The gains of N2G with all super-node features vs. N2G with solely feature is up to
55.15% for the perturbation rate of 20%, and generally, the robustness gains of N2G with all
super-node features are higher for higher perturbation rates. These phenomena can be explained
by the complementary strength each super-node feature brings to the learning process.

16

N2G

• Finally, contributions of degree centrality and betweenness centrality for clean and perturbed
MUTAG are generally comparable.

Subgraph

Currentflow

Eigenvector

Closeness

Betweenness

Degree

All

Sensitivity to Super−Node Features

Accuracy

0 20 40 60 80

(a) Clean MUTAG

Subgraph

Currentflow

Eigenvector

Closeness

Betweenness

Degree

All

Sensitivity to Super−Node Features

Accuracy

0 20 40 60 80

(b) Noisy MUTAG with 10 percent noise

Figure 4: N2G-GCN-VERTEX sensitivity to super node features.

Table 15: Transductive and Inductive Learning on clean IMDB-MULTI with training ratios r =
0.9, 0.8, 0.7. Standard deviation is in ().

Model IMDB-MULTI-9-1 IMDB-MULTI-8-2 IMDB-MULTI-7-3
Transductive Inductive Transductive Inductive Transductive Inductive

GCN N/A 49.33 (3.21) N/A 40.65 (2.92) N/A 31.33 (0.01)
N2G-GCN-VERTEX 56.81 (5.05) 52.35 (2.56) 53.49 (3.25) 47.84 (3.12) 47.45 (5.12) 42.05 (4.88)
N2G-GCN-LAMBDA 51.81 (5.05) 49.77 (2.85) 48.56 (2.99) 45.76 (4.42) 43.11 (3.74) 37.45 (4.23)

N2G-GCN-DELTACON 52.74 (3.47) 50.23 (1.99) 49.16 (1.03) 46.12 (2.52) 44.90 (2.13) 40.89 (5.08)

Table 16: Transductive and Inductive Learning on clean MUTAG with training ratios r =
0.9, 0.8, 0.7.

Model MUTAG-9-1 MUTAG-8-2 MUTAG-7-3
Transductive Inductive Transductive Inductive Transductive Inductive

GCN N/A 85.60 (5.80) N/A 75.67 (1.95) N/A 68.42 (3.10)
N2G-GCN-VERTEX 94.44 (2.98) 88.89 (0.01) 91.33 (4.85) 86.49 (0.01) 88.89 (2.49) 79.64 (3.50)
N2G-GCN-LAMBDA 92.58 (4.85) 91.11 (2.72) 87.43 (3.44) 83.78 (0.01) 87.13 (3.01) 75.00 (0.00)

N2G-GCN-DELTACON 89.19 (2.88) 88.89 (0.01) 84.13 (3.01) 76.22 (1.08) 80.29 (2.82) 73.21 (0.01)

G Pilot Study on Using Node Features of Individual Graphs
We present a pilot study on the utility of node features of the individual graphs Gi, i = 1, 2, . . . , N
in the N2G learning framework. We consider two bioinformatics graphs BZR and COX2, each
with three node attributes. We take the maximum of each of the three node features over each
Gi and associate the resulting three node summaries with the corresponding Gi, i = 1, 2, . . . , N .
Hence, coupled with the seven network summary statistics, each super-node in N2G (i.e.,Gi) is now
associated with ten node features. Table 17 presents the obtained results for N2G coupled with
GCN. In general, we find that integrating individual node features into N2G results in improving
classification accuracy both on clean and perturbed graphs. However, in most cases the gains are
minor, with N2G-N2G-VERTEX-WITH NODE FEATURES being the leader. Nevertheless, we view
these findings as a promising indication that node features of Gi have a potential to further enhance
GoG capabilities, and we will explore this direction in our future work.

17

N2G

Table 17: Average graph classification accuracy with and without node features of individual
bioinformatics graphs. Uniform corruption rates are 10% and 20%. Standard deviation is in (). The
best results are in bold.

Model BZR COX2
Clean Uniform10 Uniform20 Clean Uniform10 Uniform20

GCN 80.49 (3.22) 67.36 (3.74) 60.91 (3.25) 78.60 (1.52) 69.09 (5.28) 65.72 (6.25)
N2G-GCN-VERTEX 87.22 (3.71) 84.36 (4.12) 83.29 (3.10) 86.74 (4.63) 82.44 (4.07) 80.17(3.09)

N2G-GCN-VERTEX-WITH NODE FEATURES 88.19 (3.14) 84.96 (2.74) 84.14 (3.18) 86.95 (2.03) 83.82 (1.89) 81.47(4.02)
N2G-GCN-LAMBDA 85.19 (1.93) 81.76 (3.30) 80.94 (2.66) 84.07 (1.69) 80.74 (3.99) 78.01 (4.94)

N2G-GCN-LAMBDA-WITH NODE FEATURES 85.70 (2.01) 82.92 (1.09) 81.34 (4.06) 84.77 (3.19) 82.40 (2.90) 79.85 (3.17)
N2G-GCN-DELTACON 86.50 (3.96) 81.55 (4.67) 80.44 (2.37) 84.26 (3.66) 79.85 (4.91) 78.63 (4.17)

N2G-GCN-DELTACON-WITH NODE FEATURES 86.50 (3.96) 81.55 (4.67) 80.44 (2.37) 84.26 (3.66) 79.85 (4.91) 78.63 (4.17)

H Inductive vs. Transductive Learning

Fig. 5 shows the results of transductive learning on MUTAG with N2G-GCN-VERTEX and GCN,
where fractions r of training sets are 0.7, 0.8, and 0.9. By the inductive setting we consider the
following scenario: 1) choose a fraction r = {0.7, 0.8, 0.9} of available graphs (all graphs in this
training subset are labelled), 2) construct N2G based on all available labelled and unlabelled graphs;
3) train a GNN; 5) use the resulting GNN for node classification to identify labels of the remaining
1 − r fraction of unlabelled graphs. Note that under this scenario we do not compare with the
baseline GCN for graph classification as such baseline GCN for graph classification by default always
performs in the inductive regime. Fig. 5 suggests that N2G based on vertex similarity consistently
delivers the most competitive performance, even when the fraction of the training set reduces to 70%.

In turn, Table 15 presents the experiments on inductive and transductive learning on IMDB-MULTI.
The obtained results echo the findings obtained for inductive and transductive learning on MUTAG
(see Figs. 3 and 5 as well as their Table counterpart 16) and suggest the overall stability and consistency
of the N2G performance.

75
80

85
90

95

Training Ratio

A
cc

ur
ac

y(
%

)

0.9 0.8 0.7

N2G−GCN−VERTEX
N2G−GCN−LAMBDA
N2G−GCN−DELTACON

(a) MUTAG.

40
45

50
55

60

Training Ratio

A
cc

ur
ac

y(
%

)

0.9 0.8 0.7

N2G−GCN−VERTEX
N2G−GCN−LAMBDA
N2G−GCN−DELTACON

(b) IMDB-MULTI.

Figure 5: Transductive learning with N2G-GCN-VERTEX and GCN. Fractions r of training sets are
0.9, 0.8, and 0.7.

I Notation

Table 18 includes the primary notations used in this paper.

18

N2G

Table 18: Table of the key notations.

A: Adjacency matrix
D: Degree matrix
Dij = D(Gi,Gj): Similarity measure between graphs Gi and Gj , i, j = 1, 2, . . . , N
eij : Edge between between graphs Gi and Gj , i, j = 1, 2, . . . , N
G̃: Set of observed graphs
Gi: Graph Gi in G̃, i = 1, 2, . . . , N
G: Networks to Graph (N2G)
Ls
i : top s eigenvalues of the normalized Laplacian of graph Gi

N : Number of graphs in G̃
S: Faster belief propagation matrix
τ : The threshold for N2G

19

	1 Introduction
	2 Related Work
	3 The N2G Knowledge Representation
	3.1 The N2G Methodology

	4 Experiments
	4.1 N2G Results on Bioinformatics Graphs
	4.2 N2G Results on Social Graphs

	5 Limitations
	6 Conclusion
	7 Acknowledgements
	A Graph Similarity Measures
	B Datasets and Experimental Details
	C How Does N2G Work with the Additional GNN Architecture?
	D Sensitivity to the Threshold Selection
	E N2G with Coteaching and Loss Correction
	F Ablation Study on Super-Node Features
	G Pilot Study on Using Node Features of Individual Graphs
	H Inductive vs. Transductive Learning
	I Notation

