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Abstract

We present a performant, general-purpose
gradient-guided nested sampling algorithm,
GGNS, combining the state of the art in differen-
tiable programming, Hamiltonian slice sampling,
clustering, mode separation, dynamic nested sam-
pling, and parallelization. This unique combina-
tion allows GGNS to scale well with dimension-
ality and perform competitively on a variety of
synthetic and real-world problems. We also show
the potential of combining nested sampling with
generative flow networks to obtain large amounts
of high-quality samples from the posterior distri-
bution. This combination leads to faster mode
discovery and more accurate estimates of the par-
tition function.

1. Introduction

Bayesian parameter estimation and model comparison are
key to most scientific disciplines and remain challenging
problems, especially in high-dimensional and multimodal
settings. While traditionally Markov chain Monte Carlo
(MCMC) methods have been used to perform Bayesian
inference, differentiable programming has enabled the de-
velopment of new, more efficient algorithms, such as varia-
tional inference (MacKay, 2003), Hamiltonian Monte Carlo
(Duane et al., 1987; Neal et al., 2011), and Langevin dy-
namics (Besag, 1994; Roberts & Tweedie, 1996; Roberts
& Rosenthal, 1998); as well as more recent learning-based
methods such as the Path Integral Sampler (Zhang & Chen,
2022) and generative flow networks (Bengio et al., 2023;
Lahlou et al., 2023).
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From the perspective of differentiable programming, less
attention has been paid in recent years to nested sam-
pling (Skilling, 2006; Buchner, 2021; Ashton et al., 2022),
which is a widely used algorithm for Bayesian parameter
inference and model comparison. Nested sampling has been
used in a range of applications in the natural sciences, from
cosmology (Mukherjee et al., 2006; Handley et al., 2015a)
and astrophysics (Lavie et al., 2017; Giinther & Daylan,
2021) to particle physics (Yallup et al., 2022) and biol-
ogy (Russel et al., 2018). Furthermore, it provides both
samples from the posterior distribution and an estimate of
the Bayesian evidence, which can be used for model compar-
ison (Marshall et al., 2006) or to test compatibility between
datasets (Handley & Lemos, 2019).

The key challenge in implementing a nested sampling al-
gorithm is constructing a method that generates samples
drawn from the prior, subject to a hard likelihood constraint.
Whilst there is a wide variety of publicly available imple-
mentations for doing so (see Buchner, 2021; Ashton et al.,
2022, for an exhaustive list), these methods are only capable
of scaling to hundreds of dimensions (Handley, 2023).

One way to improve the performance of nested sampling
algorithms is to use the information about the gradient of the
likelihood to propose new points. However, gradient-guided
sampling on constrained domains is not straightforward.
Whilst the materials science and chemistry literature has
made extensive use of gradient-guided nested sampling (Bal-
dock et al., 2017; Partay et al., 2021; Habeck, 2015; Nielsen,
2013), these methods are often generally bespoke to their
physical problems of interest and are not suitable as general-
purpose Bayesian samplers. Previous works, such as Betan-
court (2011); Speagle (2020) have shown the potential of re-
flective slice sampling (Neal, 2003), also known as Galilean
Monte Carlo (GMC) (Feroz & Skilling, 2013) or Hamilto-
nian slice sampling (HSS) (Zhang et al., 2016; Bloem-Reddy
& Cunningham, 2016), for general-purpose sampling, in-
cluding the case of non-smooth functions (Mohasel Afshar
& Domke, 2015). However, these approaches have found
HSS to be “substantially less efficient (and in general less
reliable) than other gradient-based approaches”.! Another
alternative is recent work in proximal nested sampling (Cai

IVerbatim from the documentation of the dynesty algorithm.



Improving Gradient-Guided Nested Sampling for Posterior Inference

et al., 2022; McEwen et al., 2023), which uses proximal
operators to propose new points. However, this method only
works for log-concave likelihoods.

In this work, we combine ideas from accross the nested
sampling literature and learning-based samplers and create
a new gradient-guided nested sampling (GGNS) algorithm
that benefits from both algorithmic changes and improved
implementation. The five key differences with previous
work are 1) the use of self-tuning HSS in combination with
gradients calculated through differentiable programming
to propose new points, 2) incorporating parallel updates
using ideas from dynamic nested sampling (Higson et al.,
2019; Speagle, 2020; Handley et al., 2015b) to increase
the speed of calculations, 3) A novel termination criterion,
and 4) cluster identification to avoid mode collapse, 5) The
addition of techniques to more efficiently use trajectories,
particularly sampling along accepted points in the trajectory,
perturbing the trajectory with random noise during the dy-
namics, and the detection and “pruning” of points that have
left the sampling region. We show that with these changes
in combination, our GGNS algorithm scales to significantly
higher-dimensional problems without necessitating a pro-
portional increase in the number of live points with respect
to dimensionality. This allows GGNS to perform fast and
reliable inference for high-dimensional problems.

We show that the GGNS method presented in this work can
be used to perform inference in a wide range of problems
and that it can be used to improve the performance of exist-
ing nested sampling algorithms. Furthermore, we compare
our method to existing algorithms for posterior inference
and show that it outperforms them, particularly when deal-
ing with highly multimodal distributions. One of the main
advantages of the proposed approach is that it requires little
hyperparameter tuning and can be used out-of-the-box in a
wide range of problems.

Finally, we show the potential of combining nested sampling
with generative flow networks (GFlowNets, Bengio et al.,
2021; 2023), which are policy learning algorithms that are
trained to generate samples from a target distribution and
can flexibly be trained off-policy (Malkin et al., 2023). We
show how we can use nested sampling to guide GFlowNet
training, leading to faster mode finding and convergence of
evidence estimates than with traditional GFlowNets. Con-
versely, we also show how the amortization achieved by
GFlowNets can be used to obtain large amounts of high-
quality samples from the posterior distribution.

2. Background and Related Work
2.1. Nested Sampling

Nested sampling is used for estimating the marginal like-
lihood, also known as the evidence, in Bayesian inference

problems (Skilling, 2006):

Z=/£(9)7r(0)d9, 1)

where £(0) is the likelihood function and 7(0) is the prior
distribution. This integral is often intractable due to the high
dimensionality and complexity of modern statistical models.
In the process of calculating this integral, nested sampling
also produces samples from the posterior distribution.

At its core, nested sampling transforms the evidence inte-
gral into a one-dimensional nested sequence of likelihood-
weighted prior mass, allowing for efficient exploration of
the parameter space. The key idea is to enclose the region
of high likelihood within a series of nested iso-likelihood
contours. This is achieved by introducing a set of live points
distributed within the prior space and successively updating
this set by iteratively replacing the point with the lowest like-
lihood with a new point drawn from the prior while ensuring
the likelihood remains above a likelihood threshold.

As nested sampling progresses, it adaptively refines the prior
volume containing higher-likelihood regions. By construct-
ing a sequence of increasing likelihood thresholds, nested
sampling naturally focuses on the most informative regions
of parameter space. Consequently, nested sampling offers
several advantages, including robustness to multimodality
in posterior distributions, convergence guarantees, and the
ability to estimate posterior probabilities and model com-
parison metrics. A more detailed review of the algorithm
can be found in §A.

The number of nested sampling likelihood evaluations scales
as (Skilling, 2006; Handley, 2023):

Nlike € Alive X fsamplcr X DKL(P“_[), (2)

where njjy. is the number of live points, fsampler 1 the ef-
ficiency of the live point generation method (the average
number of likelihood evaluations required to generate each
new sample), and Dkr, (P|I1) is the Kullback-Leibler diver-
gence between the posterior and the prior.

We should consider the three terms separately to under-
stand the scaling of nested sampling with dimensionality.
Here, Dk1,(PII0) is fixed by the problem at hand (so can-
not be modified without substantial adjustment of the meta-
algorithm (Petrosyan & Handley, 2022)), and is usually
assumed to scale linearly with the number of dimensions.
Niive for most algorithms scales linearly with dimensionality
for two independent reasons: First since the uncertainty
in the log-evidence estimation is approximately (Skilling,

2006)
o (log Z) = Dk, (PII) / niive, 3)

if we wish to keep this constant we must scale ;e With
D1 (PIIT), which as discussed before scales linearly with
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dimension. Second, most practical live point generation
methods require a minimum number of points to tune their
internal parameters (such as ellipsoidal/cholesky decom-
positions or neural network training), and this minimum
number scales with dimensionality. The next section de-
scribes foampler Scaling.

2.2. Previous Work

The key difficulty in nested sampling is that to generate a
new point, one needs to sample points from the prior subject
to a hard likelihood constraint:

{0 ~nm:L0O) >L.}. @

Broadly, the mechanisms for achieving this fall into two
classes: region sampling and step sampling (Ashton et al.,
2022). Region samplers have excellent performance in low
dimensions, but have a computational cost that scales expo-
nentially with dimensionality fsampler ~ O(e?/40), where
do ~ O(10) is both method and problem dependent. Step
samplers have a live point generation cost that scales linearly
with dimensionality fsampler ~ O(d), so are less efficient in
low dimensions.

Region samplers use the current set of live points to de-
fine a proxy that encapsulates the likelihood-constrained re-
gion Eq. 4, and then appropriately samples from this proxy.
For example MultiNest (Feroz & Hobson, 2008; Feroz
et al., 2009; Feroz et al., 2019) achieves this with an el-
lipsoidal decomposition fit to the current set of live points,
nessai (Williams et al., 2021; 2023) trains a normalising
flow and ultranest (Buchner, 2021) places ellipsoidal
kernels on each live point.

Step samplers run a Markov chain starting from one of
the current live points, terminating when one has decor-
related from the initial point and then using the final
point of the chain as new point. Whilst Skilling (Skilling,
20006) originally envisaged a Metropolis Hastings step, in
practice on its own this is a poor choice for sampling
from hard-bounded regions. proxnest (Cai et al., 2022;
McEwen et al., 2023) uses prox-guided Langevin diffu-
sion, DNest (Brewer & Foreman-Mackey, 2016) offers
a flexible framework for programming one’s own step-
per, neuralnest (Moss, 2020) uses normalizing flow
guided Metropolis steps and PolyChord (Handley et al.,
2015a;b) uses slice sampling. Finally, dynesty (Spea-
gle, 2020) and ultranest (Buchner, 2021) offer Python
re-implementations of many of the above within a single
package, with a default dimensionality-dependent switching
between region and path sampling.

Dynamic nested sampling (Higson et al., 2019; Speagle,
2020) is a variant of nested sampling which proposes
eliminating and replacing multiple points at each iteration.

It was initially implemented in the dyPolyChord? and
dynesty? packages, but now is common to many imple-
mentations (Ashton et al., 2022). It has two main use-cases;
increasing the number of posterior samples generated by
nested sampling, and implementing parallelization schemes.

2.3. Hamiltonian Slice Sampling

HSS was first introduced in the context of slice sam-
pling (Neal, 2003), as a variant of Hamiltonian Monte Carlo.
As in slice sampling, the algorithm initially selects an initial
point from the current set of live points and a direction. An
initial momentum variable p;,;, which is a d-dimensional
array (where d is the dimension of the space), is also de-
fined, typically by randomly sampling a unit vector. The
algorithm then proceeds by simulating the trajectory of a
particle located at the initial point with the chosen initial
velocity integrated with some time step At, such that at
each step the position of the particle is updated according to
x" = x + pAr. When the particle goes beyond the slice, it is
reflected back into the slice. This reflection is performed by
updating the momentum from p to p’ using the equation

p'=p-2p-mn, n:=VLO/IVLON. O

where 7 is the unit vector in the direction of the likelihood
gradient and thus the normal vector to an iso-likelihood
surface. Note that, because we are only using the direction
of the gradient, one can equivalently use the gradient of
the log-likelihood, i.e. the score, which is more efficient to
compute. We summarize the algorithm in §B.

As highlighted in Neal (2003), Eq. 5 is only exact when the
point where the reflection of the trajectory of the particle
takes place is exactly on the boundary £(0) = L.. In
practice, we can either use a small tolerance € to define
a neighborhood around the slice and reflect a trajectory
whenever the particle is within this neighborhood, or reflect
a trajectory whenever the particle lands at a point outside
the boundary. The latter method has a theoretical risk of
a particle getting “stuck” behind the boundary (in which
case the trajectory would be rejected, and a new initial
momentum would be chosen).

HSS (or GMC) has been used for nested sampling be-
fore (Betancourt, 2011; Feroz & Skilling, 2013; Speagle,
2020). However, the dynesty implementation and de-
faults of HSS lacks the efficiency and reliability of other
sampling methods. In addition, in these public implementa-
tions, a score has to be manually provided since the package
is not compatible with modern differentiable programming
frameworks.

2dypolychord. readthedocs.io/en/latest/
3dynesty .readthedocs.io/en/stable/
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3. Contributions

In this section, we outline the key combination of ingre-
dients in GGNS we use to significantly improve its perfor-
mance in high-dimensional settings in comparison with ex-
isting publicly available tools.

In brief: we introduce trimming & adaptive step size tech-
niques to remove the hyperparameter tuning difficulties that
have beset previous implementations, bring in the current
state-of-the-art in parallelization and cluster recognition,
and implement in differentiable programming which re-
moves the requirement of providing a score function. With
these innovations we find that one only needs ~ O(1)
bounces to have decorrelated the chain from the start point,
allowing sublinear fy,mpler Scaling. Finally, for maximum
posterior scaling, the fact that gradients guide the path
means one no longer requires njive ~ O(d), giving an in-
principle linear scaling with dimensionality for the purposes
of posterior estimation.

This linear scaling has a theoretical basis. For methods such
as slice sampling, taking n steps in a d dimensional space
leads to sampling an n-dimensional subspace. Therefore,
we need to reach O(d) steps to explore the full space. For
Hamiltonian slice sampling, on the other hand, every time
we use the gradient for a reflection, we get information
about the full d dimensional space. Therefore, each step
is exploring the full volume, leading to the requirement
of O(1) reflections. This is a similar argument to the bet-
ter scaling with the dimensionality of Hamiltonian Monte
Carlo methods, compared to methods such as random walk
Metropolis-Hastings.

In detail, our contributions are the following:

Adaptive Time Step Control We add an adaptive time-step
control mechanism in the HSS algorithm. In HSS, particles
move in straight lines and eventually reflect off the hard
likelihood boundary. To ensure the trajectories between
reflections strike a balance between efficiency and accuracy,
we introduce the concept of a variable time step, denoted as
dt. This time step is adjusted dynamically during the course
of the algorithm. By monitoring the number of reflections,
we increase or decrease df to optimize the computational
efficiency while maintaining trajectory integrity. This ap-
proach, inspired by Neal’s work in (Neal, 2003), enables us
to employ larger time steps, thereby reducing the number of
reflections without compromising trajectory quality.

Trajectory Preservation In our second enhancement, we
introduce a novel approach to preserving and utilizing tra-
jectory* information during the HSS updates. Specifically,

4The term trajectory here refers to the states of the chain, not
the intermediate states of a Hamiltonian trajectory, as in Nishimura
& Dunson (2020).

we store all points along the trajectory after a designated
number of reflections, where min_ref < max_ref. This
archive of trajectory points allows us to efficiently select a
new live point by uniformly sampling the stored trajectories
in a fully parallel manner. We also perturb trajectories by
adding some noise delta_p, to achieve faster decorrelation
of the samples.

Pruning Mechanism To further enhance efficiency, we
introduce a “pruning” mechanism during the HSS process.
Points that have remained outside the slice for an extended
duration are identified and removed from consideration.
These pruned points are then reset to their initial positions,
and new momenta are randomly assigned. This mechanism
significantly improves the computational efficiency of the
proposed method, as we do not waste computational re-
sources evaluating the likelihood of points that have drifted
far away from the slice.

Parallel Evolution of Live Points As in (Burkoff et al.,
2012; Henderson & Goggans, 2014; Martiniani et al., 2014;
Handley et al., 2015b), we implement a dynamic approach
to live point management, whereby half of the live points
are “killed” at each iteration and replaced with new points.
The new set of live points evolves with our HSS algorithm
entirely in parallel, given that the HSS algorithm boils down
to simulating simple dynamics for all the live points. This
parallelism dramatically accelerates the algorithm’s execu-
tion.

Mode Collapse Mitigation To address the issue of
mode collapse, we incorporate a clustering recognition
and evolution algorithm as developed and implemented in
PolyChord (Handley et al., 2015b). During the execu-
tion of the nested sampling process, we identify clusters of
points and keep track of the volume of each cluster. Then,
we spawn points proportionally to this volume. This addi-
tion helps maintain diversity among live points, preventing
them from converging prematurely to a single mode.

Robust Termination Criterion Our final contribution in-
volves the introduction of an alternative termination crite-
rion, which we find to more robust. Unlike previous imple-
mentations of nested sampling that rely on the remaining
prior volume X, we utilize the property that the quantity
X L(6) follows a characteristic trajectory—initially increas-
ing, reaching a peak, and then decreasing. We terminate the
algorithm when X £(6) has decreased by a predetermined
fraction from its maximum value. This termination is further
explained in §G. This criterion proves to be more resilient
to variations in hyperparameters, including the number of
live points.

Differentiable Programming Whilst nested sampling algo-
rithms written in differential programming languages exist
in jax (Albert, 2020) and torch (Paszke et al., 2019;
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Anau Montel et al., 2023), these do not make use of gradi-
ents in guiding the choice of a new live point, Therefore,
their choice of using a differentiable programming language
is motivated mainly by the advantages of GPU interoperabil-
ity. To our knowledge, ours is the first algorithm utilizing the
gradients derived by differentiable programming to guide
the choice of a new live point. Furthermore, this adapta-
tion of nested sampling to hardware intended for modern
machine learning workflows, featuring massive paralleliza-
tion on GPUs; is particularly important in data processing
settings that combine nested sampling with deep learning,
such as when the prior or likelihood models are given by
deep neural networks. We show an example of this when
we combine nested sampling and generative flow networks
in §5.

We summarize the hyperparameters in §C, and provide ex-
tended ablation studies in §E. We also show a summarized
version of our algorithm in, including all details, in §F .

Algorithm 1 A summarized version of the GGNS algorithm.

(Full version in §F.)

1: Initialise ny;ye live points from the prior 7 (6).

Initialise an empty set of dead points.

Evaluate the likelihood £; = £(6;) for each live point.

Set A(XL) =0.

Set (X L)max = 0.

Set dt = dt;y;.

while A(X L) > tol do

Update number of clusters with Alg. 5

Starting from the remaining ny;y.//2 live points, use
HSS to generate ny;ye//2 new points 6y, under the
condition £ (Onew) > Lj VOnew.

10:  Update dt based on the number of trajectory steps

11:  Add 6, to the set of live points.

12: Set (XL)max = max (XLmax, (XL)max), Where
Linax 1s the maximum likelihood amongst the live
points.

13: Set (AXL) = XLmaX/(XL)max

14: end while

15: fori=1, ..., njve do

16:  Select the live point with the lowest likelihood £
and move it from the set of live points to the set of
dead points.

17: SetZ=Z+—~5XL;

18:  Set X = X niver,

19: end for

R A A R

4. Experiments
4.1. Comparison with Other Nested Sampling Methods

We compare the performance of gradient-guided nested sam-
pling with two popular nested sampling algorithms, already

Table 1. Log-evidence function estimation bias (mean and standard
deviation over 10 runs).

Method  Gaussian mixture Funnel Many well
SMC —-0.569 = 0.010 0.561 + 0.801 14.990 + 1.078
PIS 1.274 £ 0.218 0.262 + 0.008 2.69+0.04
FAB 0.0027 £ 0.0012  0.0022 +0.0011  0.0315 + 0.0094
Ours 0.029 + 0.132 —0.051 + 0.353 0.10 + 0.60

introduced in §2: PolyChord and dynesty. We use
the same likelihood function for all algorithms, which is a
Gaussian likelihood with a diagonal covariance matrix, and
therefore has Dk, (P|I1) o« d.

For PolyChord, since fsampler & Nrepeats = 9d, from
Eq. 2 we therefore expect nijjxe o Nijve x5d?. For dynesty,
its default mode swaps between a region sampler with
Mike % Mlive X €4/90d in low dimensions to a slice sam-
pler with nyepeats = d, giVing Rjike © Mive X d?. For GGNS,
since foampler ~ max_-ref ~ O(1), we instead expect

Mike © Mive X d. (6)

For demonstrating the various competing effects discussed
in §2.1, §2.2, §3, we set nj;y. = 200, independent of di-
mensionality. Note that constant n);,, mode is not usually
recommended for these samplers, since, as discussed in §2.1,
we need a minimum number of live points to tune the live
point generation hyperparameters. Since GGNS uses gradi-
ents to guide the choice of live points, it is not restricted in
this way.

The results are shown in Fig. 1. We observe the scaling
expected from the discussion above. At constant njjye,
PolyChord has quadratic scaling with dimensionality,
providing good evidence estimates until the dimensional-
ity becomes similar to the njiye = 200. dynesty is most
efficient but exponentially scaling in low dimensions, and
swaps to quadratic scaling in higher dimensions when it
moves over to slice sampling, at a lower constant than
PolyChord due to its default n,¢peats = d in compari-
son with 5d. Note, however, that this factor of 5 default
efficiency is traded off against poor evidence estimates, even
in low dimensions, once it is in slice sampling mode.

GGNS, as predicted, has by far the best (linear) scaling and
performs evidence estimation accurately even as the dimen-
sionality approaches the number of live points since its live
point generation is guided by gradients rather than the other
live points. Note, however, that as expected from Eq. 3, the
error increases with the square root of the dimensionality at
fixed njjve.

4.2. Synthetic Datasets

We compare our algorithm with other methods for sam-
pling posterior distributions in a series of commonly used
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Figure 1. Comparison of likelihood evaluations (left panel) and error in the estimation of log Z for different dimensionalities between this
work (blue), and other nested sampling algorithms (PolyChord in green and dynesty in orange; showing more efficient log-log linear
scaling while achieving a higher-fidelity estimate. All comparisons are done for a Gaussian likelihood with a diagonal covariance matrix.
The error bars show the standard deviation over 10 runs. Error bars for PolyChord and dynesty are also present but barely visible.
Note that the last point for dynesty is not shown, as it is too large to fit in the plot.
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Figure 2. Contour lines for the target distribution, and samples,
for the first four dimensions of the 32-dimensional “Many Wells”
problem. On the left, we show results for Flow Annealed Impor-
tance Sampling Boostrap (FAB) with a replay buffer, and on the
right for GGNS.

synthetic tasks. We compare with the following methods:
Sequential Monte Carlo (SMC, Halton, 1962; Gordon et al.,
1993; Chopin, 2002; Del Moral et al., 2006), Path Integral
Sampler (PIS, Zhang & Chen, 2022), generative flow net-
works (GFlowNet Bengio et al., 2021; 2023; Lahlou et al.,
2023), and Flow Annealed Importance Sampling Boost-
rap (FAB, Midgley et al., 2023). For SMC, we use the
particles implementation’. For PIS, we compare with the
on-policy version alone, as it obtains better results than
the off-policy version, and we use the reweighted estimate
of log Z Finally, for FAB, we use the publicly available
PyTorch implementation®, and always use the FAB ver-
sion with a replay buffer.

We compare these methods with GGNS in three tasks, al-
ready introduced in (Hoffman et al., 2014; 2019; Zhang

https://particles-sequential-monte-carlo-in-python.
readthedocs.io/en/latest/

Shttps://github.com/lollcat/fab-torch

& Chen, 2022; Lahlou et al., 2023; Midgley et al., 2023):
The first one is a Gaussian mixture in 2-dimension, which
consists of a mixture of 9 mode-separated Gaussians. The
second one is known as Neal’s funnel distribution (Neal,
2003), which is a 10D distribution with a funnel shape. Fi-
nally, the third one is the 32-dimensional Many Well prob-
lem. The Many Well problem is a particularly challenging
one, due to the high its high multimodality.

As our benchmark, we use the accuracy of the estimate in
the log-evidence, or log-partition function. The calculation
of the Bayesian evidence is a good way to evaluate the per-
formance of inference algorithms. We report the mean and
standard error of the estimation bias over 10 independent
runs in Table 1. We observe that gradient-guided nested
sampling obtains unbiased estimates in all three tasks, some-
thing that does not happen for any of the other methods
studied in this work. While our standard deviation is higher
than that of other methods, these can be reduced by adjust-
ing the hyperparameters of our method. However, Eq. 3
shows that the nested sampling log-evidence error can only
be reduced sublinearly by increasing the number of live
points nj;ye, Which increases the computational cost. We
cannot, therefore, expect substantial improvements in GGNS
log-evidence error bars without innovations in the nested
sampling algorithm itself.

When focusing on the quality of generated samples, Fig. 2
shows a comparison between our samples, and those gener-
ated using the state of the art method (FAB), on the Many
Well task. We see how our methods generates samples of
similar quality to FAB, despite a much quicker running time
(our method takes only a few minutes in a CPU for this
task), and less need for hyperparameter tuning.


https://particles-sequential-monte-carlo-in-python.readthedocs.io/en/latest/
https://particles-sequential-monte-carlo-in-python.readthedocs.io/en/latest/
https://github.com/lollcat/fab-torch
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Figure 3. First row: The true image and noise that we aim to
reconstruct. Second row: The mean from out gradient-guided
nested sampling and the standard deviation. We see how the GGNS
posterior matches the expected one.
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4.3. Image Generation

We also tested the performance of GGNS on a high-
dimensional problem, sampling the posterior distribution
over image pixels. To do this, we chose the problem of
inferring the pixel values of background galaxies in strong
gravitational lensing systems (e.g., Adam et al., 2022). We
assumed a correlated (and non-zero mean) normal prior dis-
tribution for the background source. A sample from the
prior was generated (representing the background galaxy)
and was distorted by a the potential of a foreground lens.
Gaussian noise was then added to produce a noisy simulated
data. Given the data, the posterior of a model (a pixelated
image of the undistorted background source) could be cal-
culated by adding the likelihood and the prior terms. Fur-
thermore since the model is perfectly linear (and known)
and the noise and the prior are Gaussian, the posterior is
a high-dimensional Gaussian posterior that could be cal-
culated analytically, allowing us to compare the samples
drawn with GGNS with the analytic solution.

Fig. 3 shows a comparison between the true image and its
noise and the one recovered by GGNS. We see that we can
recover both the correct image, and the noise distribution.
We emphasize that this is a uni-modal problem and that the
experiment’s goal is to demonstrate the capability of GGNS
to sample in high dimensions (in this case, 256), such as
images, and to test the agreement between the samples and
a baseline analytic solution. We can also compare samples
from our method, with samples obtained using Hamilto-
nian Monte Carlo. We use the Hamiltorch implemen-
tation (Cobb, 2023). Using HMC, we get samples with a
Wasserstein distance of 1.91 with respect to ground truth
values, compared to 1.53 with GGNS. Importantly, needed a
sweep of hyperparameters, as most settings just failed with-

Lennard-Jones 13 Lennard-Jones 55

0.06 Ground Truth 0.030 Ground Truth
_ GGNS GGNS
0.05 0.025

0.04 0.020
0.03 0.015
0.02 0.010

0.01 0.005

0.00 0.000
—60 —50 —40 —30 20
Energy

380 —360 —340 —320 —300 —280 —260
Energy

Figure 4. Energy histograms for the Lennard-Jones potential with
13 particles (left) and 55 particles (right). Ground truth is shown
in blue, and GGNS in orange.

out accepting any new samples, while our method works
directly with the default hyperparameters

4.4. Lennard-Jones Potential

To further assess the performance of GGNS on challenging
high-dimensional problems, we evaluated the algorithm on
the Lennard-Jones potential, a widely used model in compu-
tational chemistry. The Lennard-Jones potential describes
the interactions between pairs of neutral atoms or molecules.
We considered the 13- and 55-dimensional Lennard-Jones
potentials, representing a system with many interacting par-
ticles. This task has been used for benchmarking in pre-
vious work (see, for example, Kohler et al., 2020; Klein
et al., 2024; Akhound-Sadegh et al., 2024). Sampling from
the resulting high-dimensional (39-dimensional and 165-
dimensional, respectively) probability distribution is a noto-
riously difficult task due to the complex energy landscape
characterized by numerous local minima and barriers. It is
increasingly difficult for conventional sampling methods to
explore the distribution effectively with increasing dimen-
sionality, and many state-of-the-art algorithms struggle to
maintain efficiency and accuracy, often suffering from mode
collapse or poor mixing.

We show energy histograms for LJ13 and LJ55 in Fig. 4. We
can see how GGNS can obtain high-quality samples even for
LJ55, for which other samplers such as DDS and PIS simply
diverge, while FAB cannot reach low enough energies (see
Figure 4 of Akhound-Sadegh et al. (2024)). Remarkably,
we can run LJ13 GGNS in approximately 30 minutes in a
single CPU and even LJ55 in 12 hours in one CPU (and
much faster if we use parallelization).

5. Combination with Generative Flow
Networks

We show how the samples obtained from the proposed
nested sampling procedure can augment amortized sampling
algorithms, such as the generative flow networks considered
in §4.2. In Lahlou et al. (2023), it was shown that Euler-
Maruyama integration of a stochastic differential equation
(SDE) can be viewed as the generative process of a gen-
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Figure 5. Above: KDE plots of samples from trained stochastic control models (ground truth distribution at lower right). Mixing forward
sampling with noising trajectories initialized at nested sampling outputs results in all modes being modelled accurately. Below: Variational
lower bound on the partition function for the five samplers. The theoretical maximum — achieved by the Schrodinger bridge between the

Dirac distribution at the origin and the target distribution —is Z = 1.

erative flow network. The drift and diffusion terms of the
SDE can be trained as the GFlowNet’s forward policy to
sample from a target distribution given by an unnormalized
density. In particular, GFlowNet objectives can be used
to learn the reverse to a Brownian bridge between a target
distribution and a point, amounting to approximating the re-
verse to particular kind of diffusion process. The trajectory
balance objective — which directly optimizes for agreement
of the forward and reverse path measures — is equivalent in
expected gradient to the objective of the path integral sam-
pler (Zhang & Chen, 2022) when trained using on-policy
forward exploration, but can also be trained using off-policy
trajectories to accelerate mode discovery, which was found
to be beneficial in Lahlou et al. (2023); Malkin et al. (2023).

Extending the setup of Zhang & Chen (2022); Lahlou et al.
(2023), we consider the problem of sampling from a mixture
of 25 well-separated Gaussians (see Fig. 5), with horizontal
and vertical spacing of 5 between the component means and
each component having variance 0.3. The learned sampler
integrates the SDE dx; = p(x,t) dt + 5 dw,, where p is the
output of a neural network (a small MLP) taking x and ¢ as
input, with initial condition xo = 0 up to time ¢t = 1. The
reward for x; is the density of the target distribution. The
neural network architecture and training hyperparameters
are the same as in Lahlou et al. (2023).

We generate a dataset D of 2715 approximate samples from
the target distribution first using GGNS, and then we use
bootstrapping to generate equally weighted samples, us-
ing the bootstrapping algorithm in (Handley, 2019). We
consider five algorithms for training the SDE drift u:

(1) On-policy TB: We train u by optimizing the trajectory
balance (TB) objective on trajectories obtained by in-
tegration of the SDE being trained (equivalent to the
path integral sampler objective and to minimization of
the KL divergence between forward and reverse path
measures).

Exploratory TB: We optimize the trajectory balance
objective on trajectories obtained from a noised version
of the SDE, which adds Gaussian noise with standard
deviation o to the drift term at each step. Consistent
with Lahlou et al. (2023), we linearly reduce o from
0.1 to O over the first 2500 training iterations. Such
exploration is expected to aid in discovery of modes.
Backward TB: We optimize the trajectory balance ob-
jective on trajectories sampled from the reverse (diffu-
sion) process begun at samples from D.

Backward MLE: We sample trajectories from the re-
verse process begun at samples from 9 and train u so
as to maximize the log-likelihood of these trajectories
under the forward process. This objective amounts to
training a diffusion model or score-based generative
model (Song & Ermon, 2019; Ho et al., 2020) on D,
as the optimal u is the score of the target distribution
convolved with a Gaussian and appropriately scaled.
Forward + backward TB: We optimize the trajectory
balance objective both on trajectories obtained by in-
tegrating the SDE forward from samples from 9 and
on reverse trajectories begun at samples from D. This
method resembles the training policy used by Zhang
et al. (2022).

(@)

3)

“)

®)

KDE plots of samples from the trained models, as well as
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training metric plots, are shown in Fig. 5. Training with on-
policy TB alone (1) results in mode collapse, a typical effect
of training with a reverse KL objective (Malkin et al., 2023).
We see that while noise introduced in forward exploration
(2) helps mode discovery, it is insufficient for all modes to
be found. Training using trajectory balance on backward
trajectories (3) results in spurious modes, as the model is un-
likely to see states that are far from those seen along reverse
trajectories from O during training. Maximum (4) discovers
all modes of the distribution, as they are represented in D,
but closer inspection reveals that they are not modeled as ac-
curately; this effect is more pronounced when the dataset D
is small. The best sampling performance is reached by mod-
els that perform a mix of forward exploration and reverse
trajectories from the dataset samples.

It is important to note that with well-tuned exploratory poli-
cies — as in (2) — it is possible to coax the model into discov-
ering all of the modes and modeling them with high fidelity.
However, the model is highly sensitive to the exploration
parameters: if the exploration rate is too high or not reduced
slowly enough, the model is slow to converge and blurs
of ‘fattens’ the modes, while an exploration rate that is too
low results in mode collapse. On the other hand, mixing
forward exploration with backward trajectories from the
approximate samples allows the sampler to model all of the
modes accurately without such tuning. Notably, we found
that the forward trajectories in (5) can be sampled either
on-policy or from a tempered policy, with little difference
in performance.

6. Limitations

While the proposed gradient-guided nested sampling
(GGNS) algorithm offers significant improvements over ex-
isting nested sampling methods and provides a powerful
tool for sampling problems, there are some limitations that
should be acknowledged:

Gradient Computation The efficiency of GGNS relies
heavily on the availability and ease of computing gradients
of the likelihood function. For problems where the like-
lihood function is non-differentiable or has discontinuous
gradients, the performance of GGNS may be hindered. In
such cases, alternative approaches like finite differencing
or subgradient methods could be explored, but these may
come with additional computational costs.

Hyperparameter Tuning Despite the efforts to reduce
hyperparameter tuning, GGNS still requires the specifica-
tion of certain hyperparameters, such as the initial step size,
trajectory preservation parameters, and termination criteria.
The performance of the algorithm may be sensitive to these
hyperparameter choices, and finding optimal settings can be
challenging, especially for complex problems.

High-Dimensional Scaling While GGNS demonstrates
improved scaling with dimensionality compared to exist-
ing nested sampling methods, its performance in extremely
high-dimensional spaces (e.g., thousands of dimensions)
remains uncertain. Additional investigations and potential
algorithmic enhancements may be required to maintain effi-
ciency in such extreme cases.

Trajectory Perturbations with non-uniform priors Our
trajectory perturbation method does not preserve detailed
balance in the case of non-uniform priors. There are some
potential solutions to this problem: 1) We can “absorb” the
prior into the likelihood, thus making the prior again uni-
form. 2) We can do trajectory perturbations only at the
start of the trajectory to achieve decorrelation of the points,
followed by some trajectory without noise perturbation. In
doing that, we effectively use the part of the trajectory with
the noise to find a new starting point and then do a trajec-
tory without noise, and, therefore with the right stationary
distribution. 3) We can abandon trajectory perturbations
altogether. The goal of the noise is to achieve faster decor-
relation of new points, but it is not central to the algorithm’s
functioning. Therefore, we can replace it with longer trajec-
tories without noise.

Fixed mass matrix Our algorithm works with a fixed mass
matrix in HMC. A potential improvement for future work
is to use an adaptive mass matrix, which might improve
performance in certain situations.

Despite these limitations, GGNS represents a significant
step forward in the field of nested sampling, offering a
powerful and scalable approach for Bayesian inference in
challenging high-dimensional problems.

7. Discussion and Conclusions

We have introduced a new nested sampling algorithm based
on Hamiltonian Slice Sampling. Gradient-guided nested
sampling improves on previous nested sampling algorithms
by removing the linear dependence of the number of live
points on dimensionality. It also makes use of the power of
differentiable programming frameworks and parallelization
for significant speed improvements. We have shown that the
proposed method scales much better with dimensionality
than other nested sampling algorithms, thanks to the use of
gradient information. This better scaling allows us to apply
nested sampling in high-dimensional problems that were too
computationally expensive for previous methods. We have
also shown that GGNS can be combined with generative
flow networks to obtain large numbers of samples from
complex posterior distributions. Applications of GGNS to
difficult real-world inference problems, both on its own and
in combination with amortized sampling methods, are left
for future work.
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Impact Statement

The problems of posterior sampling and normalizing con-
stant estimation are of general interest in pure machine
learning and statistical modelling, as well as in many sci-
entific applications. We see no specific negative impacts
or risks of misuse beyond those of other general-purpose
probabilistic inference algorithms.

Reproducibility Statement

An implementation of GGNS in PyTorch (Paszke et al.,
2019), along with notebooks to reproduce the results from
the experiments, is available at https://github.com/
Pablo-Lemos/GGNS.
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A. Nested Sampling Review

Algorithm 2 A simple nested sampling algorithm. Note that more sophisticated implementations include clustering of live
points, a calculation of the error in the estimate of log Z, and other techniques to improve performance.
1: Initialise ny;ye live points from the prior 77(6).
Initialise an empty set of dead points.
Evaluate the likelihood £; = £(6;) for each live point.
Set X =1.
Set Z =0.
while Xy > tol - Z do
Select the live point with the lowest likelihood £, and move it from the set of live points to the set of dead points.
Sample a new point Oy,ey, from the prior 7(0), under the condition L(Oyew) > L;.
SetZ » Z+—=XL;.

Nlivet]
Set X —» X n”L
11ve+1 . .
Add 6,y to the set of live points.
: end while

:fori=1, ..., njjye do

Rl e R A b

— = = =
w2

14:  Select the live point with the lowest likelihood £, and move it from the set of live points to the set of dead points.
. 1

15: SetZ — Z+nmX£J
. live

16: Set X - X P

17: end for

Nested sampling was initially introduced as a method to calculate the Bayesian evidence or marginal likelihood:
z- [ zwx@aw. )

where £(0) is the likelihood function, and 7 (8) is the prior distribution.

The key idea of nested sampling is to define a new variable called the cumulative prior mass or the prior volume as:
x@o = [ 7(6')de’, ®)
L(6)>L(0)

which is the fraction of the prior mass that has a likelihood greater than the likelihood of the current point. This variable is
bounded between 0 and 1, and can be used to rewrite the evidence as:

1
z- / L(X)dX, ©)
0

which is a one-dimensional integral. Therefore, we can evaluate the likelihoods of a set of points {6;} sorted by their
likelihood, and use them to estimate the evidence by approximating the integral in Eq. 9 as a sum:

Z~ ) LX)AX;, (10)

where AX; = X;_1 — X; is the difference in prior volume between the i-th and the (i — 1)-th point. This approximation is
exact in the limit of an infinite number of points, and can be used to estimate the evidence to arbitrary precision.

The key idea of nested sampling is the following: We start by sampling a set of n);ye live points from the prior distribution.
We then find the point with the lowest likelihood, and remove it from the set, adding it to the set of dead points. We then
replace it with a new point sampled from the prior, subject to the constraint that its likelihood is greater than the likelihood
of the point that was removed. This means that, while it is unfeasible to calculate X (6) for each of the new points exactly,
we can approximate it by using the fact that, at each iteration, the prior volume is contracted by approximately:

Nlive
AX; x ——. 11
Niive + 1 ( )
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This process is repeated until the remaining posterior mass is smaller than some fraction of the current estimate of Z. The

set of points that we have sampled can then be used to estimate the evidence using Eq. 10.

Furthermore, Nested Sampling can be used for parameter inference. To do that, we assign the following importance weight

to each point:

L)
pi= 7

where w; is the prior volume of the shell that was used to sample the i-th point:

w; = X,'_l - X[.

An example implementation of a nested sampling algorithm is shown in Alg. 2.

B. Hamiltonian Slice Sampling Algorithm

(12)

(13)

Algorithm 3 Hamiltonian or Reflective Slice Sampling

1: Choose a point 6 from the existing set of live points.

Choose a direction d.

Setp = Dini-

Setx = 6.

Sett =0.

while r < T do
Setx =x+ p dt.

R A A T

p—
L

end if

Sett =1+dt.
: end while

: Set 9’ =x.

—_ = =
oA W

Choose an initial momentum pi,; ~ N(0, 1).

if x is outside the slice then
Take n = VL(9)/||IVL(O)||
Setp=p-2(p-n)n.

We show an example implementation of the Hamiltonian or Reflective Slice Sampling algorithm in Alg. 3.

C. Hyperparameters of GGNS

Table 2.

Parameter

Default Value

Description

Nijve
tol
min ref

max_ref

delta_p

Number of live points. A higher number leads to better
mode coverage.

Tolerance. The stopping criterion. GGNS terminates when
LiX,-/maX(.EiXi) < tol.

The minimum number of reflections. We sample points
after they have reflected of the boundary at least min_ref.
The maximum number of reflections. We stop each HSS
iteration after the point has reflected max_ref times off
the boundary.

The number of noise added to the momentum at each HSS
step, to decorrelate samples faster.

2007

0.01

0.05

Table Table 2, shows the different hyperparameters of GGNS. This shows the little tuning required for GGNS to perform

unbiased sampling.

14
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D. Sampling Complex Distributions

Nested Sampling

Figure 6. Contour lines for the target distribution, and samples, for the mixture of 40 Gaussians from (Midgley et al., 2023). On the left,
we show results for Flow Annealed Importance Sampling Boostrap (FAB), and on the right for GGNS.

We further test the capacity of GGNS to model several complex distributions that are for different reasons challenging for
inference algorithms. For these examples, we use a visual comparison with samples from the true distribution. We increase
the number of live points to 2000 for these examples, to ensure that we have enough samples to compare with the true
distribution. Because nested sampling produces weighted samples, all the figures use an alpha blending of the samples, with
the alpha value proportional to the importance weight.

Firstly, we re-use the Gaussian mixture distribution from the previous example, but we increase the number of modes to 81.
This distribution is difficult due to its very high multimodality. The results are shown in the top panel of Fig. 7, where we
see that our method successfully recovers all modes.

Secondly, the “five Swiss rolls” example consists of five copies of the ”Swiss roll” distribution in two dimensions. It
combines multimodality with the difficulty of sampling the complex structure of each mode of the distribution. As shown in
the bottom panel of Fig. 7, the proposed method successfully samples the distribution.

Finally, we show our performance on the mixture of 40 Gaussians used in (Midgley et al., 2023), in Fig. 6. The image shows
GGNS samples all the modes of the distribution.

E. Ablation Study

Given the multiple different components included in our algorithm, described in §3, it is important to perform an ablation
study to fully understand how the different parts of the algorithm contribute to the observed improvements in performance.
Therefore, this section removes each of the improvements introduced in §3 one by one and analyses the effect of these
changes on the sampling performance. We use the task introduced in §4.1 to perform this comparison unless otherwise
specified.

E.1. Adaptive Time Step Control

We repeat the analysis of §4.1 with a fixed time step in the Hamiltonian slice sampling steps instead of using adaptive time
step control. We attempt three different time steps: dz = 0.5 and dr = 0.1. Note that, in §4.1, we start with dz = 0.1 but
adapt it as the algorithm progresses.

15
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Figure 7. Comparison between the proposed method (left) and the truth (right) on the “five Swiss rolls” distribution. We show our method
successfully recovers every model of this highly multi-modal distribution.

The results, shown in Fig. 8, show that when we use a large d¢ we can reduce the number of likelihood evaluations, as we
achieve the minimum number of reflections faster, but we get a biased estimate of log Z, as we fail to appropriately sample
each slice. For small d¢, on the other hand, we get less bias in log Z, but the number of likelihood evaluations goes up.

In general, the advantage of the adaptive step is that as the algorithm progresses, the volume of the region defined by Eq. 4
we are exploring decreases. Therefore, a step size that is appropriate at a given point will become too large eventually as the
algorithm progresses.

E.2. Trajectory preservation

GGNS uses a novel approach to sample the trajectories and to ensure that samples are correlated, where we ensure a
certain number of boundary reflections. We compare what happens when we use the simpler approach of integrating our
trajectory for a fixed number of steps ngtcps and simply keeping the last sample. We repeat the analysis for ngieps = 20 and
Nsteps = 200.

Fig. 9 shows the results. We see that a fixed number of steps leads to a biased estimate of log Z. The argument for this,
similarly to what it was for trajectory preservation, is that the volume of the region Eq. 4 decreases as the algorithm
progresses.

We also study what happens when we use trajectory preservation but do not add noise d; to achieve a faster decorrelation of
the samples. The results, shown in Fig. 10, are intuitive: No noise in the trajectories reduces the likelihood evaluations, as
trajectories are less noisy but lead to biased evidence estimates, as the samples are not fully decorrelated.

E.3. Mode Collapse Mitigation

To study the effect of this, we need a multimodal distribution. We use a mixture of nine Gaussians, shown in Fig. 11. To
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Figure 8. Comparison of likelihood evaluations (left panel) and error in the estimation of log Z for different dimensionalities between
baseline GGNS (blue), and GGNS without adaptive step control (d¢ = 0.5 in green and d¢ = 0.1 in orange)
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Figure 9. Comparison of likelihood evaluations (left panel) and error in the estimation of log Z for different dimensionalities between
baseline GGNS (blue), and GGNS without trajectory preservation (Nsteps = 200 in green and Nggeps = 20 in orange). Both of these lead
to correlated estimates of log Z, as shown by the right panel.

study the effect of our mode collapse mitigation, we run nested sampling on this problem, with and without this setting. The
main hyperparameter that affects the number of modes found, is the number of live points ny;y.. Therefore, we run nested
sampling on this problem for different values of this hyperparameter. For each configuration, we run the algorithm 10 times,
and count the number of modes found. We define a mode as being found, if at least one of the samples is within a distance
o of the center of the mode.

The results are shown in Table 3. We see how, generally, mode collapse mitigation helps us find a higher number of modes.
Although the number of live points is the most important hyperparameter when it comes to mode finding, the ability to find
all modes for a fixed nj;ve is higher when using mode collapse mitigation.

E.4. Termination Criterion

Finally, we repeat the analysis of §4.1 using the termination criterion used by other nested sampling algorithms such as
DyNesty and PolyChord, in which we terminate the algortihm when £,,,xX; < tol, for some tolerance hyperparameter.
We used a tolerance 0.01, a value often used by nested sampling practitioners.

We show the results in Fig. 12. The number of likelihood evaluations appears similar, but at high dimensions, the previous
termination leads to a biased estimate of log Z. Indeed, while the number of likelihood estimations is of the same order of
magnitude, the termination used by GGNS leads to slightly more evaluations (~ 5.8 - 10® )than the previous one (~ 5.4 - 10°
) for d = 128. These 400, 000 evaluations are likely to drive the underestimation of the evidence by the previous method.
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9 Trajectory Noise
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Figure 10. Comparison of likelihood evaluations (left panel) and error in the estimation of log Z for different dimensionalities between
baseline GGNS (blue), and GGNS without adding noise to the trajectories (orange). Less noise decreases the number of evaluations but
leads to a biased log Z estimate.

Table 3. The average number of modes found over 10 nested sampling runs, sampling the distribution shown in Fig. 11, with and without
mode collapse mitigation, for varying number of live points.

Method Niive = 20 Miive =50 Mijve = 100 ny50e = 200
Without Mode Collapse Mitigation 3.6 6.4 8.2 8.9
With Mode Collapse Mitigation 4.1 6.4 8.4 9

E.5. Comparison with DyNesty hslice

The DyNe sty algorithm also offers the option of using gradients to perform Hamiltonian slice sampling, as discussed in the
main text. However, we have found the performance to be inefficient, something that (Speagle, 2020) also alludes to. Fig. 13
compares GGNS with DyNesty’s version of HSS. We see how, while the evidence estimation is more robust (right panel),
the number of likelihood evaluations is extremely large (left), making it practically unusable in high-dimensional settings.

E.6. Other changes
We could not study other changes, such as the pruning mechanism or parallel Evolution of live points, as this would have led
to a full rewrite of the algorithm. We leave this study for future work.

E.7. Conclusions

The main conclusion of this ablation study is that naive changes to GGNS quickly lead to biased sampling. It is the
combination of the contributions introduced in §3 that leads to robust evidence on high dimensions. Of course, it is true that
for each of these parts, there are settings that will work for any problem, i.e. we can always make the step size small enough,
the number of steps high enough, etc. However, the main advantage of our algorithm is that it works without the need for
fine-tuning all these parameters.

F. GGNS algorithm

We show the full GGNS algorithm in Alg. 4. Our cluster-finding algorithm and our Hamiltonian slice sampling algorithm are
shown in Alg. 5 and Alg. 6 respectively and are both used in Alg. 4. The cluster statistics formalism presented in this section
follows (Handley et al., 2015b). We refer the reader to the original paper for derivations on where these formulas come
from.

The summary statistics are initiated using the following equation:
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Algorithm 4 The GGNS algorithm

1:

AN O

9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:

Initialise ny;ye live points from the prior 7(6).

Initialise an empty set of dead points.

Evaluate the likelihood £; = £(6;) for each live point.

Initiate summary statistics {Z X, Z_p } using Eq. 14 to Eq. 25.
Set A(XL) =0.

Set (XL)max =0.

Set Nclusters = 1.

Set dt = dt;y;.

while A(X L) > tol do

fori=1, ..., ncusters do
Use cluster finding Alg. 5
If new clusters are found, initiate them by splitting the cluster i, using Eq. 36 to Eq. 42
end for
forj=1, ..., njve//2 do
Select the point with the lowest likelihood £; and remove them from the set of live points to the set of dead points.
Update the summary statistics, using Eq. 26 to Eq. 35.
If a cluster has no points, remove it, and set n¢jysters— = 1
end for
Generate the cluster labels for the next points ny;ye//2, proportionally to X_p
Sample x ~ 6);ye, from the appropriate clusters
Use Alg. 6, to get Oy,ew, and out_frac, under the condition £ (8new) > L; V0yew.
if out_frac > 0.15 then
Setdt =dt 0.9
else if out_frac < 0.05 then
Setdt =dt+1.1
end if
Add ey to the set of live points.
Set (X L)max = max (X Liax, (XL)max), Where L., is the maximum likelihood amongst the live points.
Set (AXL) = X-Emax/(X-E)max

end while

31: fori=1, ..., njve do

32:  Select the live point with the lowest likelihood .£; and move it from the set of live points to the set of dead points.
. _ 1
34: SetX=X nm#e
11ve+1
35: end for

Algorithm 5 The cluster finding algorithm used in Alg. 4, for a cluster containing 7 ¢ins points.

1: Initialise prev_sizes = None.

2
3
4:
5:
6.
7
8

9:
10:
11:

s fork=2,..,np0ints do
Run k-nearest-neighbours (KNN) on the cluster points, with value k
Set cluster_sizes as the number of points in each KNN cluster
if cluster_sizes = prev_sizes then
Break
else
Set prev_sizes = cluster_sizes
end if
end for

return The number of KNN clusters.
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Figure 11. The distribution used for our ablation study on mode collapse mitigation, true samples on the right, and samples with GGNS

(n1ive = 100) on the left.
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where p and g refer to the cluster numbers, initially 1. To update the summary statistics, we use:
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Figure 12. Comparison of likelihood evaluations (left panel) and error in the estimation of log Z for different dimensionalities between
baseline GGNS (blue), and GGNS using the termination criterion used by Mult iNest, PolyChord and DyNesty.

Algorithm 6 The Hamiltonian slice sampling algorithm used in Alg. 4, starting from n points with position x, and with step
size dt; and with a likelihood barrier £ i,
1: Setnum out_steps = 0, num_in_steps =0
Setp ~ N(0,1).
Set num reflections|1,...,n] < -0
Set x_saved = {}
while min(num_reflections) < max_reflections do
Set x+ = p = dt
Call the likelihood function, to get £ and VL
Set outsidel[l,...,n] = £ < Luin
9: Taken=VL/|VL)|
10:  Set p[outside] = p[outside] — 2(p - n)n[outside].
11:  Sete ~ N(0,1)
122 Setp=p=*(1l+e=xdeltap)

13:  Setnum_reflections+ = outside

14:  if min(num_reflections) < min_reflections then
15: Add x[~ outside] to x_saved

16:  endif

17:  Set num_out_steps+ = ) (outside)

18:  Setnum_in_steps+ = ),(~ outside)

19: end while

20: Set out_frac = num out_steps/(num_out_steps + num_in_steps)
21: Samples 6 ~ x_saved

22: return 6, out_frac
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Figure 13. Comparison of likelihood evaluations (left panel) and error in the estimation of log Z for different dimensionalities between
GGNS (blue), DyNesty default (orange) and DyNesty using HSS (green).
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When we need to split a cluster p into multiple clusters i, we use:
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Figure 14. In nested sampling, the likelihood £ (dotted line) goes
up, as the algorithm progresses from X = 1 to X = 0 (right to left in
the plot). However, the product X £(X) starts low, as the likelihood
is small, peaks, end goes down again. Therefore, our termination
criterion checks when X £ (X) has peaked, and again gone close to
zero. Image credit (Handley et al., 2015b).
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F.1. Complexity

- The HSS subroutine has complexity O(T) where T is the number of time steps we integrate. Our algorithm works
until reaching a number of reflections, instead of a number of time steps. However, because we have an adaptive time
step that enforces one reflection every N steps (by default N = 10), the algorithm’s complexity does not scale with
latent dimensionality. With respect to number of live points, the algorithm does scale linearly, as each live point evolves
independently (O (nyive)), however, thanks to our parallelization, if we have nyj;,. CPUs/GPUs available, the time complexity
will still be O(1). This is why, as we discuss in the paragraph starting in line 162, right side, the complexity of the subroutine
is O(1), leading to the improved scalability of our algorithm.

- The current clustering subroutine has worse scalability: Because we run k nearest neighbours for the ;e points, up to
Niive times, leading to a complexity O(nﬁve). This is why we run the cluster-finding algorithm very sporadically. We will
explore replacing this clustering algorithm with one with better complexity in future work. Because our algorithm does not
need to scale nj;y with latent dimensionality, however, the scaling with dimensionality is the same one as KNNs O(d).

G. Termination Criterion Explained

Fig. 14 explains the intuition behind the new termination criterion introduced in §3. In nested sampling, the likelihood
increases as the algorithm progresses, corresponding to going from right (X = 1) to left (X = 0) in the figure. However, the
product of the prior volume X and the likelihood £ always follow the same pattern: It starts low, reaches a peak, and then
decreases towards zero again. Therefore, our termination criterion consists of checking the ratio of the current value of X £
to the maximum value that X £ has reached throughout the algorithm. When that fraction is smaller than some threshold,
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Figure 15. The bias in the estimate of log Z as a function of number of likelihood evaluations, for GGNS (blue), and other nested sampling
algorithms (PolyChord in green and dynesty in orange). We achieve different numbers of like evaluations by changing the number
of live points. We run each algorithm with nj;,,. = {50, 100, 200, 400}. Note that the dynesty runs with nj;ye = 50 and ny3ye = 100 are
not in the plot, as they are too far up in the y-axis.

we stop the algorithm.
H. Evidence Estimation as a Function of Likelihood Evaluations

In this appendix, we study the relationship between the number of likelihood evaluations, and the estimate of Alog Z. The
easiest way to vary the number of likelihood evaluations, is by varying the number of live points used. We repeat the analysis
of §4.1, for two values of the number of dimensions d = 32 and d = 64, for each of the algorithms; varying the number of
live points in the range nj;. = {50, 100, 200, 400}.

We see how, in both cases, dynesty can lead to very biased inference, if the number of live points is low (Fig. 15). On
the other hand, PolyChord reliably achieves unbiased inference, at the expense of a much higher number of likelihood
evaluations. GGNS gets the best of each, by achieving unbiased inference with less likelihood evaluations. We also see how
our algorithm scales better with dimensionality, when we compare its performance between the left and the right plots, with
the other algorithms.
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