
Published as a conference paper at ICLR 2021

DISAMBIGUATING SYMBOLIC EXPRESSIONS
IN INFORMAL DOCUMENTS

Dennis Müller
Knowledge Representation and Management
FAU Erlangen-Nürnberg

Computational Logic
University of Innsbruck
d.mueller@kwarc.info

Cezary Kaliszyk
Computational Logic
University of Innsbruck

Institute of Computer science
Warsaw University
cezary.kaliszyk@uibk.ac.at

ABSTRACT

We propose the task of disambiguating symbolic expressions in informal STEM
documents in the form of LATEX files – that is, determining their precise semantics
and abstract syntax tree – as a neural machine translation task. We discuss the
distinct challenges involved and present a dataset with roughly 33,000 entries.
We evaluated several baseline models on this dataset, which failed to yield even
syntactically valid LATEX before overfitting. Consequently, we describe a method-
ology using a transformer language model pre-trained on sources obtained from
arxiv.org, which yields promising results despite the small size of the dataset.
We evaluate our model using a plurality of dedicated techniques, taking the syntax
and semantics of symbolic expressions into account.

1 INTRODUCTION

Despite huge advancements in machine learning, the task of understanding informal reasoning is still
beyond current methods. In fact, it became commonplace that humans annotate informal documents
containing reasoning in many domains, e.g. law (Libal & Steen, 2020). Reasoning is most visible in
mathematical documents and software specification and as such in the last decades, the formalization
of mathematical knowledge, and the verification of formal proofs, has become increasingly popular.
By now, dozens of interactive and automated theorem prover systems are available, each providing
libraries with up to hundreds of thousands of formalizations of mathematical definitions, theorems,
and their proofs written by human mathematicians (Harrison et al., 2014).

While formal methods are still primarily used by computer scientists (e.g. to verify software and
hardware, as well as in program synthesis), by now they have also drawn the interest of an increasing
number of research mathematicians – primarily thanks to famous problems such as Kepler’s conjecture
(Hales et al., 2017) or the classification theorem for finite simple groups (Solomon, 1995), which
have successfully been verified using theorem prover systems.

However, while some mathematicians have begun actively adapting formal methods for their work,
there is a prohibitively large discrepancy between the way new mathematical results are developed,
presented, and published in mathematical practice, and the way they are formalized and implemented
in formal systems (Kaliszyk & Rabe, 2020): Most theorem proving systems implement a fixed logical
foundation (such as variants of set theory or various kinds of type theories), a surface syntax in which
a user declares new definitions and statements in terms of the underlying foundations, and either
a tactic language or a language for expressing proof terms (usually on basis of the Curry-Howard-
correspondence in a typed λ-calculus) that allow for declaring proofs. Consequently, the process
of formalizing new content in a formal system resembles programming much more than it does
developing informal proofs.

This discrepancy results in severe challenges for traditional mathematicians: Formal systems are
difficult to learn and use, even if one is well acquainted with the (informal) mathematics involved.
They require learning dedicated formal languages resembling programming languages, declaring
content on a level of detail that is prohibitive for beginners even for “obvious” conclusions, and their

1

arxiv.org

Published as a conference paper at ICLR 2021

libraries are difficult to grasp without already being familiar with the system’s language, conventions
and functionalities. Due to the required level of detail, knowledge of the existing libraries is crucial
when formalizing new content. Furthermore, many “intuitively valid” arguments can not be easily
expressed in terms of a logical foundation in the first place, and knowing how to deal with those
requires familiarity with the logical foundation involved and lots of practice.

Consequently, the utility of formalizing mathematical results can be too easily (and too often is)
dismissed in light of the additional time and work required for non-experts. This is despite the fact that
many services available for formal mathematics are already enabled by semi-formal (or flexiformal)
representations, such as semantic annotations in natural language texts, or formal representations
containing opaque informal expressions (see e.g. Kohlhase (2013); Lange (2011a); Iancu (2017);
Kohlhase et al. (2017a); Corneli & Schubotz (2017); Dehaye et al. (2016)). Therefore, we need to
invest into methods for bridging the gap between informal mathematical practice and (semi-)formal
mathematics. One way to do so is to investigate autoformalization, the task of (semi-automatically)
converting existing informal mathematical presentations to (increasingly) formal representations.

Notably, these issues extend beyond pure mathematics to other STEM (science, technology, engi-
neering and math) fields, where the formal verification (or lack thereof) of results can have direct
real-world implications – examples include an infamous and costly error in the floating-point unit of
Intel processors (Harrison, 2003) and several human failures to adequately convert between SI and
imperial units, most famously in NASA’s Mars orbiter (Grossman). In fact, the former has already
established formal verification as a vital tool in hardware design (Harrison, 2003).

Two observations motivate the research presented here:

1. The vast majority of STEM researchers can be assumed to be comfortable with using
LATEX; any integration of formal methods in a LATEX development environment (e.g. via new
packages or IDE integration) would consequently lower the entry barrier significantly.

2. The task of going from purely informal mathematical texts to fully formal representations
of the contained knowledge is best done via a separation of concerns, by focussing on
individual subtasks (such as disambiguating symbolic expressions, parsing natural language,
and translating it to a formal foundation) using dedicated tools for each.

In this paper, we discuss specifically the task of disambiguating symbolic expressions – i.e. associating
all symbols in an expression with their precise semantics – in LATEX documents as a machine learning
task, using sTEX semantically annotated LATEX (Kohlhase, 2008). The contributions are threefold:

1. We discuss the details of disambiguating symbolic expressions in informal STEM documents as a
neural machine translation task, 2. we present a new dataset specifically for this task, based on the
existing SMGLoM library of sTEX macros (see Subsection 2.2), and 3. we present a methodology
(using transformer language models) that allows us to achieve positive results on our dataset. We
previously evaluated several baseline NMT models (such as Luong et al. (2017); Vaswani et al. (2017)
and a plain character-based sequence-to-sequence model), which all failed to yield meaningful results
due to our dataset being considerably smaller than is required for traditional NMT models.1

2 PRELIMINARIES

By disambiguating, we mean the task of transforming a sequence of symbols (representing a ma-
thematical formula) into an abstract syntax tree and associating each leaf in the tree with a unique
identifier specifying the precise semantics of the corresponding symbol.

While this might superficially seem an easy task, closer consideration shows that even obvious
seeming statements such as “a+ b” can in fact correspond to a multitude of possible disambiguations:
a and b can be variables or previously defined constants, whereas + can represent e.g. addition on
multiple different number spaces, generic ring or vector space operations, or string concatenation.
In order to adequately disambiguate expressions generically, it is, therefore, necessary to take the
context in which the expression occurs into account.

1All code and data relevant to this paper is available at https://gl.kwarc.info/dmueller/
fifom.

2

https://gl.kwarc.info/dmueller/fifom
https://gl.kwarc.info/dmueller/fifom

Published as a conference paper at ICLR 2021

In this paper, we consider informal documents in LATEX specifically, which we will disambiguate
with the sTEX package, using semantic identifiers provided by the SMGloM library. This eventually
enables various formal knowledge management services (such as type/proof checking) provided by
the MMT system.

2.1 STEX

Kohlhase proposed sTEX (Kohlhase, 2008), a package for annotating LATEX documents with structural
and formal semantics which is today used by multiple groups formalizing mathematics in various sys-
tems. In particular, sTEX is based on OMDOC (Kohlhase, 2006), an extension of OpenMath (Buswell
et al., 2004) which is foundation-agnostic in the sense that it does not favor a specific foundation (such
as type or set theories) over any other. This approach is consequently best suited for semantifying
informal documents, where foundations are often unspecified, left implicit or switched fluently. For
example, category-theoretic and set-theoretic formulations are often used interchangeably in algebraic
settings, whereas type theories are generally favored for computational aspects and formal systems.

Figure 1 shows example sTEX macros and their usage in various stages. Relevant for this paper is
primarily the \symdef command, which introduces a new mathematical concept (e.g. \nattimes in
Figure 1). It takes as arguments a macro name (e.g. nattimes), a symbolic notation (last argument)
and optionally an OMDOC-name (e.g. multiplication), arity (e.g. [1], which may be flexary)
and notational precedence (e.g. p=600, for automatic bracketing). It generates a unique identifier
for the concept being declared (based on the provided OMDOC-name), and a new LATEX macro
(e.g. \nattimes) for referring to the symbol. Alternative notational variants for symbols can be
introduced via \symvariant, which are used as options to the macro (e.g. \nattimes[cdot]).

In addition to being valid LATEX, compilable via pdflatex, sTEX-documents can be transformed
to OMDOC using the LaTeXML-software (Ginev et al., 2011), yielding a formally disambiguated
representation of the document and in particular the symbolic expressions therein on the basis of
the macros provided by \symdefs. LaTeXML also heuristically attempts to disambiguate non-
sTEX-symbols, e.g. by considering “=” and “+” as infix notations for generic equality and addition
operators, respectively.

2.2 SMGLOM

The SMGloM (Kohlhase, 2014), semantic multilingual glossary of mathematics) is a library of
hundreds of sTEX-modules containing mathematical concepts and definitions. It is separated into
signature modules (using the modsig-environment, see Figure 1) containing only symbol declarations,
and natural language modules (using the mhmodnl-environment, here exemplary for English) that
serve as dictionary entries for these, in which the semantics of the symbols are described in a
semi-formal manner. The second row of Figure 1 shows an SMGLoM entry.

2.3 MMT

sTEX itself is integrated, and shares an underlying OMDOC ontology, with the MMT system (Rabe
& Kohlhase, 2013; Horozal et al., 2012; Rabe, 2017) – a foundation-independent meta-framework
and API for knowledge management services. This integration makes the generic services provided
by MMT– e.g. type checking, library management/browsing, translation – available to informal
mathematical texts. Using alignments (Müller, 2019; Müller et al., 2017), OMDOC-expressions can
be translated between different libraries, languages and foundations. This allows for e.g. translating
(originally) sTEX-content to a typed setting in order to e.g. check expressions and run type inference.

Additionally, several theorem prover libraries have been translated to OMDOC and integrated in the
MMT system, e.g. Kohlhase et al. (2017b); Müller et al. (2019) (for a detailed overview, see Müller
(2019) and Kohlhase & Rabe (2020)). Extending these integrations to enable exporting from MMT
as well (and in conjunction with natural language processing), this could enable verifying informal
mathematics imported via sTEX using external state-of-the-art theorem prover systems.

3

Published as a conference paper at ICLR 2021

sTEX declarations
(signature module)

\begin{modsig}{natarith}
...
\symdef[name=multiplication]{nattimesOp}{*}
\symvariant{nattimesOp}{cdot}{\mathop\cdot}
\symdef[assocarg=1,name=multiplication]
{nattimes}[1]{\assoc[p=600]{\nattimesOp}{#1}}

\symvariant{nattimes}[1]{cdot}
{\assoc[p=600]{\nattimesOp[cdot]}{#1}}

... \end{modsig}

sTEX references
(natural language
module)

\begin{mhmodnl}{natarith}{en}
...
\begin{definition}
\Defi{multiplication} $\nattimesOp[cdot]$
computes the \defi{product} $\nattimes[cdot]
{a,b}$ (also written as $\nattimes{a,b}$ or

$\nattimes[x]{a,b}$) of \trefiis[naturalnumbers]
{natural}{number} a and b. It is defined

by the equations $\eq{\nattimes[cdot]{x,0},0}$
and $\eq{\nattimes[cdot]{x,\natsucc{y}},
\natplus{x,\nattimes[cdot]{x,y}}}$.

\end{definition}
... \end{mhmodnl}

PDF output
(for the natural
language module)

Definition. Multiplication · computes the product a · b (also written as ab
or a× b) of natural numbers a and b. It is defined by the equations x ·0 = 0
and x · S(y) = x+ x · y.

OMDOC <OMA>
<OMS cd="smglom:mv?equal" name="equal"/>
<OMA>
<OMS cd="smglom:arithmetics?natarith"

name="multiplication"/>
<OMV name="x"/>
<OMI>0</OMI>

</OMA>
<OMI>0</OMI>

</OMA>

Figure 1: An sTEX Example: The OMDOC corresponds to the symbolic expression x · 0 = 0

3 STATE OF THE ART

Various papers over the last years have – explicitly or implicitly – attempted to extract formal
information from informal documents using machine learning. These fall into two categories:

Firstly, there are projects that attempt to fully formalize informal mathematical documents using
machine learning techniques, using the surface language of some theorem prover system directly
as a target. In Kaliszyk et al. (2017a; 2015; 2014), the Flyspeck project (Hales et al., 2017) – the
formalization of Kepler’s theorem – was used as a basis for a parallel dataset in order to translate from
informal mathematics to HOL Light (Harrison, 1996) syntax. Kaliszyk et al. (2017b); Wang et al.
(2018; 2020) target the Mizar language (Mizar) instead, using the Journal of Formalized Mathemat-
ics (JFM) as data – an informal representation of the formal Mizar Mathematical Library (Bancerek
et al., 2018).

While these projects achieved impressive results given the ambitious nature of the task, their success
rate is naturally limited by the involved models having to solve several tasks at once (see second
observation in Section 1), including ours. Additionally, by going to a fully formal language (and
logical foundation) immediately, the result does not preserve the narrative presentation of the input
document, effectively losing (for us) valuable information in the process. Consequently, our task and
results obtained on it are not directly comparable to these projects.

Secondly, various projects have aimed to solve informally presented mathematical problems of
various kinds. These include Arai et al. (2014); Matsuzaki et al. (2014; 2017; 2018) on pre-university
math problems, Saxton et al. (2019) and Lample & Charton (2019) on high-school level equations,

4

Published as a conference paper at ICLR 2021

Gan & Yu (2017) and Seo et al. (2015) on geometric problems, and Huang et al. (2018) and Wang
et al. (2017) on solving typical high-school word problems.

While this naturally entails disambiguating symbolic expressions, all these projects reduce their
domain of applicability to specific areas where all occurring formal symbols are syntactically unam-
biguous – primarily common arithmetic operations, functions, and relations on real numbers – such
that disambiguation reduces to simple parsing of a fixed, small set of a priori known symbols.

4 TASK DEFINITION

Definition 4.1. (Disamiguation Task) Let L be a set of LATEX fragments (i.e. strings), which we
assume are syntactically valid LATEX in some suitable document context.

A symbolic expression is (for our purposes, simplified) any substring s of some S ∈ L such that s is
interpreted by the TEX-engine in math mode – e.g., if it is delimited by $, $$ or \[and \] respectively.

For the purposes of our task, we call S ∈ L fully disambiguated, if every symbolic expression
occurring in S only consists of:

1. variable names (e.g. n or \mathcal{G}, provided they do not represent specific, definite
mathematical objects),

2. sTEX macros introduced via a \symdef declaration in the SMGLoM, or

3. non-semantic commands or characters, such as additional spaces/tabs/linebreaks, purely
aesthetic spacing or kerning commands, unnecessary parentheses or clarifying comments
(e.g. in under- or overbraces).

Let LsTEX ⊂ L the subset of fully disambiguated LATEX fragments. Conversely, let LLATEX ⊂ L be the set
of LATEX fragments that do not contain any sTEX macros2.

Clearly, for any S ∈ L, there is some LATEX(S) ⊂ LLATEX such that S and any S′ ∈ LATEX(S) represent
the same symbolic presentation – i.e. they generate the same output on pdflatex.

Conversely, we assume that for any S ∈ L there is a set sTEX(S) ⊂ LsTEX such that 1. LATEX(S) =
LATEX(S′) for all S′ ∈ sTEX(S) (i.e. they have the same symbolic presentation) and 2. all S′ ∈
sTEX(S) capture the intended semantics of S - i.e. the author of S, were they to know the SMGLoM
library sufficiently well, would agree that S′ is a correctly fully disambiguated variant of S.

Our goal is to learn a function f : L → L such that for any S ∈ L we have f(S) ∈ sTEX(S).

Example 4.1. Consider the sentence from the SMGloM

Multiplication \cdot computes the product $a\cdot b$ (also written as
ab or $a\times b$) of natural numbers a and b.

The last two symbolic expressions (a and b) only consist of variable names, and are thus
considered fully disambiguated already.

The first one (\cdot) refers to the multiplication operator on natural numbers, which in sTEX is
represented as \nattimesOp, the remaining symbolic expressions are all multiplications on natural
numbers applied to the variables a and b with different notations, represented in sTEX via \nattimes
with various options.

We expect the target function f on this input sentence to output

Multiplication \nattimesOp computes the product $\nattimes[cdot]{a,b}$
(also written as $\nattimes{a,b}$ or $\nattimes[x]{a,b}$) of natural

numbers a and b.

2Note that LLATEX and LsTEX are not disjoint

5

Published as a conference paper at ICLR 2021

5 DATASETS

We have two datasets of sTEX-content:

1. The SMGLoM3, which introduces precisely those macros that we want to be learned by
a model. Unfortunately, it provides relatively few symbols and hence can only cover a
small part of informal documents even in theory. Additionally, apart from some rudimentary
concepts such as logical connectives or basic arithmetic functions, the SMGLoM library
references the majority of symbols only once (in the corresponding dictionary entry). This
is unlike most other formal systems, where all symbols need to be typed or defined for-
mally when being declared, which naturally leads to a significant number of references to
previously declared symbols.

2. The MiKoMH4-repository of lecture notes by Michael Kohlhase (the author of sTEX) is
heavily biased towards subjects in computer science, covering only a small part of SMGLoM-
entries, and often introducing local \symdefs.

Notably, while the translation from source to target language is difficult, the reverse translation (from
sTEX to plain LATEX) is easy: Since sTEX macros internally expand (ultimately) to the plain notational
representation as basic LATEX, translating from the target to the source language amounts to merely
expanding sTEX macros. This allows for easily generating a parallel dataset from a set of documents
in the target language.

To obtain such a parallel corpus for supervised learning, we take the individual LATEX-files in those
repositories and do the following:

1. We separate the documents into small fragments of (on average) 500 character lengths,
which we consider to be the sentences in LsTEX. Symbolic expressions occur preferably
at the end of a sentence, based on the assumption that preceding text provides a more
meaningful context for disambiguation. Sentences that do not contain symbolic expressions
are ignored.

2. In each sentence S = SsTEX ∈ LsTEX, we perform some standardization function which e.g.
removes non-semantic macros and ensures that macro arguments are always braced, in order
to minimize author bias,

3. We extract all symbolic expressions (msTEX,i)i≤nS
in S and expand all sTEX macros in

them, resulting in (mLATEX,i)i≤nS
(where nS is the number of symbolic expressions in S).

Analogously, we expand all sTEX macros in S itself, yielding SLATEX ∈ LLATEX.

Each entry in our dataset then consists of a 4-tuple (SLATEX, SsTEX, (mLATEX,i)i≤nS
, (msTEX,i)i≤nS

). In
total, we obtain 911 entries from SMGLoM and 9200 entries from MiKoMH.

Synthesizing Training Data In order to augment our datasets for supervised learning, we opted to
exploit the MMT integration to synthesize additional training data.

For that, we aligned SMGLoM symbols with declarations in a strongly typed MMT archive; namely
the Math-in-the-Middle (MitM) library (Müller, 2019). This allows us to randomly generate well-
typed (and hence syntactically well-formed) terms in a typed setting, translate these along alignments
to sTEX expressions and subsequently generate surrounding verbalizations.

The generating algorithm takes as input a set of symbols Sym (e.g. all MitM-symbols for which an
alignment to SMGLoM exists) and a starting symbol s ∈ Sym (e.g. nattimes; binary multiplication
on natural numbers). It returns a random well-typed formal expression t which is guaranteed to
contain s. Afterwards, it is verbalized as an sTEX sentence using natural language fragments (a
detailed description of the algorithm is given in Appendix A).

The synthesized sTEX sentences are then treated as above to augment our parallel training corpus.

As an evaluation dataset, we developed sTEX documents based on selected fragments of introductory
sections from mathematics lecture notes; primarily containing basics such as set operations, number

3https://gl.mathhub.info/smglom
4https://gl.mathhub.info/MiKoMH

6

https://gl.mathhub.info/smglom
https://gl.mathhub.info/MiKoMH

Published as a conference paper at ICLR 2021

spaces, examples for proofs by induction, basic combinatorics, and definitions of common algebraic
structures, containing 161 symbolic expressions in total. Importantly, these documents were written
by hand, with a focus on featuring multiple symbols with the same symbolic representation; primarily
the usual arithmetic operations on different number spaces.

Of the ≈ 100 SMGLoM symbols used therein, 92 were aligned with corresponding symbols in the
MitM library and used as input symbols for synthesizing sentences; with 250 sentences per starting
symbol (as to not drown out the non-synthesized sentences), yielding 23,000 additional sentences.

Unlike the training datasets, the evaluation document was translated to plain LATEX manually using
the PDF as a reference, in order to avoid possible spurious patterns in automatically expanded sTEX.

6 STEX-ANNOTATING WITH MACHINE LEARNING AS AN NMT TASK

In the course of our experiments, we considered our disambiguation task as a machine translation
(NMT) problem, the models for which have been proven to be quite effective even beyond natural
language translations (Clark et al., 2020). In fact, the autoformalization projects mentiond in Section 3,
which are spiritually closest to our task, all used NMT models with positive results. There are however
several aspects that distinguish a LATEX-to-sTEX translation from similar translation tasks which
significantly affect the applicability of existing tools and hence our methodology.

First, Unlike the most popular formal systems, there is no large library of formalizations for the
translation target. This leaves us with only a small dataset that (for the reasons outlined in Section 5)
does not represent well the general distribution we would like to learn.

Second, translation is only relevant for specific fragments of an input text, namely the symbolic
expressions; for the surrounding natural language texts, translation should be the identity. Never-
theless, surrounding text usually contains critical information for disambiguation; e.g. without the
surrounding context, it is impossible to disambiguate an expression a+ b, since the symbol “+” could
refer to any of dozens of addition operations.

Finally, depending on perspective, the domain language is a proper subset of the target language; or
rather (since we want to avoid ambiguous expressions in sTEX) domain and target language share
both a basic grammar as well as a large amount of vocabulary (namely LLATEX ∩ LsTEX) which e.g.
subsumes natural English. For the domain language, large datasets are easily obtainable.

Our task could also be considered as a text style transfer task – e.g. Yang et al. (2019) uses pre-trained
language models for text style transfer, roughly similar to (but more sophisticated than) our approach.
While the datasets used therein are still considerably larger than ours, this might be a promising
avenue for future improvements over our model.

7 METHODOLOGY

Notably, sTEX macros reflect the syntax tree of an expression, so that on symbolic expressions alone,
the representation of the target sequences is naturally analogous to those chosen in string-to-tree
translations (Aharoni & Goldberg, 2017). Plain LATEX however is not naturally amenable to a tree-
structured representation, making tree-to-tree approaches (Chen et al., 2018) not easily applicable to
our dataset.

Initial experiments using standard, dedicated NMT models with full sentences as input/output quickly
proved to be ineffective due to the size of the training corpus, which was too small to cause these
models to even generate syntactically correct LATEX (e.g. knowing to balance pairs of brackets) before
overfitting on the training data. This makes it difficult to compare our approach to an informative
baseline model.

Transformer language models (e.g. Devlin et al. (2018); Liu et al. (2019); Radford (2018); Radford
et al. (2019); Clark et al. (2020)) allow us to leverage huge available corpora of plain LATEX documents
to train a model to “understand” both basic LATEX syntax and mathematical terminology. Using those,
we consequently do not need to rely on our small dataset for this base-level understanding. We can
then approach learning sTEX annotations as a downstream task on a pre-trained transformer model.
Consequently, we pre-trained a GPT2 (Radford et al., 2019) model on a large portion of available

7

Published as a conference paper at ICLR 2021

LATEX sources of scientific papers from the preprint repository arxiv.org (6,673,950 entries of
length 1,024 tokens). The model was trained from scratch in order to use a dedicated tokenizer trained
on LATEX directly (byte-level tokenizer; vocabulary size 32,000) rather than natural language alone.

In order to leverage the pretrained model for both source and target language5, we subsequently opted
to fine-tune the GPT2-model on inputs of the form

SLATEX <s> mLATEX <s> msTEX <s>,

where <s> a single-token separator.6 For example, for Figure 1 the training data contains fragments
(normalized) such as:

Multiplication \cdot computes the product $a\cdot b$ (also written as
ab or $a\times b$) of natural numbers a and b.

<s> $a\cdot b$ <s> $\nattimes[cdot]{a,b}$ <s>
We then use text generation on inputs of the form SLATEX <s> mLATEX <s> for translating and stop
generating after encountering <s>.

By using one entry per symbolic expression, we obtain a dataset of 121,368 examples. The GPT2-
model was finetuned on these for five epochs, resulting in an average training loss of 0.04 and yielding
promising results on the evaluation set (see below). This approach has the following advantages:

1. It allows for using large datasets of generic LATEX documents to learn basic syntactic rules
and semantics of mathematical expressions beyond our small sTEX datasets.

2. We conjecture that this approach makes the model less sensitive to spurious patterns in the
synthesized part of our dataset.

3. Adding new symbols to the SMGLoM and aligning them to (new or existent) symbols in the
MitM library allows for immediately synthesizing training data, obviating the need to first
obtain large amounts of data using the new symbol before the model can learn to use it.

4. The mere pretrained GPT2 model can be trained on additional downstream tasks, e.g.
introducing macros for referencing mathematical concepts in natural language fragments.

8 EVALUATION AND RESULTS

The traditional evaluation metrics (loss during evaluation, perplexity, BLEU) are somewhat difficult
and/or meaningless to apply in our situation, since 1. the returned tokens and provided label tokens
might differ in semantically irrelevant ways (e.g. $a+b$ vs. $a + b$), and 2. loss/perplexity would
be evaluated during a forward pass in a next token prediction task on a token-by-token basis, which
would retroactively “correct” errors in prediction that would otherwise yield completely wrong result.

Consequently, we opted for a plurality of evaluation strategies. Let SF the returned sentence of our
model on an input SLATEX with the correct label SsTEX. Then on our evaluation set we get

1. SF ∈ L for 96.9% of inputs

2. SLATEX ∈ LATEX(SF) for 64.0% of inputs,

3. SF ∈ LsTEX for 60.2% of inputs, and

4. SF = SsTEX for 47.2% of inputs.

In comparison, using traditional NMT models auch as Luong et al. (2017); Vaswani et al. (2017) we
effectively obtained 0% success rates for all of the above. Additional evaluation techniques exploiting
the MMT integration are described in Appendix B.

Figure 2 shows a few examples where our model “failed” in interesting ways. As the first and fourth
examples show, the model seems to consistently fail to replace “=” by the intended macro \eq – a
failure that LaTeXML can recover when converting to OMDOC, but also regularly occurs in the
training data. Similarly, \ldots often leads to wrong translations: The first example shows that the

5Initial experiment with the pretrained model as encoder component only showed improvements over
randomly initialized encoder-decoder-models, but ultimately proved unsuitable still due to the small dataset size.

6inspired by http://jalammar.github.io/illustrated-gpt2/
#part-3-beyond-language-modeling

8

arxiv.org
http://jalammar.github.io/illustrated-gpt2/#part-3-beyond-language-modeling
http://jalammar.github.io/illustrated-gpt2/#part-3-beyond-language-modeling

Published as a conference paper at ICLR 2021

SLATEX: \mathbb{N}=\{0,1,2,3,\ldots\}
SsTEX: \eq{\NaturalNumbers,\setdots{0,1,2,3}}
SF : \NaturalNumbers=\set{0,1,2,3}

SLATEX: (A \subseteq B)\Leftrightarrow(\forall x\in A. x\in B)
SsTEX: \biimpl{\sseteq{A}{B}}{\foral{\inset{x}{A}}{\inset{x}{B}}}
SF : \biimpl{\sseteq{A}{B}}{\foral{x}{A}\inset{x}{B}}}

SLATEX: \mathcal{P}(A):=\{x|x\subseteq A\}
SsTEX: \defeq{\powerset{A}}{\setst{x}{\sseteq{x}{A}}}
SF : \defeq{\powerset{A}}{\bsetst{x}{x}{\sset{x}{x} A}}

SLATEX: 1+2+3+4+5=(5\cdot6)/2=15
SsTEX: \eq{\natplus{1,2,3,4,5},\natdiv[slash]{\nattimes[cdot]

{5,6}}{2},15}
SF : \natplus{1,2,3,4,5}=\natdiv[slash]{\natplus{\nattimes[cdot]

{5,6},4,5}}{2}=15

Figure 2: Example Inputs and Outputs from our Evaluation Set

model simply dropped \ldots, using a generic set constructor macro \set rather than \setdots,
the one specifically intended for sets ending in ellipses.

In the second example, the model seems to introduce a nonsensical additional argument for the
\foral macro. Notably, the expression ∀x ∈ A.P can also be achieved using the dedicated
macro \foralS{x}{A}{P}. Seemingly, the model chose the macro \foral, and the arguments for
the \foralS macro, yielding a wrong translation that generates a wrong pdf output, while being
“semantically almost correct”.

In the third example, the model confuses the macro \setst (for set comprehension) with a more
complex macro \bsetst (for set comprehension with a complex pattern on the left side). Addition-
ally, it confuses \sseteq (for inclusive subsets x ⊆ A) with \sset (for generic subsets x ⊂ A),
duplicating the first argument and moving the intended argument A outside the scope of the macro.

Example four is interesting in that the model correctly identifies the arithmetic operations as those on
the natural numbers, but spuriously inserts an additive term \natplus{...,4,5}; this is likely an
artifact from the left-hand side of the equation. Interestingly, these kinds of artifacts occur more than
once in our evaluation set.

9 CONCLUSION

We have proposed the task of disambiguating symbolic expressions in informal STEM documents
and defined this task formally. This allows for annotating informal documents semantically, and
further processing them using tools that support such annotated documents (e.g. MMT). We discussed
the specificity of this task and what separates this task from other NMT problems. We developed a
dataset for this task and presented an approach that yields promising results, especially in light of the
size of the dataset. In particular, the presented approach points to the efficacy of using transformer
models pretrained on generic LATEX documents.

In the future, we plan to combine the proposed symbolic disambiguation approach with an auto-
formalization framework. This way we aim to achieve better results for end-to-end formalization of
informal mathematical documents. Furthermore, more promising results for the currently proposed
task could be obtained by reintegrating the proposed models into an encoder-decoder NMT model.

ACKNOWLEDGMENTS

The first author and this work were supported by a postdoc fellowship of the German Academic
Exchange Service (DAAD).

The second author is supported by ERC starting grant no. 714034 SMART

9

Published as a conference paper at ICLR 2021

REFERENCES

Roee Aharoni and Yoav Goldberg. Towards string-to-tree neural machine translation, 2017.

Noriko H. Arai, Takuya Matsuzaki, Hidenao Iwane, and Hirokazu Anai. Mathematics by machine. In
Proceedings of the 39th International Symposium on Symbolic and Algebraic Computation, ISSAC
’14, pp. 1–8, New York, NY, USA, 2014. ACM. ISBN 978-1-4503-2501-1. doi: 10.1145/2608628.
2627488. URL http://doi.acm.org/10.1145/2608628.2627488.

Grzegorz Bancerek, Czeslaw Bylinski, Adam Grabowski, Artur Kornilowicz, Roman Matuszewski,
Adam Naumowicz, and Karol Pak. The role of the Mizar Mathematical Library for interactive proof
development in Mizar. J. Autom. Reasoning, 61(1-4):9–32, 2018. doi: 10.1007/s10817-017-9440-6.
URL https://doi.org/10.1007/s10817-017-9440-6.

S. Buswell, O. Caprotti, D. Carlisle, M. Dewar, M. Gaetano, and M. Kohlhase. The Open Math
Standard, Version 2.0. Technical report, The Open Math Society, 2004. See http://www.
openmath.org/standard/om20.

Xinyun Chen, Chang Liu, and Dawn Song. Tree-to-tree neural networks for program translation,
2018.

Kevin Clark, Minh-Thang Luong, Quoc V. Le, and Christopher D. Manning. ELECTRA: pre-training
text encoders as discriminators rather than generators. In 8th International Conference on Learning
Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020.
URL https://openreview.net/forum?id=r1xMH1BtvB.

Joe Corneli and Moritz Schubotz. math.wikipedia.org: A vision for a collaborative semi-formal,
language independent math(s) encyclopedia. In AITP 2017. The Second Conference on Artificial
Intelligence and Theorem Proving, pp. 28–31. 2017.

Paul-Olivier Dehaye, Mihnea Iancu, Michael Kohlhase, Alexander Konovalov, Samuel Lelièvre,
Dennis Müller, Markus Pfeiffer, Florian Rabe, Nicolas M. Thiéry, and Tom Wiesing. Interoper-
ability in the OpenDreamKit project: The math-in-the-middle approach. In Michael Kohlhase,
Moa Johansson, Bruce Miller, Leonardo de Moura, and Frank Tompa (eds.), Intelligent Com-
puter Mathematics 2016, number 9791 in LNAI. Springer, 2016. ISBN 978-3-319-08434-3.
URL https://github.com/OpenDreamKit/OpenDreamKit/blob/master/WP6/
CICM2016/published.pdf.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of deep
bidirectional transformers for language understanding. CoRR, abs/1810.04805, 2018. URL
http://arxiv.org/abs/1810.04805.

Wenbin Gan and Xinguo Yu. Automatic understanding and formalization of natural language
geometry problems using syntax-semantics models. 2017. doi: 10.24507/ijicic.14.01.83. URL
http://www.ijicic.org/ijicic-140106.pdf.

Herman Geuvers, Matthew England, Osman Hasan, Florian Rabe, and Olaf Teschke (eds.). Intelligent
Computer Mathematics, number 10383 in LNAI, 2017. Springer. ISBN 978-3-319-62074-9. doi:
10.1007/978-3-319-62075-6.

Deyan Ginev, Heinrich Stamerjohanns, Bruce R. Miller, and Michael Kohlhase. The latexml daemon:
Editable math on the collaborative web. In James H. Davenport, William M. Farmer, Josef Urban,
and Florian Rabe (eds.), Intelligent Computer Mathematics - 18th Symposium, Calculemus 2011,
and 10th International Conference, MKM 2011, Bertinoro, Italy, July 18-23, 2011. Proceedings,
volume 6824 of Lecture Notes in Computer Science, pp. 292–294. Springer, 2011. doi: 10.1007/
978-3-642-22673-1_25. URL https://doi.org/10.1007/978-3-642-22673-1_
25.

Lisa Grossman. Metric math mistake muffed mars meteorology mission. https://www.wired.
com/2010/11/1110mars-climate-observer-report/.

10

http://doi.acm.org/10.1145/2608628.2627488
https://doi.org/10.1007/s10817-017-9440-6
http://www.openmath.org/standard/om20
http://www.openmath.org/standard/om20
https://openreview.net/forum?id=r1xMH1BtvB
https://github.com/OpenDreamKit/OpenDreamKit/blob/master/WP6/CICM2016/published.pdf
https://github.com/OpenDreamKit/OpenDreamKit/blob/master/WP6/CICM2016/published.pdf
http://arxiv.org/abs/1810.04805
http://www.ijicic.org/ijicic-140106.pdf
https://doi.org/10.1007/978-3-642-22673-1_25
https://doi.org/10.1007/978-3-642-22673-1_25
https://www.wired.com/2010/11/1110mars-climate-observer-report/
https://www.wired.com/2010/11/1110mars-climate-observer-report/

Published as a conference paper at ICLR 2021

Thomas C. Hales, Mark Adams, Gertrud Bauer, Dat Tat Dang, John Harrison, Truong Le Hoang,
Cezary Kaliszyk, Victor Magron, Sean McLaughlin, Thang Tat Nguyen, Truong Quang Nguyen,
Tobias Nipkow, Steven Obua, Joseph Pleso, Jason M. Rute, Alexey Solovyev, An Hoai Thi Ta,
Trung Nam Tran, Diep Thi Trieu, Josef Urban, Ky Khac Vu, and Roland Zumkeller. A formal
proof of the Kepler conjecture. Forum of Mathematics, Pi, 5, 2017. doi: 10.1017/fmp.2017.1.

J. Harrison. HOL Light: A Tutorial Introduction. In Proceedings of the First International Conference
on Formal Methods in Computer-Aided Design, pp. 265–269. Springer, 1996.

J. Harrison. Formal verification at Intel. In 18th Annual IEEE Symposium of Logic in Computer
Science, 2003. Proceedings., pp. 45–54, June 2003. doi: 10.1109/LICS.2003.1210044.

John Harrison, Josef Urban, and Freek Wiedijk. History of interactive theorem proving. In Jörg H.
Siekmann (ed.), Computational Logic, volume 9 of Handbook of the History of Logic, pp. 135–214.
Elsevier, 2014. doi: 10.1016/B978-0-444-51624-4.50004-6. URL https://doi.org/10.
1016/B978-0-444-51624-4.50004-6.

F. Horozal, M. Kohlhase, and F. Rabe. Extending MKM Formats at the Statement Level. In
J. Campbell, J. Carette, G. Dos Reis, J. Jeuring, P. Sojka, V. Sorge, and M. Wenzel (eds.),
Intelligent Computer Mathematics, pp. 64–79. Springer, 2012.

Danqing Huang, Jing Liu, Chin-Yew Lin, and Jian Yin. Neural math word problem solver with
reinforcement learning. In Proceedings of the 27th International Conference on Computational Lin-
guistics, pp. 213–223, Santa Fe, New Mexico, USA, August 2018. Association for Computational
Linguistics. URL https://www.aclweb.org/anthology/C18-1018.

Mihnea Iancu. Towards Flexiformal Mathematics. PhD thesis, Jacobs University, Bremen, Germany,
2017. URL https://opus.jacobs-university.de/frontdoor/index/index/
docId/721.

JFM. Journal of formalized mathematics. http://www.mizar.org/JFM.

Cezary Kaliszyk and Florian Rabe. A survey of languages for formalizing mathematics, 2020. URL
https://arxiv.org/abs/2005.12876.

Cezary Kaliszyk, Josef Urban, Jiří Vyskočil, and Herman Geuvers. Developing corpus-based
translation methods between informal and formal mathematics: Project description. In Stephen M.
Watt, James H. Davenport, Alan P. Sexton, Petr Sojka, and Josef Urban (eds.), Intelligent Computer
Mathematics, pp. 435–439, Cham, 2014. Springer International Publishing. ISBN 978-3-319-
08434-3.

Cezary Kaliszyk, Josef Urban, and Jiří Vyskočil. Learning to parse on aligned corpora (rough
diamond). In Christian Urban and Xingyuan Zhang (eds.), Interactive Theorem Proving, pp.
227–233, Cham, 2015. Springer International Publishing. ISBN 978-3-319-22102-1.

Cezary Kaliszyk, Josef Urban, and Jiří Vyskočil. Automating formalization by statistical and semantic
parsing of mathematics. In Mauricio Ayala-Rincón and César A. Muñoz (eds.), Interactive Theorem
Proving, pp. 12–27, Cham, 2017a. Springer International Publishing. ISBN 978-3-319-66107-0.

Cezary Kaliszyk, Josef Urban, and Jiří Vyskočil. System description: Statistical parsing of informal-
ized Mizar formulas. In Tudor Jebelean, Viorel Negru, Dana Petcu, Daniela Zaharie, Tetsuo Ida,
and Stephen M. Watt (eds.), 19th International Symposium on Symbolic and Numeric Algorithms
for Scientific Computing, SYNASC 2017, pp. 169–172. IEEE Computer Society, 2017b.

M. Kohlhase. OMDoc: An Open Markup Format for Mathematical Documents (Version 1.2). Number
4180 in Lecture Notes in Artificial Intelligence. Springer, 2006.

M. Kohlhase. Using LATEX as a Semantic Markup Format. Mathematics in Computer Science, 2(2):
279–304, 2008.

Michael Kohlhase. The flexiformalist manifesto. In Andrei Voronkov, Viorel Negru, Tetsuo Ida,
Tudor Jebelean, Dana Petcu, Stephen M. Watt, and Daniela Zaharie (eds.), 14th International
Workshop on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC 2012), pp. 30–
36, Timisoara, Romania, 2013. IEEE Press. ISBN 978-1-4673-5026-6. URL http://kwarc.
info/kohlhase/papers/synasc13.pdf.

11

https://doi.org/10.1016/B978-0-444-51624-4.50004-6
https://doi.org/10.1016/B978-0-444-51624-4.50004-6
https://www.aclweb.org/anthology/C18-1018
https://opus.jacobs-university.de/frontdoor/index/index/docId/721
https://opus.jacobs-university.de/frontdoor/index/index/docId/721
http://www.mizar.org/JFM
https://arxiv.org/abs/2005.12876
http://kwarc.info/kohlhase/papers/synasc13.pdf
http://kwarc.info/kohlhase/papers/synasc13.pdf

Published as a conference paper at ICLR 2021

Michael Kohlhase. A data model and encoding for a semantic, multilingual terminology of mathemat-
ics. In Stephan Watt, James Davenport, Alan Sexton, Petr Sojka, and Josef Urban (eds.), Intelligent
Computer Mathematics 2014, number 8543 in LNCS, pp. 169–183. Springer, 2014. ISBN 978-3-
319-08433-6. URL http://kwarc.info/kohlhase/papers/cicm14-smglom.pdf.

Michael Kohlhase and Florian Rabe. Experiences from exporting major proof assistant libraries. 2020.
URL https://kwarc.info/people/frabe/Research/KR_oafexp_20.pdf.

Michael Kohlhase, Thomas Koprucki, Dennis Müller, and Karsten Tabelow. Mathematical models
as research data via flexiformal theory graphs. In Geuvers et al. (2017). ISBN 978-3-319-62074-
9. doi: 10.1007/978-3-319-62075-6. URL http://kwarc.info/kohlhase/papers/
cicm17-models.pdf.

Michael Kohlhase, Dennis Müller, Sam Owre, and Florian Rabe. Making PVS accessible to generic
services by interpretation in a universal format. In Mauricio Ayala-Rincón and César A. Muñoz
(eds.), Interactive Theorem Proving, volume 10499 of LNCS. Springer, 2017b. ISBN 978-3-319-
66107-0. URL http://kwarc.info/kohlhase/submit/itp17-pvs.pdf.

Guillaume Lample and François Charton. Deep learning for symbolic mathematics, 2019.

Christoph Lange. Enabling Collaboration on Semiformal Mathematical Knowledge by Semantic
Web Integration. PhD thesis, Jacobs University Bremen, 2011a. URL https://svn.kwarc.
info/repos/swim/doc/phd/phd.pdf. Also available as a book Lange (2011b).

Christoph Lange. Enabling Collaboration on Semiformal Mathematical Knowledge by Seman-
tic Web Integration. Number 11 in Studies on the Semantic Web. AKA Verlag and IOS
Press, Heidelberg and Amsterdam, 2011b. ISBN 978-1-60750-840-3. URL http://www.
semantic-web-studies.net.

Tomer Libal and Alexander Steen. Towards an executable methodology for the formalization of legal
texts. In Mehdi Dastani, Huimin Dong, and Leon van der Torre (eds.), Logic and Argumentation
- Third International Conference, CLAR 2020, Hangzhou, China, April 6-9, 2020, Proceedings,
volume 12061 of Lecture Notes in Computer Science, pp. 151–165. Springer, 2020. doi: 10.1007/
978-3-030-44638-3_10. URL https://doi.org/10.1007/978-3-030-44638-3_
10.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized BERT pretraining
approach. CoRR, abs/1907.11692, 2019. URL http://arxiv.org/abs/1907.11692.

Minh-Thang Luong, Eugene Brevdo, and Rui Zhao. Neural machine translation (seq2seq) tutorial.
https://github.com/tensorflow/nmt, 2017.

Takuya Matsuzaki, Hidenao Iwane, Hirokazu Anai, and Noriko H. Arai. The most uncreative exami-
nee: A first step toward wide coverage natural language math problem solving. In Proceedings of
the Twenty-Eighth AAAI Conference on Artificial Intelligence, AAAI’14, pp. 1098–1104. AAAI
Press, 2014. URL http://dl.acm.org/citation.cfm?id=2893873.2894044.

Takuya Matsuzaki, Takumi Ito, Hidenao Iwane, Hirokazu Anai, and Noriko H. Arai. Semantic
parsing of pre-university math problems. In Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pp. 2131–2141, Vancouver,
Canada, July 2017. Association for Computational Linguistics. doi: 10.18653/v1/P17-1195. URL
https://www.aclweb.org/anthology/P17-1195.

Takuya Matsuzaki, Hidenao Iwane, Munehiro Kobayashi, Yiyang Zhan, Ryoya Fukasaku, Jumma
Kudo, Hirokazu Anai, and Noriko H. Arai. Can an a.i. win a medal in the mathematical olympiad?
- benchmarking mechanized mathematics on pre-university problems. AI Commun., 31:251–266,
2018.

Mizar. Mizar. http://www.mizar.org, 1973–2006. URL http://www.mizar.org.

Dennis Müller. Mathematical Knowledge Management Across Formal Libraries. PhD thesis,
Informatics, FAU Erlangen-Nürnberg, 10 2019. URL https://kwarc.info/people/
dmueller/pubs/thesis.pdf.

12

http://kwarc.info/kohlhase/papers/cicm14-smglom.pdf
https://kwarc.info/people/frabe/Research/KR_oafexp_20.pdf
http://kwarc.info/kohlhase/papers/cicm17-models.pdf
http://kwarc.info/kohlhase/papers/cicm17-models.pdf
http://kwarc.info/kohlhase/submit/itp17-pvs.pdf
https://svn.kwarc.info/repos/swim/doc/phd/phd.pdf
https://svn.kwarc.info/repos/swim/doc/phd/phd.pdf
http://www.semantic-web-studies.net
http://www.semantic-web-studies.net
https://doi.org/10.1007/978-3-030-44638-3_10
https://doi.org/10.1007/978-3-030-44638-3_10
http://arxiv.org/abs/1907.11692
http://dl.acm.org/citation.cfm?id=2893873.2894044
https://www.aclweb.org/anthology/P17-1195
http://www.mizar.org
http://www.mizar.org
https://kwarc.info/people/dmueller/pubs/thesis.pdf
https://kwarc.info/people/dmueller/pubs/thesis.pdf

Published as a conference paper at ICLR 2021

Dennis Müller, Thibault Gauthier, Cezary Kaliszyk, Michael Kohlhase, and Florian Rabe. Classifica-
tion of alignments between concepts of formal mathematical systems. In Geuvers et al. (2017).
ISBN 978-3-319-62074-9. doi: 10.1007/978-3-319-62075-6. URL http://kwarc.info/
kohlhase/papers/cicm17-alignments.pdf.

Dennis Müller, Florian Rabe, and Claudio Sacerdoti Coen. The Coq Library as a Theory Graph.
accepted at CICM 2019, 2019.

F. Rabe and M. Kohlhase. A Scalable Module System. Information and Computation, 230(1):1–54,
2013.

Florian Rabe. How to Identify, Translate, and Combine Logics? Journal of Logic and Computation,
27(6):1753–1798, 2017.

Alec Radford. Improving language understanding by generative pre-
training. 2018. URL https://www.semanticscholar.org/paper/
Improving-Language-Understanding-by-Generative-Radford/
cd18800a0fe0b668a1cc19f2ec95b5003d0a5035.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. 2019.

David Saxton, Edward Grefenstette, Felix Hill, and Pushmeet Kohli. Analysing mathematical
reasoning abilities of neural models. CoRR, abs/1904.01557, 2019. URL http://arxiv.org/
abs/1904.01557.

Minjoon Seo, Hannaneh Hajishirzi, Ali Farhadi, Oren Etzioni, and Clint Malcolm. Solving geometry
problems: Combining text and diagram interpretation. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing, pp. 1466–1476, Lisbon, Portugal, September
2015. Association for Computational Linguistics. doi: 10.18653/v1/D15-1171. URL https:
//www.aclweb.org/anthology/D15-1171.

Ron Solomon. On finite simple groups and their classification. Notices of the AMS, pp. 231–239,
February 1995.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. CoRR, abs/1706.03762, 2017. URL
http://arxiv.org/abs/1706.03762.

Qingxiang Wang, Cezary Kaliszyk, and Josef Urban. First experiments with neural translation of
informal to formal mathematics. In Florian Rabe, William M. Farmer, Grant O. Passmore, and
Abdou Youssef (eds.), 11th International Conference on Intelligent Computer Mathematics (CICM
2018), volume 11006 of LNCS, pp. 255–270. Springer, 2018. doi: 10.1007/978-3-319-96812-4_22.
URL https://doi.org/10.1007/978-3-319-96812-4_22.

Qingxiang Wang, Chad E. Brown, Cezary Kaliszyk, and Josef Urban. Exploration of neural machine
translation in autoformalization of mathematics in Mizar. In Jasmin Blanchette and Catalin Hritcu
(eds.), Proceedings of the 9th ACM SIGPLAN International Conference on Certified Programs
and Proofs, CPP 2020, New Orleans, LA, USA, January 20-21, 2020, pp. 85–98. ACM, 2020. doi:
10.1145/3372885.3373827. URL https://doi.org/10.1145/3372885.3373827.

Yan Wang, Xiaojiang Liu, and Shuming Shi. Deep neural solver for math word problems. In
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pp.
845–854, Copenhagen, Denmark, September 2017. Association for Computational Linguistics.
doi: 10.18653/v1/D17-1088. URL https://www.aclweb.org/anthology/D17-1088.

Zichao Yang, Zhiting Hu, Chris Dyer, Eric P. Xing, and Taylor Berg-Kirkpatrick. Unsupervised text
style transfer using language models as discriminators, 2019.

13

http://kwarc.info/kohlhase/papers/cicm17-alignments.pdf
http://kwarc.info/kohlhase/papers/cicm17-alignments.pdf
https://www.semanticscholar.org/paper/Improving-Language-Understanding-by-Generative-Radford/cd18800a0fe0b668a1cc19f2ec95b5003d0a5035
https://www.semanticscholar.org/paper/Improving-Language-Understanding-by-Generative-Radford/cd18800a0fe0b668a1cc19f2ec95b5003d0a5035
https://www.semanticscholar.org/paper/Improving-Language-Understanding-by-Generative-Radford/cd18800a0fe0b668a1cc19f2ec95b5003d0a5035
http://arxiv.org/abs/1904.01557
http://arxiv.org/abs/1904.01557
https://www.aclweb.org/anthology/D15-1171
https://www.aclweb.org/anthology/D15-1171
http://arxiv.org/abs/1706.03762
https://doi.org/10.1007/978-3-319-96812-4_22
https://doi.org/10.1145/3372885.3373827
https://www.aclweb.org/anthology/D17-1088

Published as a conference paper at ICLR 2021

A SYNTHESIZING TRAINING DATA

The generating algorithm takes as input a set of symbols Sym (e.g. all MitM-symbols for which an
alignment to SMGLoM exists) and a starting symbol s ∈ Sym (e.g. nattimes; binary multiplication
on natural numbers). The algorithm then proceeds as follows:

1. If s : T has a (simple or dependent) function type, we fill in the required arguments. For
s =nattimes, our type is T =Nat→Nat→Nat, hence we need to find two arguments
s1, s2 of type Nat. For each si of required type Ti we proceed as follows:

(a) With probability pvar, we introduce a new variable v : Ti from a list of allowed variable
names (which include variants such as a, a′, a0 etc.) and let si := v.

(b) With probability pfun, we pick a symbol f ∈ Sym with a function type with return
type Ti (e.g. for Ti =Nat, we can pick natplus). In that case, we let s := f , recurse,
and set si as the result.

(c) With probability pconst = 1 − pvar − pfun, we pick a constant symbol c ∈ Sym of
type Ti (e.g. for Ti =Nat we can pick 0) and return si := c.

In order to avoid stack overflows, we reduce pfun in each iteration by a certain factor < 1.
As to not overuse certain symbols, we scale pfun and pconst with the number of respectively
suitable symbols available; if Sym contains no suitable function or constant symbols, we let
pfun = 0 (and/or pconst = 0, respectively).

2. If s : T does not have a function type (or all its parameters have been filled in 1.), then s is
well-typed and we return s with probability 1− pup.
With probability pup, we instead pick a new symbol sf ∈ S of some function type such that
some i-th parameter type of sf is T . In that case, we let si := s and s := sf and recurse.
Again, in order to avoid stack overflows we reduce pup by some factor with each iteration.

The algorithm also takes subtyping into account, e.g. whenever a term of type Real is required, terms
of type Int or Nat are used with some probability.

In order to obtain a sentence in the sense of Section 5 providing context for disambiguation, we
first translate t along alignments to SMGLoM (using a random \symvariant), collect the set V
of all free variables of t and verbalize their types. For that, we associate each type with a set of
verbalizations from which we choose randomly to produce a sentence that introduces the variables
before using them in the generated expression. Figure 3 shows a few example verbalizations for a
variable x of type Nat and generated sentences for the input symbol s =realuminus; the negation
on real numbers.

The verbalizations are categorized as prefixed (e.g. “a natural number n”) or suffixed (e.g. “n a
natural number”), and singular or plural, and picked according to the number of variables of the
same type and the surrounding sentence, which is also picked at random (e.g. “Assume we have ...”
uses prefixed, whereas “Let ...” uses suffixed).

B EVALUATION TACTICS

For every LATEX input SLATEX, expected label SsTEX and returned sentence SR, we employ the following
strategies, the results of which are summarized in Figure 4:

islatex We parse SR into an AST. Success implies that SR is syntactically valid LATEX. This might
fail for “minor” reasons such as a missing closing bracket. It might yield false positives in
cases where macros (not explicitly considered by our parser) occurring in SR have a wrong
number of arguments.
All subsequent evaluation strategies require islatex to succeed.

stexcheck We heuristically check whether SR is in LsTEX – unlike islatex, this requires that
all sTEX macros occurring in SR have the right number of arguments. Success does not
tell us that the input has been disambiguated correctly, but does imply that is has been
disambiguated at all. False negatives can occur if SR (and thus likely SLATEX as well)

14

Published as a conference paper at ICLR 2021

Generated sTEX PDF output
Verbalizations $\inset{x}{\NaturalNumbers}$ x ∈ N

a positive integer x a positive integer x
an integer $\intmethan{x}{0}$ an integer x ≥ 0
a natural number x a natural number x

Sentences Assume we have some $\inset{y’}
{\NaturalNumbers}$ and arbitrary
$\inset{\mathcal F}{\IntegerNumbers}$.
It follows that $\realuminus{\realuminus
{\inttimes[x]{\mathcal F,y’,y’}}}$.

Assume we have some y′ ∈ N
and arbitrary F ∈ Z. It fol-
lows that −− (F × y′ × y′).

Let $\natmorethan n{0}$. Then consider
$\realuminus{\realuminus{\natsucc{
\natsucc n}}}$.

Let n > 0. Then consider
−− S(S(n)).

Whenever we have some positive natural
number ε, any integer ℓ
and a real number $\livar{\mathcal C}
{2}$, then it follows that $\realtimes{
\livar{\mathcal C}{2},\livar{\mathcal C}
{2},\realplus{\realuminus{\ell},\natsucc{
\varepsilon}}}$.

Whenever we have some posi-
tive natural number ε, any in-
teger ` and a real number C2,
then it follows that C2C2(−`+
S(ε)).

Figure 3: Example Verbalizations for x :Nat and Generated Sentences

contains complex variable names, or if SR contains e.g. an equality symbol “=” instead of
the corresponding sTEX macro, which LaTeXML could recover.

eval_latex All sTEX macros occurring in SR are expanded and SR is normalized as described in
Section 5. The result is string-compared to SLATEX. Success thus implies, that the notational
presentation in PDF output of SLATEX and SR will coincide. False negatives can occur due to
minor differences e.g. in not strictly necessary brackets.

omdoc SR is translated to OMDOC using LaTeXML and imported to MMT. Success guarantees
syntactic well-formedness of SR. Since both the LaTeXML-OMDOC export and the
subsequent MMT-import are somewhat brittle, this can easily lead to false negatives.

translated The import from omdoc is translated to the typed MitM library. This entails that
all symbols used in SR are aligned with MitM symbols and SR is amenable for formal
knowledge management services.

inferred The translation to MitM obtained from translated is type checked by MMT by
having its type inferred. Success guarantees that SR is well-typed.
Notably, if SR is a mere variable (e.g. the expression n), it does not actually have an
inferrable type, but succeeds trivially. This accounts for 60 of the entries in our evaluation
set, i.e. 37%.

provided_stex Both the expected label SsTEX and SR are normalized and string-compared.
Success implies that SR is definitely the correct translation. False negatives can easily occur
due to non-semantic differences between SsTEX and SR however, such as bracketing, nested
applications in SR (e.g. $\natplus{\natplus{a,b},c}$ vs. $\natplus{a,b,c}$),
etc.

stex_as_omdoc SsTEX is translated to OMDOC via LaTeXML and directly compared to the
OMDOC-term obtained from omdoc. Like provided_stex, success implies that SR is
correct, but it is more fault-tolerant with respect to the precise syntax of SR, while being
less fault tolerant due to the issues mentioned in omdoc.

The first three evaluations can always be applied; from the remaining, all but provided_stex
require a working installation of LaTeXML and its sTEX-Plugin. The last two require a known
correct translation.

15

Published as a conference paper at ICLR 2021

Total inputs 161
islatex 96.9%

stexcheck 60.2%
eval_latex 64.0 %

omdoc 76.4%
translated 63.5%
inferred 59.6%

provided_stex 47.2 %
stex_as_omdoc 53.4 %

Figure 4: Results on our Evaluation Document

A detailed log file on our evaluation document with the individual results for each input and evaluation
is available in the associated git repository.

16

	Introduction
	Preliminaries
	sTeX
	SMGLoM
	MMT

	State of the Art
	Task Definition
	Datasets
	sTeX-Annotating with Machine Learning as an NMT Task
	Methodology
	Evaluation and Results
	Conclusion
	Synthesizing Training Data
	Evaluation Tactics

