
Chain-of-Thought Reasoning in Tabular Language Models

Mingyu Zheng1,2†, Yang Hao3, Wenbin Jiang3 , Zheng Lin1,2‡,
Yajuan Lyu3, Qiaoqiao She3, Weiping Wang1

1Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China
2School of Cyber Security, University of Chinese Academy of Sciences, Beijing, China

3Baidu Inc, Beijing, China
{zhengmingyu,linzheng,wangweiping}@iie.ac.cn

{haoyang03,jiangwenbin,lvyajuan,sheqiaoqiao}@baidu.com

Abstract

Tabular mathematical reasoning task requires
models to perform multi-step operations includ-
ing information look-up and numerical calcula-
tions, based on heterogeneous data from tables
and questions. Existing solutions tend to extend
chain-of-thought (CoT) reasoning into power-
ful large language models (LLMs) to promote
multi-hop mathematical reasoning. However, it
can be extremely difficult to apply such LLM-
based approaches under scenarios of privatiza-
tion deployment or limited resources. To ad-
dress this problem, we revisit small-scale tabu-
lar language models (TaLMs) and extend chain-
of-thought reasoning into TaLMs for the first
time. Specifically, we propose a novel frame-
work, TaCo, which coordinates two TaLMs
responsible for CoT generation and answer
inference, respectively. Besides, our frame-
work can be combined with an external cal-
culator to enhance accurate numerical calcula-
tions. On the TABMWP dataset, TaCo outper-
forms the state-of-the-art ChatGPT by 9.55%
(82.60%→92.15% in accuracy) with much less
parameters (0.8B).1

1 Introduction

Tabular mathematical reasoning task aims at an-
swering math questions based on heterogeneous
tabular and textual data, which can provide users
with insights from tables containing valuable fig-
ures (Lu et al., 2023b; Zhu et al., 2021; Chen et al.,
2021b). This task highlights the demand for multi-
step mathematical reasoning including information
look-up and numerical calculations. For example,
given the table and the question in Figure 1, we
firstly need to count how many numbers are in the
table, then add all the numbers together to get the
sum of baskets, and finally compute the mean of
the sum.

1The code will be released at https://github.com/
SpursGoZmy/TaCo

†This work was done during an internship at Baidu Inc.
‡ Corresponding author: Zheng Lin.

Figure 1: An example from the TABMWP dataset. To
solve the problem, the model needs to perform multi-
step mathematical reasoning based on the table and the
question.

Considering the inherent demand for multi-step
operations, existing studies tend to extend chain-
of-thought (CoT) reasoning (Wei et al., 2022;
Wang et al., 2023a; Kojima et al., 2022; Zhang
et al., 2022) into powerful Large Language Mod-
els (LLMs) (Brown et al., 2020; Chowdhery et al.,
2022; Thoppilan et al., 2022; Chen et al., 2021a)
to promote multi-hop mathematical reasoning. As
depicted in Figure 2 (b), this paradigm prompts
LLMs with several in-context examples containing
CoT demonstrations to elicit intermediate reason-
ing steps before inferring the final answer.

Though the combo of LLM and CoT has
achieved great performance, such LLM-based
methods may not be a feasible approach in some
real-world scenarios. For instance, it is financially
expensive to satisfy the high computational require-
ments, the storage capacity and the desired band-
width of LLMs, which makes it a challenge for

https://github.com/SpursGoZmy/TaCo
https://github.com/SpursGoZmy/TaCo

individual users or small organizations to utilize
LLMs in their applications (Strubell et al., 2019;
Bender et al., 2021). In consideration of the data
security, enterprises may also seek privatization
deployments where private data is not allowed to
be processed by third-party LLM APIs. What’s
more, despite the fact that many pre-trained tab-
ular language models have been developed (Liu
et al., 2022; Herzig et al., 2020; Wang et al., 2021;
Dong et al., 2022), their CoT reasoning ability has
not been thoroughly investigated and it could be
inadequate for solving the tabular mathematical
reasoning task. As a result, an alternative approach,
with lower costs and competitive CoT reasoning
ability, is needed.

To accomplish this goal, we revisit small-scale
tabular language models (TaLMs) and initiatively
explore the chain-of-thought reasoning in TaLMs.
Specifically, we propose a novel framework named
TaCo, which coordinates two TaLMs that are re-
sponsible for CoT generation and answer inference,
respectively. Given the input table and question,
the first TaLM is fine-tuned to generate interme-
diate reasoning steps. Based on the original input
and generated reasoning steps, the second TaLM
is fine-tuned to infer the final answer. To alleviate
the weakness of TaLMs in solving mathematical
expressions, TaCo is also combined with an ex-
ternal calculator which is used to perform math
calculations and fix incorrect results in the output
reasoning steps.

To verify the effectiveness of the proposed
method, we conduct comprehensive experiments
on the TABMWP (Lu et al., 2023b) dataset,
which is the latest math word problem benchmark
over tabular data and provides detailed chain-of-
thoughts to solve the problem step by step. Ex-
perimental results reveal that TaCo explores a new
and promising paradigm for tabular mathematical
reasoning, which is illustrated in Figure 2 (c). Com-
pared with traditional fine-tuned TaLMs, TaCo im-
proves the accuracy of recent TAPEX model by
29.76%. Compared with LLM-based approaches,
TaCo outperforms the state-of-the-art ChatGPT by
9.55% (82.60%→92.15%) with much less param-
eters (0.8B). Moreover, we conduct ablation stud-
ies to analyse contributions of different parts in
the framework. The detailed error analysis is also
performed to provide insights for future improve-
ments.

To summarize, we conclude our contributions as

follows:

• To the best of our knowledge, we explore the
chain-of-thought reasoning in TaLMs for the
first time, and advocate a new and promising
paradigm for tabular mathematical reasoning,
especially under scenarios where LLM-based
methods are not feasible.

• We propose a novel framework, TaCo, which
coordinates two TaLMs responsible for CoT
generation and answer inference, respectively.
It is also integrated with a calculator to en-
hance accurate numerical calculations.

• Our method can boost the performance of
small-scale TaLMs and surpasses the state-
of-the-art ChatGPT by 9.55% on TABMWP
benchmark with much less parameters (0.8B).

2 Pilot Experiment

Before diving into the specific method, we present
a pilot experiment on the TABMWP dataset to an-
swer two important questions: (i) Do existing pre-
trained generative TaLMs possess chain-of-thought
reasoning ability? (ii) Whether generative TaLMs
can benefit from chain-of-thoughts when predict-
ing the final answer. We select the state-of-the-
art TAPEX model (Liu et al., 2022) for experi-
ments, which is based on the encoder-decoder lan-
guage model BART (Lewis et al., 2020) and is
additionally pre-trained on the tabular data. We
consider two model sizes: TAPEX-base (140M)
and TAPEX-large (400M).

Experiments are conducted in three different set-
tings, i.e., vanilla, zero-shot CoT and gold CoT. For
the “vanilla” setting, the pre-trained TAPEX model
f(·) autoregressively generates the answer a based
on the table t and the question q, i.e., a = f(t, q).
For the “zero-shot CoT” setting, we follow Ko-
jima et al. (2022) to evaluate the CoT reasoning
of the TAPEX. Specifically, a trigger sentence p1
is appended to the question in order to ask the
TAPEX to output intermediate reasoning steps s,
i.e., s = f(t, q, p1). Then, given the original input
and the generated CoT, another trigger sentence p2
is appended to make the TAPEX output the final
answer a, i.e., a = f(t, q, p1, s, p2). For p1, we
try various templates such as “Let’s think step by
step” and report best results. For p2, we intuitively
select “As a result, the answer is” as the trigger
sentence. For the “gold CoT” setting, we replace

Figure 2: Different paradigms for tabular mathematical reasoning.

generated reasoning steps with annotated ones and
other procedures are same as “zero-shot CoT”.

Pre-trained TaLMs Acc-Dev Acc-Test
TAPEX-base (vanilla) 15.66 15.69
TAPEX-large (vanilla) 18.41 18.59
TAPEX-base (zero-shot CoT) 15.30 15.25
TAPEX-large (zero-shot CoT) 18.25 17.94
TAPEX-base (gold CoT) 40.54 39.99
TAPEX-large (gold CoT) 47.48 48.01

Table 1: Pilot experimental results of pre-trained
TAPEX under different settings. “Acc-Dev” and “Acc-
Test” represents accuracy on the development set and
the test set respectively.

From the results in Table 1, we can see that
the TAPEX with “zero-shot CoT” setting performs
even worse than the vanilla one, which shows that
the small-scale TAPEX is not a decent zero-shot
reasoner like LLMs and does not possess CoT rea-
soning ability. This is also consistent with find-
ings from previous CoT studies (Wei et al., 2022;
Ho et al., 2023). After inspecting the model out-
puts, we find that the pre-trained TAPEX model
cannot follow the instruction to generate reason-
ing steps. In most cases, it directly generates the
answer or illogical texts. However, given the anno-
tated “gold CoT”, the model achieves a remarkable
performance gain. For instance, the accuracy of
TAPEX-large on test set increases from 18.59%
to 48.01%. This demonstrates that CoT reasoning
steps are beneficial to TAPEX when inferring the
correct answer and it encourages us to further elicit
CoT reasoning ability of TaLMs by finetuning.

3 Method

Based on observations in Section 2, we propose
the TaCo framework for tabular mathematical rea-
soning. It includes two training stages: (i) CoT

generation and (ii) answer inference, where two
generative TaLMs with the same architecture are
fine-tuned independently with different inputs and
outputs. In this section, we introduce the frame-
work with the TAPEX model as selected backbones,
but it should be noted that TaCo is compatible with
arbitrary generative TaLMs to boost their perfor-
mance. The overview of TaCo framework is illus-
trated in Figure 3.

3.1 CoT Generation

In the CoT generation stage, a TAPEX model is
fine-tuned to generate a solution which consists
of multiple reasoning steps to solve the problem.
Given an input table T with M rows {Ri}Mi=1

and N column headers {cj}Nj=1, the TAPEX will
linearize the table into a flattened text sequence
T ∗ = [HEAD] : c1 | · · · | cN [ROW] 1 :
R1 | [ROW] 2 : R2 | · · · |RM , where [HEAD]
and [ROW] are special tokens used to indicate the
region of column headers and rows, respectively.
The number after [ROW] represents different row
index and the vertical bar “|” separates headers or
cells in different columns. For instance, the table
in Figure 1 will be linearized into the following
sequence:

col : Day | Number of baskets row 1 :
Thursday | 49 row 2 : Friday | 48 ... row
6 : Tuesday | 49

The resulting sequence T ∗ will be concatenated
with the textual context, which includes a question
Q and a trigger sentence P . Based on the concate-
nated input, the probability of generating the target
solution S is computed as follows:

Figure 3: Overview of the TaCo framework, with the table and the question in Figure 1 as a running example.

p(S|T ∗, Q, P) =
L∏
i=1

pθ(Si|T ∗, Q, P, S<i) (1)

where L is the length of target solution. We select
“Let’s think step by step” as the trigger sentence P
since it gives the best performance in pilot experi-
ments.

After generating a potential solution S̄, we find
that S̄ often contains some numerical calculation
errors. This is often the case with language models
because TaLMs and even LLMs are not suitable for
actually solving mathematical expressions (Chen
et al., 2022). Take the generated solution in Figure
3 as an example. Though the model generates plau-
sible reasoning steps, calculation results among
these steps are all wrong (in red color), e.g., “49 +
48 + 51 + 54 + 37 + 49 = 312”. Such calculation
errors will accumulate to the last reasoning step
and seriously mislead the answer inference model
into predicting the false answer.

To mitigate the influence of calculation mistakes,
we introduce an arithmetic calculator g(·) to solve
mathematical expressions of “+,-,×,÷” in the gen-
erated solution S̄ and output the corrected solu-
tion Ŝ = g(S̄). Concretely, we extract equation
strings in S̄ using regular expressions and calculate
their results using the Python eval function. Since
multiple equations may exist in one solution and
one equation could also refer to results of previous
equations, the calculation result of each equation
is propagated to the following equations by string
replacing. As we can see from Figure 3, original
wrong results in S̄ are successfully fixed and are
replaced with correct results (in green color), e.g.,
“49 + 48 + 51 + 54 + 37 + 49 = 288”.

3.2 Answer Inference

In answer inference stage, another TAPEX model is
fine-tuned to generate the final ansewr based on the
original input and the annotated solution S. Similar
with the CoT generation stage, the probability of
generating target answer A is computed by:

p(A|T ∗, Q, P, S) =
N∏
i=1

pθ(Ai|T ∗, Q, P, S,A<i)

(2)
where N is the length of target answer. During the
inference phase, the annotated solution is replaced
with the corrected solution Ŝ to output the pre-
dicted answer Ā. Both CoT generation model and
answer inference model are trained with a standard
language modeling objective.

4 Experiments

4.1 Dataset and Evaluation Metric

Experiments are conducted on the TABMWP (Lu
et al., 2023b) dataset, a recent large-scale bench-
mark which is constructed from grade-level math
curricula and contains 38,481 math word problems
with the tabular context. Beside the gold answers,
TABMWP also provides detailed step-by-step solu-
tions to solve the problems, which can be utilized as
chain-of-thoughts to finetuning TaLMs. There are
two question-types in the TABMWP: 28,719 free-
text questions with integer answers (INT) and deci-
mal answers (DEC), and 9,712 multi-choice ques-
tions with extractive text answers (EXTR), boolean
text answers (BOOL) and other text answers (OTH).
Statistics of each split are shown in the Table 2. The
test set contains 7,686 questions in total. Among
them, 74.08% are INT (4,529) and DEC (1165)
questions, and 25.92% are DEC (1,165), EXTR
(987) and OTH (105) questions. Thus, INT and

Train Dev Test Total
of questions 23,059 7,686 7,686 38,431
of free-text 17,135 5,710 5,694 28,719
of multi-choice 5,744 1,976 1,992 9,712
of tables 22,620 7,546 7,549 37,644
of solutions 21,623 7,365 7,378 35,442

Table 2: Dataset statistics of TABMWP.

DEC questions are more essential for the overall ac-
curacy. Given the predicted answer and the ground
truth, we employ the exact match accuracy as the
metric and use the official evaluation script to eval-
uate the model performance.

4.2 Implementation Details

Implementations. Our framework is imple-
mented with Pytorch (Paszke et al., 2019). We
mainly employ the TAPEX (Liu et al., 2022) as the
backbone TaLM in the proposed framework. We
also replace TAPEX with UnifiedQA (Khashabi
et al., 2020) for the ablation study. Various model
sizes are included to present more valid evaluation
across different model capacities. Both CoT gener-
ation model and answer inference model are opti-
mized by AdamW (Loshchilov and Hutter, 2019).
We use validation set for the model selection and
manually tune hyper-parameters, and evaluate the
best model on the test set. For CoT generation, we
adopt the beam search decoding with the beam size
of 3. For answer inference, we adopt the greedy
decoding. Hyper-parameter configurations for best-
performing models and more implementation de-
tails are shown in the Table 6 and Table 7.

Baselines. (1) Pre-trained and Fine-tuned lan-
guage models: We develop TAPEX (Liu et al.,
2022) and UnifiedQA (Khashabi et al., 2020) in
both pre-trained and fine-tuned settings to predict
the final answer. TAPEX is the state-of-the-art
BART-based (Lewis et al., 2020) TaLM which is
pre-trained on the tabular data to mimic a SQL
executor. UnifiedQA is a T5-based (Raffel et al.,
2020) QA model which is pre-trained on 8 QA
datasets of multiple formats. We consider three
model sizes for UnifiedQA: small (60M), base
(220M) and large (770M). Given the flattened table
and question, both TAPEX and UnifiedQA can gen-
erate the answer text autoregressively. (2) Large
language models: We consider GPT-3 (Brown
et al., 2020), Codex (Chen et al., 2021a) and Chat-
GPT with the standard few-shot and zero-shot
prompting. ChatGPT is based on the gpt-3.5-turbo
engine. Numbers of in-context examples and se-

lection strategies for few-shot prompting are listed
in Table 8. (3) Large language models with CoT
prompting: Beside standard prompting, we also
consider above LLMs with the chain-of-thought
prompting. PromptPG (Lu et al., 2023b) utilizes
the policy gradient method to select in-context
examples for test samples when constructing the
prompt for LLMs. PoT (Chen et al., 2022) pro-
poses the “program-of-thoughts”, which exploits
Codex to generate the text and Python program for
math computations. The generated program is exe-
cuted by a program interpreter to output the final
answer. The “Heuristic guess” is a baseline from
the TABMWP paper. For multi-choice questions, it
randomly selects one from the given options with
even probabilities. For free-text questions, it ran-
domly chooses one number from the question or
the table as the prediction.

4.3 Main Results

Table 3 demonstrates main experimental results on
the TABMWP dataset. For TAPEX, UnifiedQA
and ChatGPT baselines, we report results based on
our implementation. For other baselines, we report
published results from original papers (Lu et al.,
2023b; Chen et al., 2022).

From the results in Table 3, we can find that: (1)
With two TAPEX-large models as backbones, the
TaCo framework establishes a new state-of-the-art
accuracy of 92.15% on the TABMWP test set, out-
performing the previous best model ChatGPT with
CoT prompting by 9.55%, which demonstrates the
effectiveness of the proposed method. Notably,
compared with LLMs such as GPT-3 and Codex,
the parameters in TaCo framework are much less
(0.8B), which brings lower costs for application
deployments. (2) Compared with LLM-based ap-
proaches with the standard few-shot prompting,
fine-tuned TAPEX and UnifiedQA can achieve
competitive results. For instance, the fine-tuned
TAPEX-large even performs better than GPT-3 and
Codex. However, when combined with the CoT
prompting, LLM-based methods are significantly
better than fine-tuned small-scale language models,
which shows that the CoT prompting plays an im-
portant role in the tabular mathematical reasoning
task. By contrast, the TaCo framework extends
the CoT reasoning into TaLMs for the first time,
and improves the performance of TAPEX-base and
TAPEX-large model by 29.19% and 29.76%, re-
spectively.

Model Acc-Dev Acc-Test
Question Types Answer Types Grades
FREE MC INT DEC EXTR BOOL OTH 1-6 7-8

Heuristic baselines
Heuristic guess - 15.29 6.71 39.81 8.37 0.26 30.80 51.22 26.67 17.55 12.27

Human performance - 90.22 84.61 93.32 84.95 83.29 97.18 88.69 96.20 94.27 81.28
Pre-trained LM

TAPEX-base 15.66 15.69 7.29 39.71 8.63 2.06 34.95 47.11 20.95 18.6 11.81
TAPEX-large 18.41 18.59 8.80 46.59 10.62 1.72 46.91 48.11 30.48 22.65 13.18

UnifiedQA-small 10.71 12.18 1.18 43.62 1.37 0.43 38.7 49.78 37.14 15.57 7.65
UnifiedQA-base 12.10 14.56 4.60 43.02 5.28 1.97 37.08 50.11 38.1 17.14 11.11
UnifiedQA-large 14.00 14.06 3.37 44.63 4.02 0.86 40.53 50.22 35.24 17.21 9.87

Fine-tuned LM
TAPEX-base 57.10 56.39 48.33 79.42 56.33 17.25 90.37 67.78 76.19 65.17 44.67
TAPEX-large 62.28 62.39 55.50 82.08 64.21 21.63 96.47 65.78 77.14 71.32 50.47

UnifiedQA-small 35.79 34.82 27.99 54.32 33.94 4.89 52.99 53.89 70.48 42.23 24.93
UnifiedQA-base 51.89 51.08 42.10 76.76 49.83 12.02 89.16 63.33 75.24 59.03 40.48
UnifiedQA-large 59.35 59.26 51.62 81.12 60.68 16.39 92.20 69.44 77.14 67.11 48.80

LLM
GPT-3 (zero-shot) - 56.96 53.57 66.67 55.55 45.84 78.22 55.44 54.29 63.37 48.41

GPT-3 - 57.13 54.69 64.11 58.36 40.40 75.95 52.41 53.02 63.10 49.16
Codex - 59.40 - - - - - - - - -

ChatGPT 64.12 65.52 65.84 64.61 66.55 63.09 74.67 54.67 55.24 69.75 59.88
LLM+CoT

GPT-3 (zero-shot) - 57.61 54.36 66.92 55.82 48.67 78.82 55.67 51.43 63.62 49.59
GPT-3 - 62.92 60.76 69.09 60.04 63.58 76.49 61.19 67.30 68.62 55.31
Codex - 65.20 - - - - - - - - -

PromptPG - 68.23 66.17 74.11 64.12 74.16 76.19 72.81 65.71 71.20 64.27
Codex-SC - 75.40 - - - - - - - - -

PoT - 73.20 - - - - - - - - -
PoT-SC - 81.80 - - - - - - - - -

ChatGPT 82.49 82.60 80.89 87.50 79.36 86.87 81.86 94.00 84.76 82.68 82.51
Ours
TaCo (TAPEX-base) 86.12±0.13 85.58±0.14 85.53 85.74 85.29 86.44 93.31 77.89 81.90 87.43 83.12

TaCo (TAPEX-large) 92.91±0.17 92.15±0.13 91.69 93.47 92.54 88.41 96.05 91.44 86.67 92.37 91.86

Table 3: Accuracy (%) on the development set and test set of TABMWP. We also report detailed accuracy on
different types of questions in test set. FREE: free-text questions; MC: multi-choice questions. INT: integer answers;
DEC: decimal answers; EXTR: extractive text answers; BOOL: Boolean text answers; OTH: other text answers.
The best results are marked in bold. ± stands for standard deviation over 3 repeated experiments. If not otherwise
specified, LLM baselines are in few-shot setting. “-SC” represents using self-consistency decoding strategy (Wang
et al., 2023a).

(3) Among different baselines, the model per-
formance on free-text questions is obviously worse
than that on multi-choice questions, with an aver-
age difference of 21%. The reason is that, com-
pared with multi-choice questions, free-text ques-
tions usually require more complicated numerical
calculations and also do not directly provide an-
swer options in the input. The detailed evidence is
presented in the Appendix B. Nevertheless, from
pre-trained LM to LLM+CoT and to the proposed
TaCo framework, the performance gap between
two question types gradually decreases. For in-
stance, the accuracy gap of TaCo (TAPEX-large)
framework (1.78%) is much lower than that of
fine-tuned TAPEX-large (26.58%). This shows
our method can obtain better generalization on two
types of questions. (4) Considering questions of
various answer types, the TaCo framework beats

other baselines on questions with integer (INT) and
decimal (DEC) answers, which may resulted from
the utilization of the external calculator. ChatGPT
with the CoT prompting outperforms other meth-
ods including the human baseline on questions with
Boolean text answer, which may contribute to its
great general semantic understanding ability. For
example, judging yes/no questions based on previ-
ously generated reasoning steps. (5) Not surpris-
ingly, all the models perform worse on questions
from the grade 7-8 than that from the grade 1-6 due
to the increasing difficulty. Among them, the pro-
posed framework achieves the best accuracy than
other baselines on harder questions from grade 7-8.

4.4 Ablation Study
We conduct ablation experiments to systematically
investigate the effect of the external calculator,
the progressive two-stage paradigm and the TaLM

Settings Dev Test Average
Drop↓

Question Types
FREE MC

ours
TaCo (base) 86.12 85.58 - 85.53 85.74
TaCo (large) 92.91 92.15 - 91.69 93.47

w/o calculator
QT → S → A (base) 65.21 64.35 21.07 56.23 84.55
QT → S → A (large) 75.60 74.58 17.44 67.77 93.03
w/o two-stage paradigm
QT → SA (base) 78.22 77.66 7.91 77.15 79.12
QT → SA (large) 84.73 84.25 8.04 83.95 85.14
QT → AS (base) 75.18 74.34 11.09 71.88 81.38
QT → AS (large) 81.45 81.41 11.10 80.21 84.84

w/o two-stage paradigm and calculator
QT → SA (base) 59.69 59.41 26.30 50.86 83.84
QT → SA (large) 69.57 68.85 23.32 63.79 83.33
QT → AS (base) 56.43 54.85 30.21 45.64 81.17
QT → AS (large) 63.80 63.41 28.93 56.06 84.44

w/o two-stage paradigm, calculator and solution
QT → A (base) 57.10 56.39 29.11 48.33 79.42
QT → A (large) 62.28 62.39 30.20 55.50 82.08

Table 4: Ablation study of the external calculator and
proposed two-stage paradigm. “base” and “large” stands
for model sizes of TAPEX backbone.

backbone in the TaCo framework. QT → S → A
represents the proposed two-stage paradigm, which
firstly generates the solution S and then arrives at
the final answer A based on the input question Q,
table T and generated solution S. QT → SA and
QT → AS represents one-stage paradigms, which
generate the solution and the answer in different or-
ders, respectively. QT → A stands for the vanilla
fine-tuning paradigm that directly predicts the an-
swer.

Effect of External Calculator. As shown in Ta-
ble 4, there is a drastic performance drop for the
TaCo framework (e.g., 92.15% → 74.58%) when
removing the external calculator. With further ob-
servations, we find that the performance decline
mainly comes from free-text questions which de-
mand more numerical calculations. For instance,
the accuracy of TaCo (TAPEX-large) plummets
from 91.69% to 67.77%. It demonstrates the great
significance of using the external calculator to re-
duce calculation errors in the generated solutions.
Otherwise, the answer inference model is likely to
be misled by the incorrect solution and arrives at
the wrong answer.

Effect of Two-stage Paradigm. When we
change the two-stage paradigm to one-stage ones,
the model performance drops about 9.5%, which
reveals the contribution of two-stage paradigm. We
think it is challenging for single small-scale TaLM
to generate correct reasoning steps and the final
answer simultaneously. As a result, we delegate
the CoT generation and the answer inference to

Model Dev Test Question Types
FREE MC

w/ TAPEX
TAPEX-base 86.12 85.58 85.53 85.74
TAPEX-large 92.91 92.15 91.69 93.47

w/ UnifiedQA
UnifiedQA-small 48.32 48.17 46.45 53.06
UnifiedQA-base 66.32 65.46 60.70 79.07
UnifiedQA-large 77.44 76.96 73.50 86.85
fine-tuned
UnifiedQA-small 35.79 34.82 27.99 54.32
UnifiedQA-base 51.89 51.08 42.10 76.76
UnifiedQA-large 59.35 59.26 51.62 81.12

Table 5: Experiment results of TaCo framework with
TAPEX and UnifiedQA as backbone, respectively.

two TaLMs, respectively. More importantly, one-
stage paradigms cannot fully utilize the corrected
CoT to change the original (wrong) answer. By
contrast, the two-stage paradigm brings a second
chance to re-contemplate the improved reasoning
steps before making the final judgement. The simi-
lar two-stage paradigm has also been explored in
recent works (Press et al., 2023; Zhao et al., 2023),
where they utilize one LLM to generate the CoT to
be improved, and then ask the same LLM to infer
the final answer based on the improved CoT.

Comparing two one-stage paradigms, we notice
that QT → SA performs better than QT → AS.
This shows that it may be more suitable for TaLMs
to infer the final answer according to produced
reasoning steps, rather than give explanations based
on the predicted final answer. If we remove both
the two-stage paradigm and the external calculator,
the model performance would suffer a more steep
decline. But it is still better than that of traditional
fine-tuned models in QT → A paradigm, which
validates the value of intermediate reasoning steps
for TaLMs.

Effect of TaLM Backbone. To investigate the
performance of TaCo with different backbones, we
replace TAPEX with UnifiedQA as the backbone
model. Related experimental results are presented
in Table 5. When the backbone changes from
TAPEX to UnifiedQA, the TaCo framework suf-
fers a sharp performance drop on both free-text and
multi-choice questions. For instance, even with
more parameters (1.54B), the accuracy of TaCo
with UnifiedQA-large on the test set (76.96%) is
much lower than that with TAPEX-large (92.15%),
which indicates the advantages of pre-trained tabu-
lar language models. Unlike UnifiedQA which is
solely pre-trained on the unstructured textual data,

Figure 4: Error distributions of different question types.

TAPEX is additionally pre-trained on the tabular
data and thus has a better understanding of table
structures. As more powerful generative TaLMs
emerge, they can be integrated into the TaCo frame-
work to improve their performance on the tabular
mathematical reasoning task.

4.5 Error Analysis and Case Study

As illustrated in Figure 6, for this problem that
involves two multiplication and one addition oper-
ations, the TaCo framework successfully generates
correct intermediate reasoning chains and finally
predicts the right answer.

There are 473 free-text questions (78%) and 130
multi-choice questions (22%) for which the TaCo
(TAPEX-large) gives wrong predictions. We ran-
domly selected 100 questions of each type for error
analyses. Figure 4 depicts error distributions by
question types. More error instances are presented
and discussed in Appendix C.

For free-text questions, error cases fall into the
following four categories. (1) Counting operation
(49%): the question requires the model to count
numbers as the final answer, which is challenging
for generative language models. (2) Fraction calcu-
lation (36%): the model fails to conduct fraction-
related calculations such as reducing a fraction,
which may be alleviated with an advanced calcu-
lator. (3) Wrong formula (11%): the CoT genera-
tion model outputs wrong formulas in the reason-
ing steps. (4) Function-related problem (4%): the
model fails to solve problems related to the func-

tion, e.g., compute the slope of the function based
on the table data.

For multi-choice questions, error cases can be
divided into the following five types. (1) Number
comparison (44%): the model cannot determine
which number is larger or smaller. (2) Time cal-
culation (21%): the model needs to perform time
calculation such as compute the elapsed time be-
tween 9:15 A.M. and 11:20 A.M.. (3) Max/Min
operation (19%): the question demands finding the
biggest or smallest number in a group. (4) False
CoT (9%): the CoT generation model gives wrong
or hallucinated reasoning steps, e.g., using numbers
that do not exist in the table or the question when
generating formulas. (5) Commonsense (7%): the
commonsense knowledge is needed to answering
the question, which is a weakness of small-scale
language models.

5 Related Work

CoT prompting for LLMs. By providing a few
in-context examples (or demonstrations) which
contain chain-of-thoughts, CoT prompting can en-
courage LLMs to output intermediate reasoning
steps before predicting the final answer (Wei et al.,
2022). Existing CoT studies mainly focus on
two directions. (1) Improving the quality of CoT
demonstrations. For instance, selecting better in-
context examples for CoT prompting according to
the question diversity (Zhang et al., 2022), the so-
lution complexity (Fu et al., 2023), or the example
similarity (Rubin et al., 2022). (2) Exploring new
representations of CoT reasoning steps. Beside the
typical natural language format, researchers also
proposed chain-of-thoughts in other formats. For
instance, program-of-thoughts (Chen et al., 2022),
tree-of-thoughts (Yao et al., 2023a), and graph-of-
thoughts (Yao et al., 2023b). Among them, the CoT
in program languages has emerged as a powerful
approach for LLMs to invoking external tools (Qin
et al., 2023). Recently, Lu et al. (2023a) proposed
the Chameleon framework that augments LLMs
with various tools like search engines and Python
executors. We treat it as a contemporary work of
our paper and list its results in the Appendix D.

Pre-trained TaLMs. Inspired by the success of
pre-training on the natural language text, various
TaLMs are proposed for pre-training on the semi-
structured tabular data (Dong et al., 2022). Ex-
isting TaLMs mainly inherit the architectures of
traditional language models and can be classified

into three types. (1) Encoder-based TaLMs like
TAPAS (Herzig et al., 2020), MATE (Eisensch-
los et al., 2021) and TUTA (Wang et al., 2021).
(2) Encoder-Decoder TaLMs such as TAPEX (Liu
et al., 2022) and STTP (Xing and Wan, 2021). (3)
Decoder-based TaLMs like TableGPT (Gong et al.,
2020). In previous studies, TaLMs are usually fine-
tuned to directly generate final answers or simple
formulas. By contrast, we are the first to explore the
combination of the CoT reasoning and pre-trained
TaLMs.

6 Conclusion

We extend the CoT reasoning into small-scale
TaLMs for the first time, and provide an effective
approach for tabular mathematical reasoning task,
especially under scenarios where LLMs are not
accessible. Specifically, we propose a novel frame-
work named TaCo, which coordinates two TaLMs
responsible for CoT generation and answer infer-
ence, respectively. By introducing an external cal-
culator, we further augment TaCo with the accurate
math computing ability. With two TAPEX-large
models as backbones, the TaCo outperforms the
state-of-the-art ChatGPT on the TABMWP dataset
by 9.55% (82.60%→92.15%) with much less pa-
rameters (0.8B).

Limitations

Though the proposed method achieves great perfor-
mance with less parameters, the fine-tuning of the
CoT generation model and the answer inference
model depends on annotated chain-of-thoughts and
gold answers. As a result, the chain-of-thought
reasoning ability of TaCo could be limited to the
tabular mathematical reasoning task. In the future
research, one can utilize open-source LLMs to gen-
erate chain-of-thoughts of more diversities and of
more table-related tasks (Wang et al., 2023b; Ho
et al., 2023), which may further extend the gener-
alization ability of TaLMs and reduce the cost of
manual annotation.

In the aspect of external tools, compared with
frameworks which enable LLMs to access various
tools (Shen et al., 2023; Lu et al., 2023a), TaCo
only utilizes a calculator to complete common arith-
metic calculations, i.e., “+,-,×,÷”. More advanced
external tools may be integrated to enhance the
capability of the framework. We believe that the
tool learning with small-scale language models is a
valuable future direction, especially for particular

scenarios where LLMs are not available.

Ethics Statement

This paper proposes a two-stage framework for the
tabular mathematical reasoning task, and models
are trained and evaluated on the public TABMWP
dataset. Thus, the authors foresee no ethical con-
cerns with the research in this paper.

Acknowledgements

This work was supported by the National Natural
Science Foundation of China (No. 61976207) and
the National Social Science Foundation of China
(No. 21AZD145).

References
Emily M. Bender, Timnit Gebru, Angelina McMillan-

Major, and Shmargaret Shmitchell. 2021. On the
dangers of stochastic parrots: Can language mod-
els be too big? . In Proceedings of the 2021 ACM
Conference on Fairness, Accountability, and Trans-
parency, FAccT ’21, page 610–623, New York, NY,
USA. Association for Computing Machinery.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1877–1901. Curran Associates,
Inc.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas-
try, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz
Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cum-
mings, Matthias Plappert, Fotios Chantzis, Eliza-
beth Barnes, Ariel Herbert-Voss, William Hebgen
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N.
Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder,
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya
Sutskever, and Wojciech Zaremba. 2021a. Evaluat-
ing large language models trained on code.

https://doi.org/10.1145/3442188.3445922
https://doi.org/10.1145/3442188.3445922
https://doi.org/10.1145/3442188.3445922
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2107.03374

Wenhu Chen, Xueguang Ma, Xinyi Wang, and
William W. Cohen. 2022. Program of thoughts
prompting: Disentangling computation from reason-
ing for numerical reasoning tasks.

Zhiyu Chen, Wenhu Chen, Charese Smiley, Sameena
Shah, Iana Borova, Dylan Langdon, Reema Moussa,
Matt Beane, Ting-Hao Huang, Bryan Routledge, and
William Yang Wang. 2021b. FinQA: A dataset of nu-
merical reasoning over financial data. In Proceedings
of the 2021 Conference on Empirical Methods in Nat-
ural Language Processing, pages 3697–3711, Online
and Punta Cana, Dominican Republic. Association
for Computational Linguistics.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, Parker Schuh, Kensen Shi,
Sasha Tsvyashchenko, Joshua Maynez, Abhishek
Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vin-
odkumar Prabhakaran, Emily Reif, Nan Du, Ben
Hutchinson, Reiner Pope, James Bradbury, Jacob
Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin,
Toju Duke, Anselm Levskaya, Sanjay Ghemawat,
Sunipa Dev, Henryk Michalewski, Xavier Garcia,
Vedant Misra, Kevin Robinson, Liam Fedus, Denny
Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim,
Barret Zoph, Alexander Spiridonov, Ryan Sepassi,
David Dohan, Shivani Agrawal, Mark Omernick, An-
drew M. Dai, Thanumalayan Sankaranarayana Pil-
lai, Marie Pellat, Aitor Lewkowycz, Erica Moreira,
Rewon Child, Oleksandr Polozov, Katherine Lee,
Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark
Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy
Meier-Hellstern, Douglas Eck, Jeff Dean, Slav Petrov,
and Noah Fiedel. 2022. Palm: Scaling language mod-
eling with pathways.

Haoyu Dong, Zhoujun Cheng, Xinyi He, Mengyu Zhou,
Anda Zhou, Fan Zhou, Ao Liu, Shi Han, and Dong-
mei Zhang. 2022. Table pre-training: A survey
on model architectures, pre-training objectives, and
downstream tasks. In Proceedings of the Thirty-First
International Joint Conference on Artificial Intel-
ligence, IJCAI-22, pages 5426–5435. International
Joint Conferences on Artificial Intelligence Organi-
zation. Survey Track.

Julian Martin Eisenschlos, Maharshi Gor, Thomas
Müller, and William W. Cohen. 2021. Mate: Multi-
view attention for table transformer efficiency.

Yao Fu, Hao Peng, Ashish Sabharwal, Peter Clark, and
Tushar Khot. 2023. Complexity-based prompting for
multi-step reasoning.

Heng Gong, Yawei Sun, Xiaocheng Feng, Bing
Qin, Wei Bi, Xiaojiang Liu, and Ting Liu. 2020.
TableGPT: Few-shot table-to-text generation with
table structure reconstruction and content matching.
In Proceedings of the 28th International Conference
on Computational Linguistics, pages 1978–1988,
Barcelona, Spain (Online). International Committee
on Computational Linguistics.

Jonathan Herzig, Pawel Krzysztof Nowak, Thomas
Müller, Francesco Piccinno, and Julian Eisenschlos.
2020. TaPas: Weakly supervised table parsing via
pre-training. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 4320–4333, Online. Association for Computa-
tional Linguistics.

Namgyu Ho, Laura Schmid, and Se-Young Yun. 2023.
Large language models are reasoning teachers.

Daniel Khashabi, Sewon Min, Tushar Khot, Ashish
Sabharwal, Oyvind Tafjord, Peter Clark, and Han-
naneh Hajishirzi. 2020. UNIFIEDQA: Crossing for-
mat boundaries with a single QA system. In Find-
ings of the Association for Computational Linguistics:
EMNLP 2020, pages 1896–1907, Online. Association
for Computational Linguistics.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-
guage models are zero-shot reasoners. In Advances
in Neural Information Processing Systems.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 7871–7880, Online. Association for Computa-
tional Linguistics.

Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi
Lin, Weizhu Chen, and Jian-Guang Lou. 2022.
TAPEX: Table pre-training via learning a neural SQL
executor. In International Conference on Learning
Representations.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization.

Pan Lu, Baolin Peng, Hao Cheng, Michel Galley, Kai-
Wei Chang, Ying Nian Wu, Song-Chun Zhu, and
Jianfeng Gao. 2023a. Chameleon: Plug-and-play
compositional reasoning with large language models.

Pan Lu, Liang Qiu, Kai-Wei Chang, Ying Nian Wu,
Song-Chun Zhu, Tanmay Rajpurohit, Peter Clark,
and Ashwin Kalyan. 2023b. Dynamic prompt learn-
ing via policy gradient for semi-structured mathe-
matical reasoning. In International Conference on
Learning Representations (ICLR).

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Köpf, Edward
Yang, Zach DeVito, Martin Raison, Alykhan Tejani,
Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Jun-
jie Bai, and Soumith Chintala. 2019. Pytorch: An
imperative style, high-performance deep learning li-
brary.

http://arxiv.org/abs/2211.12588
http://arxiv.org/abs/2211.12588
http://arxiv.org/abs/2211.12588
https://doi.org/10.18653/v1/2021.emnlp-main.300
https://doi.org/10.18653/v1/2021.emnlp-main.300
http://arxiv.org/abs/2204.02311
http://arxiv.org/abs/2204.02311
https://doi.org/10.24963/ijcai.2022/761
https://doi.org/10.24963/ijcai.2022/761
https://doi.org/10.24963/ijcai.2022/761
http://arxiv.org/abs/2109.04312
http://arxiv.org/abs/2109.04312
http://arxiv.org/abs/2210.00720
http://arxiv.org/abs/2210.00720
https://doi.org/10.18653/v1/2020.coling-main.179
https://doi.org/10.18653/v1/2020.coling-main.179
https://doi.org/10.18653/v1/2020.acl-main.398
https://doi.org/10.18653/v1/2020.acl-main.398
http://arxiv.org/abs/2212.10071
https://doi.org/10.18653/v1/2020.findings-emnlp.171
https://doi.org/10.18653/v1/2020.findings-emnlp.171
https://openreview.net/forum?id=e2TBb5y0yFf
https://openreview.net/forum?id=e2TBb5y0yFf
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://openreview.net/forum?id=O50443AsCP
https://openreview.net/forum?id=O50443AsCP
http://arxiv.org/abs/1711.05101
http://arxiv.org/abs/1711.05101
http://arxiv.org/abs/2304.09842
http://arxiv.org/abs/2304.09842
http://arxiv.org/abs/1912.01703
http://arxiv.org/abs/1912.01703
http://arxiv.org/abs/1912.01703

Ofir Press, Muru Zhang, Sewon Min, Ludwig Schmidt,
Noah A. Smith, and Mike Lewis. 2023. Measuring
and narrowing the compositionality gap in language
models.

Yujia Qin, Shengding Hu, Yankai Lin, Weize Chen,
Ning Ding, Ganqu Cui, Zheni Zeng, Yufei Huang,
Chaojun Xiao, Chi Han, Yi Ren Fung, Yusheng Su,
Huadong Wang, Cheng Qian, Runchu Tian, Kunlun
Zhu, Shihao Liang, Xingyu Shen, Bokai Xu, Zhen
Zhang, Yining Ye, Bowen Li, Ziwei Tang, Jing Yi,
Yuzhang Zhu, Zhenning Dai, Lan Yan, Xin Cong,
Yaxi Lu, Weilin Zhao, Yuxiang Huang, Junxi Yan,
Xu Han, Xian Sun, Dahai Li, Jason Phang, Cheng
Yang, Tongshuang Wu, Heng Ji, Zhiyuan Liu, and
Maosong Sun. 2023. Tool learning with foundation
models.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former.

Ohad Rubin, Jonathan Herzig, and Jonathan Berant.
2022. Learning to retrieve prompts for in-context
learning.

Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li,
Weiming Lu, and Yueting Zhuang. 2023. Hugging-
gpt: Solving ai tasks with chatgpt and its friends in
hugging face.

Emma Strubell, Ananya Ganesh, and Andrew McCal-
lum. 2019. Energy and policy considerations for
deep learning in nlp.

Romal Thoppilan, Daniel De Freitas, Jamie Hall,
Noam Shazeer, Apoorv Kulshreshtha, Heng-Tze
Cheng, Alicia Jin, Taylor Bos, Leslie Baker, Yu Du,
YaGuang Li, Hongrae Lee, Huaixiu Steven Zheng,
Amin Ghafouri, Marcelo Menegali, Yanping Huang,
Maxim Krikun, Dmitry Lepikhin, James Qin, Dehao
Chen, Yuanzhong Xu, Zhifeng Chen, Adam Roberts,
Maarten Bosma, Vincent Zhao, Yanqi Zhou, Chung-
Ching Chang, Igor Krivokon, Will Rusch, Marc
Pickett, Pranesh Srinivasan, Laichee Man, Kathleen
Meier-Hellstern, Meredith Ringel Morris, Tulsee
Doshi, Renelito Delos Santos, Toju Duke, Johnny So-
raker, Ben Zevenbergen, Vinodkumar Prabhakaran,
Mark Diaz, Ben Hutchinson, Kristen Olson, Ale-
jandra Molina, Erin Hoffman-John, Josh Lee, Lora
Aroyo, Ravi Rajakumar, Alena Butryna, Matthew
Lamm, Viktoriya Kuzmina, Joe Fenton, Aaron Co-
hen, Rachel Bernstein, Ray Kurzweil, Blaise Aguera-
Arcas, Claire Cui, Marian Croak, Ed Chi, and Quoc
Le. 2022. Lamda: Language models for dialog appli-
cations.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc
Le, Ed Chi, Sharan Narang, Aakanksha Chowdhery,
and Denny Zhou. 2023a. Self-consistency improves
chain of thought reasoning in language models.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa
Liu, Noah A. Smith, Daniel Khashabi, and Hannaneh

Hajishirzi. 2023b. Self-instruct: Aligning language
models with self-generated instructions.

Zhiruo Wang, Haoyu Dong, Ran Jia, Jia Li, Zhiyi Fu,
Shi Han, and Dongmei Zhang. 2021. Tuta: Tree-
based transformers for generally structured table pre-
training. In Proceedings of the 27th ACM SIGKDD
Conference on Knowledge Discovery amp; Data Min-
ing, KDD ’21, page 1780–1790, New York, NY, USA.
Association for Computing Machinery.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, brian ichter, Fei Xia, Ed H. Chi, Quoc V Le,
and Denny Zhou. 2022. Chain of thought prompt-
ing elicits reasoning in large language models. In
Advances in Neural Information Processing Systems.

Xinyu Xing and Xiaojun Wan. 2021. Structure-aware
pre-training for table-to-text generation. In Find-
ings of the Association for Computational Linguis-
tics: ACL-IJCNLP 2021, pages 2273–2278, Online.
Association for Computational Linguistics.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Thomas L. Griffiths, Yuan Cao, and Karthik
Narasimhan. 2023a. Tree of thoughts: Deliberate
problem solving with large language models.

Yao Yao, Zuchao Li, and Hai Zhao. 2023b. Beyond
chain-of-thought, effective graph-of-thought reason-
ing in large language models.

Zhuosheng Zhang, Aston Zhang, Mu Li, and Alex
Smola. 2022. Automatic chain of thought prompting
in large language models.

Ruochen Zhao, Xingxuan Li, Shafiq Joty, Chengwei
Qin, and Lidong Bing. 2023. Verify-and-edit: A
knowledge-enhanced chain-of-thought framework.

Fengbin Zhu, Wenqiang Lei, Youcheng Huang, Chao
Wang, Shuo Zhang, Jiancheng Lv, Fuli Feng, and Tat-
Seng Chua. 2021. TAT-QA: A question answering
benchmark on a hybrid of tabular and textual content
in finance. CoRR, abs/2105.07624.

http://arxiv.org/abs/2210.03350
http://arxiv.org/abs/2210.03350
http://arxiv.org/abs/2210.03350
http://arxiv.org/abs/2304.08354
http://arxiv.org/abs/2304.08354
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/2112.08633
http://arxiv.org/abs/2112.08633
http://arxiv.org/abs/2303.17580
http://arxiv.org/abs/2303.17580
http://arxiv.org/abs/2303.17580
http://arxiv.org/abs/1906.02243
http://arxiv.org/abs/1906.02243
http://arxiv.org/abs/2201.08239
http://arxiv.org/abs/2201.08239
http://arxiv.org/abs/2203.11171
http://arxiv.org/abs/2203.11171
http://arxiv.org/abs/2212.10560
http://arxiv.org/abs/2212.10560
https://doi.org/10.1145/3447548.3467434
https://doi.org/10.1145/3447548.3467434
https://doi.org/10.1145/3447548.3467434
https://openreview.net/forum?id=_VjQlMeSB_J
https://openreview.net/forum?id=_VjQlMeSB_J
https://doi.org/10.18653/v1/2021.findings-acl.200
https://doi.org/10.18653/v1/2021.findings-acl.200
http://arxiv.org/abs/2305.10601
http://arxiv.org/abs/2305.10601
http://arxiv.org/abs/2305.16582
http://arxiv.org/abs/2305.16582
http://arxiv.org/abs/2305.16582
http://arxiv.org/abs/2210.03493
http://arxiv.org/abs/2210.03493
http://arxiv.org/abs/2305.03268
http://arxiv.org/abs/2305.03268
http://arxiv.org/abs/2105.07624
http://arxiv.org/abs/2105.07624
http://arxiv.org/abs/2105.07624

A More Implementation Details

In our experiments, we employ TAPEX and Uni-
fiedQA as backbones of TaCo framework. When
linearizing the table into flattened sequence, if
there exist no column headers in the original ta-
ble, pseudo column headers will be inserted, e.g.,
’Column header 1’. The hyper-parameter config-
urations of TAPEX and UnifiedQA backbone and
their model sizes are shown in Table 6 and Table 7,
respectively. Our experiments are all performed on
a 32G NVIDIA V100 GPU.

For LLM-based baselines, we list numbers of
few-shot examples and selection strategies in Table
8. For ChatGPT baseline, we randomly select 4
examples from train set for each question type. For
fair comparison, we use the same prompt format as
PromptPG (Lu et al., 2023b) to construct in-context
examples, which is demonstrated in Figure 5.

Parameters TAPEX
base (140M) large (400M)

Learning Rate 3e-5 3e-5
Batch Size 16 32
Weight Decay 0.01 0.01
Max Grad Norm 1.0 1.0
Warmup Linear Linear
Warmup Fraction 0.1 0.1
Epochs for Stage 1 20 25
Epochs for Stage 2 15 20
Training Time for Stage 1 3 hours 8 hours
Training Time for Stage 2 2 hours 6 hours

Table 6: Hyper-parameter configurations for TAPEX
backbone.

Parameters UnifiedQA
small (60M) base (220M) large (770M)

Learning Rate 5e-5 5e-5 5e-5
Batch Size 16 16 48
Weight Decay 0.01 0.01 0.01
Max Grad Norm 1.0 1.0 1.0
Warmup Linear Linear Linear
Warmup Fraction 0.1 0.1 0.1
Epochs for Stage 1 15 20 25
Epochs for Stage 2 15 15 20
Training Time for Stage 1 2 hours 8 hours 15 hours
Training Time for Stage 2 2 hours 5 hours 12 hours

Table 7: Hyper-parameter configurations for UnifiedQA
backbone.

Method # few-shot
examples

Selection
strategy Acc-Test

GPT-3 2 Random selection 57.13
Codex 4 Manual construction 59.40
GPT-3+CoT 2 Random selection 62.92
Codex+CoT 4 Manual construction 65.20
PromptPG 2 Policy Gradient 68.23
PoT 4 Manual construction 73.20
ChatGPT 4 Random selection 65.52
ChatGPT+CoT 4 Random selection 82.60

Table 8: Number of in-context examples and selection
strategies of LLM baselines.

B The complexity of CoT generation

Table 3 reveals a significant performance difference
between free-text questions and multi-choice ques-
tions. To shed more light on the TABMWP dataset,
we quantitatively analyze the complexity of the
CoT generation for two question types. Specifi-
cally, we compute the number of required numer-
ical calculations in the gold CoT (including +, -,
×, ÷, counting, min, max), the number of reason-
ing steps (we treat each line in the gold CoT as
one reasoning step for simplicity) and the length of
the gold CoT. The statistical results in the Table 9
demonstrate that, in the TABMWP dataset, the CoT
generation from free-text questions is more com-
plex than that from multi-choice questions. Based
on our observations, at least 18% multi-choice ques-
tions (mainly of EXTR and OTH answer types) do
not need numerical calculations, but almost all free-
text questions need numerical calculations.

C Error Instances and More Analysis

In this section, we present detailed error instances
to analyze the weakness of TaCo framework, which
is shown in Figure 7 to Figure 10. We find that
most of errors are caused by the inability of used
external tool and the representation of chain-of-
thoughts. Take the error instance in Figure 7 as
an example. To correctly answer the question in
Figure 7, the model should find numbers from the
table which are greater than 53, and then count
how many numbers are found. However, as the
CoT generation model is fine-tuned to generate
chain-of-thoughts in simple natural language, it
is difficult for the model to describe the above
process in a short and straightforward expression,
which makes it hard to invoke external tools. If
we could represent chain-of-thoughts in program
languages like Python, the solution of this ques-
tion would be much more clear. For instance,
one can write a line of Python code: “Ans =
Count(61,61,65,65,66,70,66,78)”, and imple-
ment a Python function “Count()” as an external
tool to get the accurate result. The same method-
ology could be applied to error instances which
demand other abilities such as fraction calculation,
min/max operation and time calculation. Besides,
lacking commonsense knowledge also increases
the difficulty for models to comprehend tables and
questions, e.g., reading bus schedule in Figure 10.

Figure 5: The format of in-context examples for ChatGPT baseline (ID:19324).

Question Types # of numerical calculations
(median/mean)

of reasoning steps
(median/mean)

the length of CoT
(median/mean)

free-text 2.00/2.15 4.00/5.18 196.00/239.15
multi-choice 1.00/1.78 2.00/3.84 180.00/253.21

Table 9: The quantitative analysis of the complexity of the CoT generation for two question types.

D Results of Chameleon framework

Recently, Lu et al. (2023a) proposed a compo-
sitional reasoning framework named Chameleon,
which treats LLMs as a natural language planner
to utilize a variety of tools including vision models,
web search engines, Python functions and so on.
As shown in Table 10, based on the powerful GPT-
4 and multiple external tools, Chameleon achieves
the best accuracy of 98.78% on TABMWP test
set. However, the proposed TaCo framework still
achieves a competitive result of 92.15% with less
parameters.

We also apply the same calculator to the output
of ChatGPT and use regular expressions to extract
the final answer from the output. There is a slight
performance increase from 82.60% to 83.07%. Af-
ter inspecting error cases of ChatGPT, we found
that most errors resulted from wrong reasoning
steps rather than calculation mistakes. Compared
with small-scale TaLMs, the numerical calculating
ability of ChatGPT is much more better, which
may attribute to the potential use of more advanced
external tools behind the ChatGPT system.

Method Acc-Test Question Types
FREE MC

ChatGPT CoT 82.03 78.43 92.32
ChatGPT PoT 89.49 90.24 87.35
GPT-4 CoT 90.81 88.48 97.49
GPT-4 PoT 96.93 97.40 95.58
Chameleon (ChatGPT) 93.28 93.13 93.72
Chameleon (GPT-4) 98.78 98.95 98.29
TaCo (Ours) 92.15±0.13 91.69 93.47

Table 10: Accuracy of Chameleon on TABMWP test
set.

Figure 6: A correct instance where TaCo generates right solution and answer. (ID:752).

Figure 7: An error instance of counting operation (ID:449), where TaCo cannot correctly count how many numbers
satisfying requirements.

Figure 8: An error instance of fraction calculation (ID:1711), where TaCo makes mistakes when reducing a fraction.

Figure 9: An error instance of number comparison (ID:1434), where TaCo cannot correctly judge which is the larger
number between 72.00 and 74.00.

Figure 10: An error instance of time calculation (ID:2766), where TaCo fails to compute the elapsed time between
11:00 A.M. and 12:00 P.M.

