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ABSTRACT

In this paper, we consider the task of unsupervised object discovery in videos.
Previous works have shown promising results via processing optical flows to seg-
ment objects. However, taking flow as input brings about two drawbacks. First,
flow cannot capture sufficient cues when objects remain static or partially oc-
cluded. Second, it is challenging to establish temporal coherency from flow-only
input, due to the missing texture information. To tackle these limitations, we
propose a model for directly processing consecutive RGB frames, and infer the
optical flow between any pair of frames using a layered representation, with the
opacity channels being treated as the segmentation. Additionally, to enforce ob-
ject permanence, we apply temporal consistency loss on the inferred masks from
randomly-paired frames, which refer to the motions at different paces, and en-
courage the model to segment the objects even if they may not move at the current
time point. Experimentally, we demonstrate superior performance over previous
state-of-the-art methods on three public video segmentation datasets (DAVIS2016,
SegTrackv2, and FBMS-59), while being computationally efficient by avoiding
the overhead of computing optical flow as input.

1 INTRODUCTION

Representing the visual scene with objects as the basic elements has long been considered a fun-
damental cognitive ability of the intelligent agent, for it enables understanding and interaction with
the world more efficiently, for example, combinatorial generalization in novel settings (Tenenbaum
et al., 2011). Although it remains somewhat obscure at the level of neurophysiology on exactly how
humans discover the objects in a visual scene in the first place, it is a consensus that motion seems
to play an indispensable role in defining and discovering the objects from the scene. For example,
in 1923, Wertheimer introduced the common fate principle that elements moving together tends to
be perceived as a group (Wertheimer, 1923); while later Gibson claimed the independent motion
has even been treated as one attribute to define an object visually (Gibson & Carmichael, 1966).
Grounded on the above assumptions, the recent literature has witnessed numerous works with dif-
ferent models proposed for segmenting the moving objects via unsupervised learning (Yang et al.,
2019; 2021b;a; Liu et al., 2021).

Exploiting optical flows for object discovery naturally incurs two critical limitations: First, objects
in videos may stop moving or be partially occluded at any time point, leaving no effective cues for
their existence in the flow field; Second, computing optical flow from a pair of frames refers to a
lossy encoding procedure, that poses a significant challenge for establishing temporal coherence, due
to the lack of effective texture information. In contrast, adopting RGB frame sequences poses a few
clear advantages. The most obvious one is that, while objects do not necessarily move all the time,
the property of temporal coherence in RGB space naturally guarantees a preliminary understanding
of object permanence; Additionally, the rich textures in the appearance stream give more distinctive
patterns than those in motion, allowing to better identify and distinguish the different objects. Last
but not least, processing RGB streams still enables a faster processing speed than using optical flow.

In this paper, our goal is to train a video segmentation model that can discover the moving objects
within a sequence of RGB frames, in the form of segmentation. In specific, our proposed model first
encodes consecutive frames independently, into a set of frame-wise visual features, that is followed
by a temporal fusion with a Transformer encoder. To localise the moving objects, we randomly
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Figure 1: Illustration about Bicycle Motocross (BMX) sequence on SegTrackv2 (Li et al., 2013).
The red boxes and the yellow boxes refer to the arm and the back of the player, respectively. Flow-
only method (Yang et al., 2021a) fails to track the same region in a temporal consistent fashion since
it derives the foreground region directly from current optical flow. However, our methodology of
processing a RGB video clip develops a sense of object permanence and solves the issue.

pair the visual features from two frames and pass them into a frame comparator module, effectively
establishing the relative motion between frames. Inspired by Yang et al. (2021a), we decode the
motion features into optical flows with a dual-layered representation, with the opacity weight of
each layer treated as the segmentation mask. At training time, we exploit an off-the-shelf optical flow
estimator, e.g., RAFT (Teed & Deng, 2020), as the induction for flow reconstruction. To develop
the property of object permanence, we enforce a temporal consistency on the inferred segmentation
masks, which encourages the model to mine effective texture information from the RGB sequence
and keep track of the objects even if they may be static at the current time point.

In short, we summarize the contributions in this paper: First, we introduce the Motion-inductive
Object Discovery (MOD) model, a simple architecture for discovering the moving objects in videos,
by directly processing a set of consecutive RGB frames. Second, we propose a self-supervised proxy
task that is used to train the architecture without relying upon any manual annotation. To overcome
the challenge from flow-based methods, i.e., objects may stay static or move slowly, we adopt a
random-paired policy and restrain the temporal consistency. Third, we conduct a series of ablation
studies to validate each key component of our method, such as the temporal consistency of random-
paired flow. While evaluating three public benchmarks, we demonstrate superior performance over
existing approaches on DAVIS2016 (Perazzi et al., 2016), SegTrackv2 (Li et al., 2013), and FBMS-
59 (Ochs et al., 2013), with considerable speed-up during the inference procedure.

2 RELATED WORK

Video Object Segmentation. How to segment objects coherently in one video sequence has ex-
tended the topic of instance segmentation in the image. There is a great amount of work about
video object segmentation (VOS) in recent decades (Caelles et al., 2017; Hu et al., 2017; Fan et al.,
2019; Dutt Jain et al., 2017; Lai & Xie, 2019; Maninis et al., 2018; Oh et al., 2019; Voigtlaender
et al., 2019; Caelles et al., 2017; Perazzi et al., 2017; Hu et al., 2018; Li & Loy, 2018; Bao et al.,
2018; Voigtlaender et al., 2019; Johnander et al., 2019). Recently, the research on getting rid of the
dense annotation and designing more effective self-supervised algorithms has attracted more and
more interest in the computer vision community including VOS (Xu & Wang, 2021; Jabri et al.,
2020; Lai et al., 2020; Li et al., 2019; Vondrick et al., 2018; Lu et al., 2020; Wang et al., 2019;
Kipf et al., 2022). For VOS, there are two mainstream protocols to evaluate the learned model. One
is semi-supervised video object segmentation, the other is unsupervised video object segmentation.
Given the first-frame mask of the objects of interest, semi-supervised VOS tracks those objects in
subsequent frames, while unsupervised VOS directly segments the most salient objects from the
background without any reference. These two protocols are defined in the inference phase, meaning
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methods could leverage ground truth annotations in the training stage. In this paper, we don’t use
any kinds of manual annotations for either training or evaluation.

Motion Segmentation. As the name suggests, the aim of motion segmentation is to discover
moving objects. One line of the work (Brox & Malik, 2010; Fragkiadaki et al., 2012; Ochs & Brox,
2012; Ochs et al., 2013; Lezama et al., 2011; Keuper et al., 2015) formulates motion as the point
trajectory to take advantage of long-range temporal information so that segmentation results can be
acquired by grouping the trajectories. Later, deep learning methods take over the area (Tokmakov
et al., 2017b;a; Xie et al., 2019; Yang et al., 2019; 2021a; Choudhury et al., 2022; Yang et al., 2021b;
Ye et al., 2022a; Wang et al., 2022). Tokmakov et al. (2017b) adopts a two-stream network that
ingests both RGB and optical flow. Then they realize a memory mechanism by the convolutional
recurrent unit to enhance the visual cues. CIS (Yang et al., 2019) achieves fully unsupervised
motion segmentation which discards the supervision of annotated masks during training. By
formulating a min-max game of mutual information, the generator is asked to create foreground
segments that are as unrelated as possible to the background. AMD (Liu et al., 2021) minimizes
the warp synthesis error to train appearance and motion pathways without any supervision. The
most similar work to ours is MG (Yang et al., 2021a), which solely leverages the optical flow to
separate the pixels via cross attention mechanism (Locatello et al., 2020). Compared to MG (Yang
et al., 2021a), we keep reserved on the module design and the training recipe to demonstrate the
improvement brought by our method is purely from taking consecutive RGB frames instead of
optical flow. Recent work GWM (Choudhury et al., 2022) also utilizes RGB images and adopt the
supervision from optical flow but their model ingests a single image to segment the foreground and
fails to consider temporal coherency.

Object Discovery. There is rich literature on identifying salient objects without explicit super-
vision, known as object discovery. There exist a series of works that aim to learn object-centric
representations in images (Locatello et al., 2020; Lin et al., 2020; Jiang & Ahn, 2020; Greff et al.,
2019; Emami et al., 2021; Burgess et al., 2019; Crawford & Pineau, 2019; Engelcke et al., 2019;
2021). Typically, IODINE (Greff et al., 2019) develops iterative variational inference to separate
different objects. Locatello et al. (2020) proposes slot attention to iteratively update latent object
representations. Further, a line of works (Zablotskaia et al., 2020; Min et al., 2021; Kosiorek et al.,
2018; Kipf et al., 2022; Jiang et al., 2019; Kabra et al., 2021; Crawford & Pineau, 2020; Besbinar
& Frossard, 2021; Bear et al., 2020; Bao et al., 2022; Ye et al., 2022b; Yang et al., 2021a) extend
object-centric learning to video domain. Most of these approaches incorporate motion cues into the
reconstruction task and perform well in moving object segmentation but perform poorly in process-
ing static objects. While in this work, we adopt slot attention to form optical flow reconstruction
bottleneck and perceive both dynamic and static instances through RGB clip input in a temporally
consistent way.

3 MOTION-INDUCTIVE OBJECT DISCOVERY (MOD) MODEL

In this section, we detail our MOD model, which processes a set of consecutive RGB frames and
automatically discovers the moving objects in the form of segmentation. An overview of the training
procedure can be seen in Figure 2, where the visual features computed from individual frames are
temporally fused, and randomly paired together, for decoding the optical flows between two corre-
sponding frames. Taking inspiration from the motion grouping (Yang et al., 2021a), we also adopt
a dual-layered representation for the output flow, with the foreground and background flows being
reconstructed separately, and later composited with the inferred opacity masks (soft segmentation).
In the following section, we will detail each key component in our proposed architecture.

3.1 SPATIAL-TEMPORAL VISUAL ENCODER

To start with, our model takes a short video clip as input, i.e., v = {x1, · · · , xT }, v ∈ RT×H×W×3,
consisting of a set of RGB frames, the frame-wise visual representations are computed with a shared
visual encoder Φenc. Formally, the output feature map ot at timestamp t (1 ≤ t ≤ T ) can be
obtained:

ot = Φenc(xt) ∈ Rh×w×d, (1)
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Figure 2: Model architecture. Our model first extracts spatial features of consecutive frames by
the visual encoder. To jointly model the temporal relation, we aggregate and interact among the
multi-frame features with late-fusion. We randomly pair two frames’ visual representations and
pass them into the frame comparator to encode relative motion. Then, we decode the flow from
random-paired frames. Through iterative routing, we adopt a dual-layer representation for the flow
reconstruction, i.e., outputting the foreground and background flows separately, and composing them
with inferred opacity weights. The whole training procedure does not require supervision from any
mask annotations.

where h,w, d denotes the dimension of the height, width, and channel, respectively. Till this point, to
build the temporal dependency between multiple visual frames, a global fusion module is introduced,
via a standard Transformer Encoder layer:

{õ1, . . . , õT } = Φtemp({o1 + pe1, · · · , oT + peT }), (2)

where pe refers to the learnable spatial-temporal positional encodings, and the output õt ∈ Rh×w×d

remains the same dimension as input.

By taking the multiple RGB frames as input, our proposed visual encoder can explicitly consider
the temporal coherence within the video clip. Note that, such seemingly simple design poses two
critical differences from previous work on motion-driven object discovery (Yang et al., 2019; 2021a),
where only frame-wise optical flow is adopted: First, using RGB frames as input can drastically
reduce the computation latency at inference time. The throughput of our model without computing
dense optical flow reaches round 100 fps on a standard 32GB Tesla V100 GPU while prior works
need to calculate flow at first. RGB provides more semantic information than flows for the model to
exploit, i.e., including not only the object’s shape but also its texture. Second, processing multiple
frames contributes to the development of a sense of object permanence within the video clip, i.e.,
the understanding that items or people still exist even when they cannot be perceived explicitly.
Therefore, even though the objects in videos may stop moving or be partially occluded at any time
point, they can still be effectively segmented with the temporal cues.

3.2 RANDOM-PAIRED FRAME COMPARATOR

Till this point, we consider building the relative motion between any two visual frames within the
video clip, from reference frame i to target frame j, i.e., fi→j . In specific, we select the visual
representation of the two corresponding frames, i.e., õi and õj , concatenate them along the feature
dimension, and feed it into a comparator module:

fi→j = Φcomp(concat(õi, õj)) ∈ Rh×w×d, (3)

where Φcomp : R2d → Rd consists of multiple deformable convolutional layers (Zhu et al., 2019)
followed by a series of Transformer Encoders, that dynamically construct the feature representation
for later estimating relative motion between frames while reducing the feature dimensions at the
same time.
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Discussion. With such a design of random-paired frame comparator, our MOD is capable of mod-
eling the relative motion between any two randomly sampled frames out of the video clip (T frames),
accounting for a total of T 2 frame pairs for forward, backward, single, or multi-step motions. Note
that, we do not distinguish the case of i ̸= j and i = j. Specifically, the former encourages the model
to discover the relative motion between two different frames, while the latter refers to an extreme
case that neither objects nor camera is moving, and no motion cues are available, thus enforcing the
model to discover objects via temporal coherence, i.e., objects that moves in any frame along the
video should also be discovered in static frames.

3.3 DUAL-LAYERED FLOW DECODER

To decode the features into the form of optical flow, we adopt several slot attention layers (Locatello
et al., 2020) with two learnable queries, i.e., termed as slot vectors, iteratively attending the output
visual features from the comparator, and decoded into the optical flow between any two frames
with a dual-layered representation. In detail, a slot attention module acts similarly to a Transformer
Decoder, with the only exception being that the normalisation is computed along the slot side, thus
each slot competes to take over the pixels. In each iteration, given two slot vectors as S ∈ R2×d and
visual feature maps õt ∈ Rhw×d, we use three linear projections to compute the query, key and
value, i.e., Q ∈ R2×d,K, V ∈ Rhw×d. Thereafter, we can obtain the weights matrix W ∈ R2×hw

and normalise along the slot dimension, i.e.,

W̃s,· = exp(Ws,·)/
∑
l

exp (Wl,·), where W =
1√
d
QKT . (4)

Then, we gain the next iteration’s slot vectors by aggregating the values V and passing them into a
Gated Recurrent Unit (GRU) (Cho et al., 2014), i.e.,

S := GRU(inputs = AV, states = S), where A·,s =
W̃·,s∑
l W̃·,l

∈ R2×(h×w). (5)

We iterate the whole routing process for N times. In this way, the entities of similar RGB and
flow patterns are grouped together and distinct pixels are separated by two slots. Eventually, we
broadcast the final outputted slots into G = {Gs ∈ Rh×w×d}2s=1 added with learnable spatial
positional embeddings to construct the optical flow. A flow decoder Φdec consisting Transformer
encoders and up-sampling layers takes the slot grids as input, and outputs dual layers of optical
flows {Ĩs ∈ RH×W×3}2s=1

1 and their opacity weights {αs ∈ RH×W×1}2s=1:

{Ĩs, αs}2s=1 = Φdec(G), (6)

where αs ∈ [0, 1]H×W×1 is normalized across two slots via softmax function. Noted that thanks
to the softmax function, the alpha value for foreground could be close to zero when the foreground
object is missing in part of the video. For a given frame pair (i, j), their relative flow Ĩi→j can be
computed via:

Ĩi→j =

2∑
s=1

αs
i→j ⊗ Ĩsi→j , (7)

where ⊗ denotes the element-wise multiplication. At inference time, we adopt the binarized opacity
weights αs as the object segmentation masks.

3.4 TRAINING

In this section, we describe the training procedure for the proposed model, on the raw videos without
using manual annotations for the object segmentations. In general, the training loss is composed of
three components, namely, flow reconstruction, temporal consistency, and entropy minimisation.

1Note that following the common practise, we also output 3-channel RGB images, that refers to a transfor-
mation from the traditional 2-channel optical flow based on the color wheel proposed in Sun et al. (2018).
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Flow Reconstruction. As the main objective for optimisation, we use the flow reconstruction,
where we adopt an off-the-shelf optical flow estimator, for example, RAFT (Teed & Deng, 2020), to
estimate the flow between any two frames in the video. We minimise the discrepancy between the
dual-layer flow reconstruction and the output from the existing flow estimator:

Li→j
recon =

1

|Ω|
∑
u∈Ω

|Ii→j(u)− Ĩi→j(u)|2, (8)

where Ω = {1, · · · , H}×{1, · · · ,W} represents the spatial lattice, and a | · |2 denotes the L2 norm.
In practice, the reconstruction constraint for zero flow when i = j is dropped due to the distribution
gap between dynamic flow and static flow, resulting in the divergence of the training. Note that,
flow estimator is only used for model training, at inference time, our proposed architecture directly
processes the RGB video clips.

Temporal Consistency. In order to build up temporal consistency within the input video, the pair
of motion embeddings fi→j , fi→k that starts from the same reference frame i, are passed through
the flow decoder to reconstruct the optical flow between two corresponding frames. Note that, as
1 ≤ j, k ≤ T are randomly sampled at every training iteration, the output flow will refer to the
motion at a different pace. However, the predicted alpha weights for flow composition denote the
soft segmentation for the same objects in the i-th frame, thus remaining consistent. In specific, the
two inferred masks {αs

i→j}2s=1, {αs
i→k}2s=1 are enforced to pull closer by minimising mean-squared

error Lcons, i.e.,

Lcons =
1

T

T∑
i=1

Li
cons where Li

cons =
1

2|Ω|
∑
u∈Ω

2∑
s=1

|αs
i→j(u)− αs

i→k(u)|2. (9)

Entropy Minimisation. Lastly, we impose a pixel-wise entropy regularisation on inferred masks,
that is zero if the alpha channels are one-hot, and maximum when they are of equal probability.
Intuitively, this helps encourage the masks to be binary, which aligns with our goal in obtaining
segmentation masks:

Li→j
entro =

1

2|Ω|
∑
u∈Ω

2∑
s=1

−αs
i→j(u) log(α

s
i→j(u)). (10)

Total Loss. Accordingly, we rewrite aforementioned reconstruction loss Lrecon and entropy regu-
latization Lentro in summed version:

Lrecon =
1

2T

T∑
i=1

Li→ji
recon + Li→ki

recon ; (11)

Lentro =
1

2T

T∑
i=1

Li→ji
entro + Li→ki

entro . (12)

The total loss for training our model can thus be computed as:

Ltot = λrLrecon + λeLentro + λcLcons, (13)

where we set λr = 100, λe = λc = 0.01 at the beginning of the training. We notice the model to be
fairly robust to these hyper-parameters.

4 EXPERIMENTAL SETUP

In the experiments setup, we first introduce the benchmarks and then elaborate on implementation
details.

4.1 DATASETS

We benchmark on three popular datasets designed for video object segmentation. DAVIS2016 (Per-
azzi et al., 2016) consists of 50 high quality videos, 3455 frames in total. Every frame is annotated
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with a pixel-accurate segmentation mask. SegTrackv2 (Li et al., 2013) contains 14 sequences and
947 fully-annotated frames. Each sequence involves 1-6 moving objects and presents challenges
including motion blur, appearance change, complex deformation, occlusion, slow motion, and in-
teracting objects. FBMS-59 (Ochs et al., 2013) has 59 sequences with greatly varied resolution and
annotates every 20th frame. Many sequences contain multiple moving objects. Following previous
evaluation metric (Yang et al., 2019; Xie et al., 2022), we merge objects of SegTrackv2 and FBMS-
59 into one single object for video object segmentation. We evaluate the pixel-wise segmentation
through Jaccard index J , also called Intersection over Union (IoU). Following prior arts (Yang et al.,
2019; 2021a), we compute the mean per frame over the test set and merge multi-object annotation
into single unified segmentation.

4.2 IMPLEMENTATION DETAILS

For data input, we sample T = 7 consecutive frames as the input clip. Each frame is resized to
192 × 384 and the estimated optical flow is computed by RAFT (Teed & Deng, 2020), which is
pre-trained on the synthetic dataset (Mayer et al., 2016).

To compute spatial-temporal visual representation, we adopt the first three stages of a SwinV2-
T as the frame encoder Φenc, which is then followed by a standard Transformer Encoders with 8
heads (Vaswani et al., 2017) as temporal fusion module Φtemp. For the frame comparator Φcomp, we
use two deformable convolutional layers in the company with three standard Transformer Encoders
with 8 heads to process the pixel transformation. Then, we choose N = 5 iteration in total for the
iterative routing in slot attention. Lastly, we utilize three stages of SwinV2 blocks with the linear
patch expanding layers as the flow decoder Φdec (Cao et al., 2021).

As for training, we adopt AdamW optimizer (Loshchilov & Hutter, 2018) with learning rate
4×10−5. The model is trained from scratch without any pretrained weights, for a total of 300k itera-
tions. At inference time, we adopt the overlapping temporal sliding window to ensemble the segmen-
tation masks. We average the resultant masks obtained by the whole temporal segments. We propose
two protocols to evaluate our results. Besides measuring the masks without any post-processing, we
also apply test-time adaptation with the help of the self-supervised DINO-pretrained ViT (Caron
et al., 2021). Without any fine-tuning, the pretrained ViT can propagate the masks as noisy anno-
tations to the whole frames in the same manner as CRW (Jabri et al., 2020). We refine the masks
further with CRF (Lafferty et al., 2001). For more detailed technical information, please refer to the
supplementary materials.

5 RESULTS

In this section, we compare primarily with several top-performing approaches trained without human
annotations, for example, OCLR (Xie et al., 2022), MG (Yang et al., 2021a), CIS (Yang et al., 2019),
etc. However, as the architecture, modality, input resolution, and post-processing protocols are all
different, we try our best to conduct the comparison as fairly as possible.

5.1 ABLATION STUDY

We conduct all ablation studies on DAVIS2016 and vary one variable each time, as shown in Table 1.

Temporal Fusion Φtemp and Frame Comparator Φcomp. As shown by Ours-A and Our-C, the
performance degrades significantly without temporal fusion, demonstrating the importance of build-
ing up global temporal dependency. Also, indicated by Ours-B, we find the model fails to converge
when removing the component of frame comparator Φcomp. It meets expectations because frame
comparator Φcomp is the sole module in charge of relative motion estimation. Without it, the model
cannot reconstruct optical flow thus leading to divergence.

Number of Frames T . While comparing Ours-A, Ours-D, and Ours-E, there is a clear trend that
increasing the frame number boosts the segmentation quality, which coincides with our intuition
that incorporating a wider temporal receptive field can enhance the sense of temporal coherence and
object permanence. Due to the limited computational memory, we only set T = 7 as the maximum
frame number in the paper. A promising performance is expected when inputting more frames.
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Model Φtemp Φcomp T Lcons Lentro DAVIS(J ↑)

Ours-A ✓ ✓ 7 ✓ ✓ 73.9
Ours-B - ✗ 7 ✓ ✓ fail
Ours-C ✗ ✓ 7 ✓ ✓ 68.3

Ours-D ✓ ✓ 3 ✓ ✓ 66.4
Ours-E ✓ ✓ 5 ✓ ✓ 68.2

Ours-F ✓ ✓ 7 ✗ ✗ 60.4
Ours-G ✓ ✓ 7 ✗ ✓ 65.6
Ours-H ✓ ✓ 7 ✓ ✗ 69.5

Table 1: Ablation studies on temporal fusion (Φtemp), frame comparator (Φcomp), the number of input
frames (T ), temporal consistency (Lcons), and entropy loss (Lentro).

Training Inference J (Mean) ↑
Model Sup. RGB Flow p.p. DAVIS2016 SegTrackv2 FBMS-59

SAGE (Wang et al., 2017) None ✓ ✓ ✗ 42.6 57.6 61.2
NLC (Faktor & Irani, 2014) None ✓ ✓ ✓ 55.1 67.2 51.5

CIS (Yang et al., 2019) None ✓ ✓ ✓ 71.5 62.5 63.5
AMD (Liu et al., 2021) None ✓ ✗ ✗ 57.8 57.0 47.5

SIMO (Lamdouar et al., 2021) Syn. ✗ ✓ ✓ 67.8 62.0 -
MG (Yang et al., 2021a) None ✗ ✓ ✗ 68.3 58.6 53.1
OCLR (Xie et al., 2022) Syn. ✗ ✓ ✗ 72.1 67.6 65.4

MOD (w/o post-processing) None ✓ ✗ ✗ 73.9 62.2 61.3
MOD (test-time adaptation) None ✓ ✗ ✓ 79.2 69.4 66.9

FSEG (Dutt Jain et al., 2017) GT ✓ ✓ - 70.7 61.4 68.4
COSNet (Lu et al., 2019) GT ✓ ✗ - 80.5 49.7 75.6

MATNet (Zhou et al., 2020) GT ✓ ✓ - 82.4 50.4 76.1
D2Conv3d (Schmidt et al., 2022) GT ✓ ✗ - 85.5 - -

Table 2: Quantitative comparison on unsupervised video object segmentation. We compare our
method on three standard datasets, DAVIS2016, SegTrackv2, and FBMS-59. Sup. refers to the
supervision, including None, Synthetic (Syn.), and Ground Truth (GT). p.p. is short for post-
processing (e.g., CRF (Lafferty et al., 2001)).

Temporal Consistency Lcons and Entropy Regularisation Lentro. Lastly, comparing Ours-G and
Ours-A, we observe that the performance increases considerably with temporal consistency. It man-
ifests the validity of our design motivation, temporal consistency conduces to persistently tracking
the object. The entropy regularisation is also indispensable shown by Ours-H and Ours-A.

5.2 COMPARISON WITH STATE-OF-THE-ART

We show the comparison with state-of-the-art in Table 2. On DAVIS2016, MOD achieves 73.9%
mIOU without any post-processing, exceeding MG (Yang et al., 2021a) by a large margin (+5.8%).
Compared to the latest method OCLR (Xie et al., 2022) which fabricates a synthesized dataset to
train its model, our method still surpasses it only using the information of the DAVIS dataset itself.
On another two benchmarks SegTrackv2 and FBMS-59, MOD also beats MG (Yang et al., 2021a),
which only leverages single-step flows to decompose foreground and background, by +3.6% and
+8.2%, respectively. The superior experimental results demonstrate that our methodology of multi-
frame reasoning benefits moving object discovery. Furthermore, equipped with DINO-pretrained
ViT, a further performance gain is observed on all three benchmarks, which is even more competitive
with current supervised approaches.

5.3 QUALITATIVE RESULTS

In Figure 3, we present several qualitative illustrations of the model. It can be seen that our results are
robust to the noticeable background flow signal (drift-chicane sequence in the second column) and
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estimate more accurate boundaries when single-step foreground flow cannot represent exact object
shape (breakdance and dance-twirl sequences in middle) compared to MG (Yang et al., 2021a). It
demonstrates inferring the masks by associating a bunch of RGB features well resolves the limitation
of the usage of flow. Moreover, in virtue of temporally consistent cues, our model handles occlusion
well shown in the libby sequence at the rightmost column, which could be hard for the flow-only
method to maintain the object shape constantly.
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Figure 3: Qualitative results of object video segmentation on DAVIS2016. MG refers to Yang et al.
(2021a). Red boxes outline the corresponding difference.

5.4 LIMITATIONS

Though we demonstrate that associating multiple frames stimulates the comprehensive sense of
objectness, which is proved by the superior experimental performance across the prior arts, there still
exist limitations and room for improvement. First, our method uses a number of consecutive frames,
which challenges computational memory. How to utilize pretrained features for reducing training
expenses would be meaningful. Second, how to segment multiple objects remains unresolved. We
display a preliminary result in supplementary material. It will be promising to exploit the semantic
information from RGB to discriminate different foreground objects. We leave them as the feature
work. Despite these limitations, the approach has convincingly manifested the value of considering
textural information and processing RGB frames as a whole.

6 CONCLUSION

In this paper, we propose a self-supervised model for video object discovery. The model takes
a set of consecutive RGB frames as input and generates the segmentation mask for the moving
objects in the video. At training time, the model is tasked to reconstruct the optical flow between
any pair of frames, through a layered representation with the opacity channels being treated as the
segmentation. To encourage the model to capture the objects even when they may be static at a
certain time point, a temporal consistency loss is enforced on the inferred masks on the randomly-
paired frames. As a consequence, we demonstrate superior performance over previous state-of-the-
art methods on three public video segmentation datasets (DAVIS2016, SegTrackv2, and FBMS-59),
while being computationally efficient by avoiding the overhead of computing optical flow.
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René Ranftl, Alexey Bochkovskiy, and Vladlen Koltun. Vision transformers for dense prediction. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 12179–12188,
2021.

Christian Schmidt, Ali Athar, Sabarinath Mahadevan, and Bastian Leibe. D2conv3d: Dynamic
dilated convolutions for object segmentation in videos. In Proceedings of the IEEE/CVF Winter
Conference on Applications of Computer Vision, pp. 1200–1209, 2022.

Deqing Sun, Xiaodong Yang, Ming-Yu Liu, and Jan Kautz. Pwc-net: Cnns for optical flow using
pyramid, warping, and cost volume. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 8934–8943, 2018.

Zachary Teed and Jia Deng. Raft: Recurrent all-pairs field transforms for optical flow. In European
conference on computer vision, pp. 402–419. Springer, 2020.

Joshua B Tenenbaum, Charles Kemp, Thomas L Griffiths, and Noah D Goodman. How to grow a
mind: Statistics, structure, and abstraction. science, 331(6022):1279–1285, 2011.

Pavel Tokmakov, Karteek Alahari, and Cordelia Schmid. Learning motion patterns in videos. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 3386–3394,
2017a.

Pavel Tokmakov, Karteek Alahari, and Cordelia Schmid. Learning video object segmentation with
visual memory. In Proceedings of the IEEE International Conference on Computer Vision, pp.
4481–4490, 2017b.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Paul Voigtlaender, Yuning Chai, Florian Schroff, Hartwig Adam, Bastian Leibe, and Liang-Chieh
Chen. Feelvos: Fast end-to-end embedding learning for video object segmentation. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9481–9490,
2019.

13

http://lmb.informatik.uni-freiburg.de/Publications/2016/MIFDB16
http://lmb.informatik.uni-freiburg.de/Publications/2016/MIFDB16


Under review as a conference paper at ICLR 2023

Carl Vondrick, Abhinav Shrivastava, Alireza Fathi, Sergio Guadarrama, and Kevin Murphy. Track-
ing emerges by colorizing videos. In Proceedings of the European conference on computer vision
(ECCV), pp. 391–408, 2018.

Ning Wang, Yibing Song, Chao Ma, Wengang Zhou, Wei Liu, and Houqiang Li. Unsupervised
deep tracking. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 1308–1317, 2019.

Wenguan Wang, Jianbing Shen, Ruigang Yang, and Fatih Porikli. Saliency-aware video object
segmentation. IEEE transactions on pattern analysis and machine intelligence, 40(1):20–33,
2017.

Yangtao Wang, Xi Shen, Yuan Yuan, Yuming Du, Maomao Li, Shell Xu Hu, James L Crowley,
and Dominique Vaufreydaz. TokenCut: Segmenting Objects in Images and Videos with Self-
supervised Transformer and Normalized Cut. working paper or preprint, 2022. URL https:
//hal.archives-ouvertes.fr/hal-03765422.

Max Wertheimer. Untersuchungen zur lehre von der gestalt. ii. Psychologische forschung, 4(1):
301–350, 1923.

Christopher Xie, Yu Xiang, Zaid Harchaoui, and Dieter Fox. Object discovery in videos as fore-
ground motion clustering. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 9994–10003, 2019.

Junyu Xie, Weidi Xie, and Andrew Zisserman. Segmenting moving objects via an object-centric
layered representation. In Advances in Neural Information Processing Systems, 2022.

Jiarui Xu and Xiaolong Wang. Rethinking self-supervised correspondence learning: A video frame-
level similarity perspective. In Proceedings of the IEEE/CVF International Conference on Com-
puter Vision, pp. 10075–10085, 2021.

Charig Yang, Hala Lamdouar, Erika Lu, Andrew Zisserman, and Weidi Xie. Self-supervised video
object segmentation by motion grouping. In Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision (ICCV), pp. 7177–7188, October 2021a.

Yanchao Yang, Antonio Loquercio, Davide Scaramuzza, and Stefano Soatto. Unsupervised moving
object detection via contextual information separation. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR), June 2019.

Yanchao Yang, Brian Lai, and Stefano Soatto. Dystab: Unsupervised object segmentation via
dynamic-static bootstrapping. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 2826–2836, June 2021b.

Vickie Ye, Zhengqi Li, Richard Tucker, Angjoo Kanazawa, and Noah Snavely. Deformable sprites
for unsupervised video decomposition. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 2657–2666, 2022a.

Vickie Ye, Zhengqi Li, Richard Tucker, Angjoo Kanazawa, and Noah Snavely. Deformable sprites
for unsupervised video decomposition. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2022b.

Polina Zablotskaia, Edoardo A Dominici, Leonid Sigal, and Andreas M Lehrmann. Unsupervised
video decomposition using spatio-temporal iterative inference. arXiv preprint arXiv:2006.14727,
2020.

Tianfei Zhou, Shunzhou Wang, Yi Zhou, Yazhou Yao, Jianwu Li, and Ling Shao. Motion-attentive
transition for zero-shot video object segmentation. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 34, pp. 13066–13073, 2020.

Xizhou Zhu, Han Hu, Stephen Lin, and Jifeng Dai. Deformable convnets v2: More deformable,
better results. In Proceedings of the IEEE/CVF conference on computer vision and pattern recog-
nition, pp. 9308–9316, 2019.

14

https://hal.archives-ouvertes.fr/hal-03765422
https://hal.archives-ouvertes.fr/hal-03765422


Under review as a conference paper at ICLR 2023

A MORE IMPLEMENTATION DETAILS

In this section, we list the architecture details and training settings. Codes and models will be
released publicly.

A.1 VISUAL ENCODER

The visual encoder contains the first three stages of Swin-Tiny V2. We tabulate the workflow in
Table 3.

stage operation output sizes
input - 3 × 192 × 384

PatchEmbed 4 × 4, stride 4, 96 96 × 48 × 96

SwinBlock1
[

h = 3
ws = 12

]
× 2 96 × 48 × 96

DownSample1 192 192 × 24 × 48

SwinBlock2
[

h = 6
ws = 12

]
× 2 192 × 24 × 48

DownSample2 384 384 × 12 × 24

SwinBlock3
[
h = 12
ws = 12

]
× 6 384 × 12 × 24

Table 3: Architecture of visual encoder. h stands for the number of attention heads while ws refers
to window size.

A.2 FRAME COMPARATOR

The frame comparator possesses two deformable convolutional layers, with ReLU operation in be-
tween and three Transformer Encoder blocks. We tabulate the workflow in Table 4.

stage operation output sizes
input - 768 × 12 × 24

DeformConv1 3 ×3, 768 768 × 12 × 24
ReLU - 768 × 12 × 24

DeformConv2 3 ×3, 384 384 × 12 × 24

Transformer
[
h = 8
384

]
× 3 384 × 12 × 24

Table 4: Architecture of frame comparator. h represents the number of attention heads

A.3 FLOW DECODER

The frame comparator consists of three stages of SwinV2 block added with linear expanding layers.
We tabulate the workflow in Table 5.

A.4 TRAINING DETAILS

For all datasets, we train with a batch size of 2. To train more efficiently, we sample three flow pairs
(i → j) for a given frame i; one is static replication i = j, another two are motion pair i ̸= j.
We apply temporal consistency first on the masks from two motion pairs, then pull the static mask
to the average of two dynamic masks closer. We linearly warm up the learning rate for the first 1k
iterations. Besides, for every 100k iterations, we decay the learning rate by half and increase the
scale of temporal consistency λc and entropy regularisation λe by the factor of 5. In the default
setting, we train for about 3 days on 8 standard Tesla V100 GPUs with 32GB memory each.
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stage operation output sizes
input - 384 × 12 × 24

SwinBlock1
[
h = 12
ws = 12

]
× 2 384 × 12 × 24

PatchExpand1 768 192 × 24 × 48

SwinBlock2
[

h = 6
ws = 12

]
× 2 192 × 24 × 48

PatchExpand2 384 96 × 48 × 96

SwinBlock3
[

h = 3
ws = 12

]
× 2 96 × 48 × 96

PatchExpand3 1536 96 × 192 × 384
outConv 5× 5, stride 1, 4 4 × 192 × 384

Table 5: Architecture of flow decoder. h stands for the number of attention heads while ws refers to
window size.

A.5 TEST-TIME ADAPTATION

Inspired by OCLR (Xie et al., 2022), we adopt test-time adaptation based on RGB sequence to
enhance appearance consistency. In detail, we follow existing works on self-supervised tracking (Lai
et al., 2020; Jabri et al., 2020) to propagate object masks across time span. The whole process
consists of three steps. First, we extract RGB features of each frame with a DINO-pretrained ViT
encoder. Then, we select key frames for object mask propagation. Finally, we calculate the affinity
matrix between frames and perform mask propagation.

DINO Feature Extraction. Given a video sequence v = {x1, ..., xT }, v ∈ RT×H×W×3, we use
DINO pretrained ViT-Small encoder with patch size 8× 8 to extract features:

{f1, ..., fT } = {Φ(x1), ...,Φ(xT )}, ft ∈ Rh×w×384, (14)

where h = H//8 and w = W//8. The extracted features will be used in the mask propagation step.

Key Frame Selection. Given video v, our model predicts object mask of each frame as m =
{α1, ..., αT },m ∈ RT×H×W×1. Since the video frames are continuous along the temporal di-
mension, it is practical to propagate object masks between neighboring frames. The propagation
operation is the same as Jabri et al. (2020), the only difference is that we have no ground-truth mask
for reference. Therefore, we need to design a mechanism to select object masks of high confidence.
To do this, we measure the temporal coherence of predicted object masks for key frame selection.
Specifically, for each timestamp t ∈ {3, ..., T −2}, we can calculate four propagated masks as:

α̂t = [Mask-prop(αt−2),Mask-prop(αt−1),Mask-prop(αt+1),Mask-prop(αt+2)], (15)

where ‘Mask-prop’ denotes the propagation operation. Then we calculate the average IoU between
the original mask and propagated masks as the confidence score:

st =
IoU(α̂t[0], αt) + IoU(α̂t[1], αt) + IoU(α̂t[2], αt) + IoU(α̂t[3], αt)

4
. (16)

The calculated st measures the coherency between αt and its neighbors. Our empirical studies show
that it serves as a reliable signal for key frame selection.

Object Mask Propagation. We select timestamps with Top-k% confidence score as the key ref-
erence frames (k = 15 on DAVIS2016, k = 25 on SegTrackv2, k = 10 on FBMS-59). Then we
iteratively propagate the object masks with a neighbor temporal window size n = 7. Compared to
conventional semi-supervised object segmentation which only relies on the first frame as key frame,
we have multiple key frames on different temporal positions to correct the accumulated propagation
error. In this way, the propagation enhances object permanence across time and boosts performance.

B RESULTS BREAKDOWN

We include a specific result breakdown in this section. We show the per-sequence results on
DAVIS2016 in Table 6, SegTrackv2 in Table 7 and FBMS-59 in Table 8.
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J (Mean) ↑
Sequence w/o post proc. test-time adap.

dog 80.7 87.4
cows 87.2 88.8
goat 47.5 80.6

camel 85.6 86.1
libby 72.5 77.7

parkour 72.9 87.9
soapbox 84.6 86.5

blackswan 48.9 46.9
bmx-trees 50.1 55.8
kite-surf 55.9 62.6

car-shadow 87.9 86.9
breakdance 82.6 76.0
dance-twirl 82.5 85.4

scooter-black 80.2 80.3
drift-chicane 78.6 82.2

motocross-jump 68.4 88.9
horsejump-high 78.0 84.3

drift-straight 69.2 80.0
car-roundabout 87.7 83.9

paragliding-launch 62.1 62.8
frame avg. 73.9 79.2

Table 6: Sequence-wise results on DAVIS2016.

J (Mean) ↑
Sequence w/o post proc. test-time adap.

drift 41.7 40.7
birdfall 38.2 61.5

girl 76.5 82.3
cheetah 18.4 30.1
worm 52.5 74.3

parachute 90.2 92.0
monkeydog 14.3 31.1

hummingbird 61.2 58.8
soldier 66.3 58.8
bmx 73.7 78.8
frog 80.5 76.3

penguin 63.5 62.7
monkey 46.8 77.4

bird of paradise 85.3 85.4
frame avg. 62.2 69.4

Table 7: Sequence-wise results on SegTrackv2.
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J (Mean) ↑
Sequence w/o post proc. test-time adap.
camel01 25.8 66.9

cars1 66.1 88.3
cars10 31.6 33.9
cars4 72.9 83.2
cars5 81.2 82.5
cats01 80.6 79.2
cats03 62.0 63.4
cats06 40.1 38.7
dogs01 70.6 61.2
dogs02 62.8 82.2
farm01 86.7 88.9

giraffes01 38.6 52.2
goats01 44.8 45.3
horses02 64.4 77.6
horses04 68.5 73.5
horses05 43.7 49.0
lion01 60.1 71.5

marple12 74.7 80.3
marple2 65.0 71.4
marple4 79.1 91.6
marple6 76.0 85.1
marple7 72.5 55.2
marple9 87.5 97.9
people03 76.5 48.5
people1 72.4 80.8
people2 80.9 83.0

rabbits02 50.2 58.9
rabbits03 39.5 55.7
rabbits04 47.0 53.0

tennis 63.1 71.1
frame avg. 61.3 66.9

Table 8: Sequence-wise results on FBMS-59.
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Flow Estimator DAVIS2016 SegTrackv2 FBMS-59
RAFT 73.9 62.2 61.3

ARFlow 59.2 51.1 50.0

Table 9: Ablation studies on flow estimator.

Figure 4: Per-slot visualization on DAVIS 2016.

C MORE QUANTITATIVE RESULTS

Besides RAFT flow estimator, we consider a fully unsupervised model ARFlow (Liu et al., 2020)
shown in Table 9. The inferior result brought from ARFlow demonstrates that a good optical flow
quality lays strong foundation for the success of the object discovery, which aligns with our motiva-
tion.

D MORE QUALITATIVE RESULTS

We visualize the segmentation results when initializing 5 slots vectors in Figure 4. The results are
promising, where each slot groups similar part under the only supervision of motion. We believe
more supervision like semantics (Caron et al., 2021) and depth (Ranftl et al., 2021) would lead to
better segmentation. We show more qualitative results of SegTrackv2 and FBMS-59 in Figure 5 and
Figure 6. Besides,
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Figure 5: Qualitative results on SegTrackv2. MG refers to Yang et al. (2021a). Red boxes outline
the corresponding difference.
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Figure 6: Qualitative results on FBMS-59. MG refers to Yang et al. (2021a). Red boxes highlight
the corresponding difference.
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