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Abstract

We present elliptical processes—a family of non-parametric probabilistic models that sub-
sumes the Gaussian processes and the Student’s t processes. This generalization includes
a range of new heavy-tailed behaviors while retaining computational tractability. The el-
liptical processes are based on a representation of elliptical distributions as a continuous
mixture of Gaussian distributions. We parameterize this mixture distribution as a spline
normalizing flow, which we train using variational inference. The proposed form of the
variational posterior enables a sparse variational elliptical process applicable to large-scale
problems. We highlight some advantages compared to a Gaussian process through regres-
sion and classification experiments. Elliptical processes can replace Gaussian processes in
several settings, including cases where the likelihood is non-Gaussian or when accurate tail
modeling is essential.

1 Introduction
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Figure 1: Posterior distributions of an ellipti-
cal process and a Gaussian process with equal
kernel hyperparameters and covariance. The
shaded area are confidence intervals of the
posterior processes. The elliptical confidence
regions are wider due to the process’s heavier
tail, which makes the confidence region simi-
lar to the Gaussian’s close to the mean, but
also allows samples further out at the tail.

Non-Gaussian data arise in many real-world settings, for
instance in finance (Mandelbrot, 1963), signal processing
(Zoubir et al., 2012) and geostatistics (Diggle et al., 1998).
While Gaussian processes (GPs) offer a powerful and widely
used modeling framework, it can be seriously misleading in
such situations. We use a combination of normalizing flows
and modern variational inference techniques to extend the
modeling capabilities of GPs to the more general class of
elliptical processes (EPs).

Elliptical processes. The elliptical processes subsume the
Gaussian process and the Student’s t process (Shah et al.,
2014). It is based on the elliptical distribution—a scale-
mixture of Gaussian distributions attractive mainly because
it can describe heavy-tailed distributions while retaining
most of the Gaussian distribution’s computational tractabil-
ity (Fang et al., 1990). We use a normalizing flow (Pa-
pamakarios et al., 2021a) to model the continuous scale-
mixture, which provides an added flexibility that can ben-
efit a range of applications. We explore the use of elliptical
processes as both a prior (over functions) and a likelihood,
as well as the combination thereof. We also explore the use
of EPs as a variational posterior that can adapt its shape to
match complex posterior distributions (Tran et al., 2016).

Variational inference. Variational inference is a powerful
tool for approximate inference that uses optimization to find
a member of a predefined family of distributions that is close
to the target distribution (Wainwright et al., 2008; Blei et al.,
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2017). Significant advances made in the last decade have made variational inference the method of choice
for scalable approximate inference in complex parametric models (Ranganath et al., 2014; Hoffman et al.,
2013; Kingma & Welling, 2013; Rezende et al., 2014).

It is thus not surprising that the quest for more expressive and scalable variations of Gaussian processes has
gone hand-in-hand with the developments in variational inference. For instance, sparse GPs use variational
inference to select inducing points to approximate the prior (Titsias, 2009). Inducing points is a common
building block in deep probabilistic models such as deep Gaussian processes (Damianou & Lawrence, 2013;
Salimbeni et al., 2019) and can also be applied in Bayesian neural networks Maroñas et al. (2021); Ober &
Aitchison (2021). Similarly, the combination of inducing points and variational inference enables scalable
approximate inference in models with non-Gaussian likelihoods, such as when performing GP classification
(Hensman et al., 2015; Wilson et al., 2016).
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Figure 2: Left: A contour plot of an elliptical two-
dimensional, correlated distribution with zero means.
The name derives from its elliptical level sets. Right:
Three examples of one-dimensional elliptical distribu-
tions with zero means and varying tail-heaviness. El-
liptical distributions are symmetric around the mean
E[X] = µ.

However, the closeness of the variational distribu-
tion to the target distribution is bounded by the flex-
ibility of the variational distribution. Consequently,
the success of deep (neural network) models have
inspired various suggestions on flexible yet tractable
variational distributions, often based on parameter-
ized transformations of a simple base distribution
(Tran et al., 2016). In particular, models using
a composition of invertible transformations, known
as normalizing flows, have been especially popular
(Rezende & Mohamed, 2015; Papamakarios et al.,
2021a).

Our contributions. We propose an adaptation
of elliptical distributions and processes in the same
spirit as modern Gaussian processes. Constructing
elliptical distributions based on a normalizing flow
provides a high degree of flexibility without sacrific-
ing computational tractability. This makes it possi-
ble to sidestep the “curse of Gaussianity”, and adapt
to heavy-tailed behavior when called for. We thus
foresee many synergies between EPs and recently developed GP methods. We make a first exploration of
these, and simultaneously demonstrate the versatility of the elliptical process as a model for the prior and/or
the likelihood, or as the variational posterior. In more detail, our contributions are:

• a construction of the elliptical process and the elliptical likelihood as a continuous scale-mixture of
Gaussian processes parameterized by a normalizing flow, which offers a natural generalization of the
Gaussian and Student’s t processes;

• a variational factorization that captures heavy-tailed posteriors, allowing us to create a sparse vari-
ational elliptical process applicable to large-scale problems;

• an elliptical process and an elliptical likelihood conditioned on the data, constructed using amortized
variational inference. We exemplify how to use this construction when modelling heteroscedastic
noise.

2 Background

In this section, we present the necessary background on elliptical distributions, elliptical processes and
normalizing flow models. Throughout, we consider the regression problem, where we are given a set of N
scalar observations, y = [y1, · · · , yN ]⊤, at the locations [x1, · · · , xN ]⊤, where xn is D dimensional. The
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measurements yn are assumed to be noisy measurements, such that,

yn = f(xn) + ϵn, (1)

where ϵn is zero mean, i.i.d., noise. The task is to infer the underlying function, f : RD → R.

2.1 Elliptical distributions

The elliptical process is based on elliptical distributions (Figure 2), which include Gaussian distributions as
well as more heavy-tailed distributions, such as the Student’s t distribution and the Cauchy distribution.

The probability density of a random variable Y ∈ RN that follows the elliptical distribution can be expressed
as,

p(u; η) = cn,η|Σ|−1/2gN (u; η), (2)

where u = (y − µ)TΣ−1(y − µ) is the squared Mahalanobis distance, µ is the location vector, Σ is the
non-negative definite scale matrix, and cN,η is a normalization constant. The density generator gN,η(u) is a
non-negative function with finite integral parameterized by η which determines the shape of the distribution.

Elliptical distributions are consistent, i.e., closed under marginalization, if and only if p(u; η) is a scale-
mixture of Gaussian distributions (Kano, 1994). The density can be expressed as

p(u; η) = |Σ|− 1
2

∫ ∞

0

(
1

2πξ

) n
2

e
−u
2ξ p(ξ; ηξ)dξ, (3)

using a mixing variable ξ ∼ p(ξ; ηξ). Any mixing distribution p(ξ; ηξ) that is strictly positive can be used
to define a consistent elliptical process. In particular, we recover the Gaussian distribution if the mixing
distribution is a Dirac delta function and the Student’s t distribution if it is a scaled inverse chi-square
distribution. For more information on the elliptical distribution, see Appendix A

2.2 Elliptical processes

The elliptical process is defined, analogously to a Gaussian process, as:

Definition 1 An elliptical process (EP) is a collection of random variables such that every finite subset has
a consistent elliptical distribution, where the scale matrix is given by a covariance kernel.

This means that an EP is specified by a mean function µ(x), scale matrix (kernel) k(x, x) and mixing dis-
tribution p(ξ; ηξ). Since the EP is built upon consistent elliptical distributions it is closed under marginal-
ization. The marginal mean µ is the same as the mean for the Gaussian distribution, and the covariance is
Cov[Y] = E [ξ] Σ where Y is an elliptical random variable, Σ is the covariance for a Gaussian distribution
and ξ is the mixing variable.

Formally a stochastic process {Xt : t ∈ T} on a probability space (Ω, F , P ) consists of random maps
Xt : ω → St, t ∈ T , for measurable spaces (St, St), t ∈ T (Bhattacharya & Waymire, 2007). We focus on
the setting where S = R and the index set T is a subset of RN , in particular, the half-line [0, ∞). Due to
Kolmogorov’s extension theorem, we may construct the EP from the family of finite-dimensional, consistent,
elliptical distributions, which is easy to check due to the restriction to S = R (which is a Polish space) and
Kano’s characterization above.

Ergodicity. When using GP for regression or classification we usually assume that the data originate
from a single sample path, which is a single sample from the GP. A stationary Gaussian process is ergodic
since all sample paths have the same statistics. An elliptical process, on the other hand, can be viewed as
a hierarchical model, constructed by first sampling ξ ∼ p(ξ; ηξ) and then y ∼ N (µ, Σ ξ). This structure
implies that an elliptical process is not ergodic: it is not possible to infer the mixing distribution p(ξ; ηξ)
from a single path. To learn the mixing distribution p(ξ; ηξ) we need draws from multiple paths.
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Conditional distribution. To use the EP for predictions, we need the conditional mean and covariance
of the corresponding elliptical distribution, which derive next. We partition the data as y = [y1, y2], where
y1 is the N1 observed data points, y2 is the N2 data points to predict, and N1 + N2 = N . We have the
following result:

Proposition 1 If the data y = [y1, y2] originate from the consistent elliptical distribution in (3), the con-
ditional distribution originates from the distribution

py2|u1(y2) = cN1,η∣∣Σ22|1
∣∣ 1

2 (2π)
N2

2

∫ ∞

0
ξ− n

2 e−(u2|1+u1) 1
2ξ p(ξ; η)dξ (4)

with the conditional mean E[y2|y1] = µ2|1 and the conditional covariance

Cov[Y2|Y1 = y2] = E[ξ̂]Σ22|1, ξ̂ ∼ ξ|y1, (5)

where u1 = (y1 − µ1)⊤Σ−1
11 (y1 − µ1), u2|1 = (y2 − µ2|1)⊤Σ−1

22|1(y2 − µ2|1), and cN1,η is a normalization
constant. The conditional scale matrix Σ22|1 and the conditional mean vector µ2|1 are the same as the mean
and the covariance matrix for a Gaussian distribution. The proof is derived in Appendix B.

The conditional distribution is guaranteed to be a consistent elliptical distribution but not necessarily the
same as the original one—the shape depends on the training samples. (Recall that consistency only concerns
the marginal distribution.)

We make predictions for unseen data points by first approximating the posterior, and then using its con-
ditional distribution. Gaussian processes are computationally convenient since combining a GP prior with
a Gaussian likelihood gives a Gaussian posterior. Unfortunately, this closure property does not hold for
elliptical distributions in general. We therefore use variational inference to incorporate (non-Gaussian) noise
according to the graphical models in Figure 3.

We aim to model mixing distributions that can capture any shape of the elliptical noise in the data. One
way to learn complex probability distributions is to normalize flows, which we will now go through.

2.3 Flow based models

Normalizing flows are a family of generative models that map simple distributions to complex ones through
a series of learned transformations (Papamakarios et al., 2021b). Suppose we have a random variable x
that follows an unknown probability distribution px(x). Then, the main idea of a normalizing flow is to
express x as a transformation Tγ of a variable z with a known simple probability distribution pz(z). The
transformation Tγ has to be bijective and invertible, and it can have learnable parameters γ. Both T and
its inverse have to be differentiable. The probability density of x is obtained by a change of variables:

px(x) = pz(z)
∣∣∣∣det

(
∂Tγ(z)

∂z

)∣∣∣∣−1
. (6)

We focus on one-dimensional flows, since we are interested in modeling the mixing distribution. In particular,
we use linear rational spline flows Dolatabadi et al. (2020); Durkan et al. (2019), wherein the mapping Tγ is
an elementwise, monotonic linear rational spline: a piecewise function where each piece is a linear rational
function. The parameters are the number of pieces (bins) and the knot locations.

To train the model parameters, we use amortized variational inference, which we go through next.

2.4 Amortized variational inference

In amortized variational inference (Gershman & Goodman, 2014) we replace the variational parameters,
φ with a function that maps the input to the variational parameters φ = f(x). This is convenient for
modelling local latent variables, i.e., variables associated directly to individual data points xi which have
corresponding variational parameters φi. By replacing the local parameter with a function, φi = f(xi), we
reduce the problem to fitting a function f , rather than fitting each φi. Furthermore, it becomes easy to add
new data points, since the local variational parameters are then given by the function f .
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3 Method

We propose the variational EP with elliptical noise, where the variational EP can learn any consistent ellip-
tical process, and the elliptical noise can capture any consistent elliptical noise. The key idea is to model the
mixing distributions with a normalizing flow. The joint probability distribution of the model (see Figure 3c) is

p(y, f , ω, ξ; η) = p(f |ξ; ηf )p(ξ; ηξ)︸ ︷︷ ︸
prior

N∏
i=1

p(yi|fi, ω)p(ω; ηω)︸ ︷︷ ︸
likelihood

. (7)

(a) (b)

(c)

Figure 3: Graphical models of (a), the elliptical likeli-
hood, (b) the EP-prior, and (c) the EP with indepen-
dent elliptical noise.

Here, p(f |ξ; ηf ) ∼ N (0, Kξ) is a regular EP
prior with the covariance kernel K containing
the parameters ηf , p(ξ; ηξ) is the process mixing
distribution and p(ω; ηω) is the noise mixing
distribution.

To learn the mixing distributions p(ξ; ηξ) and
p(ω; ηω) by gradient-based optimization, they
need to be differentiable with respect to the pa-
rameters ηξ and ηω in addition to being flexible
and computationally efficient to sample and eval-
uate. Based on these criteria, a spline flow (Sec-
tion 2.3) is a natural fit. We construct the mix-
ing distributions by transforming a sample from
a standard normal distribution with a spline flow.
The output of the spline flow is then projected
onto the positive real axis using a differentiable
function such as Softplus or Sigmoid.

In the following sections, we detail the construction of the model and show how to train it using variational
inference. For clarity, we first describe the likelihood and the prior separately, before combining them and
then describing a (computationally efficient) sparse approximation.

3.1 Likelihood

By definition, the likelihood (Figure 3a) describes the measurement noise ϵn (Equation (1)). The probability
distribution of the independent elliptical likelihood is,

p(ϵn; σ, ηω) =
∫

N (ϵn; 0, σ2ω)p(ω; ηω)dω, (8)

where σ can be set to one without loss of generality. In other words, the likelihood is a continuous mixture of
Gaussian distributions where, e.g., ϵn follows a Student’s t distribution if ω is scaled chi-squared distributed.
We parameterize p(ω; ηω) as a spline flow,

p(ω; ηω) = p(ζ)
∣∣∣∣∂f(ζ; ηω)

∂ζ

∣∣∣∣−1
(9)

although it could, in principle, be any positive, finite probability distribution. Here, p(ζ) ∼ N (0, 1), and
f( · ; ηω) represent the spline flow transformation followed by a Softplus transformation to guarantee ω to
be positive. Now, assume that we observe N independent and identically distributed residuals ϵn = yn − fn

between the observations y and some function, f . We train the likelihood by maximizing the (log) marginal
likelihood with respect to the parameters ηω, that is

log p(ϵ; ηω) =
N∑

n=1
log

∫
p(ϵn|f(ζ; ηω))

∣∣∣∣∂f(ζ; ηω)
∂ζ

∣∣∣∣−1
p(ζ)dζ. (10)
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For general mixing distributions this integral is intractable, but we can use variational inference to ap-
proximate it, thereby maximizing the evidence lower bound (ELBO) instead of the marginal likelihood
directly. Hence, we approximate the integral (10), by approximating the posterior of the latent variables
q(ζn; φζn

) ≈ p(ζ|ϵn), where φζn
are the variational parameters, which gives us the following ELBO,

L(ηω, φζ1 , · · · , φζN
) =

N∑
n=1

Eζn∼q(ζn; φζn )

[
log p(ϵn|f(ζ; ηω))

∣∣∣∣∂f(ζ; ηω)
∂ζ

∣∣∣∣−1
p(ζ) − log q(ζn; φζn)

]
. (11)

We have one set of variational parameters φζn
per observed noise ϵn for the variational approximation

above. To reduce the complexity of the model we amortize (Section 2.4) the variational parameters by
letting φζi = f(ϵi; γζ), which reduces the ELBO to L(ηω, γζ).

Since we want a posterior that is similar to the prior distribution p(ζ), we set it to be normally distributed
q(ζn) = N (µγζ

(ϵn)σγζ
(ϵn)). The mean and variance functions, µγζ

( · ) and σγζ
( · ) are parameterized by

neural networks. We train the model by gradient-based optimization of the ELBO in parameter space,
∇ηω,γζ

L(ηω, γζ). The gradients are estimated using black-box variational inference (Wingate & Weber,
2013; Ranganath et al., 2014).

3.2 Prior

We use the same idea as with the elliptical likelihood to construct the elliptical process (EP). The joint
distribution of the elliptical prior(see Equation (7) and Figure 3b) is

p(f , ξ; η) = p(f |ξ; ηf )p(ξ; ηξ). (12)

Given N observations (xi, yi), which we assume are corrupted by Gaussian noise with known variance σ2,
we get the following marginal likelihood

p(y; ηf , ηξ) =
∫

p(y, f , ξ; ηf , ηξ)dfdξ =
∫ N∏

i=1
p(yi|f ; σ2)p(f |ξ; ηf )p(ξ; ηξ)dfdξ. (13)

In this model we have to marginalize over two latent variables, f and ξ. However, this integral is intractable—
just as it was for the elliptical likelihood—since p(ξ; ηξ) is parameterized by a spline flow. To overcome this
we use the same procedure as for the likelihood model and approximate the marginal likelihood with the
ELBO

L(ηf , ηξ, φf , φξ) = Eq(f ,ξ; φf ,φξ) [ log p(y, f , ξ; ηf , ηξ) − log q(f , ξ; φf , φξ)] , (14)

where q(f , ξ; φf , φξ) is an approximation of the posterior p(f , ξ|y; ηf , ηξ). Importantly, this approximate
posterior is not only a tool for maximizing the marginal likelihood, but it is also to used to make predictions
for unseen data points.

We assume that the approximate posterior is elliptical, and we do so for two reasons: first, this makes the
approximate posterior similar to the true posterior, and second, we can then use the conditional distribution
to make predictions. Specifically, we factorize the posterior as

q(f , ξ, ω; φ) = q(f |ξ; φf )q(ξ; φξ), (15)

where φ = (φf , φξ) are the variational parameters, q(f |ξ; φf ) = N (m, Sξ) is a Gaussian distribution with
the variational mixing distribution ξ ∼ q(ξ; φξ). Again, q(ξ; φξ) could be any positive finite distribution,
but we parameterize it with a spline flow. This factorization enables predictions on unseen data points, x∗,
according to

p(f∗|y) =
∫

p(f∗|f , ξ; ηf )q(f |ξ; φf )q(ξ; φξ)dfdξ = Eq(ξ; φξ) [N (f∗|m∗, s∗ξ)] , (16)

where m∗ and s∗ are derived, in a similar fashion as for the variational Gaussian process, see Appendix C.
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Combining the EP with an elliptical likelihood results in the joint probability in Equation (7), which corre-
sponds to the graphical model in Figure 3c. The posterior is then approximated by

p(f , ξ, ζ|y; ηf , ηξ, ηω) ≈ q(f |ξ; φf )q(ξ; φξ)
N∏

i=1
q (ζi; φζi = f(yi, fi; γζ)) . (17)

The flexibility of this flow-based construction lets us capture a broad range of elliptical processes. We can
also specify an appropriate likelihood ourselves. For instance, using a categorical likelihood enables EP
classification. The model is trained with stochastic gradient descent and black-box variational inference
(Wingate & Weber, 2013; Ranganath et al., 2014).

3.3 Sparse elliptical process

To create a computationally tractable model for large datasets, we derive a sparse version of the model using
the variational inference framework. Our particular factorization of the variational posterior (15) makes this
straightforward due to the similarity with the sparse variational GP posterior (Titsias, 2009). Assuming we
have a sparse EP prior and fixed Gaussian noise, we get a joint model

p(y, f , u, ξ; η) = p(y|f)(f |u, ξ; ηf )p(u|ξ; ηu)p(ξ; ηξ), (18)

where u are outputs of the elliptical process located at the inducing inputs xu. Intending to make predictions
with the model, we approximate the posterior over the latent variables in the same ways as (15), with

p(f , u, ξ|y; η) ≈ p(f |u, ξ; ηf )q(u|ξ; φu)q(ξ; φξ), (19)

where q(u|ξ; φu) ∼ N (mu, Suξ) andq(ξ; φξ) are variational distributions. We train the model by minimizing
the ELBO defined in (14) and make predictions for unseen data points x∗ using the predictive approximated
posterior

p(f∗|y) =
∫

p(f∗|u, ξ)q(u|ξ; φu)q(ξ; φξ)dudξ = Eq(ξ; φξ) [N (f∗|m∗
u, s∗

uξ)] , (20)

where m∗
u and s∗

u are derived in Appendix C, in a similar fashion as for the GP in Titsias (2009).

3.4 Extension to heteroscedastic noise

We extend the elliptical likelihood by modeling heteroscedastic noise. First, recall from Section 3.1 that
we amortized the variational mixing distribution for the elliptical likelihood. Here, we describe how we can
model elliptic heteroscedastic noise by letting the parameters ηω of the mixing distribution of the likelihood
depend on the input location.

In heteroscedastic regression, the noise depends on the input location xn. For example, heteroscedastic
elliptical noise can be useful when we have a time series where the noise variance and tail-heaviness change
over time. Examples of this can be in statistical finances (Liu et al., 2020) and robotics (Kersting et al.,
2007). To model this, we let the spline flow mixing distribution parameters ηω depend on the input location,
xn, such that ηωn = f(xn, γp, ω). For the variational spline parameters φω,n in addition to making them
depend on the noise ϵn, we also make them depend on the input location, such that φωn

= f(xn, ϵn; γω,q).
This results in an elliptical likelihood with a location-dependent mixing distribution. Finally, we train the
model by minimizing the ELBO

L(γω,p, γω,q) =
N∑

n=1
Eζn∼q(ωn; φωn ) [log p(ϵn|ωn)p(ωn; ηωn

) − log q(ωn; φωn
)] , (21)

where φωn = f(ϵn, xn; γω,q) and ηωn = f(xn; γω,p). This model can be extended by adding extra informa-
tion in the spline flow input.
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Figure 4: The posterior predictive distribution when using an GP with elliptical noise, modeled with a spline
flow. The histograms show the learned and the true noise mixing distribution.

4 Experiments

We examine the variational elliptical processes using four different experiments. In the first experiment, we
investigate how well the elliptical likelihood (Section 3.1) recover known elliptical noise in synthetic data.
In the second experiment, we investigate the benefits of using the sparse EP compared to the sparse GP
for regression on standard benchmarks. In the third experiment, we examine if using a EP is beneficial
in classifications tasks. Finally, in the last experiment, we investigate the amortized elliptical processes
described in Section 3.4, to model heteroscedastic noise.

Implementation. The mixing distribution of the variational EP uses a linear rational spline flow, where
we transform the flow using Softplus to ensure that it is bounded from below and positive. In all experiments,
we use a squared exponential kernel. See Appendix E for further details. The code from the experiments
will be published on GitHub if the paper is accepted, with a link added here.

4.1 Noise identification

To examine how well the elliptical likelihood, described in Section 3.1, can capture different types of elliptical
noises, we created three equal synthetic datasets, each with N = 300 data points, by using the function
yn = sin(3xn)/2, where x ∈ R is uniformly sampled, xn ∼ U(−2, 2). Each of the dataset has its own
independent elliptical noise, whose mixing distribution is plotted in Figure 4.
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Table 1: Predictive Mean Square Error (MSE) and the predictive log-likelihood (LL) on the hold out sets
from the experiments. We show the average of the ten folds and one standard deviation in parenthesis. Bold
font indicates the best result obtained.

CONCR. MACHINE MPG CALIFOR.
m = 20 MSE neg LL MSE neg LL MSE neg LL MSE neg LL

GP 0.27(0.044) 0.74(0.041) 0.50(0.70) −0.29(0.24) 0.15(0.54) 0.35(0.12) 0.44(0.021) 0.91(0.022)
EP1 0.18(0.028) 0.47(0.049) 0.33(0.57) −0.30(0.20) 0.13(0.043) 0.37(0.098) 0.31(0.016) 0.67(0.026)
EP2 0.18(0.024) 0.47(0.044) 0.34(0.58) −0.30(0.23) 0.12(0.047) 0.21(0.19) 0.32(0.013) 0.71(0.019)

m = 50

GP 0.21(0.032) 0.61(0.038) 0.35(0.62) 0.12(0.21) 0.16(0.054) 0.78(0.044) 0.33(0.016) 0.74(0.024)
EP1 0.18(0.024) 0.48(0.045) 0.30(0.56) −0.29(0.28) 0.12(0.042) 0.35(0.096) 0.30(0.015) 0.64(0.024)
EP2 0.17(0.025) 0.42(0.048) 0.32(0.60) −0.24(0.29) 0.12(0.039) 0.35(0.097) 0.31(0.015) 0.68(0.024)

We trained a sparse variational GP with a variational elliptical likelihood for each of the datasets. The spline
flow is parameterized using nine bins, which we found was suitable using a simple parameter search. We
trained the GP-kernel parameters and the likelihood parameters simultaneously by maximizing the ELBO
(14). The results from the experiments are illustrated in Figure 4.

The figures show the histogram of the true elliptical noise mixing distribution and the learned mixing
distribution next to each other. We see that the learned distribution follows the shape of the true mixing
distribution. We also plot the resulting predictive GP-posterior to show that the model learned suitable
kernel parameters simultaneously as learning the likelihood mixing distribution.

4.2 Regression

We investigated two versions of the sparse variational EP (see Section 3.3) together with the variational
GP on four different regression datasets. The two EP versions were both modeled with variational elliptical
noise. The two versions differ in the prior processes. For the first model (EP1) we used a fixed prior
process mixing distribution that followed an inverse chi-square distribution with 20 degrees of freedom and
a posterior mixing distribution q(ξ; φξ), modeled with a spline flow. The second model, (EP2), was
constructed using both a GP-prior and a GP-posterior.

We can see the first model (EP1) as having a prior process close to Gaussian and a general elliptical posterior
process, which could transform from the information in the likelihood and the data. The second model (EP2)
corresponded to a GP process with general elliptical noise.

We run the models using 20 and 50 inducing points. The data came from Kibler et al. (1989) and the spatial
interpolation data came from Dubois et al. (2003) (see Appendix G for further information about the data).
We performed ten-fold cross-validation on the datasets. Table 1 gives the mean squared error (MSE) and
the test log-likelihood (LL) for the hold-out datasets.

For these datasets, the EP1 and EP2 are almost always performing better then the GP, especially when the
number of inducing points is 20. This is according to our hypothesis: the GP, with its thin tail, overfits
more often to the outliers while a heavier tail perceives the outliers as noise. For most datasets, it seems
sufficient to add elliptical noise to a variational GP prior. Only for the small and noisy datasets, such as the
machine dataset, we see an improvement with adding a general EP posterior.

4.3 Binary classification

To evaluate the EP on classifications tasks we perform variational EP and GP classification by simply
replacing the likelihood with a binary one. This realization is interesting since here, we do not have a
likelihood that captures the noise in the data, but instead, the process itself has to do it. Therefore, we
can indicate the value of the elliptical process itself without the elliptical noise. We compared two sparse
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Figure 5: The classification AUC score from the five-fold cross validation. The EP outperforms the two
other models on both datasets, also when the input is corrupted with 20% noise.

EP models with a sparse GP model using 20 inducing points. The two EPs differed in the prior mixing
distribution. For the first model (EP1) we used a fixed prior mixing distribution set to a scaled inverse
chi-square distribution with ten degrees of freedom. For the second model (EP2), we set the prior mixing
distribution to a spline flow with six bins which means that we train it. We can see the trainable prior mixing
distribution as using a continuously scaled mixture of Gaussian processes, which can be more expressive than
a single GP.

We trained the models on three classification datasets, described in Appendix G. The results from a ten-fold
cross-validation is presented in Figure 5. From the area under the curve (AUC) score, we see that the EP
separates the two classes better. It seems that mainly the variational elliptical distribution contributes to
the higher AUC score. Training the mixing distribution of the EP prior did not improve the score.

4.4 Elliptic heteroskedastic noise
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Figure 6: The result form training a GP process with
heteroscedastic elliptical noise on a synthetic dataset.
The histogram shows the noise resulting mixing distri-
butions ad different xi.

In this experiment, we aimed to learn heteroscedas-
tic noise as described in Section 3.4 on a synthetic
dataset of 150 samples, see Figure 6. We created the
dataset using the function f(x) = sin(5x) + x. We
then added Student’s t noise, ϵ(x) ∼ St(ν(x), σ(x),
where we decreased the noise scale by ν(x) = 25 −
11|x + 1|0.9, and the increased the standard devi-
ation by σ(x) = 0.5|x + 1|1.6 + 0.001. We used a
variational sparse GP with heteroscedastic noise as
described in Section 3.4.

We used six bins for the prior mixing distribution
and eight bins for the posterior mixing distribution,
which resulted in 19 and 35 parameters to predict,
respectively. We had more bins for the posterior
mixing distribution since we wanted the approxi-
mate posterior to be as flexible as possible to fit
the true posterior.

The results from the experiments are depicted in
Figure 6 and show that the model was able to cap-
ture the varying noise, both in term of the scale and
the increasing heaviness of the tail. A single spike in the mixing distribution indicates that the noise is
Gaussian, and the wider the mixing distribution is, the heavier tailed the noise is.
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5 Related work

In general, attempts at modeling heavy-tailed stochastic processes modify either the likelihood or the stochas-
tic process prior—rarely both. Approximate inference is typically needed when going beyond Gaussian
likelihoods (Neal, 1997; Jylänki et al., 2011), e.g., for robust regression, but approximations that preserve
analytical tractability have been proposed (Shah et al., 2014).

Ma et al. (2019) describes a class of stochastic processes where the finite-dimensional distributions are only
defined implicitly as a parameterized transformation of some base distribution, thereby generalizing earlier
work on warped Gaussian processes (Snelson et al., 2004; Rios & Tobar, 2019). However, the price of this
generality is that standard variational inference is no longer possible. Based on an assumption of a Gaussian
likelihood, they describe an alternative based on the wake-sleep algorithm by Hinton et al. (1995).

Other attempts at creating more expressive GP priors include Maroñas et al. (2021), who used a GP in
combination with a normalizing flow, and Luo & Sun (2017), who used a discrete mixture of Gaussian
processes. Similar ideas combining mixtures and normalizing flows have also been proposed to create
more expressive likelihoods (Abdelhamed et al., 2019; Daemi et al., 2019; Winkler et al., 2019; Rivero &
Dvorkin, 2020) and variational posteriors (Nguyen & Bonilla, 2014). Non-stationary extensions of Gaussian
processes, such as when modeling heteroscedastic noise, are quite rare but the mixture model of Li et al.
(2021) and the variational model of Lázaro-Gredilla & Titsias (2011) are two examples.

In the statistics literature, it is well-known that the elliptical processes can be defined as scale-mixtures of
Gaussian processes (Huang & Cambanis, 1979; O’Hagan et al., 1999). However, unlike in machine learn-
ing, little emphasis is placed on building the models from data (i.e., training). These models have found
applications in environmental statistics because of the field’s inherent interest in modeling spatial extremes
(Davison et al., 2012). Several works take the mixing distribution as the starting point, like us, and make
localized predictions of quantiles (Maume-Deschamps et al., 2017) or other tail-risk measures (Opitz, 2016).

6 Conclusions

The Gaussian distribution is the default choice in statistical modeling for good reasons. Even so, far from
everything is Gaussian—casually pretending it is, comes at a risk. The elliptical distribution offers a com-
putationally tractable alternative that can capture heavy-tailed distributions. The same reasoning applies
when comparing the Gaussian process to the elliptical process. We believe that a sensible approach in many
applications would be to start from the weaker assumptions of the elliptical process and let the data decide
whether the evidence supports gaussianity.

We constructed the elliptical processes as a scale mixture of Gaussian distributions. By parameterizing the
mixing distribution using a normalizing flow, we show how a corresponding elliptical process can be trained
using variational inference. The variational approximation we propose enables us to capture heavy-tailed
posteriors and makes it straightforward to create a sparse variational elliptical process that scales to large
datasets.

We performed experiments on robust regression and classification. In addition, we compared the elliptical
processes with the Gaussian process. Our experiments show that, as expected, the elliptical process was
more accurate in the presence of outliers or heavy-tailed noise.

The added flexibility of the elliptical processes could benefit a range of applications, both classical and new.
However, advanced statistical models are not a cure-all, and one needs to avoid over-reliance on such models,
especially in safety-critical applications.
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A The elliptical distribution

The Gaussian distribution—the basic building block of Gaussian processes—has several attractive properties
that we wish the elliptical process to inherit, namely (i) closure under marginalization, (ii) closure under
conditioning, and (iii) straightforward sampling. This leads us to consider the family of consistent elliptical
distributions. Following Kano (1994), we say that a family of elliptical distributions {p(u(yN ); η) | N ∈ N}
is consistent if and only if ∫ ∞

−∞
p (u(yN+1); η) dyN+1 = p (u(yN ); η) . (22)

In other words, a consistent elliptical distribution is closed under marginalization.

Far from all elliptical distributions are consistent, but the complete characterization of those that are is
provided by the following theorem (Kano, 1994).

Theorem 1 An elliptical distribution is consistent if and only if it originates from the integral

p(u; η) = |Σ|− 1
2

∫ ∞

0

(
1

ξ2π

) N
2

e
−u
2ξ p(ξ; ηξ)dξ, (23)

where ξ is a mixing variable with the corresponding, strictly positive finite, mixing distribution p(ξ; η), that
is independent of N .

This shows that consistent elliptical distributions p(u; η) are scale-mixtures of Gaussian distributions, with
a mixing variable ξ ∼ p(ξ; η). Note that any mixing distribution fulfilling Theorem 1 can be used to define a
consistent elliptical process. We recover the Gaussian distribution if the mixing distribution is a Dirac delta
function and the Student’s t distribution if it is a scaled chi-square distribution.

If p(u; η) is a scale-mixture of normal distributions, it has the stochastic representation

Y| ξ ∼ N (µ, Σξ), ξ ∼ p(ξ; η). (24)

By using the following representation of the elliptical distribution,

Y = µ + Σ1/2Zξ1/2, (25)

where Z follows the standard normal distribution, we get the mean

E[Y] = µ + Σ1/2E [Z] E[ξ1/2] = µ (26)

and the covariance

Cov(Y) = E
[
(Y − µ)(Y − µ)⊤]

= E
[
(Σ1/2Z

√
ξ)(Σ1/2Z

√
ξ)⊤

]
= E

[
ξΣ1/2ZZ⊤(Σ1/2)⊤

]
= E [ξ] Σ. (27)

The variance is a scale factor of the scale matrix Σ. To get the variance we have to derive E [ξ]. Note that if ξ
follows the inverse chi-square distribution, E[ξ] = ν/(ν − 2). We recognize form the Student’s t distribution,
where Cov(Y) = ν/(ν − 2)Σ.

B Proof of Proposition

To prove Proposition 1, we partition the data y as [y1, y2], so n1 data points belong to y1, n2 data points
belong to y2 and n1 + n2 = n.
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The write joint distribution of [y1, y2] as p(y1, y2|ξ)p(ξ; η). The conditional distribution of y2, given y1 is
then p(y2|y1, ξ)p(ξ|y1M ; η).

For a given ξ, p(y2|y1, ξ) is the conditional normal distribution and so

p(y2|y1, ξ) ∼ N (µ2|1, Σ22|1ξ̂), ξ̂ ∼ p(ξ|y1; η) (28)

where,

µ2|1 = µ2 + Σ21Σ−1
11 (X1 − µ1) (29)

Σ22|1 = Σ22 − Σ21Σ−1
11 Σ21, (30)

the same as for the conditional Gaussian distribution. We obtain the conditional distribution p(ξ|y1; η) by
remembering that

p(y1|ξ) ∼ N (µ1, Σ11ξ). (31)
Using Bayes’ Theorem we get

p(ξ|y1; η) ∝ p(y1|ξ)p(ξ; η)

∝ |Σ11ξ|−1/2 exp
{

−u1

2ξ

}
p(ξ; η)

∝ ξ−N1/2 exp
{

−ξ
u1

2

}
p(ξ; η). (32)

Recall that u1 = (y − µ1)⊤Σ−1
11 (y − µ1)). We normalize the distribution by

c−1
N1,η =

∫ ∞

0
ξ−N1/2 exp

{
−u1

2ξ

}
p(ξ; η)dξ (33)

The conditional mixing distribution is

p(ξ|y1; η) = cN1,ηξ−N1/2 exp
{

−u1

2ξ

}
p(ξ; η) (34)

The conditional distribution of y2 given y1 is derived by using the consistency formula

p(y2|y1) = 1
|Σ22|1|1/2(2π)N2/2

∫ ∞

0
ξ−N2/2 exp −

u2|1

2ξ
p(ξ|y1)dξ, (35)

where u2|1 = (y2 − µ2|1)⊤Σ−1
22|1(y2 − µ2|1). Using (34) we get

p(y2|y1) = cN1,η

|Σ22|1|1/2(2π)N2/2

∫ ∞

0
ξ−n/2e−(u2|1+u1)/(2ξ)p(ξ; η)dξ (36)

C Training with variational inference

For a Gaussian process the posterior of the latent variables f is

p(f |y) ∝ p(y|f)p(f). (37)

Here, the prior p(f |x) ∼ N (0, K), is a Gaussian process with kernel K and the likelihood p(y|x, f) ∼
N (f , σ2I) is Gaussian. The posterior derives to

p(f |y) ∼ N
(

f |K
(
K + σ2I

)−1 y,
(
K−1 + σ−2I

)−1
)

(38)

and we can derive the predictive distribution of an arbitrary input location x∗ by

p(f∗|y) =
∫

p(f∗|f)p(f |y)df , (39)
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where p(f∗|f , x, x∗) is the conditional distribution, which is again Gaussian with

N
(
f∗|k⊤

∗ (k + σ2I)−1y, k∗∗ − k⊤
∗ (K + σ2I)−1k∗

)
. (40)

We want to derive the predictive distribution for the elliptical process, but the problem is that the posterior
is intractable. In order to get a tractable posterior, we train the model using variational inference, where we
approximate the intractable posterior with a tractable one,

p(f , ξ, ω|y; η) ≈ q(f , ξ, ω; φ) = q(f |ξ; φf )q(ξ; φξ)q(ω; φω). (41)

Here, q(f |ξ; φ) ∼ N (m, Sξ), where m and S are variational parameters, and q(ξ; φξ) and q(ω; φω) are
parameterized with any positive distribution such as a normalizing flow. We use this approximation when
we derive the predictive distribution

p(f∗|y) =
∫

p(f∗|f , ξ, ω; η)p(f , ξ, ω|y; η)dfdξdω (42)

=
∫

p(f∗|f , ξ; ηf )p(f , ξ, ω|y; η)dfdξdω (43)

≈
∫

p(f∗|f , ξ; ηf )q(f |ξ; φf )q(ξ; φξ)q(ω; φω)dfdξdω (44)

=
∫

p(f∗|f , ξ; η)q(f |ξ; φf )q(ξ; φξ)dfdξ. (45)

If we first take a look at the prior distribution p(f∗, f |ξ) which is, when ξ is deterministic, a GP-prior,[
f∗

f

]
ξ ∼ N

(
0,

[
k∗∗ k⊤

∗
k∗ K

]
ξ

)
, (46)

with the the conditional distribution

p(f∗|f , ξ; η) = N
(
k⊤

∗ K−1f ,
(
k∗∗ − k⊤

∗ K−1k∗
)

ξ
)

(47)
= N

(
a⊤f , bξ

)
. (48)

Here, a⊤ = k⊤
∗ K−1 and b = k∗∗ − k⊤

∗ K−1k∗. We use this expression and the variational approximation
when we derive the posterior predictive distribution,

p(f∗|y) =
∫

p(f∗|f , ξ; η)q(f |ξ; φf )q(ξ; φξ)dfdξ (49)

= Eq(ξ; φξ)

[∫
p(f∗|f , ξ)q(f |ξ; φf )df

]
(50)

= Eq(ξ; φξ)

[∫
N

(
f∗|a⊤f , bξ

)
N (f |m, Sξ) df

]
(51)

= Eq(ξ; φξ)

[∫
N

(
f∗|a⊤m, a⊤Saξ + bξ

)]
(52)

= Eq(ξ; φξ) [N (f∗|m∗, s∗ξ)] (53)

where

m∗ = a⊤m (54)
s∗ = a⊤Sa + b (55)

and we get the covariance by E[ξ]s∗.

Optimizing the ELBO

We train the model by optimizing the evidence lower bound (ELBO) given by

L(φ, η) = Eq(f |ξ; φf )q(ξ; φξ)q(ω; φω) [log p(y, f , ξ, ω; η) − log (q(f |ξ; φf )q(ξ; φξ)q(ω; φω))] . (56)

The model is implemented in Pyro (Bingham et al., 2018), see Section E for details.
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D Sparse elliptical processes

With the variational inference framework we can create a sparse version of the model∫
p(f , u, ξ; η)dξ =

∫
p(f |u, ξ; ηf )p(u|ξ; ηu)p(ξ; ηξ)dξ, (57)

where u are outputs of the elliptical process, located at the inducing inputs xu. We approximate the
posterior with

p(f , u, ξ|y; η) ≈ p(f |u, ξ; ηf )q(u|ξ; φu)q(ξ; φξ) (58)

The posterior of the distribution is given by

p(f∗|y) =
∫

p(f∗|f , u, ξ; η)p(f , u, ξ|y; η)dfdudξ

≈
∫

p(f∗|f , u, ξ; η)p(f |u, ξ; ηf )q(u|ξ; φu)q(ξ; φξ)dfdudξ

=
∫ [∫

p(f∗|f , u, ξ; η)p(f |u, ξ; ηf )df

]
q(u|ξ; φu)q(ξ; φξ)dudξ (59)

We can simplify the inner expression by using the fact that the elliptical distribution is consistent,∫
p(f∗|f , u, ξ; η)p(f |u, ξ; η)df =

∫
p(f∗, f |u, ξ; η)df = p(f∗|u, ξ; η). (60)

Hence, Equation (59) is simplifies to

p(f∗|y) =
∫

p(f∗|u, ξ; η)q(u|ξ; φu)q(ξ; φξ)dudξ, (61)

where q(u|ξ; φu) = N (mu, Suξ) with the variational parameters mu and Su, and ξ is parameterized, e.g.,
by a normalizing flow

Finally, we obtain the predictive posterior

m∗ = aT
u mu (62)

s∗ = aT
u Suau + bu (63)

where a⊤
u = k⊤

∗uK−1
uu and bu = k∗∗ − k⊤

∗uK−1
uu k∗u.

E Implementation: variational inference

We used the Pyro library (Bingham et al., 2018), which is a universal probabilistic programming language
(PPL) written in Python and supported by PyTorch on the backend.

In Pyro, we trained a model with variational inference (Kingma & Welling, 2013) by creating "stochas-
tic functions" called model and a guide, where the model samples from the prior latent distributions
p(f , ξ, ω; η), and the observed distribution p(y|f , ω), and the guide samples the approximate posterior
q(f |ξ; φf )q(ξ; φξ)q(ω; φω). We then trained the model by minimizing the ELBO, where we simulta-
neously optimized the model parameters η and the variational parameters φ. (See more details here,
https://pyro.ai/examples/svi_part_i.html.)

To implemented the model in Pyro, we created the guide and the model (see Algorithm 3), which we did by
building upon the already implemented variational Gaussian process. We used the guide and the model to
derive the evidence lower bound (ELBO), which we then optimized with stochastic gradient descent using
the Adam optimizer (Kingma & Ba, 2015).

We used the already implemented rational linear spline flow for the normalizing flow in Pyro.
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Algorithm 1 PyTorch implementation of the variational elliptical process.
1: procedure model(X, y)
2: K = kernel(X) + Iσ2

3: L = K.cholesky()
4: sample(name = f, dist = N (0, K)) ▷ Take a sample from the latent f , ξ and ω
5: ξ = sample(name = ξ, dist = Normalizing flow)
6: ω = sample(name = ω, dist = NF)
7: Get variational parameters m, S
8: Derive p(y|m, Sξ + Iσω) ▷ Sample y with the obs statement in Pyro.
9: end procedure

10: procedure guide
11: sample(name = f, dist = N (m, S)) ▷ Take a sample from the variational latent f , ξ and ω
12: sample(name = ξ, dist = Variational NF)
13: sample(name = ω, dist = Variational NF)
14: end procedure

F Derivation of the confidence regions of the elliptical process

We derive the confidence region of the elliptical process, by using Monte Carlo approximation of the integral,
as

p(−zσ < x < zσ) = 1
σ

√
2π

∫ zσ

−zσ

∫ ∞

0
ξ−1/2e−x2/(ξ2σ2)p(ξ)dξdx (64)

= 1
σ

√
2π

∫ zσ

−zσ

1
m

m∑
i=1

ξ
−1/2
i e−x2/(2ξiσ2)dx (65)

= 1
σm

√
2π

m∑
i=1

ξ
−1/2
i

∫ zσ

−zσ

e−x2/(2ξiσ2)dx (66)

= 2
m

√
π

m∑
i=1

∫ z√
2ξi

0
e−u2

du (67)

= 1
m

m∑
i=1

erf
(

z√
2ξi

)
(68)

For every mixing distribution we can derive the confidence of the prediction. It is the number of samples m
we take that decides the accuracy of the confidence.

G Datasets

California housing dataset was originally published by Pace & Barry (1997). There are 20 640 samples
and 9 feature variables in this dataset. The targets are prices on houses in the California area.

The Concrete dataset (Yeh, 1998) has 8 input variables and 1030 observations. The target variables are
the concrete compressive strength.

Machine CPU dataset (Kibler et al., 1989) where the target value is the relative performance of the
CPU. The dataset consist of 209 samples with nine attributes.

Auto MPG dataset (Alcalá-Fdez et al., 2011) originally from the StatLib library which is maintained at
Carnegie Mellon University. The data concerns city-cycle fuel consumption in miles per gallon and consists
of 392 samples with five features each.

Pima Indians Diabetes Database (Smith et al., 1988) originally from the National Institute of Diabetes
and Digestive and Kidney Diseases. The objective of the dataset is to diagnostically predict whether or not a
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patient has diabetes, based on certain diagnostic measurements included in the dataset. The dataset consist
of 768 samples with eight attributes.

The Cleveland Heart Disease dataset consists of 13 input variables and 270 samples. The target
classifies whether a person is suffering from heart disease or not.

The Mammographic Mass dataset predicts the severity (benign or malignant) of a mammographic
mass lesion from BI-RADS attributes and the patient’s age. This dataset consists of 961 with six attributes.
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