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ABSTRACT

Human inverse dynamics is an important technique for analyzing human motion.
Previous studies have typically estimated joint torques from joint pose images,
marker coordinates, or EMG signals, which severely limit their applicability in
real-world scenarios. In this work, we aim to directly predict joint torques dur-
ing human movements from real human images. To address this gap, we present
the vision-based inverse dynamics dataset (VID), the first dataset tailored for the
joint torque prediction from real human images. VID comprises 63,369 frames of
synchronized monocular images, kinematic data, and dynamic data of real human
subjects. All data are carefully synchronized, refined, and manually validated to
ensure high quality. In addition, we introduce a comprehensive benchmark for the
vision-based inverse dynamics of real human images, consisting of a new baseline
method and a new evaluation criteria with three levels of difficulty: (i) overall joint
torque estimation, (ii) joint-specific analysis, and (iii) action-specific prediction.
We further compare the baseline result of our VID-Network with other representa-
tive approaches, our baseline method achieves the state-of-the-art performance on
almost all the evaluation criteria. By releasing VID and the accompanying evalu-
ation protocol, we aim to establish a foundation for advancing biomechanics from
real human images and to facilitate the exploration of new approaches for human
inverse dynamics in unconstrained environments.

1 INTRODUCTION

Human inverse dynamics is the process of computing the internal joint torques and forces required to
produce a given human motion, based on observed kinematics and external forces. It encompasses
a wide range of application domains, including medicine, sports, robotics, and rehabilitation (LeV-
eau, 2024). Representative works include the analysis of athletic movement techniques(Johnson &
Ballard, 2014; Yeadon et al., 2006; Lech et al., 2015), the surgical replacement of damaged joints
with prosthetic implants(Kameni Nteutse & Geletu, 2024; STEINER et al., 1989; Hu et al., 2024),
and the study of motion control strategies in humanoid robots(Koonce et al., 2011; Sulaiman et al.,
2024; Liang et al., 2024; Sy Horng Ting et al., 2025). Joint torque is a key element in biomechanical
research, as it characterizes the mechanical interactions underlying human movement.

Existing approaches for torque estimation generally fall into three categories: surface electromyo-
graphy (sEMG)-based methods (Buchanan et al., 2005; Paquin & Power, 2018; Gui et al., 2019;
Caulcrick et al., 2021), inverse dynamics (ID)-based methods (Manukian et al., 2023; Johnson &
Ballard, 2014; Xiong et al., 2019; Zell & Rosenhahn, 2017), and imitation learning methods(Liu
et al., 2024; Luo et al., 2023; Peng et al., 2022; 2021). The first relies on sEMG devices to capture
muscle electrical activity, which is then used as input to a neural network for torque prediction, or
alternatively, is processed through a forward dynamics model. The ID-based method requires the
collection of motion capture data, typically obtained via optical motion capture systems in conjunc-
tion with force plates. These data are then used within Newton-Euler dynamics formulations or
data-driven models to estimate joint torques(Khalil, 2010; Riemer & Hsiao-Wecksler, 2008). Both
sEMG- and ID-based methods are constrained to laboratory environments due to their dependence
on specialized and expensive equipment, making them impractical for use in outdoor sports or com-
petitive settings (Zhang et al., 2023; 2021b). To address these limitations, imitation-based meth-
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ods have been proposed. These approaches leverage humanoid robot-based simulations to generate
paired kinematic and dynamics data, which are then used to train neural networks to learn the under-
lying relationship(e.g., Inverse Dynamics) between motion and joint torques. While such methods
have shown promising results, they suffer from inherent distributional discrepancies between sim-
ulated and real-world data, and still rely on marker-based motion input, limiting their applicability
in unconstrained environments. To overcome these challenges, we aim to develop a purely real
human image-based solution for joint torque estimation that eliminates the need for marker
entities and enables practical deployment in real-world or wild exercise scenarios.

The first issue that needs to be addressed is the dataset. Currently, no data can be directly used for
vision biomechanics inference. We derive the VID dataset from the open-source dataset (Uhlrich
et al., 2023). The dynamics data were exported from the OpenSim software. We devoted substantial
effort to synchronizing kinematic and dynamic frame data and refining dataset quality, ultimately
providing 63,369 frames of real human images along with corresponding kinematic and dynamic
annotations.

Secondly, we propose a baseline network(VID Network), which is designed to estimate joint torques
purely from visual input, without relying on motion capture or force data. Since joint torque is in-
herently dependent on joint position, capturing accurate spatial structures is essential for reliable
prediction. Given the impressive performance of existing CNN networks in 3D human pose estima-
tion, we construct the auxiliary 3D pose estimator and the spatial probabilistic model. In the first
training stage, these models were pre-trained on several large-scale 3D pose datasets. Based on the
pre-trained model, we design the marker regressor and the TorqueInferNet. The marker regressor
enables the network to learn the joint poses of interest. From multiple frames, the TorqueInferNet
integrates spatial probabilistic features with the selected markers’ position of each frame to predict
joint torques. Extensive experiments show that our method has exceeded the state-of-the-art meth-
ods based on marker points. This demonstrates that this torque prediction solution based on real
images is feasible. The main contribution of this paper is summarized as follows:

• Dataset: We introduce VID, a high-quality and carefully synchronized biomechanical
dataset comprising 63,369 frames of real human images with corresponding kinematic and
dynamic annotations, which can be directly used for vision-based joint torque prediction.

• Benchmark: We establish the first benchmark for torque prediction from real human im-
ages, including a comprehensive evaluation protocol with three levels of criteria: (i) overall
joint torque estimation, (ii) joint-specific analysis, and (iii) action-specific prediction. This
provides a standardized basis for fair comparison across future methods.

• Baseline: We propose VID-Network, a strong baseline model that integrates spatial proba-
bilistic features, marker regression, and temporal modeling, achieving state-of-the-art per-
formance and validating the feasibility of torque estimation directly from real human im-
ages.

2 RELATED WORKS

Newton-Euler formulation. It is the traditional method to solve the torque calculation, where
generalized coordinates are used to describe the motion of a mechanical system. Arian (Arian
et al., 2018) focused on analyzing the kinematics and dynamics of a special 3-DOF parallel robot
called Tripteron by modifying its structure and using the Newton-Euler method. Luca (De Luca
& Ferrajoli, 2009) introduced an improved Newton-Euler algorithm to make dynamics calculations
easier and more effective for robot fault detection and control. The formulation is given by:

M(q)q̈ + C(q, q̇) +G(q) = Jλ+ τ (1)

where the vector q denotes the generalized coordinates (e.g., joint angles), while q̇ and q̈ represent
their first and second derivatives, corresponding to joint velocities and accelerations. The matrix
M(q) is the mass or inertia matrix that describes how the system’s mass is distributed. C(q, q̇)
accounts for Coriolis and centrifugal effects due to movement. G(q) represents gravitational forces
acting on the system. On the right-hand side, τ is the vector of applied joint torques or forces, and
Jλ captures the contribution of external or constraint forces, where J is the Jacobian matrix and
λ is the vector of Lagrange multipliers representing those constraint forces. This method requires
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the use of a motion capture system to obtain the joint pose q, from which joint velocities q̇ and
accelerations q̈ are computed via numerical differentiation. Ground reaction forces are collected
using a force plate, and a human musculoskeletal model with parameters such as mass, inertia,
and linkage structure is constructed using OpenSim(Delp et al., 2007). Owing to limitations such
as equipment, location, and duration of data collection, this method cannot be quickly applied to
real-time tasks.

Deep Learning Methods. The rapid development of machine learning methods has significantly
advanced the prediction of dynamics systems. Machine learning methods can be employed to
predict human biomechanics using the information collected by sensors, including sEMG data,
keypoint positions of pose, force platform reactions, and so on. For example, (Zhang et al.,
2021a) proposed an electromyography (sEMG) driven neuromuscular skeletal (NMS) model and
an artificial neural network (ANN) model for estimating ankle joint torque. ANN models perform
better when the training data contains a large and diverse range of motion types. Some (Son
et al., 2024; Zhang et al., 2020; Wang et al., 2023; Zhang et al., 2022) used Long Short Term
Memory (LSTM) neural networks and transfer learning to predict lower limb joint torque, which
is applicable to various scenarios in daily activities and provides new ideas for the application of
wearable devices in motion analysis and rehabilitation. (Dinovitzer et al., 2023) proposed a hybrid
method combining neural networks and dynamics models, as well as an end-to-end neural network,
for real-time estimation of human joint torque to dynamically predict human walking. The hybrid
model showed high accuracy in simulated environments, while the end-to-end neural network
performed better in actual testing. However, the hybrid model had better generalization ability
in scenarios different from the training data. (Zell et al., 2020) addresses the problem of human
dynamics estimation by proposing a weakly supervised learning framework. The core idea of the
framework is to leverage easily accessible motion data and employ weak supervision and domain
adaptation to estimate ground reaction forces, ground reaction moments, and joint torques.

Motion Imitation Learning. It refers to the process where an agent learns to replicate human
or expert motion trajectories by observing demonstration data, typically in the form of joint posi-
tions, velocities, or full-body kinematics. (Kobayashi et al., 2025) introduced a new Transformer
model-based imitation learning method (ILBiT) for autonomous operation of robot arms. (Matsuura
et al., 2023) proposed a study on imitation learning for humanoid robots, focusing on solving the
development problems of teleoperation equipment and high load control systems. Based on the data
obtained from imitation learning to train neural networks, recent work such as ImDy (Liu et al.,
2024) has collected up to 150 hours of data using this method, processed the input motion state
sequence using Transformer encoders, and predicted joint torque and ground reaction force through
linear head prediction. The advantage of this method is that it can easily collect motion data of
various actions and durations, but the disadvantage is that the inherent differences between imitation
learning and real motion pose challenges to model generalization.

3 VISION INVERSE DYNAMICS DATASETS

As noted previously, the majority of current datasets are not well-suited for torque prediction from
real human images. One reason for this is that processing motion data using biomechanical modeling
software demands significant manual effort. Additionally, there is the challenge of synchronizing
data from various sources. Some datasets (Zell et al., 2020; Werling et al., 2024) have kinematic and
dynamics data and pose images, but lack real images; Some datasets (Uhlrich et al., 2023; Mahmood
et al., 2019) only have real human images and kinematic data, without synchronized dynamics data
or high-quality data. In this work, we present an optimized dataset derived from open-source datasets
(Uhlrich et al., 2023; Mahmood et al., 2019), enabling end-to-end mapping from real images to
biomechanical dynamics and facilitating future research in this field. The dataset is augmented by
annotating joint velocities and torques, resulting in more complete kinematic and dynamic data. The
comparative information is shown in the Table1 below. Ours have full kinematics data, dynamics
data, and real images. All the data were manually synchronized and smoothed to remove outliers.

The dataset comprises recordings from 9 subjects (including 4 males and 5 females) with body
heights ranging from 1.60 m to 1.85 m. Each subject performed seven types of movements, from
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Figure 1: Labeled Anatomical Locations of Joint Used for Torque Evaluation.

Dataset Name Size Kinematics Dynamics Sync. Real Img.
CMU Mocap (CMU, 2003) 4.5h Partial Partial ✗ ✗
AMASS (Mahmood et al., 2019) 40h Partial Partial ✗ ✗
OpenCap (Uhlrich et al., 2023) 8h Partial Partial ✗ ✓
Imdy (Liu et al., 2024) 152h Full Full ✓ ✗
AddBiomechanics (Werling et al., 2024) 70h Full Full ✓ ✗
Ours 63,369f Full Full ✓ ✓

Table 1: Comparison of existing biomechanics-related datasets, including dataset size, completeness
and synchronization of kinematic and dynamic data, and availability of real images. Here, h denotes
hours and f denotes frames.

which approximately 100 consecutive frames per trial were extracted at a sampling rate of 100 FPS.
A total of 51 markers were placed on each subject’s body. Using the OpenSim software, 35 joint
positions and corresponding joint torques were manually extracted for each frame. Joint angular
velocities were computed using the Finite Difference method. Given a sequence of joint positions
xi ∈ R3 at discrete time steps ti, the joint velocity can be approximated using finite differences.
The calculation formulation was

vi =
xi+1 − xi−1

2∆t
,

where ∆t = ti+1 − ti is the time interval between frames. To ensure data quality, kinematic
trajectories were smoothed using a Savitzky–Golay filter (Savitzky & Golay, 1964) (window size
= 11 frames, polynomial order = 3). Outliers exceeding a velocity-based threshold were corrected
by cubic spline interpolation, applied only to short gaps (≤ 5 frames) to preserve natural motion
continuity. In total, the final dataset contains 63,369 frames of synchronized visual, kinematic, and
dynamics annotations. Obviously, much personal bioinformation is also available, such as height,
mass, and gender.

4 METHODS

With the collected VID dataset, we aim to address the human inverse dynamics in a full-supervised
manner with a vision inverse dynamics network. In the first subsection, we first introduce the for-
mulation of data-driven inverse dynamics. Then, the proposed VID Network is introduced in the
second subsection. The overall pipeline of VID is illustrated in Figure 2.

4.1 FORMULATION

The vision inverse dynamics task can be illustrated as the following equation,

τm∗t = VID(It, Posm∗t, V elcm∗t, H,M), (2)

where τm∗t are the predicted m number of joint torques at timestamp t, It is the visual image of
person at timestamp t, Posm∗t are the markers’ position at timestamp t, V elcm∗t are the markers’
velocity at timestamp t, H and M are the height and mass of the subject. Since we propose a purely

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

visual approach, It is the model’s input, and all motion information except for It can be used as
supervisory signals.

4.2 VID NETWORK

Baseline Architecture. To construct an intuitive yet effective real image-based baseline network,
we adopt a standard design paradigm commonly used in existing 3D human pose estimation
networks. This paradigm usually consists of a backbone feature extractor(ResNet-101) and a pose
estimator model. This paradigm has been proven effective in joint position estimation (Cheng et al.,
2020; Fabbri et al., 2020; Kang & Lee, 2024) and can provide valuable joint space information for
our joint torque prediction task. The backbone is based on a convolutional neural network, which
has been widely validated as a strong performer in visual recognition tasks. The spatial probabilistic
model consists of a series of deconvolutional layers followed by a 1×1 convolutional layer. Its
output is a set of features, where each channel represents the spatial probability distribution of a
specific joint in the image. In addition, a pose estimator maps the generated spatial features to the
3D coordinates of anatomical joints, while a marker regressor predicts the positions of external
markers from the same spatial representation. The position of marker points is more flexible and
conforms to the anatomical structure of joints, which is crucial for predicting joint torque. To
estimate joint torque, we further designed TorqueInferNet to combine spatial features with predicted
marker coordinates and use Transformer Encoder(head=8, dim=128) to extract multiple frames
near the target frame for prediction.

Spatial probabilistic model. To predict 3D spatial probabilistic features for each joint, we design
a lightweight head network composed of a series of deconvolutional layers followed by a final
prediction layer. The input to the head network is a high-dimensional feature map of shape
[B, 2048, H,W ] extracted by the backbone. The deconvolutional module consists of three stacked
transposed convolutional layers, each with a kernel size of 4 × 4, stride 2, and padding 1. These
layers progressively upsample the feature maps and reduce the channel dimension to 256. Each
deconvolution is followed by a batch normalization layer and a ReLU activation function. Finally,
a 1 × 1 convolution is applied to transform the output into a tensor of shape [B, J · D,H ′,W ′],
where J is the number of joints and D is the depth dimension of the volumetric spatial features.
This output is used to represent the 3D spatial likelihood of each joint.

Pose estimator. To obtain continuous 3D joint coordinates from the spatial probabilistic features,
we adopt a differentiable soft-argmax operation (Luvizon et al., 2019). Given the predicted spatial
probabilistic features of shape [B, J,D,H,W ], where B is the batch size, J is the number of joints,
and (D,H,W ) denote the depth, height, and width dimensions respectively, we first flatten the
spatial and depth dimensions and apply the softmax function along this axis:

˜SPF b,j = Softmax
(
reshape(SPFb,j , [D ·H ·W ])

)
, ∀b ∈ [1, B], j ∈ [1, J ]

The normalized spatial probabilistic features SPFb,j are then reshaped back to [D,H,W ], and the
expectation along each axis is computed by summing over the other two dimensions:

xb,j =

W∑
w=1

w ·
D∑

d=1

H∑
h=1

˜SPF b,j(d, h, w) (3)

yb,j =

H∑
h=1

h ·
D∑

d=1

W∑
w=1

˜SPF b,j(d, h, w) (4)

zb,j =

D∑
d=1

d ·
H∑

h=1

W∑
w=1

˜SPF b,j(d, h, w) (5)

The final 3D joint coordinates are obtained by concatenating the x, y, and z components for each
joint:

cb,j = [xb,j , yb,j , zb,j ] (6)

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Figure 2: Our baseline network for joint torque prediction from real human images. In the first stage,
the Pose estimator and spatial probabilistic model are pretrained on multiple large-scale 3D pose
datasets. In the second stage, the TorqueInferNet integrates the joint position information predicted
by the marker regressor and the spatial features encoded in the spatial probabilistic model, then use
Transformer Encoder to extract multiple frames near the target frame for joint torques prediction.

This soft-argmax operation enables end-to-end learning and allows for sub-voxel localization
precision, while preserving differentiability.

Marker regressor. To estimate the 3D positions of body-attached markers, we design a lightweight
regression network that maps spatial probabilistic features to markers’ coordinates. The network
consists of a multilayer perceptron (MLP) with two hidden layers of 128 units, each followed by a
ReLU activation. The output layer predicts the 3D positions of M markers, resulting in an output
of size 3M . Formally, the network learns a function f : RB×21×3 → RB×M×3, where M is the
number of markers. The output is reshaped into a tensor with shape [B,M, 3], which represents the
predicted 3D coordinates for each marker.

TorqueInferNet. TorqueInferNet is a temporal regression network designed to predict joint torques
from motion-related features using centered prediction. It takes both the flattened spatial probabilis-
tic features and the 3D marker positions as input. Given a sequence of T (default T=13)consecutive
frames with features x ∈ RB×T×N×d, we first flatten and project each frame into a compact
embedding of dimension D, yielding a token sequence z ∈ RB×T×D. This sequence is processed
by a Transformer encoder with multi-head self-attention to capture long-range dependencies across
frames. The hidden state corresponding to the middle frame is then passed through fully connected
layers to regress the joint torques at that time step: f : RT×N×d → RJ , where J denotes the
number of predicted joints.

Loss terms. In the first stage of training, we employ the Mean Squared Error loss to supervise
the predicted 3D human pose against the ground truth annotations, denoted as Lpose. In the second
stage, we continue to use the MSE loss to minimize two objectives: the error between the predicted
marker coordinates and the ground truth, denoted as Lmarker, and the error between the predicted
joint torques and their ground truth values, denoted as Ltorque. The final loss used for optimization
in the second stage is a weighted sum of Lmarker and Ltorque, defined as:

Ltotal = λ1 · Lmarker + λ2 · Ltorque, (7)

where λ1 and λ2 are hyperparameters that balance the contributions of each term. And their sum is
constrained to 1.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Metric Dino Imdy Ours
mPJE (N·m/kg) ↓ 2.9493 2.9262 1.7612

Table 2: The overall performance on the VID dataset. Comparison of methods in terms of mean
per-joint torque error (mPJE, N·m/kg). Lower is better.

Joint Types mPJE(N.m/kg) ↓
Dino Imdy Ours

hip flexion r 0.4692 0.4914 0.2702 (-0.2212)
hip flexion l 0.3888 0.3589 0.2432 (-0.1157)

lumbar extension 0.7811 0.8147 0.3326 (-0.4485)
knee angle r 0.3952 0.4120 0.2044 (-0.1908)
knee angle l 0.2765 0.2836 0.2124 (-0.0641)
arm flex r 0.0464 0.0486 0.0307 (-0.0157)
arm flex l 0.0698 0.0562 0.0405 (-0.0157)

ankle angle r 0.2467 0.2088 0.1717 (-0.0371)
ankle angle l 0.2333 0.1730 0.1234 (-0.0496)
elbow flex r 0.0164 0.0362 0.0162 (-0.0002)
elbow flex l 0.0269 0.0428 0.0204 (-0.0065)

Table 3: Joint-specific mPJE (N·m/kg) on the VID dataset, showing that our method consistently
achieves the lowest error.

5 EVALUATION

5.1 EVALUATION SETTINGS

To evaluate the effectiveness of the proposed VID network, we conducted extensive experiments.
The compared methods include Dino (Dinovitzer et al., 2023), which is the best hybrid approach,
and ImDy (Liu et al., 2024), which is the state-of-the-art imitation learning-based method. It should
be noted that these two methods rely on labeled motion data to estimate joint torque, while our
method relies on real images. The VID dataset is split into a training set and a testing set in an 8:2
ratio. Hyperparameters λ1 and λ2 were set as 0.5. All input images are resized to 256 × 256 pixels.
We use the Adam optimizer with an initial learning rate of 0.001. The batch size is set to 32, and the
models are trained for 500 epochs. During training, the learning rate is decayed to 0.0001 to ensure
convergence and improved optimization performance. All methods were trained and evaluated using
the same dataset configuration. The experiments were conducted on two NVIDIA A100 GPUs.

5.2 EVALUATION CRITERIA AND METRICS

We define three new evaluation criteria for the three methods in the experiment: overall perfor-
mance, joint-specific performance, and action-specific performance. We adopt mean Per Joint
Error (mPJE) as the evaluation metric. According to the design of the previous method (Liu et al.,
2024), mPJE is further normalized by body weight to align different subjects. The specific calcula-
tion formula is shown in Formula8 below, where N is the number of joints, Ĵ is the predicted joint
torque, J is the ground truth, Masssub is the body weight of the subject.

mPJE = (
1

N

N∑
i=1

∥∥∥Ĵi − Ji

∥∥∥
2
)/Masssub (8)

5.3 EVALUATION RESULTS AND ANALYSIS

The experimental results of the three evaluation tasks are shown as follows: 1) The overall quan-
titative results are presented in Table 2. It refers to the average mPJE of all samples in the dataset,
reflecting the overall performance of the models. Dino achieved an mPJE of 2.9493, while ImDy
resulted in a lower mPJE of 2.9262. The proposed method yields the lowest error, achieving a
mean Per Joint Error (mPJE) of 1.7612. This represents a reduction of 1.15 compared to the best-
performing baseline, corresponding to a 39.81% relative improvement.
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Action Types mPJE(N.m/kg) ↓
Dino Imdy Ours

SitToStand1 0.2266 0.2451 0.1252 (-0.1014)
STSweakLeg1 0.2714 0.2222 0.1389 (-0.0833)

squats1 0.2239 0.276 0.1405 (-0.0834)
squatsAsym1 0.222 0.2742 0.1422 (-0.0798)

walking1 0.3419 0.1722 0.1299 (-0.0423)
walking2 0.3120 0.1878 0.1436 (-0.0442)
walking3 0.3143 0.1780 0.1222 (-0.0558)

walkingTS1 0.3023 0.1657 0.1840 (+0.0183)
walkingTS2 0.2908 0.1546 0.2218 (+0.0672)
walkingTS3 0.2931 0.1609 0.1120 (-0.0489)
DownJump1 0.6511 0.6879 0.5341 (-0.1538)
DownJump4 0.6788 0.7305 0.5120 (-0.1668)
DownJump5 0.6569 0.7305 0.4926 (-0.1643)

DownJumpAsym3 0.9330 1.0242 0.7769 (-0.1561)
DownJumpAsym4 0.6421 0.7177 0.4412 (-0.2009)
DownJumpAsym5 0.6744 0.7207 0.4751 (-0.1993)

Table 4: Action-specific mPJE (N·m/kg) on the VID dataset. Our method achieves the lowest error
across most action categories. The numbers in parentheses represent the improvement compared to
the best existing method.

2) To thoroughly evaluate the model’s performance across different joints, we report the mean Per
Joint Error (mPJE) for each joint. The quantitative results of joint-specific performance are shown
in Table 3. The evaluation involves 11 types of joints, including: hip flexion r, hip flexion l, lum-
bar extension, knee angle r, knee angle l, arm flex r, arm flex l, ankle angle r, ankle angle l, el-
bow flex r, and elbow flex l. The detailed positions of these joints are shown in Figure 1. IMDY
and DINO demonstrate varying performance across the 11 joints, with each joint exhibiting its own
specific advantages and disadvantages. However, the differences in their scores are not significant.
Our methods got the better prediction results in all joint types. Excluding the elbow flex r and el-
bow flex l joints, our approach significantly outperforms the other two methods. The most notable
improvement is observed in the lumbar extension, with an enhancement of 0.4485, followed by a
0.2212 increase in hip flexion r.

3) The VID dataset comprises a total of 16 distinct actions, including transitioning from sitting to
standing, walking, squatting, jumping down, and so on. To verify the performance of the model on
different actions, we calculated the mPJE values for each action. The quantitative results of action-
specific performance are shown in Table 4. Imdy significantly outperforms Dino on the walking
action. However, its performance is relatively worse on other types of actions. We attribute this to
the larger number of walking samples, which benefits transformer-based models—a phenomenon
that has also been validated in previous studies. Our method still achieved the best performance
on most action types, with a particularly notable advantage of up to 0.2009 on the DownJump
category. However, its performance on walkingTS1 and walkingTS2 is inferior to that of Imdy. The
performance of the three methods in the DownJump action is shown in Figure 3 below.

5.4 ABLATION STUDY

We designed an effective network architecture consisting of three main modules: the pre-trained
pose estimator, the Marker regressor, and the TorqueInferNet. In general, directly connecting the
TorqueInferNet to the spatial probabilistic features may represent a minimalist design paradigm.
Therefore, we aim to investigate the impact of the two auxiliary modules(the pose estimator and the
marker regressor) on joint torque prediction. The results of the ablation study are shown in the Table
5. The marker regressor, which extracts joint position information, has a positive impact on joint
torque prediction. Similarly, the inclusion of the pose estimator leads to a performance improve-
ment of 0.15, further validating our hypothesis that pre-training enhances the spatial representation
capability of the backbone network.
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Figure 3: Visualization of the performance of three methods on the down jumping action.

Ablation Settings mPJEPose estimator Marker regressor TorqueInferNet
✗ ✗ ✓ 2.4990
✗ ✓ ✓ 2.1179
✓ ✗ ✓ 2.2236
✓ ✓ ✓ 1.7612

Table 5: Ablation Study on the Effectiveness of Auxiliary Modules.

6 CONCLUSION

In this paper, we propose an inverse dynamics prediction approach from real human images, which
overcomes the limitations of previous methods in terms of application scenarios. We constructed
the VID dataset by manually exporting and optimizing data from existing open-source datasets, and
further augmented it with joint torque and velocity annotations. This manually synchronized dataset
consists of 63,369 high-quality frames. Leveraging this resource, we develop a novel end-to-end
neural framework, VID-Network. It comprises the Spatial Probabilistic Model for extracting spatial
features of anatomical joints, the Marker Regressor for estimating the required joint coordinates, and
TorqueInferNet, which effectively integrates spatial representations and positional cues to predict
joint torques.

To better validate the effectiveness of the proposed approach, we introduce three evaluation criteria:
(i) overall joint torque estimation, (ii) joint-specific estimation, and (iii) action-specific estimation.
These criteria enable a more comprehensive comparison of model performance against existing
methods. Compared to the previous methods, our method achieves a 39.81% improvement. It
demonstrates that the proposed approach establishes a strong baseline for reference. To the best of
our knowledge, this is the first study to estimate inverse dynamics directly from real human images,
thereby establishing a new benchmark for this task. More importantly, it paves the way for applying
torque prediction in more unconstrained and practical scenarios.

Although this paper provides the first benchmark for inverse dynamics based on real human images,
it also opens several avenues for future research. Promising directions include: (i)cross-subject gen-
eralization, evaluating models on unseen subjects; (ii)in-the-wild scenarios, extending evaluation
beyond laboratory settings; and (iii)multi-modal extensions, incorporating complementary signals
such as IMU or EMG. We expect VID to serve as a foundation for these future benchmarks, stimu-
lating broader progress in biomechanics and computer vision.

9
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A APPENDIX

A.1 EXTENSIBILITY AND REPRODUCIBILITY

Our goal in designing VID is to maintain high scalability and reproducibility. This means support-
ing expansion of the number and types of predicted joints, maintaining universal code design, and
consistent evaluation benchmarks, facilitating the sharing of research results among researchers. We
also designed a suite of tools for extracting joint kinematic and dynamic data, allowing researchers
to focus on data preprocessing. All tools are implemented in Python, making them easy to deploy
and run. The baseline model design also leverages many fundamental models, such as ResNet-101
and the Transformer Encoder. We ensured that the model’s dependencies are easily installed, making
it easier for researchers to replicate our results.

A.2 DATASET

The VID dataset comprises 9 subjects, each performing 9 types of actions. The number of synchro-
nized frames collected for each subject across different actions is summarized in the Table6 below:

Action type Subj.2 Subj.3 Subj.4 Subj.5 Subj.7 Subj.8 Subj.9 Subj.10 Subj.11

DJ1 100 86 109 111 114 98 92 104 90
DJ2 106 87 104 110 103 106 94 100 85
DJ3 102 88 112 109 99 111 92 87 91
DJAsym1 119 86 91 119 102 123 93 88 118
DJAsym4 118 86 93 110 103 140 91 89 101
DJAsym5 113 90 100 108 90 133 96 91 80
squats1 800 1184 1345 1623 1280 1320 1300 1288 1349
squatsAsym1 900 1280 1338 1312 1340 1320 1350 1257 1414
SitToStand1 860 1137 1399 1335 1370 1320 1440 1410 1328
STSweakLeg1 1139 2187 1772 1630 2074 1860 1639 1383 1747
walking1 158 132 130 139 132 129 135 125 135
walking2 150 135 132 135 130 130 130 120 135
walking3 153 138 139 140 133 135 137 130 138
walkingTS1 184 180 143 150 150 197 144 147 163
walkingTS2 170 170 140 145 157 149 140 150 157
walkingTS4 184 155 140 145 170 154 137 142 160

Total counts 5356 7221 7287 7421 7547 7425 7110 6711 7291

Table 6: Number of valid synchronized frames for 9 subjects (Subj.2–Subj.11) across 16 action
types (DJ = DownJump STS = Sit-to-Stand).

A total of 51 reflective markers were attached to anatomical landmarks across the human body
and recorded at 100 Hz. Markers on the lower limbs included the knee, ankle, calcaneus, 5th
metatarsal, and toe, as well as segmental points on the shank and thigh (e.g., r knee, r calc,
r toe). Pelvic motion was captured using markers placed on the anterior and posterior superior il-
iac spines (r.ASIS, L.ASIS, r.PSIS, L.PSIS) together with hip joint centers (R HJC, L HJC,
including regression-based estimates). Trunk movement was tracked by cervical (C7) and sternum
markers (R Sternum, L Sternum). For the upper body, markers were placed on the shoulders,
humerus, elbows (medial and lateral), forearms, and wrists (radius and ulna). This configuration
enables reliable full-body kinematic reconstruction, providing accurate joint trajectories for subse-
quent inverse dynamics analysis. All the markers definition are shown in Table7.

The inverse dynamics results are stored in a structured text file containing 36 columns and 100 time
frames. Each row corresponds to a time step and records the generalized joint forces computed
from motion capture and ground reaction data. The variables include joint torques (e.g., hip flexion,
adduction, and rotation moments for both sides; knee flexion moments; ankle plantar/dorsiflexion
moments; subtalar and metatarsophalangeal joint moments), trunk and pelvis moments (lumbar
extension, bending, rotation; pelvis tilt, list, and rotation moments), as well as translational forces
acting on the pelvis. All values are expressed in SI units, with torques in Newton-meters (Nm)
and forces in Newtons (N). This file thus provides the full set of generalized forces required for
evaluating human inverse dynamics during motion. All the joints definition for the ground truth of
joint torques are shown in Table8.
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Marker name Anatomical location

r knee, L knee Knee joint (right/left)
r ankle, L ankle Ankle joint (right/left)
r calc, L calc Calcaneus (heel bone)
r 5meta, L 5meta Fifth metatarsal head
r toe, L toe Toe marker
r shank *, L shank * Shank segment points
r thigh *, L thigh * Thigh segment points
r.ASIS, L.ASIS Anterior superior iliac spine
r.PSIS, L.PSIS Posterior superior iliac spine
R HJC, L HJC Hip joint centers
C7 7th cervical vertebra
R Shoulder, L Shoulder Shoulder joint
R humerus, L humerus Humerus
R elbow med/lat, L elbow med/lat Elbow (medial/lateral)
R forearm, L forearm Forearm
R wrist radius/ulna, L wrist radius/ulna Wrist (radius/ulna)

Table 7: Marker naming convention and anatomical locations.

Variable name Description

pelvis tilt moment, pelvis list moment, pelvis rotation moment Pelvis moments (tilt, list, rotation)
pelvis tx force, pelvis ty force, pelvis tz force Pelvis translational forces (x,y,z)
hip flexion r/l moment Hip flexion/extension (right/left)
hip adduction r/l moment Hip adduction/abduction (right/left)
hip rotation r/l moment Hip internal/external rotation (right/left)
lumbar extension moment, lumbar bending moment, lumbar rotation moment Lumbar spine moments
knee angle r/l moment Knee flexion/extension moments
ankle angle r/l moment Ankle plantar/dorsiflexion moments
elbow flex r/l moment Elbow flexion/extension moments
subtalar angle r/l moment Subtalar joint inversion/eversion moments
pro sup r/l moment Forearm pronation/supination moments
mtp angle r/l moment Metatarsophalangeal (toe) joint moments
arm flex/add/rot r/l moment Shoulder moments (flexion, adduction, rotation)

Table 8: Joint positions defined in the torque ground truth.

A.3 EFFECT OF WINDOW SIZE

In the main experiments, we adopted a temporal window size of 13 frames for torque prediction
using the Transformer backbone. To assess the robustness of this design choice, we additionally
evaluated the model under different window sizes, including 9 and 17 frames. As shown in Table 9,
the overall performance remains consistent across different settings, with a slight degradation for
very short windows (9 frames), likely due to insufficient temporal context. These results suggest that
a window size of 13 frames provides a good trade-off between model accuracy and computational
efficiency.

Window size 9 13 (default) 17

mPJE ↓ 1.841 1.7612 1.7662

Table 9: Performance of Transformer models under different temporal window sizes.

A.4 THE USE OF LARGE LANGUAGE MODELS

Large Language Models (LLMs) provide valuable assistance in scientific writing by automating both
technical formatting and linguistic refinement. In our workflow, LLMs were employed to generate
and optimize LaTeX table styles, ensuring that the presentation of experimental results adheres to
common academic standards such as clean alignment, minimal use of grid lines, and the adoption
of the booktabs package. In addition, LLMs were used to refine the manuscript text, improving
readability, grammatical accuracy, and overall fluency so that the writing conforms more closely
to native academic English. This dual use of LLMs—technical support for LaTeX and stylistic
support for writing—helped streamline the preparation of this paper while maintaining both clarity
and professionalism. We ensured that no content was generated by LLMs beyond formatting and
language refinement, to maintain scientific rigor.
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