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ABSTRACT

We propose a frequency-oriented perspective on retinal representation learning
by analyzing masked autoencoders (MAE) through the lens of spatial frequency.
Our analysis shows that MAE favors low-frequency content while under-encoding
diagnostically critical high-frequency structures in retinal images. Because reti-
nal pathology often manifests in high-frequency detail, this bias limits diagnostic
performance and motivates frequency-balanced representations. Within a mutual-
information (MI) formulation of MAE, we introduce the Frequency-Balanced
Retinal Masked Autoencoder (RetMAE), which augments the reconstruction ob-
jective with a MI regularizer that suppresses low-frequency redundancy and ac-
centuates clinically salient high-frequency information. Without altering archi-
tecture, RetMAE learns frequency-balanced features that surpass those of MAE-
based retinal encoders in both quantitative and qualitative evaluations. These re-
sults suggest that a frequency-oriented view provides a principled foundation for
future advances in ophthalmic modeling, offering new insight into how MAE’s
reconstruction objective amplifies ViT’s low-pass tendencies in spatially hetero-
geneous retinal images and enabling a simple MI-based correction that improves
retinal encoders.

1 INTRODUCTION

1.00
(a) (b)

Figure 1: High-frequency in fundus vs. natural
images. (a) Histogram of high-frequency ratios
for fundus photographs and ImageNet-1K (see
Appendix A.1 for details). (b) High-pass filtered
(HPF) examples, where fundus images show high-
frequency content concentrated near lesions, the
optic disc, and vessels (green boxes).

Vision foundation models learn generalizable
representations from large-scale pre-training,
transferable to diverse downstream tasks. This
paradigm shows promise in medical imag-
ing, particularly fundus photography, where
specialized domain knowledge is crucial for
foundation model development. In the fundus
domain, recent foundation model approaches
have explored two primary directions: 1) self-
supervised learning (He et al., 2022; Oquab
et al., 2023; Fang et al., 2023; 2024b) and
2) vision-language pre-training (Radford et al.,
2021; Wang et al., 2022). Self-supervised
learning approaches design pretext tasks that
generate supervisory signals directly from
the unlabeled data, including masked autoen-
coders (MAE) which reconstructs masked im-
age patches without requiring manual annota-
tions (Zhou et al., 2023). Vision-language pre-
training approaches leverage contrastive learn-
ing to learn joint representations by aligning vi-
sual features with clinical text descriptions (Du
et al., 2024; Wu et al., 2024; Silva-Rodriguez et al., 2025; Yu et al., 2024). However, training vision-
language models requires high-quality paired image-text data, which are extremely scarce and costly
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in fundus imaging, making self-supervised methods like MAE that leverage abundant unlabeled reti-
nal images more practical than vision-language approaches for most publicly available datasets.

However, MAE encounters fundamental limitations when applied to retinal fundus imaging due to
its unique characteristics. Unlike natural images, fundus photographs exhibit a distinctive frequency
distribution as described in Fig. 1: diagnostically critical structures—hemorrhages, drusen, and ex-
udates—are sparse and concentrated in high-frequency bands, while the majority of image content
comprises smooth, low-frequency backgrounds (Barriga et al., 2009; Agurto et al., 2011; Jindra,
1993; Zhang et al., 2022; Yu et al., 2025). The standard MAE reconstruction objective with ran-
dom masking and pixel-wise losses implicitly assumes uniform information density across regions,
inducing a bias toward smooth, low-frequency backgrounds while underrepresenting the sparse but
clinically crucial high-frequency details required for reliable disease recognition. This goes beyond
previously observed low-pass tendencies of ViTs by revealing a mismatch between MAE’s uniform-
information assumption and the strongly heterogeneous spatial distribution of diagnostic signal in
retinal images.

In our preliminary study in Section 4, we systematically analyze two aspects using centered kernel
alignment (CKA) (Kornblith et al., 2019) between MAE features and frequency-separated inputs: (1)
how standard MAE representations exhibit a preference for low-frequency over high-frequency com-
ponents, and (2) how this frequency bias affects downstream diagnostic performance. We apply the
discrete Fourier transform (DFT) with a Butterworth (Butterworth et al., 1930) filter to separate fun-
dus images into high-frequency (vessel boundaries, lesion edges) and low-frequency (smooth back-
grounds) components. Our analysis reveals a critical mismatch in standard MAE (Table 1): while
MAE representations strongly align with low-frequency components (CKA = 0.990), they poorly
capture high-frequency structures (CKA = 0.164). Downstream linear probing performance fur-
ther shows the opposite dependence—high-frequency components outperform low-frequency ones
across multiple datasets, achieving higher macro-average area under the receiver operating charac-
teristic curve (AUROC) (0.641 vs. 0.727). In retinal fundus photography, this inverse relationship
between representational alignment and diagnostic utility indicates that standard MAE preferen-
tially encodes the least informative (low-frequency) band. These findings motivate us to propose a
frequency-balanced approach to retinal representation learning.

To this end, we propose the Frequency-Balanced Retinal Masked Autoencoder (RetMAE), a pretrain-
ing framework that addresses frequency imbalance in fundus images under the mutual information
(MI) principle. From an information-theoretic perspective, MI provides a principled basis for learn-
ing representations that are compact yet diagnostically sufficient. RetMAE instantiates this principle
with a novel objective—the High-frequency MI regularizer (HighFreqMI) (Fig. 2)—which priori-
tizes the efficient encoding of sparse, clinically important high-frequency signals without requiring
paired-text supervision, while attenuating low-frequency redundancy. Importantly, no architectural
changes are required—performance gains arise from the MI objective alone. This objective encour-
ages frequency-balanced retinal representations that suppress irrelevant content while retaining es-
sential diagnostic cues.

Our main contributions are as follows:

• Frequency bias of MAE: We show that standard MAE pretraining under-encodes clinically
salient high-frequency information while over-representing low-frequency background. Building
on these findings, we introduce RetMAE, which incorporates the High-frequency MI regularizer
(HighFreqMI) to learn frequency-balanced retinal representations.

• MI-regularized compactness and sufficiency: Through comprehensive representational anal-
yses, we demonstrate that HighFreqMI yields embeddings that are both compact and suffi-
cient—reducing redundancy while preserving clinically meaningful features—thereby providing
a principled mutual-information-based correction that directly targets MAE’s under-utilization of
high-frequency retinal structure.

• Data efficiency without paired text: RetMAE consistently outperforms retinal foundation mod-
els, including MAE-based encoders and also competes favorably with non-MAE paradigms (text-
guided and vision–language models), while requiring substantially fewer pretraining samples. Us-
ing only ∼25.6k unlabeled fundus images, it achieves a macro-average AUROC of 0.940 across
five benchmarks, highlighting strong data efficiency without paired text.
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Figure 2: Overview of RetMAE. RetMAE extends MAE with a mutual-information regularizer.
High-frequency MI (HighFreqMI) aligns the encoder to a high-frequency context using frequency-
selected (HF-masked) patches. Here, Z ′ are linearly projected latents and ZHF high-frequency la-
tents; HF, high frequency; EMA, exponential moving average; LP, linear projection.

2 RELATED WORKS

Fundus foundation models. Large-scale pretraining on fundus images has enabled strong retinal
encoders. RETFound (Zhou et al., 2023) shows that masked image modeling (MIM) on unlabeled
fundus photographs can transfer across retinal diseases. Multimodal approaches—RET-CLIP (Du
et al., 2024), KeepFIT (Wu et al., 2024), and FLAIR (Silva-Rodriguez et al., 2025)—further in-
fuse expert knowledge by aligning images with diagnostic reports, while UrFound (Yu et al., 2024)
embeds anatomical priors via anatomy-guided masking within MIM. Masking-based fundus hier-
archies (Lin et al., 2025) likewise employ masking-and-reconstruction to learn disease-indicative
features, but focus on stage-robust, spatially invariant cues rather than explicitly correcting the low-
frequency bias of MAE. Our frequency-balanced MI regularizer instead steers the MAE bottleneck
toward lesion-centric high-frequency tokens, and could in principle be combined with such hier-
archical objectives. However, in clinical settings, high-quality paired image–text corpora are scarce
and expensive to curate, which constrains language-supervised scaling. Our work targets this regime:
we keep the backbone architecture fixed and avoid paired text, using MIM on modest unlabeled col-
lections together with an optional, off-the-shelf, retina-informed context latent.

Frequency structure. Classical analyses show that low-frequency bands capture coarse, global ap-
pearance, whereas high-frequency bands encode fine structure (Oppenheim et al., 1979; Oppenheim
& Lim, 1981; Piotrowski & Campbell, 1982; Hansen & Hess, 2007). In retinal fundus images, clin-
ically salient lesions (microaneurysms, exudates, and hemorrhages), drusen-related textures, and
spectral changes in retinal nerve fiber layer (RNFL) are predominantly contained in high-frequency
components (Zhang et al., 2022; Yu et al., 2025; Barriga et al., 2009; Agurto et al., 2011; Jindra,
1993). Recent MIM variants leverage Fourier or band-aware objectives on frequency-domain inputs
or reconstruction targets (Xie et al., 2022; Wang et al., 2024b). In contrast, we regularize semantic
latent representations derived from high-frequency RGB regions, making our approach complemen-
tary.

MI-based representation learning. From an information-theoretic perspective, the information
bottleneck favors encoders that preserve task-relevant content while discarding nuisances (Tishby
et al., 2000; Tishby & Zaslavsky, 2015), and MAE admits an MI formulation linking inputs, masked
regions, and latents (Huang et al., 2025). Within this view, RetMAE couples complementary MI
regularizers to suppress low-frequency redundancy and amplify diagnostically informative high-
frequency cues, yielding frequency-balanced retinal representations without architectural changes
or paired text.

3 PRELIMINARIES

We briefly review MAE, an information-theoretic interpretation of their objective, and the high-
frequency token scoring procedure that underpins our regularizer.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Masked autoencoders. MAE (He et al., 2022) randomly masks a subset M of image patches and
trains a ViT-based encoder–decoder to reconstruct the missing content from the remaining visible
patches. We consider an image that has been partitioned into N = HW/P 2 non-overlapping patches
of size P × P , and denote by xi ∈ RP 2C the vectorized pixel values of the i-th patch for i =
1, . . . , N , where N denotes the number of patches per image. Let M ⊂ {1, . . . , N} denote the
masked indices and V = {1, . . . , N}\M the visible ones. The reconstruction loss is computed only
on the masked patches using mean squared error:

Lrec =
1

|M|
∑
i∈M

∥xi − x̂i∥22 , (1)

where x̂i ∈ RP 2C denotes the reconstructed pixel vector of the i-th patch. This objective encour-
ages the encoder to infer masked content from visible context and yields transferable features for
downstream tasks (Kong & Zhang, 2023).

An information-theoretic view. MI offers a principled lens on representation learning (Tishby et al.,
2000; Tishby & Zaslavsky, 2015). A recent analysis (Huang et al., 2025) shows that the MAE ob-
jective can be viewed as minimizing the Lagrangian

L = I(XV ;Z) + β I(XV ;XM | Z) , (2)

where X = [e1, . . . , eN ] denotes the sequence of patch embeddings ei ∈ RD obtained from an
image (e.g., via a linear projection), with D the embedding dimension. We denote the visible and
masked subsets by XV = [ei]i∈V and XM = [ei]i∈M, respectively, and let Z be the encoder’s
latent representation of XV . The scalar β > 0 is a weighting coefficient, and I(·; ·) and I(·; · | ·)
denote (conditional) Shannon mutual information (Shannon, 1948).

In deep networks, successive layers compress inputs into internal representations; when this com-
pression is too strong, task-relevant information can be lost, a phenomenon known as information
distortion (Tishby et al., 2000; Tishby & Zaslavsky, 2015). From this viewpoint, Eq. 2 can be in-
terpreted as minimizing a Lagrangian that explicitly trades off the complexity of the latent repre-
sentation against such distortion: the first term I(XV ;Z) quantifies the complexity of the latent
description Z, whereas the second term I(XV ;XM | Z) plays the role of an information-distortion
term whose minimization drives Z to retain sufficient information to predict XM .

This view motivates MI-based regularization of the MAE bottleneck beyond the standard reconstruc-
tion loss, and Huang et al. (2025) show that constraining the complexity term I(XV ;Z) improves
MAE performance on natural images. Building on the same information-bottleneck formulation,
we introduce a domain-specific high-frequency regularizer: instead of enforcing mask invariance
as in MI-MAE, we align Z with a high-frequency retinal context so that the bottleneck prioritizes
clinically salient high-frequency structure over low-frequency background in fundus images.

High-frequency extraction. For each fundus image, we first apply a Soft-FOV mask to the green
channel, which provides the strongest vessel and lesion contrast (Biswas et al., 2022; Ooi et al.,
2021; Kumar et al., 2020). We suppress low-frequency content via Gaussian blur, transform the re-
sult to the Fourier domain (Brigham, 1988), and apply a Butterworth high-pass filter (Butterworth
et al., 1930) tuned on a small held-out set with vessel/lesion annotations; the inverse transform yields
a high-pass response map. We then reapply a binarized Soft-FOV mask to attenuate residual back-
ground and boundary responses, and compute a scalar high-frequency score for each ViT (Dosovit-
skiy et al., 2020) token by averaging the masked response over its corresponding non-overlapping
P × P patch. Tokens in the top 25% of scores are treated as high-frequency tokens for our regular-
izer; implementation details and hyperparameters are provided in Appendix A.2.

4 UNCOVERING FREQUENCY BIASES IN MAE REPRESENTATIONS

We assess whether a standard MAE with a ViT backbone captures diagnostically salient high-
frequency content by pretraining on fundus images (see Sec. A.4) and evaluating the encoder using
CKA alongside linear-probing AUROC (see Sec. 6.1). Because ViT is a token-based architecture,
changing the visible token set naturally induces different internal representations, and Kong & Zhang
(2023) use CKA to compare such representations under different training schemes. Following this
perspective, Table 1 reports a CKA-based comparison across token subsets. More specifically, we
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treat the representation from the full, unmasked input as the baseline representation learned by MAE
and use CKA to quantify how closely each subset-induced representation aligns with it. In addition
to random masking subsets, we also consider frequency-based subsets obtained by ranking tokens
with our high-frequency scores and assigning the top 25% to high-freq. only and the remaining 75%
to low-freq. only (see Appendix A.2 for details). High CKA means that a subset leaves this baseline
largely unchanged, whereas low CKA indicates that information specific to that subset is not well
reflected in the baseline representation.

Table 1: CKA and linear probing across to-
ken subsets. AUROC is the macro-average
across across five benchmarks; per-dataset
results are provided in Appendix A.8.

Subset CKA AUROC

full Baseline 0.685

25% masked 0.996 0.686
low-freq. only 0.990 0.641

75% masked 0.890 0.647
high-freq. only 0.164 0.727

As summarized in Table 1, three observations
emerge. (1) 25% masked (which retains 75% of to-
kens) maintains AUROC comparable to full and ex-
hibits near-reference CKA, revealing substantial re-
dundancy in the MAE representations. (2) low-freq.
only shows very high CKA yet a clear AUROC drop,
indicating that low-frequency background structure
dominates the baseline representation while con-
tributing limited diagnostic signal. (3) high-freq.
only, which keeps only 25% of tokens, yields low
CKA yet achieves the best AUROC, consistently
outperforming 75% masked at the same token bud-
get (25% visible)—showing that a small set of high-
frequency tokens carries most of the diagnostic signal but is under-emphasized in the baseline rep-
resentation. Taken together, standard MAE redundantly encodes low-frequency backgrounds and
under-encodes high-frequency diagnostic structure, motivating a representation-level correction.

5 FREQUENCY-BALANCED RETINAL MASKED AUTOENCODERS

We introduce a frequency-balanced retinal masked autoencoder (RetMAE) that mitigates the fre-
quency imbalance identified in Sec. 4 through an MI formulation. As illustrated in Fig. 2, RetMAE
augments the standard MAE reconstruction loss with a novel MI regularizer—the high-frequency
MI maximization objective (HighFreqMI)—to steer the encoder toward compact and task-sufficient
representations. We ground the approach in the MI principle (Sec. 5.1) and then detail the objective
and training procedure (Sec. 5.2).

5.1 MUTUAL INFORMATION AS A PRINCIPLE

We optimize MAE under an MI perspective to embed diagnostically relevant retinal cues. In this
framework (Eq. 2), the conditional term I(XV ;XM | Z) is instantiated by the standard MAE ob-
jective. To regulate the marginal term I(XV ;Z), we align the trainable representation Z with a
high-frequency–focused context latent used as a reference. Optimizing the conditional and marginal
terms jointly yields a frequency-balanced encoder suitable for retinal diagnosis.

Reconstruction as conditional mutual information minimization. In the decomposition of
Eq. 2, the term I(XV ;XM | Z) corresponds to the MAE reconstruction objective. This relationship
becomes clear when the decoder is modeled as an isotropic Gaussian with fixed variance, follow-
ing probabilistic autoencoder formulations (Bishop & Nasrabadi, 2006; Kingma et al., 2013; 2014;
Ciampiconi et al., 2023). Under this assumption, the mean squared error (MSE) is proportional to
the negative log-likelihood, a standard and analytically convenient interpretation that links recon-
struction to conditional mutual information, as shown in the theorem below.

Theorem 1. Let Z = fθ(XV ) be the encoder output and let the decoder fϕ map Z to the input
space. Assume an isotropic Gaussian reconstruction model with fixed variance,

pϕ(X | Z) = N
(
X̂, σ2I

)
, X̂ = fϕ(Z) ∈ RN×(P 2C),

where σ2 > 0 is constant. Then minimizing the MAE reconstruction loss,

min
θ,ϕ

Lrec,

5
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is equivalent, up to a positive affine rescaling determined by σ2, to minimizing the conditional mutual
information between visible and masked patches,

min
θ,ϕ

I(XV ;XM | Z).

See Appendix A.3 for the proof. the standard reconstruction loss therefore serves as a principled
surrogate for minimizing I(XV ;XM | Z).

Context alignment as marginal mutual information minimization. Within Eq. 2, the marginal
term I(XV ;Z) can be bounded by aligning the trainable representation to a compact and task-
informative context. If the context encoder discards irrelevant variation while preserving diagnostic
cues, then aligning the trainable encoder to this context drives Z toward a similarly compact encod-
ing of the visible input.
Theorem 2. Let Zc = g(X) be a context representation that is ε-compact, meaning I(X;Zc) ≤ ε,
and let Z = fθ(XV ) be the trainable representation produced from visible patches. Suppose training
achieves mutual-information alignment between Z and Zc up to a small error δalign and capacity
matching up to a small mismatch δcap. Define δ := max{δalign, δcap} ≥ 0. Then

I(XV ;Z) ≤ I(XV ;Zc) + δ ≤ ε+ δ.

Appendix A.3 provides the proof. In practice, standard MAE training already produces a reasonably
compact trainable representation, and the capacity gap between the trainable and context encoders is
typically modest. Maximizing I(Z;Zc) then aligns Z to the ε-compact context and tightens control
of the marginal term I(XV ;Z) in Eq. equation 2. When alignment error and capacity mismatch are
negligible, the bound approaches I(XV ;Z) ≤ ε.

Taken together, Theorems 1 and 2 yield a clear protocol. The MAE loss reduces the conditional
term I(XV ;XM | Z), while alignment to an ε-compact context upper-bounds the marginal term
I(XV ;Z). Together, these mechanisms yield compact yet diagnostically sufficient representations
and jointly optimize the MI Lagrangian in Eq. equation 2.

5.2 TRAINING OBJECTIVE

Guided by Theorem 2, we control the marginal I(XV ;Z) by maximizing I(Zc;Z) between the
trainable latent Z = fθ(XV ) and a compact context latent Zc. Since mutual information is gener-
ally intractable to compute exactly, we instead maximize a Donsker–Varadhan-based lower bound
on I(Zc;Z) using the Mutual Information Neural Estimator (MINE) (Donsker & Varadhan, 1983;
Belghazi et al., 2018). With a critic fψ : RD×RD → R scoring joint pairs (Zic, Z

i) ∼ p(Zc, Z)
and shuffled (product-marginal) pairs (Zic, Z

j)j ̸=i ∼ p(Zc)⊗p(Z), the objective is

LMINE(Zc, Z) = −Ep(Zc,Z)[fψ(Zc, Z)] + logEp(Zc)⊗p(Z)

[
exp{fψ(Zc, Z ′)}

]
, (3)

where Z ′∼p(Z) is independent. Our implementation of MINE is based on an open-source reference
implementation.1

High-frequency MI regularization. We construct a high-frequency context latent ZHF
c by feed-

ing frequency-selected visible tokens (Appendix A.2) into an exponential moving-average (EMA)
teacher of the encoder. The HighFreqMI objective maximizes the mutual information between the
trainable representation Z and this context, estimated with MINE:

Lhmi = LMINE

(
Z, ZHF

c

)
. (4)

Our base RetMAE augments MAE reconstruction with HighFreqMI,

Ltotal = λrec Lrec + λhmi Lhmi. (5)

By Theorem 2, the context must be compact; accordingly, we activate HighFreqMI only after a short
warm-up period so that the EMA teacher stabilizes. The loss Lhmi acts as a high-frequency MI reg-
ularizer on the shared latent Z, mitigating MAE’s low-frequency bias and encouraging frequency-
balanced representations. A detailed analysis of the computational overhead introduced by our high-
frequency regularization is provided in Table 12 in Appendix A.8.

1https://github.com/Linear95/CLUB
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Table 2: Linear probing performance (AUROC). Columns marked † are out-of-distribution test
sets. AVG is the macro-average across datasets. Values in light gray denote evaluation datasets seen
during pretraining. Auxiliary loss: ✓ indicates the use of auxiliary signals beyond images (e.g.,
text guidance or a retina-informed off-the-shelf encoder); ✗ indicates image-only self-supervised
pretraining.

Method Auxiliary
loss IDRiD RFMiD (DR) RFMiD (AMD) CHAKSU APTOS

†
AVG

MAE ✗ 0.726 0.721 0.793 0.371 0.812 0.685
RETFound ✗ 0.736 0.760 0.784 0.464 0.706 0.690
RetMAE ✗ 0.816 0.848 0.852 0.516 0.862 0.779

UrFound ✓ 0.836 0.955 0.953 0.604 0.927 0.855
MAE ✓ 0.887 0.949 0.959 0.912 0.910 0.923
RET-CLIP ✓ 0.898 0.955 0.962 0.930 0.940 0.937
RetMAE ✓ 0.910 0.952 0.980 0.911 0.952 0.941

Auxiliary-loss–augmented RetMAE. Recent work improves MAE encoders by adding auxiliary
objectives beyond reconstruction (e.g., text supervision or alignment to features from a pretrained
vision model) (Fang et al., 2023; 2024b; Yu et al., 2024). Following this paradigm, we consider an
auxiliary-loss–augmented variant that adds a generic term Laux on top of MAE+HighFreqMI:

Ltotal = λrec Lrec + λhmi Lhmi + λaux Laux. (6)
In our experiments, Laux is instantiated as MINE-based feature alignment between Z and frozen
features Zaux

c extracted from a pretrained fundus encoder (e.g., RET-CLIP):
Laux = LMINE(Z, Z

aux
c ) . (7)

Here, λrec, λhmi, λaux ≥ 0 are non-negative scalar weights; in all experiments, we fix λrec = 1 and
set λhmi = 0.1 and λaux = 0.01, and Table 13 in Appendix A.8 reports a sensitivity analysis of
these loss weights.

6 EXPERIMENTS

We evaluate RetMAE on five retinal fundus benchmarks and probe the mechanisms behind its gains,
testing the hypothesis that it learns frequency-balanced, task-sufficient representations. Sec. 6.1
specifies baselines, datasets, and evaluation protocols. Sec. 6.2 reports downstream performance,
loss ablations, and pretraining data efficiency. Sec. 6.3 examines frequency balance via (1) layer-
wise CKA under frequency-masked inputs, (2) PCA visualizations of class-to-patch attention, and
(3) the linear decodability of high-frequency targets from frozen patch embeddings.

6.1 EXPERIMENTAL SETUP

Models. We evaluate a broad set of fundus pretraining approaches, including a vision–language
baseline (RET-CLIP (Du et al., 2024)) and MAE-based methods (RETFound (Zhou et al., 2023),
UrFound (Yu et al., 2024)). Complete model configurations and training protocols are provided in
Appendix A.5.

Datasets. We evaluate RetMAE on four public fundus benchmarks: IDRiD, RFMiD, CHAKSU,
and APTOS, spanning three diagnostic categories—diabetic retinopathy (DR), age-related macular
degeneration (AMD), and glaucoma (GL). RFMiD is split into DR and AMD subsets, which are
evaluated independently. APTOS is used solely as an out-of-distribution test set to avoid data leak-
age. A detailed description of tasks, labels, image counts, and splits is provided in Appendix A.6.

Evaluation protocols. To assess the quality of learned representations, we employ linear probing,
where the encoder is frozen and only a linear head is trained. We report AUROC and area under the
precision–recall curve (AUPRC) as evaluation metrics.

6.2 DOWNSTREAM PERFORMANCE

Linear probing performance. Table 2 reports linear probing results across five benchmarks. Ret-
MAE attains the best macro-average AUROC (0.941). On APTOS, it achieves the top AUROC

7
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Table 3: Full fine-tuning performance (AUROC). AVG denotes the macro-average across datasets.

Method IDRiD RFMiD (DR) RFMiD (AMD) CHAKSU APTOS
†

AVG

RETFound 0.856 0.926 0.942 0.755 0.902 0.876
RET-CLIP 0.879 0.947 0.916 0.836 0.973 0.910
RetMAE 0.856 0.956 0.963 0.903 0.961 0.928

score (0.952), indicating strong out-of-distribution (OOD) generalization. Across datasets, RetMAE
with auxiliary losses surpasses all image-only MAE variants (MAE, RETFound, UrFound), indicat-
ing that MI-based emphasis on high-frequency retinal structure improves MAE pretraining. Because
knowledge transfer degrades under distribution shift (Zhang et al., 2025), the auxiliary-only baseline
tends to underperform RET-CLIP. Nevertheless, adding HighFreqMI improves macro-average AU-
ROC (∆AUROC +0.018) and matches or surpasses RET-CLIP. These results indicate that explicit
high-frequency alignment, rather than language supervision, is the principal driver of the gains.
Appendix A.8 reports additional AUPRC results (Table 9), as well as performance on multi-disease
diagnosis datasets (Table 10).

Full fine-tuning performance. Table 3 reports AUROC under full fine-tuning on five retinal bench-
marks. RetMAE attains the best average performance (0.928), exceeding RET-CLIP (0.910) and
RETFound (0.876), with particularly strong gains on RFMiD (DR/AMD) and CHAKSU while re-
maining competitive on IDRiD and APTOS. These results show that our high-frequency regulariza-
tion improves not only linear-probe performance but also full fine-tuning, the regime most relevant
for clinical deployment.

Table 4: Ablation of loss components.

Lrec Laux Lhmi AUROC AUPRC

✓ – – 0.685 0.486
✓ – ✓ 0.779 0.614

✓ ✓ – 0.923 0.799
✓ ✓ ✓ 0.941 0.849

Ablation on loss components. All AUROC/AUPRC val-
ues in Table 4 are macro-averages across five bench-
marks. The reconstruction-only baseline is weakest. In-
troducing Lhmi yields large gains (AUROC +0.094,
AUPRC +0.128), indicating that recovering high-
frequency cues is the primary lever. Crucially, Lhmi

is complementary: when added to the auxiliary set-
ting, it provides further improvements (AUROC +0.018,
AUPRC +0.050). Collectively, these results show that HighFreqMI increases high-frequency suffi-
ciency and effectively improves retinal MAE variants.
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Figure 3: Pretraining data efficiency.

Pretraining data efficiency. We assess pretraining data
efficiency by subsampling each training fold into nested
random subsets at {75, 50, 25, 10, 5, 1}% of the full split
(S75% ⊃ S50% ⊃ · · · ⊃ S1%). Figure 3 reports the
macro-average AUROC across five datasets as a func-
tion of pretraining set size; per-benchmark curves and ad-
ditional details are provided in Appendix A.8. RetMAE
achieves strong downstream performance with substan-
tially fewer images: with only ∼1% of the pretraining set
(2.6k images), it surpasses RETFound trained on 904k
images (AUROC 0.741 vs. 0.690); with 5% (12.8k im-
ages), it also exceeds UrFound trained on 187k images
(AUROC 0.925 vs. 0.855).

The early plateau around ∼12.8k images naturally raises the question of whether RetMAE fails to
benefit from more data. We argue instead that this reflects the combination of a fixed-capacity regime
and the statistics of fundus images: as detailed in Appendix A.7, retinal photographs exhibit highly
constrained low-frequency anatomy and concentrate diagnostic variation in relatively sparse high-
frequency patterns, so once these patterns are well covered, additional images become increasingly
redundant under a fixed backbone and training schedule. In such a low-entropy, high-redundancy
setting, widely observed neural scaling laws (power-law scaling of loss with model size, data, and
compute) imply that returns diminish unless model capacity, data diversity, and the number of train-
ing tokens are increased together (Hestness et al., 2019; Kaplan et al., 2020; Hernandez et al., 2021;
Hoffmann et al., 2022; Dehghani et al., 2023).
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Figure 4: Frequency-aware CKA analysis across layers. The three panels compare (left) the full
input with high-frequency tokens, (center) the full input with low-frequency tokens, and (right)
the high- and low-frequency subsets directly. RetMAE achieves more balanced alignment across
frequencies, highlighting its frequency-balanced representation.

6.3 FREQUENCY-AWARE REPRESENTATION ANALYSIS

This section evaluates whether RetMAE learns frequency-balanced representations using a
frequency-centric analysis of its embeddings. We employ three probes: (1) CKA to assess how
high-frequency (HF) and low-frequency (LF) content is encoded and how these subsets align with
the full representation; (2) HF decodability to quantify the linear predictability of HF content from
patch tokens; and (3) Principal component analysis (PCA) of class-to-patch attention to qualitatively
visualize the organization of frequency-specific retinal structures. Together, these probes show that,
in retinal imaging, MAE-style pretraining further biases ViT representations toward low-frequency
backgrounds under its uniform-information assumption, and that our MI-based regularizer restores
high-frequency sensitivity without sacrificing low-frequency structure, providing mechanistic in-
sight into how MAE can be corrected in this domain.

CKA similarity. Building on Sec. 4, we compute CKA between representations obtained under dif-
ferent frequency-visibility conditions: the full-input tokens (Tfull), the high-frequency-only tokens
(Thigh), and the low-frequency-only tokens (Tlow). Concretely, we report layer-wise CKA for three
pairs: Tfull vs. Thigh, Tfull vs. Tlow, and Thigh vs. Tlow. Results for MAE and RetMAE are shown
in Fig. 4. (1) Tfull vs. Thigh: MAE exhibits high similarity in early layers that declines with depth,
indicating progressive attenuation of HF content in the learned embedding; in contrast, RetMAE
sustains higher similarity through depth, consistent with preserving task-relevant HF cues under
compression. (2) Tfull vs. Tlow: both models maintain consistently high similarity (≈ 0.9–1.0) across
layers. Taken together with (1), this shows that RetMAE preserves HF alignment without sacrificing
LF structure, whereas MAE becomes increasingly LF-biased with depth. (3) Thigh vs. Tlow: the mod-
els are similar in early layers, but with depth MAE similarity approaches zero (strong separation of
frequency components), while RetMAE remains moderate-to-high, indicating a more balanced co-
embedding of HF/LF components rather than collapsing. Overall, MAE tends toward LF-dominated
representations, whereas RetMAE maintains frequency diversity across layers and keeps HF infor-
mation coupled to the global embedding.

Early Middle Late
Layer

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

R
² S

co
re

* * *
* * *

RETFound RET-CLIP UrFound RetMAE

Figure 5: Layer-wise high-frequency decod-
ability (R2). Asterisks denote p < 0.001.

High-frequency decodability of patch tokens.
To assess whether HF information remains decod-
able from learned features, we predict the patch-
level HF targets defined in Eq. 22 from patch
tokens using ridge regression, and compute the
coefficient of determination R2 layer-wise (aver-
aged over images). Figure 5 summarizes results for
early, middle, and late layers, while per-image R2

distributions are provided in Appendix A.8. Ret-
MAE yields near-ceiling R2 across all depth (early
0.975, middle 0.994, late 0.991; all p < 10−15),
demonstrating that HF content is robustly linearly
decodable from patch tokens. In contrast, other
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UrFoundRETFoundRET-CLIPRetMAE (Ours)High-Freq.Input

Figure 6: PCA visualization of class-to-patch attention. RetMAE shows pronounced chromatic
separation—optic disc (red), hemorrhages/exudates (green), and background (blue)—with clear seg-
regation aligned with clinical priors, a property important for retinal diagnosis. Additional examples,
visualization details, and attention maps for large lesion areas are provided in Appendix A.8.

models show markedly lower R2, often peaking at middle layers but declining at later ones (e.g.,
RET-CLIP 0.764 at middle; RETFound 0.724 at middle), reflecting reduced HF sensitivity at the
representation level. When averaged across layers, RetMAE achieves the highest mean HF decod-
ability (R2 = 0.987), consistent with the frequency-aware structure revealed by the PCA analysis
below.

PCA visualization of class-to-patch attention. We visualize how the global representation attends
to local structure by applying PCA to the concatenated class-to-patch attention maps across heads
and mapping the top three principal components to RGB (following Oquab et al. (2023)). This
yields a compact chromatic embedding in which tokens with similar class semantics appear in sim-
ilar colors. Models that preserve richer HF detail exhibit sharper chromatic contrast aligned with
retinal anatomy. As illustrated in Fig. 6, RetMAE shows clearer separation of clinically salient
regions than baseline models (e.g., lesion boundaries are cleanly delineated from smooth back-
ground, and the optic disc is consistently isolated). These visualizations indicate that RetMAE orga-
nizes tokens into frequency-aware, anatomically coherent clusters, preserving high-frequency detail
while maintaining low-frequency structure. Across the three analyses, we find that RetMAE learns
frequency-balanced representations: it aligns well with high-frequency information while preserving
low-frequency structure. The learned representations maintain high- and low-frequency components
distinct rather than collapsing and exhibit clearer anatomical organization. This frequency balance,
in turn, contributes to improved diagnostic performance observed on downstream tasks (Sec. 6.2).

7 DISCUSSION

To our knowledge, this is the first work to diagnose and correct MAE’s low-frequency bias in med-
ical imaging using a mutual-information framework operating on latent representations rather than
raw frequency coefficients. We advance a frequency-oriented view of MAE for retinal imaging
within an MI framework and introduce RetMAE, which augments the reconstruction objective with
a high-frequency MI regularizer (HighFreqMI) to reduce low-frequency redundancy and empha-
size clinically salient structure, without architectural changes or paired text supervision. Within this
framework, our results indicate that MI-guided high-frequency regularization is a practical path for
retinal encoder development and suggest clear avenues for extension. Although instantiated on color
fundus images, the same mechanism should transfer to domains where task-relevant signals concen-
trate in high-frequency structure (e.g., industrial anomaly detection). More broadly, our formulation
is not limited to frequency: any compact, semantically meaningful context encoder (e.g., spatial
priors, multi-scale cues, or task-specific structure) can serve as a regularizer within the same MI
framework. Our latent-level HighFreqMI regularizer is orthogonal to salience- or attention-guided
masking strategies (Choi et al., 2024; Sick et al., 2025) and can be seamlessly combined with such
masking priors. A systematic evaluation of RetMAE on non-retinal modalities, alternative encoder
backbones (including iBOT-style and convolutional architectures), and adaptive or data-driven con-
text targets, alongside architectural scaling and broader distribution-shift benchmarks, is an impor-
tant direction for future work.
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REPRODUCIBILITY STATEMENT

All implementation details are in Appendix A.4; baselines, datasets, splits, and metrics are in Ap-
pendix 6.1, with dataset notes in Appendix A.6 and frequency preprocessing in Appendix A.2.
We will release the codebase with model implementation. All runs used fixed random seeds. Ex-
periments ran on 8× NVIDIA RTX 3090 (24 GB) using PyTorch Lightning 2.4.0; training used
torch.compilemode (no mixed precision). Training and evaluation were conducted on the same
machine; multi-GPU runs used DDP (NCCL, fixed global batch size). The proposed method (Ret-
MAE) and the MAE baseline instantiate backbones via timm (version ≥ 1.0.12); all other baselines
were obtained from their official GitHub repositories.

ETHICS STATEMENT

This work uses only de-identified, publicly available retinal fundus datasets (see Appendix A.6);
no additional patient data were collected. Models and code are released for research use only and
are not intended for clinical decision-making without further validation and regulatory approval.
We acknowledge potential dataset biases and report results across multiple benchmarks to support
transparent evaluation.
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A APPENDIX

A.1 FUNDUS IMAGES CONTAIN LESS HIGH-FREQUENCY CONTENT

As illustrated in Figure 1, natural images typically exhibit a broad frequency spectrum in which
edges, textures, and object boundaries contribute substantial high-frequency (HF) energy. By con-
trast, fundus photographs are markedly low-frequency–dominated: most pixels belong to smooth
background regions, while clinically meaningful structures—hemorrhages, drusen, hard exudates,
the optic disc, and vessels—are sparse and concentrated in HF bands. We substantiate this observa-
tion with the percentile-threshold analysis described below.

Quantitative Method: 75th-Percentile Threshold Let HF(x) denote the per-pixel HF magnitude
map of image x (see Sec. A.2). We define a dataset-level threshold from ImageNet-1K (Deng et al.,
2009) as

T = quantile0.75
(
HF(ImageNet-1K)

)
.

For any image x with N pixels, we then compute the fraction of pixels exceeding this reference
threshold:

R(x;T ) =
1

N

∣∣{ i : HF(x)i > T }
∣∣.

Thus, R(x;T ) measures how many pixels in x are “HF-active” relative to the ImageNet-derived
reference distribution.

Quantitative Results: Histogram Analysis Figure 1 depicts the empirical distribution of R(x;T )
for fundus images and ImageNet-1K. The fundus distribution concentrates near zero, whereas Ima-
geNet exhibits a broader, right-shifted distribution, indicating a substantially larger fraction of HF-
active pixels. A Mann–Whitney U test (Mann & Whitney, 1947) indicates a highly significant dif-
ference (p = 4.75 × 10−12), confirming that fundus photographs contain markedly less HF con-
tent. These results quantitatively corroborate the qualitative patterns in Figure 1: clinically relevant
structures in fundus images are sparse and localized within HF regions, while the overall image is
dominated by low-frequency background.

A.2 HIGH-FREQUENCY EXTRACTION

To isolate diagnostically relevant high-frequency signals, we first extract and normalize the green
channel, then generate a soft field-of-view mask to attenuate edge artifacts. We apply this mask
before Gaussian blurring so that only the central retinal region contributes to the frequency analysis.
After suppressing low-frequency background with the blur, we transform the result to the Fourier
domain and filter it using a Butterworth high-pass filter whose cutoff and order were tuned on a held-
out set of fundus images. This dataset for the adjustment, which included annotations of the ground
truth vessel and the lesion, was strictly excluded from both pretraining and evaluation. Inverting the
filtered spectrum back to the spatial domain produces a high-pass filtered (HPF) image, which we
re-mask and normalize to eliminate any residual boundary effects.

Soft-FOV Mask Generation To smoothly attenuate high-frequency artifacts at the field-of-view
(FoV) boundaries and enhance lesion-related high-frequency signals in retinal fundus images, we
compute a soft field-of-view (Soft-FOV) mask. Given an input image I ∈ RC×H×W , we first form
a grayscale image by channel averaging:

Yh,w =
1

C

C∑
c=1

Ic,h,w. (8)

We define a threshold
Ts = τfov max

h,w
Yh,w, (9)

and generate a binary mask

Bh,w =

{
1, Yh,w > Ts,

0, otherwise.
(10)
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To soften the edges, we convolve B with a separable 2D Gaussian kernel

Kσs(x, y) = kσs(x) kσs(y), kσs(t) =
1√
2π σs

exp
(
−t2/(2σ2

s)
)
,

applied horizontally and then vertically:

B̃ = (B ∗h kσs) ∗v kσs . (11)

Finally, we clamp B̃ to [0, 1] to obtain the Soft-FOV mask S ∈ [0, 1]H×W :

Sh,w = min
(
max(B̃h,w, 0), 1

)
. (12)

High-pass Filtering After obtaining S, we extract high-frequency components from the green
channel of the input, denoted I(g) ∈ RH×W , which maximizes vessel/lesion contrast (Biswas et al.,
2022; Ooi et al., 2021; Kumar et al., 2020). We perform min–max normalization (with ε > 0 for
stability):

Ĩ
(g)
h,w =

I
(g)
h,w −minh′,w′ I

(g)
h′,w′

maxh′,w′ I
(g)
h′,w′ −minh′,w′ I

(g)
h′,w′ + ε

∈ [0, 1]. (13)

We then apply the Soft-FOV mask and Gaussian blur (std. σh, kernel radius rh):

Iblur = Gσh,rh

(
Ĩ(g) ⊙ S

)
∈ RH×W . (14)

The 2D discrete Fourier transform (DFT) is

F (u, v) =

H−1∑
h=0

W−1∑
w=0

Iblur(h,w) exp
[
− i2π

(
uh
H + v w

W

)]
. (15)

Let the radial distance from the spectrum center be

D(u, v) =

√(
u− H

2

)2

+
(
v − W

2

)2

. (16)

A Butterworth high-pass filter of order n and cutoff D0 is

HBW(u, v) =
1

1 +
(

D0

D(u,v)

)2n . (17)

Applying the filter in the frequency domain and inverting gives the raw high-pass response:
FHP(u, v) = HBW(u, v)F (u, v), (18)

Hhp(h,w) =
∣∣F−1{FHP}(h,w)

∣∣ ∈ RH×W . (19)
To remove background and boundary responses, we binarize the Soft-FOV:

Sth(h,w) = 1
[
S(h,w) > β

]
, (20)

and obtain the final high-frequency map without additional normalization:

Hhf = Hhp ⊙ Sth, Hhf
h,w =

{
Hhp
h,w, S(h,w) > β,

0, otherwise.
(21)

High-frequency Token Masking Our Vision Transformer (ViT) backbone partitions the input
into P × P patches, each mapped to a token (Dosovitskiy et al., 2020). To identify tokens enriched
with high-frequency content, we construct a token mask from Hhf ∈ RH×W .

First, average Hhf within each non-overlapping patch:

Au,v =
1

P 2

P−1∑
i=0

P−1∑
j=0

Hhf
uP+i, vP+j , u = 0, . . . , HP − 1, v = 0, . . . , WP − 1. (22)

Then, rank {Au,v} and mark the top rhf% of patches to form M ∈ {0, 1}
H
P ×WP :

Mu,v =

{
1, Au,v is in the top rhf% of {Au,v},
0, otherwise.

(23)

The resulting high-frequency token mask M delineates token positions carrying abundant high-
frequency information.
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Table 5: Optimized hyperparameters for the Soft-FOV mask and high-frequency (HF) extraction.
Values were selected by maximizing the Dice score between the HF maps and available lesion/vessel
ground-truth (GT) masks on held-out development data.

Notation Description Value

D0 Butterworth cutoff frequency 14.0470
n Butterworth filter order 2
τfov Soft-FOV threshold 0.0869
σs Soft-FOV Gaussian sigma 10.1332
β Boundary cutoff 0.6701
σh Gaussian blur sigma 0.5185
rh Gaussian blur radius 1
rhf High-frequency token masking ratio (fraction) 0.25

Hyperparameter Search We optimized the Soft-FOV parameters {τfov, σs}, the HF filtering pa-
rameters {σh, rh, D0, n, β}, and the HF token masking ratio rhf using the tree-structured Parzen
estimator (TPE) (Watanabe, 2023). The search comprised 10,000 iterations on IDRiD (Porwal et al.,
2020) and FIVES (Jin et al., 2022) images that were excluded from both pretraining and down-
stream evaluation. IDRiD provides ground truth (GT) masks for hemorrhages, hard exudates, cotton
wool patches, and microaneurysms, while FIVES provides GT vessel masks. For each candidate
configuration, we generated HF maps and scored them against the corresponding GT masks using
the Dice coefficient; the configuration achieving the highest mean Dice was selected. Table 5 reports
the resulting hyperparameters.

Qualitative Observations on Filter Generalization

Although tuned on fundus data, the filter yields plausible HF representations on ImageNet images.
As illustrated in Figure 1, edges and fine textures in natural images are preserved in the extracted HF
maps, indicating that the filter captures domain-agnostic HF cues. This behavior supports the use of a
single parameterization for cross-domain comparisons and suggests favorable generalization beyond
the fundus domain.

A.3 PROOF OF THEOREM

Theorem 1 Setup. Let X = [xi]
N
i=1 denote the sequence of patch tokens with visible/masked split

XV and XM , and let Z be the encoder representation. Assume a reconstruction model with isotropic
Gaussian likelihood

pϕ(X | Z) = N (X̂, σ2I), X̂ = fϕ(Z),

and conditional factorization over masked patches given Z.

Step 1: Upper bounding the conditional mutual information by a conditional entropy. By
definition,

I(XV ;XM | Z) = H(XM | Z)−H(XM | XV , Z).

Since conditional entropy is nonnegative, H(XM | XV , Z) ≥ 0, it follows that

I(XV ;XM | Z) ≤ H(XM | Z).

Step 2: Evaluation of H(XM | Z) under the Gaussian decoder. Using the assumed likelihood
and the conditional factorization over i ∈ M,

H(XM | Z) = −Epϕ(XM |Z)[log pϕ(XM | Z)] =
∑
i∈M

Epϕ(xi|Z)[− log pϕ(xi | Z)]

=
MD

2
log(2πσ2) +

1

2σ2

∑
i∈M

∥xi − x̂i∥2,

where M = |M| and D = P 2C denote, respectively, the number of masked patches and their
dimensionality.
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Step 3: Identification of an affine relation to the MAE reconstruction loss. Define the mean-
squared reconstruction loss over masked patches

Lrec =
1

M

∑
i∈M

∥xi − x̂i∥2.

Then
H(XM | Z) = αLrec + const, α =

M

2σ2
> 0.

Conclusion. Combining the previous steps yields the affine upper bound

I(XV ;XM | Z) ≤ αLrec + const.

Since α > 0 is fixed for given σ2, any minimizer of Lrec with respect to (θ, ϕ) is a minimizer of the
right-hand side, and hence

min
θ,ϕ

Lrec =⇒ min
θ,ϕ

I(XV ;XM | Z).

Remarks. (i) The result relies on the isotropic Gaussian likelihood with fixed variance; more gen-
erally, any fixed-variance quadratic negative log-likelihood induces the same monotone relation. (ii)
If σ2 is learned, an explicit control (e.g., regularization or variance constraints) is required to keep
the affine coefficient α well-defined and to prevent trivial solutions.

Theorem2 Setup. Let Zc = g(X) be the context representation with I(X;Zc) ≤ ε, and let
Zs = fθ(XV ) be the student representation. Assume that training enforces (i) mutual-information
alignment between Zs and Zc and (ii) capacity matching so that the entropy of Zs does not exceed
that of Zc by more than a small margin.

Step 1: Propagation of the teacher bound to the visible part. By the chain rule,

I(X;Zc) = I(XV ;Zc) + I(XM ;Zc | XV ),

whence
I(XV ;Zc) ≤ I(X;Zc) ≤ ε.

Step 2: Control of the student–context gap by alignment. The identity

I(XV ;Zs)− I(XV ;Zc) = I(XV ;Zc | Zs)− I(XV ;Zs | Zc)

together with nonnegativity of mutual information yields∣∣I(XV ;Zs)− I(XV ;Zc)
∣∣ ≤ max{ I(XV ;Zc | Zs), I(XV ;Zs | Zc) }.

Using I(A;B | C) ≤ H(B | C),∣∣I(XV ;Zs)− I(XV ;Zc)
∣∣ ≤ max{H(Zc | Zs), H(Zs | Zc) } =: δalign.

Step 3: Capacity matching. If, in addition, the entropies satisfy |H(Zs) − H(Zc)| ≤ δcap,
the asymmetry between the two conditional bounds above is uniformly controlled. Set δ :=
max{δalign, δcap}.

Conclusion. Combining the previous steps,

I(XV ;Zs) ≤ I(XV ;Zc) + δ ≤ ε+ δ.

Under perfect alignment and exact capacity matching, i.e., δ → 0, it follows that I(XV ;Zs) ≤ ε.

Remarks. Alignment refers to the requirement that Zs and Zc be mutually predictable, equiva-
lently that both H(Zs | Zc) and H(Zc | Zs) be small. Capacity matching refers to the requirement
that the entropy of Zs be close to that of Zc, which prevents Zs from encoding additional information
beyond what is present in Zc.
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A.4 IMPLEMENTATION DETAILS

Data preparation. All models were pretrained on 256,044 fundus images collected from 39 pub-
licly available datasets (see Appendix A.6 for details). All images are intensity-normalized to [0, 1],
and rectangular inputs are zero-padded to preserve the aspect ratio. Images were resized to 224×224,
and standardized using the ImageNet mean and standard deviation. Pre-training was performed for
100 epochs, and the last checkpoint was used for downstream tasks. Data augmentation was applied
with Kornia (Riba et al., 2020), including random rotation (±10◦), random resized cropping with
a scale range of [0.2, 1.0], random horizontal flipping, and color jittering with brightness, contrast,
and saturation factors of 0.3.

Architecture. The encoder was a ViT backbone with four register tokens, initialized from Di-
nov2 weights (Oquab et al., 2023), and used a patch size of 14 to match the Dinov2 configuration.
The decoder comprised eight Transformer layers. For latent features, ViT-based encoders used the
[CLS] token for both Z and Zc. For HighFreqMI, the trainable encoder’s latent representation Z
was linearly projected into the latent space of the context features. Models were trained with input
resolutions of 224× 224.

Optimization and training schedule. We used AdamW (Loshchilov & Hutter, 2017) with β1 =
0.9, β2 = 0.95, and a batch size of 768. The learning rate was set to 3×10−4 for the encoder/decoder
and the HighFreqMI projection heads, following a cosine decay schedule after a 10-epoch warm-
up. The encoder/decoder weight decay was cosine-scheduled. During masked autoencoder (MAE)
pretraining, the masking ratio was fixed at 80%. For the HighFreqMI objective, the model was
trained with the MAE objective alone for the first 40 epochs, after which high-frequency alignment
with the exponential moving-average (EMA) context encoder was enabled. The EMA momentum
was cosine-scheduled from 0.994 to 1.0.

A.5 MODELS

Table 6 summarizes three pretraining paradigms considered in this work: (i) a CLIP-style image–
text model (RET-CLIP), (ii) masked image modeling (MIM) baselines (RETFound, UrFound), and
(iii) our RetMAE. RET-CLIP optimizes contrastive alignment between retinal images and associ-
ated text, whereas the MIM baselines pretrain ViT backbones by reconstructing masked patches.
RetMAE retains the MAE backbone and masking scheme but augments the reconstruction objective
with complementary mutual-information (MI) regularizers that suppress low-frequency redundancy
and emphasize clinically salient high-frequency content, yielding frequency-balanced retinal repre-
sentations. All models use comparable ViT architectures and input resolutions; training follows each
method’s standard protocol without manual labels or architectural modifications.

Table 6: Summary of pretraining strategies. Comparison of model architecture, parameter count,
input resolution, and use of text and model supervision across methods.

Method Arch. Params. Res. Text Sup. Model Sup.

Contrastive Language–Image Pre-Training

RET-CLIP (Du et al., 2024) ViT-B/16 86M 224 ✓ ✗

Masked Image Modeling

UrFound (Yu et al., 2024) ViT-B/16 86M 224 ✓ ✗
RETFound (Zhou et al., 2023) ViT-L/16 305M 224 ✗ ✗

Ours

RetMAE ViT-B/14 86M 224 ✗ ✓

A.6 DATASETS

Pretraining Datasets Table 7 enumerates the 39 publicly available fundus datasets used for Ret-
MAE pretraining together with their training-image counts. Spanning a broad range of clinical con-
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ditions (from diabetic retinopathy to glaucoma), these sources collectively contribute 256,097 im-
ages. To avoid leakage across sources, we performed image-level deduplication and retained only
unique samples; consequently, our totals may differ slightly from those reported in the original re-
leases. This large, diverse corpus enables learning robust retinal representations without manual
labels.

Table 7: Number of pretraining images per dataset. 39 public fundus datasets used.

Dataset # images Dataset # images

1000fundus (Cen et al., 2021) 996 AGAR300 (Derwin et al., 2020) 26
ARIA (Farnell et al., 2008) 143 AVRDB (Akram et al., 2020) 99
Benitez (Benı́tez et al., 2021) 1,406 BRSET (Nakayama et al., 2023) 16,265
Cataract (Kaggle, 2020) 601 DeepDRiD (Liu et al., 2022) 2,000
DiaRetDB1 (Kauppi et al., 2007) 117 DiaRetDB2 (Guo et al., 2024) 28
DR1-2 (Pires et al., 2014) 1,567 drimdb (Chakraborty, 2024) 194
DRD (Kaggle, 2015) 88,702 DRIONS-DB (Carmona et al., 2008) 110
FGADR (Zhou et al., 2021) 1,828 FIRE (Hernandez-Matas et al., 2017) 124
FUND-OCT (Hassan et al., 2019) 163 G1020 (Bajwa et al., 2020) 1,020
HEI-MED (Giancardo et al., 2012) 169 HRF (Budai et al., 2013) 79
IOSTAR (Zhang et al., 2016) 30 JICHI (Takahashi et al., 2017) 9,939
JustRAIGS (Madadi et al., 2025) 101,423 LAG (Li et al., 2019a) 4,854
LES (Orlando et al., 2020b) 22 MSHF (Jin et al., 2023) 500
ODIR (NIHDS-PKU, 2019) 6,996 OIA-DDR (Li et al., 2019b) 9,504
ORIGA (Zhang et al., 2010) 650 PALM (Fang et al., 2024a) 1,174
PAPILA (Kovalyk et al., 2022) 488 RC-RGB-MA (Dashtbozorg et al., 2018) 242
REFUGE (Orlando et al., 2020a) 1,200 RetinalLesion (Wei et al., 2020) 1,593
RIDB (Abdul Salam et al., 2020) 100 RIGA (Almazroa et al., 2018) 270
ROC (Niemeijer et al., 2009) 100 SUSTech-SYSU (Lin et al., 2020) 1,218
TREND (Popovic et al., 2021) 104

Total 256,044

Evaluation Datasets Table 8 summarizes the downstream classification benchmarks, all disjoint
from the pretraining corpus. The in-domain datasets (e.g., IDRiD, RFMiD, CHAKSU) are used to
evaluate diabetic retinopathy (DR), age-related macular degeneration (AMD), and glaucoma (GL)
detection, while APTOS is reserved exclusively for out-of-distribution (OOD) testing. For each
dataset, labels are mapped to task-specific binaries (e.g., referable vs. non-referable DR) follow-
ing the dataset’s official taxonomy.

Table 8: Evaluation datasets. These sets were not used for pretraining.

Dataset Lesions # Train # Val # Test

Classification

IDRiD (Porwal et al., 2020) DR 408 – 102
RFMiD (Pachade et al., 2021) DR, AMD 2,560 – 640
CHAKSU (Kumar et al., 2023) GL 1,009 – 336
APTOS (Maggie & Dane, 2019) DR – – 3,394

Data Splits For each in-domain benchmark, we adopt the official train/test split. Within the train-
ing portion, 20% of the data is held out for validation and the remaining 80% is used for training;
model selection and early stopping rely solely on this validation set. We report test performance on
the official test split and assess generalization on the OOD set (APTOS). All methods use identical
folds and preprocessing to ensure a fair comparison.
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A.7 DATA SCALING, REDUNDANCY, AND FUNDUS STATISTICS

Figure 3 plots downstream macro-AUROC on five supervised retinal benchmarks as a function of
pretraining set size for a fixed encoder (ViT-Base/16) and a fixed training budget. In this setting,
RetMAE already surpasses much larger retinal foundation models with substantially fewer pretrain-
ing images: with only ∼1% of the corpus (≈2.6k images), it exceeds RETFound trained on 904k
images; with 5% (≈12.8k images), it also outperforms UrFound trained on 187k images. The appar-
ent plateau beyond ∼12.8k images might therefore seem surprising when viewed through the lens
of natural-image foundation models.

Fundus as a low-entropy, highly redundant Domain. As illustrated in Figure 1, the vast major-
ity of pixels in a fundus photograph belong to a relatively homogeneous background dominated by
low-frequency content (retinal surface, illumination, and overall color tone), while clinically infor-
mative structures occupy only a small fraction of the field of view. Our high-frequency extraction
suppresses this background and concentrates the signal into sparse, local high-frequency patterns
such as microaneurysms, hemorrhages, and exudates. From an information-theoretic perspective,
this implies that the intrinsic entropy of the domain is relatively low and the dataset is highly redun-
dant: many images share very similar low-frequency backgrounds, and the diagnostic information
is concentrated in a comparatively small set of high-frequency deviations. RetMAE is explicitly de-
signed to focus on these high-frequency signals through HighFreqMI. Once the pretraining corpus
is large enough to cover the diverse lesion and vessel patterns present in the population, additional
images tend to be incrementally redundant under a fixed backbone and training schedule. In such
a regime, it is natural for downstream performance curves to approach a ceiling with substantially
fewer images than in unconstrained natural-image corpora.

Connection to subset selection, pruning, and scaling laws. Our observations align with prior
work showing that, in redundant datasets, carefully selected subsets can match or even outperform
full-data training. Coreset and subset-selection methods such as CRAIG demonstrate that models
trained on representative subsets achieve performance comparable to full-data training while using
significantly fewer examples and updates (Mirzasoleiman et al., 2020). In large language models,
data-pruning studies report that retaining only 30–50% of the pretraining corpus (ranked by simple
quality metrics such as perplexity) can preserve or improve downstream performance compared to
using all data (Marion et al., 2023). In computer vision, pruning strategies that prioritize images
with higher intrinsic perceptual complexity (e.g., bits-per-pixel–based entropy scores) have been
shown to match full-dataset performance on classification and segmentation tasks (Singh, 2024).
In medical imaging, deep active learning studies—including work on retinal fundus photographs—
find that actively selected subsets can reach or exceed the performance of models trained on all
available images while greatly reducing labeling and training cost (Wang et al., 2024a; Paul et al.,
2022). Taken together, these results support the view that, in a low-entropy, highly structured domain
like fundus imaging, the effective number of distinct, task-relevant patterns is much smaller than
the raw image count. Once these patterns are well covered, simply adding more similar images
yields diminishing returns under a fixed-capacity encoder and fixed compute. This perspective is
also consistent with neural scaling laws, which model performance as a power-law function of model
size, data, and compute (Hestness et al., 2019; Kaplan et al., 2020; Hernandez et al., 2021; Hoffmann
et al., 2022; Dehghani et al., 2023): continued gains typically require joint scaling of model capacity,
data diversity, and the number of optimization steps. Our experiments intentionally fix the backbone
and training budget to isolate the effect of our MI-based objective on sample efficiency; exploring
joint capacity–data–compute scaling for RetMAE on more heterogeneous multi-center retinal and
non-retinal datasets is an important direction for future work.

A.8 ADDITIONAL RESULTS

Additional AUPRC results. Table 9 reports linear probing performance in terms of AUPRC
across the same five benchmarks. RetMAE attains the best macro-average AUPRC (0.849) among
all methods with auxiliary losses, and achieves the top AUPRC on APTOS (0.960), further con-
firming its strong OOD generalization. Compared to image-only MAE variants (MAE, RETFound,
UrFound), RetMAE consistently improves AUPRC, indicating that MI-based emphasis on high-
frequency retinal structure yields more discriminative features. Moreover, with auxiliary losses,
RetMAE slightly surpasses RET-CLIP in macro-average AUPRC, reinforcing our conclusion that
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explicit high-frequency alignment, rather than language supervision alone, is the principal driver of
the gains observed in both AUROC and AUPRC.

Table 9: Linear probing performance (AUPRC). Columns marked † are out-of-distribution test
sets. AVG is the macro-average across datasets. Values in light gray denote evaluation datasets seen
during pretraining. Auxiliary loss: ✓ indicates the use of auxiliary signals beyond images (e.g.,
text guidance or a retina-informed off-the-shelf encoder); ✗ indicates image-only self-supervised
pretraining.

Method Auxiliary
loss IDRiD RFMiD (DR) RFMiD (AMD) CHAKSU APTOS

†
AVG

MAE ✗ 0.874 0.396 0.191 0.116 0.855 0.486
RETFound ✗ 0.878 0.515 0.140 0.142 0.732 0.481
RetMAE ✗ 0.916 0.679 0.381 0.194 0.899 0.614

UrFound ✓ 0.919 0.870 0.601 0.243 0.936 0.714
MAE ✓ 0.949 0.850 0.588 0.686 0.921 0.799
RET-CLIP ✓ 0.957 0.900 0.606 0.797 0.952 0.842
RetMAE ✓ 0.959 0.857 0.759 0.711 0.960 0.849

Multi-disease evaluation. To assess performance in more clinically realistic, multi-disease set-
tings, we additionally evaluate RetMAE on two multi-disease benchmarks, FIVES (Jin et al.,
2022) and RFMiD2 (Panchal et al., 2023). FIVES comprises four diagnostic categories (AMD,
DR, glaucoma, and normal), which already span lesions with distinct spatial and frequency char-
acteristics (e.g., microaneurysms, hemorrhages, and exudates in DR versus optic-nerve cupping
and nerve-fiber-layer defects in glaucoma). RFMiD2 is even more challenging: it provides over 40
expert-defined retinal disease labels, including vascular occlusions, macular edema, neovasculariza-
tion, optic-nerve anomalies, inflammatory conditions, myopic degeneration, tessellation, pigment-
epithelium changes, and others, and individual images often carry multiple labels simultaneously.
This multi-label, multi-disease structure more faithfully reflects real clinical scenarios, where over-
lapping disease signatures are common rather than isolated.

Table 10 summarizes linear probing AUROC on these benchmarks. RetMAE achieves the best
macro-average performance (AVG 0.903), improving over the self-supervised RETFound base-
line from 0.837 to 0.922 on FIVES and from 0.806 to 0.884 on RFMiD2 (AVG 0.822 → 0.903).
On FIVES, RET-CLIP attains the highest AUROC (0.943), with RetMAE achieving a competitive
second-best score (0.922); on RFMiD2, however, RetMAE clearly outperforms both RETFound
and RET-CLIP (0.884 vs. 0.808). Importantly, RetMAE also surpasses RET-CLIP—which lever-
ages language supervision—in terms of the overall average AUROC (0.903 vs. 0.876). These results
indicate that our domain-specific high-frequency regularizer is beneficial not only for comparatively
simple binary classification tasks, but also for multi-disease, multi-label settings that better capture
the clinical complexity and practical value of real-world fundus imaging.

Table 10: Linear probing AUROC on multi-disease fundus benchmarks. FIVES evaluates four
disease categories (AMD, DR, glaucoma, normal), while RFMiD2 is a multi-label dataset with 40+
expert-defined retinal disease labels. AVG denotes the macro-average across the two datasets.

Method FIVES RFMiD2 AVG

RETFound 0.837 0.806 0.822
RET-CLIP 0.943 0.808 0.876
RetMAE 0.922 0.884 0.903

Pretraining-efficiency Per Benchmark Figure 7 shows per-dataset AUROC as a function of pre-
training size. We construct nested subsets at {1, 5, 10, 25, 50, 75, 100}% of the full pretraining set
(∼ {2.6, 12.8, 25.6, 64, 128, 192, 256}k images), pretrain RetMAEretclip on each subset, and eval-
uate with a linear probe on IDRiD, RFMiD (DR/AMD), CHAKSU, and APTOS. RetMAEretclip is
highly data-efficient: with only 1% of data it attains a macro-average AUROC of 0.741, exceeding
RETFound (0.690); with 5% it reaches 0.925, surpassing UrFound (0.855). Most gains accrue by
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Figure 7: Pretraining data efficiency of RetMAE. For all datasets considered, AUROC improves
as pretraining size increases. RetMAE achieves the target performance with far fewer images than
RETFound and UrFound, and consistently outperforms MAE-based retinal baselines.

10–25% (0.940 and 0.938), with diminishing returns thereafter; the best macro-average is 0.941
at 100%. Scaling behavior is task-dependent: RFMiD–AMD improves steadily with more data
(0.836→0.980), RFMiD–DR peaks near 50% (0.966), while CHAKSU and the OOD set APTOS
largely saturate by 10% (0.932 and 0.954) and vary only slightly beyond that. Per-dataset highlights
include IDRiD 0.717 → 0.910 from 1% to 100%; RFMiD–DR 0.806 → 0.966 (peak at 50%);
RFMiD–AMD 0.836 → 0.980; CHAKSU 0.693 → 0.932 by 10%; and APTOS 0.655 → 0.954
by 10%. These trends align with our frequency-oriented view: once frequency-balanced features are
established, additional fundus images primarily add low-frequency background redundancy, yield-
ing modest gains, whereas tasks driven by richer high-frequency structure (e.g., AMD) benefit more
from scale.

Table 11: CKA and linear-probing performance across token subsets. High-frequency tokens
yield the strongest diagnostic performance despite low representational alignment with the full
input. The best value in each column is shown in blue and the lowest in red.

Subset CKA IDRiD RFMiD (DR) RFMiD (AMD) CHAKSU APTOS

full Baseline 0.726 0.721 0.793 0.371 0.812

25% masked 0.996 0.727 0.725 0.794 0.380 0.806
low-freq. only 0.990 0.662 0.667 0.778 0.379 0.718

75% masked 0.890 0.668 0.677 0.768 0.396 0.725
high-freq. only 0.164 0.737 0.792 0.867 0.439 0.802

CKA and Linear-Probe Performance across MAE Token Subsets Table 11 reports, for each
subset, CKA computed with respect to the full input embedding and per-dataset linear-probe AU-
ROC on five benchmarks (IDRiD, RFMiD-DR, RFMiD-AMD, CHAKSU, APTOS).

We observe three regularities. (1) 25% masked (which retains 75% of tokens) closely matches full
in AUROC while achieving near-unity CKA (0.996), suggesting substantial redundancy in the MAE
representations. (2) low-freq. only attains high alignment (CKA = 0.990) yet weak diagnostic sig-
nal—yielding the column minima on IDRiD (0.662), RFMiD-DR (0.667), and APTOS (0.718)—and
remaining below full on RFMiD-AMD (0.778 vs. 0.793). (3) high-freq. only, which keeps only 25%
of tokens, shows the lowest alignment to full (CKA = 0.164) yet the strongest AUROC on IDRiD
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(0.737), RFMiD-DR (0.792), RFMiD-AMD (0.867), and CHAKSU (0.439), while remaining com-
petitive on the out-of-distribution APTOS set (0.802 vs. 0.812 for full).

Overall, the results indicate that MAE representations emphasize low-frequency background struc-
ture (high CKA) with limited diagnostic utility, whereas a small subset of high-frequency to-
kens—despite low alignment to the full-input embedding—captures clinically salient information
and yields superior linear-probe performance.
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(a) Patch tokens.
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(b) Class-to-attention features.

Figure 8: Per-image R2 violin plots for frequency decodability. Left: patch-token analysis; right:
class-to-attention analysis.

High-Frequency Decodability of Patch Tokens and Class-to-Attention Per Image For each
pretrained encoder, we regressed the patch-level HF targets (Eq. 22) from frozen patch tokens using
ridge regression and computed per-image R2, summarizing both the distribution and a pooled (over-
all) R2 across images. The per-image distributions are visualized in Fig. 8a (left panel of Fig. 8).
RetMAE exhibits uniformly high decodability of HF signal: overall R2 = 0.9909, with mean per-
image 0.9896± 0.0032 and a very tight range [0.9854, 0.9925]; the corresponding significance test
strongly rejects H0:R

2 = 0 (p = 1.1×10−16). UrFound is a distant second (overall R2 = 0.8353;
mean 0.8185± 0.0671; range [0.7219, 0.8772]; p = 6.3×10−7), showing both a lower central ten-
dency and broader dispersion than RetMAE. RETFound and RET-CLIP yield substantially lower
and statistically non-significant overall R2 (0.6620 and 0.6329), consistent with weaker linear de-
codability of HF content from their patch embeddings. Quantitatively, RetMAE’s advantage over
the next best model amounts to ∆R2 ≈ 0.156 at the overall level, while its markedly narrower
per-image spread indicates that HF information is recoverable consistently across images rather than
being driven by a subset of easy cases. Taken together, these outcomes corroborate the main-text
claim that RetMAE preserves HF information across depth and images, providing linearly decod-
able access to diagnostically salient structure.

We repeated the analysis using class-to-patch attention features to assess HF decodability from
attention-derived representations. The corresponding per-image R2 distributions are shown in
Fig. 8b (right panel of Fig. 8). Absolute R2 values are lower—a natural consequence of what is
being regressed: class-to-patch attention provides allocation weights rather than feature vectors, is
spatially smoothed by softmax and head averaging, and aggregates cues not specific to HF con-
tent—yet the ranking remains consistent. RetMAE attains the highest overall R2 (0.3868; mean
per-image 0.3243 ± 0.2296; range [0.0728, 0.6244]; p = 1.1×10−16), followed by RET-CLIP
(0.2872), UrFound (0.2760), and RETFound (0.1407); all four are significant at p < 0.05. Notably,
baseline models exhibit broader and occasionally negative per-image R2 values (e.g., minima below
zero for RET-CLIP and RETFound), indicating poor linear recoverability of HF targets from their
class-attentional structure, whereas RetMAE’s distribution is shifted upward with a positive lower
bound. These trends align with the frequency-oriented analyses in Sec. 6.3: the PCA visualization
of class-to-patch attention (Fig. 6) shows sharper, anatomy-consistent chromatic separation for Ret-
MAE, providing a qualitative counterpart to the elevated HF decodability observed here. Together
with the patch-token results above, this supports the view that RetMAE learns frequency-aware,
diagnostically informative embeddings whose HF components remain linearly accessible.
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Computational Complexity. We quantify the additional computational cost introduced by our
high-frequency regularization. All measurements are conducted on a Tesla V100 GPU using a ViT-
Base/16 backbone with input resolution 224 × 224, batch size 16, and averaged over 100 itera-
tions. Inference time is measured using CUDA events (torch.cuda.Event) for accurate GPU-
side timing without CPU–GPU synchronization overhead, and floating point operations per second
(FLOPs) are estimated with fvcore’s FlopCountAnalysis for each component. Our method
introduces two additional components on top of the baseline MAE forward pass: (i) high-frequency
component extraction and encoding, where high-frequency patches are processed by an EMA en-
coder, and (ii) the HighFreqMI loss, which estimates mutual information between the main encoder
latent and the high-frequency context encoder latent via a lightweight critic. Table 12 summarizes
the resulting overhead.

As shown in Table 12, the overall overhead is minimal: the proposed regularization adds less than 4%
to the baseline inference time (1.88 ms over 52.48 ms) and less than 0.25% to the FLOPs. This effi-
ciency is primarily due to the fact that the high-frequency encoder processes only a subset of patches
(high-frequency regions), and the MINE-based mutual information estimator relies on a lightweight
critic network with a small number of parameters. Consequently, our high-frequency regularization
yields substantial gains in representation quality for fundus imaging tasks while remaining highly
practical for real-world deployment.

Table 12: Computational overhead of the proposed high-frequency reg-
ularization on ViT-Base/16 with input resolution 2242. Inference time is
measured per forward pass on a Tesla V100 GPU. Percentages are reported
relative to the baseline MAE.

Component Inference time (ms) FLOPs (GFLOPs)

Baseline 52.48 (100.00%) 69.87 (100.00%)
+ High-frequency component 1.56 (2.97%) 0.105 (0.15%)
+ HighFreqMI loss 0.32 (0.61%) 0.050 (0.07%)
Total overhead 1.88 (3.58%) 0.156 (0.22%)

Table 13: Sensitivity of RetMAE
to the HighFreqMI and auxiliary
loss weights.

λhmi λaux AUROC

0 0 0.685

1.0 0 0.738
0.1 0 0.779
0.01 0 0.732

0 1.0 0.927
0 0.1 0.926
0 0.01 0.932
0.1 0.01 0.941

Loss-weight ablation. To assess the sensitivity of RetMAE
to the relative weighting of the reconstruction, HighFreqMI,
and auxiliary losses, we conducted a loss-weight ablation
in which we varied one coefficient at a time while fixing
λrec = 1 and disabling the remaining non-varied term (i.e.,
setting its coefficient to 0). For each configuration, we pre-
trained the model on fundus images and evaluated the frozen
encoder via linear probing, reporting the macro-averaged AU-
ROC across five benchmarks (IDRiD, RFMiD-DR, RFMiD-
AMD, CHAKSU, and APTOS). Table 13 summarizes the re-
sults. In both cases, performance is relatively stable across a
broad range of weights, with a mild optimum around λhmi =
0.1 for the HighFreqMI term and a similarly flat region for
the auxiliary loss. Motivated by these observations, we adopt
λrec = 1, λhmi = 0.1, and λaux = 0.01 as our default con-
figuration in the main experiments, which provides a robust
trade-off between reconstruction, high-frequency regularization, and auxiliary alignment.

Large lesions and retinal detachment. We additionally visualize class-to-patch attention for le-
sions that are not purely high-frequency, including retinal traction detachment and large preretinal
hemorrhages (Fig. 9). In the cases of retinal detachment in panels (a)–(b) and a large preretinal hem-
orrhage in panel (c), the PCA-projected class-token attention remains well aligned with the lesion,
with strong responses along the detachment margins and hemorrhage boundaries. This behavior is
consistent with our frequency-based view: even when the pathological region covers a broad area,
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the transition zones at the lesion boundary still correspond to high-frequency structure, and RetMAE
continues to emphasize these regions. In the extreme case in panel (d), where pathology occupies
almost the entire field-of-view and thus behaves effectively as a low-frequency signal, the class
token no longer attends uniformly across the full lesion interior; however, it still concentrates on
boundaries and locations where the fundus signal changes abruptly. Clinically, lesion discrimination
in fundus photography is largely driven by such sharp intensity and texture changes relative to the
surrounding background or neighboring structures, so accurately attending to these boundaries is
more important than uniformly covering the entire lesion area.

Preretinal hemorrhageRetinal traction detachment
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Figure 9: Attention on large lesions and retinal detachment. PCA-projected class-token attention
maps for (a)–(b) retinal traction detachment, (c) a large preretinal hemorrhage, and (d) an eye with
near-global pathology. In (a)–(c), the class-token attention remains well aligned with the lesion,
with strong responses along the detachment margins and hemorrhage boundaries. In the extreme
case in (d), where pathology occupies almost the entire field of view and thus behaves effectively as
a low-frequency signal, the class token does not attend uniformly across the lesion interior, but still
concentrates on boundaries and locations where the fundus signal changes abruptly.
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Additional PCA Visualizations of Class-to-Patch Attention We present additional examples of
the PCA visualization of class-to-patch attention.

Input High-Freq. RetMAE RET-CLIP RETFound UrFound

Figure 10: Example 1 of PCA visualization of class-to-patch attention.
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Input High-Freq. RetMAE RET-CLIP RETFound UrFound

Figure 11: Example 2 of PCA visualization of class-to-patch attention.
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Input High-Freq. RetMAE RET-CLIP RETFound UrFound

Figure 12: Example 3 of PCA visualization of class-to-patch attention.
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Input High-Freq. RetMAE RET-CLIP RETFound UrFound

Figure 13: Example 4 of PCA visualization of class-to-patch attention.
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