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Abstract—Adverse posttraumatic neuropsychiatric sequelae
(APNS) are common among veterans and millions of Americans
after traumatic exposures, resulting in substantial health and
financial burdens for trauma survivors, their families, and society.
Despite numerous studies conducted on APNS over the past
decades, there has been limited progress in understanding the
underlying neurobiological mechanisms due to several unique
challenges. One of these challenges is the reliance on subjective
self-report measures to assess APNS, which can easily result in
measurement errors and biases (e.g., recall bias). To mitigate
this issue, in this paper, we investigate the potential of leveraging
objective longitudinal mobile device data to identify homogeneous
APNS states and study the dynamic transitions among them and
potential risk factors after trauma exposure. To handle the unique
challenges posed by longitudinal mobile device data, we developed
a continuous-time hidden Markov factor model and designed
a Stabilized Expectation-Maximization algorithm for parameter
estimation. Simulation studies were conducted to evaluate the
performance of parameter estimation and model selection. Fi-
nally, to demonstrate the practical utility of the method, we
applied it to mobile device data collected from the Advancing
Understanding of RecOvery afteR traumA (AURORA) study. A
Python implementation of the proposed method is available at
https://anonymous.4open.science/r/CTHMFM.

Index Terms—Continuous-time hidden Markov model, Mental
health, Multivariate longitudinal data

I. INTRODUCTION
Adverse posttraumatic neuropsychiatric sequelae (APNS)

(e.g., pain, depression, and PTSD) are frequently observed in
civilians and military veterans who have experienced traumatic
events. These APNS increase the risk of chronic illnesses,
including cancer and heart disease, and substantially contribute
to drug abuse, suicide, and disability. Moreover, APNS im-
pose enduring psychosocial and financial burdens not only
on individuals with the disorder but also on their families,
communities, and society as a whole. However, little progress
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has been made in advancing APNS research over the past few
decades due to unique challenges. First, APNS have been eval-
uated through subjective self-reported measures, which lack
objective reliability. Second, the heterogeneity among patients,
as recognized in traditional classification and diagnoses, com-
plicates the study of APNS. Lastly, these APNS disorders are
often studied and treated independently, despite their frequent
co-occurrence [1]. These obstacles hinder the identification
of objective markers, the advancement in understanding the
neurobiological mechanisms of APNS, and the development
of effective preventative/treatment strategies.

Identifying homogeneous states and exploring the dynamic
prognosis of APNS in the immediate aftermath of trauma
exposure holds promise for enhancing our understanding of
APNS and identifying effective intervention options and ap-
propriate timing at the individual level. Regrettably, due to
the lack of appropriate data and effective statistical method,
no large-scale studies have been conducted to investigate the
onset, dynamic transitions (such as recovery and relapse), and
associated risk factors of APNS. To help address the chal-
lenges, the National Institutes of Mental Health, joined by the
US Army Medical Research and Material Command, devel-
oped the Advancing Understanding of RecOvery afteR traumA
(AURORA) study [1]. This study gathered biobehavioral data
from a large cohort of trauma survivors (n = 2,997) across
the United States over a year, including self-reported surveys,
web-based neurocognitive tests, digital phenotyping data (i.e.,
from wrist wearables and smartphones), psychophysical tests,
neuroimaging assessments, and genomics data. In contrast to
previous studies relying on self-report surveys or neuroimages
[2], our work aims to address the challenges of APNS by
utilizing the objective digital phenotyping data that tracks
individuals’ behaviors, moods, and health statuses in real-time,
real-life environments. Specifically, we developed a Hidden
Markov Factor Model (HMFM) to analyze the mobile device
data, allowing us to simultaneously identify homogeneous
subtypes, investigate subtype-specific structures, and model
individual progression with associated risk factors.

Hidden Markov Models (HMMs) have been widely used
in various fields [3]. However, mobile device data presents
two unique challenges that standard HMMs cannot handle,
including the interdependent variables with unknown interre-
lationship structures and unevenly spaced measurements.

Mobile device sensor data, such as accelerometer and pho-
toplethysmography (PPG) from smartwatches, involves highly



intensive time series data. Instead of being directly used,
these data are typically pre-processed to generate technical
summaries that represent various characteristics of each time
series variable, which are often highly correlated. As the
number of features increases, the parameters in the covariance
matrix expand exponentially, making a fully free covariance
matrix impractical. Consequently, when implementing HMMs,
features are usually assumed to be independent given the
latent state membership, despite their correlation, potentially
introducing estimation bias.

To appropriately model the association between features,
factor analysis models (FMs) [4] provide an efficient and par-
simonious approach and have been incorporated into HMMs
in various ways. For example, the factor analyzed hidden
Markov model [5] combines an FM with a discrete-time HMM
(DTHMM), which assumes evenly spaced measurements. It
has been extensively used in a variety of real-world appli-
cations, including speech recognition [6], environmental pro-
tection [7], and seizure detection [8]. Similarly, [9] introduced
the regime-switching factor model to handle high-dimensional
financial market data. However, they all assume homogeneous
transition probability matrices, limiting their ability to account
for the heterogeneity of transition probabilities over time and
among different subjects and explore risk factors of state tran-
sition. To simultaneously capture the interrelationships among
observed features and account for the variability of transition
probabilities, a joint framework incorporating HMM, FM, and
a feature-based transition model was recently proposed [10],
[11]. However, it is not directly applicable to mobile device
data. First, it employs a confirmatory factor model (CFM)
with pre-specified structures for the factor loading matrices,
which are often unknown a priori. Therefore, an exploratory
factor model (EFM) is needed to explore the interrelationships
among all observed features. Second, their framework assumes
ordered states, which is inappropriate for our use case.

Another challenge posed by mobile device data is the irreg-
ular spacing of measurements. For example, activity and heart
rate variability (HRV) data were collected only when the par-
ticipants wore the watches, resulting in non-uniformly spaced
observations and significant variation in sampling schedules
between individuals. While the aforementioned methods are
all based on DTHMM, neglecting the impact of time gaps be-
tween consecutive observations on transition rates, continuous-
time discrete-state HMM (CTHMM) was developed to handle
irregularly spaced measurements [12]. CTHMM and its ex-
tensions that incorporate covariates to characterize transition
rates are widely used in medical research [13], [14]. However,
none of them address the interrelationships among features.

In this paper, to simultaneously address the two challenges
and examine heterogeneous transition patterns, we propose
to use Continuous-Time HMFM (CT-HMFM), integrating
CTHMM, EFM, and a feature-based transition model. Our
contributions are as follows: First, we examine the utility
of data collected in an open environment from consumer-
grade mobile devices for mental health research. This contrasts
with most existing studies on data collected in controlled

lab environments. Second, we propose CT-HMFM to ad-
dress the unique challenges introduced by mobile device data
and depict the non-homogeneous state transition processes
of multiple individuals. Simulation studies using synthetic
data demonstrate exceptional parameter estimation and model
selection performance. Finally, we analyze HRV and activity
data from the AURORA study, followed by interpretations and
discussions of biological findings that highlight the immense
potential of mobile health data and our proposed method for
mental health research.

II. AURORA DATASET

In the AURORA study [1], data were collected from mul-
tiple sources, with our analysis focusing on the accelerometer
and PPG data collected by the Verily smartwatches. Given the
known associations with APNS [15], [16], the accelerometer
data were used to quantify physical activity features, while
the PPG data were pre-processed to extract heart rate vari-
ability (HRV) metrics (for details on the raw data and pre-
processing steps, refer to [17]). Briefly, activity features are
extracted during a 24-hour window to evaluate daily activity
patterns. After converting accelerometer data to activity counts
[18], meanAcc is the average activity counts. Amplitude, a
cosinor rhythmometry feature, is computed to capture cir-
cadian rhythms [19]. Using the Cole-Kripke algorithm [20],
accelerometry epochs are classified into wake or sleep states,
and the SWCK quantifies transition rates between wake and
sleep. Additionally, the average activity during the five least
active hours (L5) is calculated from raw accelerometer data
[21], representing nighttime activity.

HRV features were derived from PPG data by first calculat-
ing and denoising beat-to-beat (BB) interval [22] time series to
obtain normal-to-normal (NN) intervals, which were then ana-
lyzed using a 5-minute sliding window. Selected HRV features
for this study include average heart rate (NNmean), skewness
(NNskew), and standard deviation (SDNN) of NN intervals,
indicating heart rate variability and rapid changes. Lfhf is the
low-frequency to high-frequency power ratio, with extremes
suggesting parasympathetic or sympathetic dominance [22].
DC serves as a mortality risk indicator in cardiac conditions
[23]. The lower the DC index, the higher the mortality risk.
Additionally, SD1SD2 and ApEn are used to quantify the
unpredictability and regularity of successive heartbeats (R-R
interval). To match the activity data, daily statistical summaries
of each HRV feature are used, including mean, minimum,
maximum, interquartile range, and variance.

In this study, we focused on survivors of motor vehicle
collision trauma. Since the data collection depends on the
participants’ wearing of the devices, missing data is a common
issue. To assure data quality, we include only records that
have complete activity data and a positive wake percentage.
For HRV data, ideally, an individual can have 2,880 records
per day. We retain only those days where at least 30% of
these records are available to ensure that our daily summary
statistics are representative. The final dataset consists of daily
summaries of activity and HRV features from 258 patients,
with each providing at least 50 days of records.



III. CT-HMFM
Motivated by the structures of the processed AURORA

datasets, we consider data in the form of repeated measure-
ments of p features over Ti occasions for each individual i
of N subjects. The proposed models are in the framework
of HMM. Let wit be the latent state of individual i at
occasion t, taking value from the finite discrete set {1, · · · , J}.
W i = (wi1, · · · , wiTi

) is the state sequence over Ti repeated
measurements. Let P it be the J × J transition probability
matrix for individual i at occasion t, t = {2, · · · , Ti}, of
which the (k, j) entry is P it,kj = P (wit = j|wi,t−1 = k),
and P it,kk = 1 −

∑
j:j ̸=k P it,kj . At t = 1, we assume

that the initial state follows a multinomial distribution with
probabilities π = (π1, · · · , πJ)

′
, such that

∑J
i=1 πi = 1. The

objective of the HMM is to delineate latent Markov processes
given observations by estimating the transition probability
matrix P and the initial state distribution. Distinct from tradi-
tional HMMs, our model further incorporates two additional
components to meet our objectives. The first component, de-
tailed in Section III-A, is a state-specific measurement model
using EFM to uncover interrelationships among variables. The
second component, outlined in Section III-B, is a transition
model (TM) to capture heterogeneous transition patterns.
A. State-Specific Measurement Model

Let yit denote a vector of the observed value of p features
for subject i at time t. zit is a K dimensional vector of latent
scores assumed to be independent of wit and following a
standard multivariate normal distribution. While we assume
that K is constant across states, our model can easily be
extended to accommodate varying Kj . For each individual
i, Y i = (yi1, · · · ,yiTi

) is a p × Ti matrix containing all
measurements and Zi = (zi1, · · · , ziT ) is a K × Ti matrix
containing all latent features. The first component of our model
is an FM, with the primary goal of identifying the interrelation-
ship structures between observed response variables and the
underlying constructions of latent variables. For individual i
at time t, given wit = j, the FM assumes that:

[yit|wit = j] = µj +Λjzit + eit,

zit
i.i.d.∼ N (0, IK), eit

i.i.d.∼ N (0,Ψ), zit ⊥⊥ eit, (1)

where µj is a p × 1 vector of state-specific expected mean
response, Λj is a p ×K state-specific factor loading matrix,
Ψ is a p×p diagonal covariance matrix for the error term eit
with positive nonconstant diagonal entries. Alternatively, (1)
can be expressed as [yit|wit = j]

i.i.d.∼ N (µj ,ΛjΛ
′

j + Ψ).
It is crucial to emphasize that, unlike CFM with pre-specified
structures of factor loading matrices, our approach imposes no
assumptions on Λj . Therefore, the structure of Λj is entirely
data-driven, making the first component of (1) an EFM.
B. Transition Model

Given a state sequence W i, standard assumptions of HMM
assume that 1) given a state wit, observations yit are indepen-
dent, and 2) given a state wit and subjects’ contextual features,
the state at the subsequent occasion wi,t+1 is unrelated to any
information from previous occasions.

Taking into account the effects of the time interval, the
continuous-time Markov process relies not on the transition
probability matrix P , but on a transition intensity matrix Q
[24]. This matrix Q is the limit of P as the time interval
approaches zero. Suppose that δit is the number of pre-
specified time units between tth and (t − 1)th observation,
then the transition intensity for subject i from state j to state
k at time t is

qjk = lim
δit→0

P (wit = k|wi,t−1 = j)

δit
> 0, j ̸= k,

and qjj = −
∑

k ̸=j qjk. The corresponding transition probabil-
ity matrix P (δit) can be calculated as the matrix exponential
of δit ∗Q. The time intervals are assumed to be independent.

To investigate the impact of covariates on transition rates,
the transition intensity matrix can be modeled through a log-
linear model [25], such that log(qjk|xit) = x

′

itBjk, where
xit is a d × 1 vector of vector of covariates for individual
i at time t, and Bjk is a state-specific d × 1 vector of
fixed effects coefficients. The Bjk intends to quantify the
effect of covariates on the probability of transitioning from
state j to a different state k to provide an understanding of
how covariates influence transition patterns and investigate
the potential risk factors. Calculating the exponential of a
matrix can be challenging. For computational efficiency, we
approximate the exp(Q) using the (I + Q/a)a for some
sufficiently large a [26].

IV. EXPECTATION-MAXIMIZATION ALGORITHM

Let λ = ({µj}Jj=1, {Λj}Jj=1,Ψ, {Bkj}Jk,j=1,π). Given the
sequence of latent states W i and the latent factor scores Zi

for each i, a joint probability distribution of the observations
and all latent variables, Lci(λ), can be constructed as follows:

P (wi1)×
Ti∏
t=2

P (wit|wi,t−1,xit)×
Ti∏
t=1

P (yit|wit, zit)P (zit).

(2)
By the independence property of Y i, W i, and Zi across i,
the complete likelihood function (Lc) for the whole sample
can be obtained by taking the product of (2) over i.

Our goal is to estimate λ by maximizing the likelihood
function Lc, or its logarithm lc. Since both W i and Zi are
unobserved, the expectation-maximization (EM) algorithm is
commonly used to identify the maximum likelihood estimator.
As the name suggests, the EM algorithm finds a local max-
imum of the marginal likelihood by iteratively applying the
expectation and maximization steps discussed below.

A. Expectation Step (E-step)
The E-step gets the expectation of lc given observations,

with respect to the current conditional distribution of un-
observed variables and the current parameter estimates λv .
Denote the target expectation (i.e., Eλv [lc(λ)|Y ,X]) as
Ω(λ,λv). While an explicit form of the probability density
function of zit exists, the calculation of conditional state
probabilities can be computationally heavy. Therefore, we
utilize a scaled version of the forward-backward algorithm
(FBA) [27] to get the conditional state probabilities efficiently.



Specifically, we first define the forward probability αij(t)
as P (wit = j|yi1, · · · ,yit). Denote Pj(yit) the probability
density function of yit given wit = j and ci(t) the conditional
probability of observation yit given all past observations. Note
that we omit the dependence of probabilities on δit in notations
for brevity. For each individual i and state j, using a recursion
scheme, the forward probabilities at t = 1, · · · , Ti will be
calculated as:

αij(1) =
πjPj(yi1)∑J
j=1 πjPj(yi1)

=
πjPj(yi1)

ci(1)
;

αij(t) =
Pj(yit)[

∑J
k=1 αik(t− 1)P itkj ]

ci(t)
,

where ci(t) =
∑J

j=1 Pj(yit)[
∑J

k=1 αik(t − 1)P itkj ].
Then, we define the backward probability βij(t) as
P (yi,t+1,··· ,yi,Ti

|wit=j,λ)

ci(t+1) . Similarly, we define a recursion form
to update the backward probabilities at t = Ti, · · · , 1:

βij(Ti) = 1;βij(t) =

∑J
k=1 P i,t+1,jkPk(yi,t+1)βik(t+ 1)

ci(t+ 1)
.

After that, in the smoothing step, denote ϵvikj(t) as P (wi,t =
j, wi,t−1 = k|Y i,λ

v) and γv
ij(t) as P (wit = j|Y i,λ

v).
The target conditional state probabilities are functions of the
forward probability and backward probability as follows:

γv
ij(t) = αij(t)βij(t); ϵ

v
ikj(t) =

αv
ik(t− 1)P itkjPj(yit)β

v
ij(t)

ci(t)
.

Then, the Ω(λ,λv) can be written as

constant+h(π)+h({Bkj}Jk,j=1)−
1

2
h(Ψ, {Λj}Jj=1, {µj}Jj=1),

where h(π) depends on the initial state distribution,
h({Bkj}Jk,j=1) depends on the probability transition matrix,
and h(Ψ, {Λj}Jj=1, {µj}Jj=1) is a function of parameters Ψ,
Λj , and µj . Explicit forms are provided in Appendix A-A.

B. Maximization (M-step)
Within each M-step, since h(Ψ, {Λj}, {µj}), h(π), and

h({Bkj}) do not share parameters, we maximize each of them
separately. The estimator of π, Λj , µj , and Ψ can be directly
derived by setting h(π) = 0 and h(Ψ, {Λj}, {µj}) = 0 (see
Appendix A-B for details). For {Bkj}Jk,j=1, a one-step Fisher
scoring (FS) [28] is implemented.

Let θ be a vector of all transition model parameters, such
that θ = vec({B

′

kj}, k ̸= j). Recalling the first derivative of
matrix exponential [14] and using Theorem 1 in [29],

∂

∂θu
exp(A(θu)) = exp(

[
A(θu) Ã(θu)

0 A(θu)

]
)0:J,J:2J ,

where Ã(θu) = (Ãij(θu)) = (
∂Aij(θu)

∂θu
). Denote ∂P kj(δit)

∂θu
as

the (k, j) entry of the first derivative of P (δit) with respect
to θu (i.e., the uth entry of θ). Having the first derivative of
P (δit) = exp(δit ∗ Q) with respect to each component of
θ calculated accordingly, the FS can be directly implemented
to update θ to forbid the calculation of the second derivative

of matrix exponential. Specifically, denote S∗ be the score
function,

S∗
u(θ) =

N∑
i=1

Ti∑
t=2

J∑
j=1

J∑
k=1

ϵvikj(t)

P kj(δit)

∂P kj(δit)

∂θu
.

Let M∗ be the negative Fisher information matrix. Its (u, v)
entry M∗

uv is in the form of:

M∗
uv(θ) =

N∑
i=1

Ti∑
t=2

J∑
j=1

J∑
k=1

γv
ik(t− 1)

P kj(δit)

∂P kj(δit)

∂θu

∂P kj(δit)

∂θv
.

After getting both the score function and the Fisher infor-
mation matrix, parameters θ can be updated as θv+1 =
θv + M∗(θv)−1S∗(θv). To ensure stability, we control
the learning rate by updating θv+1 = θv + {M∗(θv) +
S∗(θv)TS∗(θv)}−1S∗(θv) in practice.

Note that the algorithm requires the specification of (K, J),
which are typically unknown in practice. In this study, we
propose to determine (K, J) using information criteria, the
efficacy of which is evaluated in Section V-C.

V. SIMULATION STUDY

This section assesses the proposed methods through simu-
lation studies using synthetic data resembling the AURORA
dataset. We generate data with N=200, p=23, d=3, J = 3,
and K = 3. Each individual’s number of observations, Ti,
is uniformly sampled from [50, 100]. From this, we randomly
select Ti time points from {1, · · · , 100} to create sequences of
δit. Each individual’s initial state is drawn from a multinomial
distribution with probabilities π = ( 13 ,

1
3 ,

1
3 ). Latent state

trajectories are then generated based on transition probabilities
P it(δit), given individuals’ features. Observation vectors yit

for an individual i in state j at time t are then sampled from a
normal distribution with mean µj and covariance ΛjΛ

′

j +Ψ,
where Ψ = I . In the following, subsection V-A assesses model
reliability by comparing empirical parameter estimates against
true values; subsection V-B compares the effectiveness of our
method against baseline methods; and subsection V-C explores
the performance of information criteria in model selection.

A. Simulation 1
To validate the estimation procedure, we implement the EM

algorithm with true J and K. Parameter initialization involves
first fitting Gaussian Mixture Models to estimate groups,
followed by EFM for each group. Guided by the insights from
a pilot study, we set the maximum number of iterations for
each replication at 100. The reliability and precision of the
proposed methods are then evaluated from two perspectives: i)
the accuracy of each individual parameter estimate and ii) the
misclassification rate (Cmis), which quantifies the proportion
of estimated states that diverge from the actual states.

The accuracy of parameters π, µ, Λ, and Ψ is assessed by
calculating the average absolute difference (AAD) between
the estimates and their true values, defined as AAD(o) =∑r

i=1 |ôi−oi|
r , oi is an individual entry in matrix o and r is the

total number of free parameters. The mean of AADs (standard
errors in the parentheses) aggregated over 100 random seeds



TABLE I
THE MEAN (STANDARD ERROR) AADS OF π, µ, Λ, Ψ, AND Cmis .

π µ Λ Ψ Cmis

.026 (.013) .015 (.002) .014 (.001) .011 (.002) .0024 (.0005)
TABLE II

BIAS (STANDARD ERROR) OF THE PARAMETER ESTIMATES FOR EACH
TRANSITION MODEL PARAMETER Bjkl .

Bjk Bjk0 Bjk1 Bjk2

B12 .014(.142) .017(.150) -.080(.219)
B13 -.021(.126) .010(.125) .016(.182)
B21 -.018(.147) -.004(.139) .014(.214)
B23 -.003(.112) .004(.097) .005(.200)
B31 .003(.112) .002(.107) -.006(.192)
B32 .006(.131) -.032(.091) .028(.232)

are presented in Table I. These mean AADs for all parameter
matrices are sufficiently close to zero with small standard
errors, indicating effective parameter recovery. In Table II,
we report the mean bias (standard error) for each parameter
in the transition model, where the biases are all close to
zero. Moreover, we present the mean (standard error) of
Cmis in Table I. On average, misclassification rates are only
.24% (0.0005), highlighting the exceptional accuracy of the
proposed EM algorithm in estimating latent states.

Intuitively, factors such as N, Ti, sizes of J and K, variance
Ψ, differences in µj and Λj between states, and frequency
of state transitions, can affect the performance of parameter
estimation. Additional simulations in Appendix B reveals
that estimation accuracy for µ, Λ, Ψ, and B, as well as
classification accuracy, improve when (i) common variances
decrease, (ii) differences in µj and Λj between states increase,
(iii) J decreases, or (iv) sample size (N ) or panel length (Ti)
increases. Increasing K or using a B that induces infrequent
transitions slightly affects most parameters but enhances the
precision of transition probability estimates, thereby reducing
misclassification rates. Estimation of π improves solely with
increases in N or state-to-state differences in µj .

B. Simulation 2
This section compares the performance of the proposed

methods and the baseline approaches in correctly identify-
ing latent states. Three benchmark methods are under our
consideration: i) TM+independent HMM, which assumes in-
dependence among observed features given the states; ii)
CFM+TM+HMM, which addresses interrelationships but in-
accurately pre-specifies the latent factor structure by setting
certain loading matrix entries to zero; and iii) EFM+HMM,
which assumes a homogeneous transition probabilities matrix
for all subjects. We first repeat the data generation process of
Simulation 1. Then, we consider three additional scenarios by
adjusting the state-to-state differences in µj to be closer (µ:
medium diff), increasing the similarity of the Λj at different
states (Λ: medium diff), and increasing the significance of the
covariance matrix Ψ (Ψ = 2× I), respectively.

As depicted in Figure 1, our proposed methods (HMFM)
consistently outperform the benchmark methodologies in all
settings. Regardless of sample size, our methods consistently
achieve the lowest misclassification rate, nearly approximating
zero, thereby emphasizing the importance of each component

Fig. 1. Cmis of various methods. The error bars represent the 95% CI. The
first column shows the results under the settings we used in simulation 1. The
last three columns summarize the results under different settings by varying
the true value of µ, Λ, and Ψ, respectively.

in our proposed models. Specifically, the comparison with
TM+independent HMM shows the importance of accounting
for the interrelationship between observed features; the com-
parison with CFM+TM+HMM reveals the risk of incorrectly
specifying the interrelationship structure; and the comparison
with EFM+HMM demonstrates the inadequacy of assuming
homogeneous transition probabilities.

C. Simulation 3
Information criteria such as the Akaike information crite-

ria (AIC) and the Bayesian information criteria (BIC) have
been widely used in model selection [10], [30]. Within this
simulation study, we investigate whether the AIC or BIC is
reliable for determining J and K simultaneously. We repeat
the data generation process of Simulation 1, but implement
the proposed methods with a different set of (J,K) for each
replicate when fitting the generated data. Let J = {2, 3, 4}
and K = {2, 3, 4}. We consider all possible combinations
of J and K, yielding a total of nine fitted candidate models
for each replicate. For 100 replications, both AIC and BIC
consistently recommend the model with accurate J and K.
Therefore, we believe that the sample size and the number of
observations per individual in the processed AURORA data
will yield reliable information criteria-based model selection
results and, consequently, reliable parameter estimation.

VI. ANALYSIS OF THE AURORA DATA
Given the irregular data collection from mobile devices, we

applied the CT-HMFM to smartwatch data from the AURORA
study. Considering J = 1, 2, · · · , 6 and K = 1, 2, · · · , 9, we
evaluate 54 candidate models. For each candidate model, the
EM algorithm is implemented with multiple random seeds, and
the seed yielding the highest estimated likelihood is selected.
Finally, model comparison using AIC and BIC led to the
selection of a model with J = 3 and K = 8. Subsequent
subsections will discuss the interpretation of parameter esti-
mates and biological insights from three perspectives: i) the
interpretation of the three estimated states, ii) symptom co-
occurrence patterns, and iii) the influence of demographic
factors on transition probabilities.

A. Interpretation of Hidden States
To investigate the biological differences between states, we

first focus on the selected features. Figure 2 depicts scaled
sample means for each feature across states, with a 99%
confidence interval (CI). Further pairwise Tukey tests indicate
significant differences between states for nearly all features,
except for amplitude, SWCK, L5, and NNskew.q3 between



Fig. 2. Relative sample mean for features in each estimated state, with 99%
CI error bars that are too small to distinguish.

Fig. 3. Sample mean for each symptom in each estimated state. The error
bars represent the 95% CI. 0 is the least severity, 1 is the greatest.
state 1 and state 2. Specifically, features related to average
heart rate (NNmean), heart rate variability (SDNN), and heart
deceleration capacity (dc) vary significantly across the three
latent states, decreasing sequentially from state 1 to state 3.
According to previous research, lower heart rate variability and
deceleration capacity are associated with a higher mortality
rate [23], [31], suggesting that states 1 through 3 represent
decreasing levels of health, with state 1 being the healthiest.
Additionally, activity levels are similar and higher in states 1
and 2 compared to state 3, indicating better overall health for
participants in the first two states. Among features related to
heart rate unpredictability (lfhf, ApEn, and SD1SD2), state 3
demonstrates significantly higher values for SD1SD2-related
features but lower values for lfhf-related features compared
to states 1 and 2, suggesting a different interpretation of the
estimated states than our previous interpretation. However,
it is important to note that the relationship between these
features and the psychological or physiological state is neither
straightforward nor unique [32].

To confirm the validity of the three states, we further
compare their differences regarding self-reported symptoms
from a flash survey. Based on the RDoC framework, ten
latent constructs associated with APNS were developed using
survey items selected by domain experts: Pain, Loss, Sleep
Discontinuity, Nightmare, Somatic Symptoms, Mental Fa-
tigue, Avoidance, Re-experience, and Anxious. Retaining only
observations for each individual whose estimated states are
known on the same day they submitted survey responses, we
summarized the flash survey data with means and 95% CIs in
Figure 3. Overall, state 1 exhibits the lowest severity level for
all ten symptoms, while state 3 has the highest severity level.
Tukey tests reveal no significant differences between states
1 and 2 in hyperarousal, re-experience, anxiety, and somatic

Fig. 4. Estimated transition probability. Fix δit = 1. (a, b) indicates a
transition from state a to state b.

symptoms, but both are significantly different from state 3 in
these constructs. While the differences in nightmare and sleep
discontinuity between states 3 and 2 are not significant, they
are statistically more severe than in state 1. For mental fatigue
and depression, only the difference between state 1 and state
3 is statistically significant. In summary, both the survey data
and the AURORA data support our interpretation of the three
latent states. State 1 is the healthiest, while state 3 indicates
having the most severe APNS symptoms.

B. Co-occurring Pattern of Symptoms
When studying the co-occurring of symptoms within each

hidden state, we limit our attention to observations collected
during the first week. For each state, the correlations between
all ten symptoms are calculated. In state 1 (relative health
state), there is a high degree of correlation (.782) between
hyperarousal and anxiety, suggesting that patients in state 1
experiencing severe hyperarousal symptoms are also likely to
suffer from severe anxiety. State 2 shows no highly correlated
symptoms. In state 3 (the state with more severe disorders),
symptoms such as depression, hyperarousal, anxiety, and re-
experience are more likely to co-occur with pairwise correla-
tion ranging from .716 to .91.

C. Transition Probability
This section investigates the heterogeneity of 1-day tran-

sition probabilities among subjects, focusing on transitions
with a time interval δit = 1. We estimated the transition
probabilities for males and females within the sample age
range, as depicted in Figure 4. Lines with circles illustrate
the probability of remaining in the same state, lines with stars
indicate transitions to a more severe state, and lines with ‘x’
reflect the chance of improvement in psychological conditions.

Overall, both males and females have a tendency to remain
in their current state, with infrequent state transitions, aligning
with most literature. For males, the probability of staying at
states 3 and 2 increases with age, while it decreases for state 1.
Moreover, while the likelihood of psychological deterioration
increases with age, the chance of improvement decreases.
Specifically, while the probability of transitioning from the
most severe state (state 3) to the healthiest state (state 1)
approaches zero as age increases, the likelihood of the reverse
transition increases as age decreases, with direct transitions
between state 1 and state 3 being particularly rare. The female
group exhibits a similar trend to the male group, but with



a higher likelihood of remaining in the most severe state
(state 3) compared to males. In summary, our analysis of the
AURORA data suggests that older patients are more likely
to transition to more severe psychological states. Moreover,
achieving psychological improvement becomes increasingly
challenging as one ages.

VII. CONCLUSIONS AND DISCUSSION

This paper investigates the unique challenges of analyz-
ing longitudinal mobile health data, including interdependent
variables with unknown interrelationship structures, hetero-
geneous transition probabilities, and irregular measurements.
To address these issues, we propose a HMM-based model,
the CT-HMFM, for multivariate longitudinal data collected
irregularly. Furthermore, the performance of the corresponding
Stabilized Expectation-Maximization algorithm for maximum
likelihood estimation is supported by extensive simulation
studies. Finally, we analyzed the AURORA data and drew
biological findings comparable with previous research, im-
plying that the mobile health data sourced from consumer-
grade devices, together with the proposed methods, have the
immense potential to facilitate mental health diagnostics and
understand the dynamic transition mechanism.

The proposed methods can be extended in several ways.
First, most entries in the estimated factor loading matrix are
close to zero, indicating sparse factor loading matrices in
real analysis. Although various methods (e.g., factor rotations
and setting factor loadings below specific cutoffs to 0) are
frequently used to simplify interpretation, the choice of these
methods is subjective. The sparse exploratory factor loading
analysis [33], [34] provides an automated approach to set the
loading entries of redundant variables to 0, thereby enhancing
the interpretability of loading matrices without reliance on sub-
jective factors. Therefore, incorporating sparse regularization
into the factor loading matrix is an important extension of
our current work worth studying. Second, a large number
of baseline covariates are typically available in real data.
However, we have no prior knowledge about the significance
of each covariate in determining the transition probability.
Hence, integrating regularization into the transition model to
assist with variable selection can be extremely useful. Third,
the exceptional diversity of mental health makes it challenging
to satisfy the key conditional independence assumption of
the HMM, leading to potential violations and hence model
bias [35]. This issue is exacerbated by the likely presence of
autocorrelation among observations collected from the same
subject. Therefore, adding a random effect to the current
model to account for the inter-patient heterogeneity is a natural
extension [10]. Finally, previous HRV-related studies are often
conducted in well-controlled laboratory environments. Thus,
all existing HRV feature extraction tools rely on resting-
state heart rate data. However, heart rate data collected in
open environments will inevitably contain additional noise.
For example, it is reasonable to expect that HRV features
corresponding to different activity states (e.g., exercising and
resting) would differ significantly. Therefore, recognizing the

lack of tools to extract HRV features corresponding to different
activity states, we believe it would be advantageous to develop
a preprocessing pipeline to concurrently process heart rate and
activity data to derive appropriate HRV features.

APPENDIX A
TECHNICAL DETAILS

A. Supplement for E-step
Denote Λ̃j = (Λj ,µj) ∈ Rp×(K+1) and z̃it = (zT

it, 1)
T ∈

R(K+1). Each of the three parts has an explicit form:

h(π) =

N∑
i=1

J∑
j=1

γv
ij(1)log(πj),

h({Bkj}Jk,j=1) =

N∑
i=1

Ti∑
t=2

J∑
j,k=1

ϵvikj(t)log(P itkj),

h(Ψ, {Λj}Jj=1, {µj}Jj=1) =
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′
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B. Supplement for M-step
By setting the first derivative of h(π) to zero, the pa-

rameters related to the initial state distribution are estimated
as: πnew

j =
∑N

i=1 γ
v
ij(1)/

∑N
i=1

∑J
k=1 γ

v
ik(1). Similarly, the

parameters used to characterize the conditional distribution of
yit given wit are estimated by setting the first derivative of
h(Ψ, {Λj}Jj=1, {µj}Jj=1) equal to 0, with

Λ̃j
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=

∑N
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∑Ti
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Meanwhile, we got the updated estimation of Ψ, Ψnew, equals

diag
{ N∑

i=1

Ti∑
t=1

J∑
j=1
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}
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APPENDIX B
ADDITIONAL SIMULATION RESULTS

This section presents additional simulation results that in-
vestigate the impact of various factors on estimation per-
formance. Using the settings for simulation 1 in Section
V-A as the baseline, we conducted eight additional sets of
simulations, each varying one component while maintaining
rest components as the baseline setup. These components
include: i) sample size (N), ii) number of measurements
for each individual (Ti), iii) J, iv) K, v) size of common
variance Ψ, vi) state-to-state difference in µj , vii) state-to-
state difference in Λj , and viii) transition frequency. For
common variance Ψ, we evaluated scenarios with .1I , .5I ,
and 1I (baseline). For µj and Λj , we adjusted state-to-state
differences in two additional settings. For the test evaluating
the effect of transition frequency, a frequent transition is
defined as the probability of remaining in the same state being
less than 0.70. The B in the baseline setting corresponds to
infrequent transition. For tests evaluating the effects of J, K,



TABLE III
THE MEAN (STANDARD ERROR) AADS OF π, µ, Λ, Ψ, AND B, AND

Cmis OF ESTIMATIONS UNDER DIFFERENT CT SETTINGS.
ADD π µ Λ Ψ B Cmis

Ψ = 1 ∗ I .026(.013) .015(.002) .014(.001) .011(.002) .120(.027) .0024(.0005)
Ψ = .5 ∗ I .026(.013) .012(.002) .011(.001) .005(.001) .119(.027) .0003(.0001)
Ψ = .1 ∗ I .026(.013) .010(.003) .007(.001) .001(.000) .119(.027) .0000(.0000)
µ: large diff .026(.013) .015(.002) .014(.001) .011(.002) .120(.027) .002(.0005)
µ: medium diff .027(.013) .015(.001) .015(.001) .011(.002) .124(.028) .007(.001)
µ: minor diff .034(.017) .017(.003) .478(.057) .011(.002) .161(.040) .085(.004)
Λ: large diff .026(.013) .015(.002) .014(.001) .011(.002) .120(.027) .002(.0005)
Λ: medium diff .026(.013) .014(.002) .014(.001) .011(.002) .122(.029) .006(.001)
Λ: minor diff .026(.013) .014(.002) .014(.001) .011(.002) .122(.028) .004(.001)
B: infreq transit .026(.013) .015(.002) .014(.001) .011(.002) .120(.027) .002(.0005)
B: freq transit .027(.013) .015(.002) .014(.001) .011(.002) .137(.043) .007(.001)
J = 2 .027(.021) .012(.002) .012(.001) .011(.002) .087(.026) .0015(.0003)
J = 3 .026(.013) .015(.002) .014(.001) .011(.002) .120(.027) .0024(.0005)
J = 4 .024(.011) .017(.002) .016(.001) .011(.001) .150(.028) .0032(.0005)
K = 2 .026(.013) .015(.002) .014(.001) .010(.002) .124(.027) .0069(.0008)
K = 3 .026(.013) .015(.002) .014(.001) .011(.002) .120(.027) .0024(.0005)
K = 5 .026(.013) .015(.002) .015(.001) .012(.002) .119(.027) .0005(.0002)
N = 50 .052(.029) .030(.004) .028(.002) .022(.003) .254(.058) .0027(.0008)
N = 100 .042(.019) .021(.003) .020(.001) .015(.002) .175(.038) .0025(.0006)
N = 500 .018(.010) .009(.001) .009(.001) .007(.001) .076(.017) .0024(.0003)
10 ≤ Ti ≤ 30 .029(.014) .029(.004) .027(.002) .021(.004) .251(.061) .0028(.0009)
30 ≤ Ti ≤ 50 .027(.014) .020(.003) .019(.001) .015(.003) .180(.043) .0025(.0005)
100 ≤ Ti ≤ 150 .028(.015) .012(.001) .011(.001) .008(.001) .098(.021) .0023(.0003)

N, and Ti, the baseline setups are modified as indicated in
Table III.
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