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Abstract

Time-series foundation models excel at tasks like forecasting across diverse data
types by leveraging informative waveform representations. Wearable sensing data,
however, pose unique challenges due to their variability in patterns and frequency
bands, especially for healthcare-related outcomes. The main obstacle lies in crafting
generalizable representations that adapt efficiently across heterogeneous sensing
configurations and applications. To address this, we propose NORMWEAR, the
first multi-modal and ubiquitous foundation model designed to extract generalized
and informative representations from wearable sensing data. Specifically, we
design a channel-aware attention mechanism with a shared special liaison [CLS]
token to detect signal patterns in both intra-sensor and inter-sensors. This helps
the model to extract more meaningful information considering both time series
themselves and the relationships between input sensors. This helps the model to
be widely compatible with various sensors settings. NORMWEAR is pretrained
on a diverse set of physiological signals, including PPG, ECG, EEG, GSR, and
IMU, from various public datasets. Our model shows exceptional generalizability
across 11 public wearable sensing datasets, spanning 18 applications in mental
health, body state inference, vital sign estimation, and disease risk evaluation. It
consistently outperforms competitive baselines under zero-shot, partial-shot, and
full-shot settings, indicating broad applicability in real-world health applications.

1 Introduction

Mobile and wearable sensors have been shown to be valuable for the field of healthcare by passively
and continuously tracking physiological signals such as photoplethysmography (PPG) for pulse, elec-
trocardiography (ECG) for heart activity, galvanic skin response (GSR), and electroencephalography
(EEQ) for brain activity. These time series signals are beneficial for early diagnosis, personalized
health insights, and remote patient monitoring (Zhang et al., 2024a).

Recently, several foundation models have emerged for time series modeling, including |Ansari et al.
(2024); |/Abbaspourazad et al.|(2023)); [Woo et al.| (2024); [Foumani et al.| (2024). Another common
approach for signal modeling involves converting raw signal series into 2D images or spectrograms,
using fixed-size sliding windows, followed by the use of visual encoders like Vision Transformers
(ViT) to extract representations for making inferences (Semenoglou et al.|2023;[Wimmer & Rekabsaz,
2023} [Vishnupriya & Meenakshi}, 2018 |Chun et al.| 2016} |Krishnan et al., [2020; [Dosovitskiy et al.|
2020). These works have significantly advanced the field and provided valuable insights, yet two
main issues still exists which need further exploration to fully understand their potential in wearable
scenarios. First, contrastive learning-based foundation models (Abbaspourazad et al., 2023)) rely on
a predefined set of input signal types, making them unsuitable when transferring to scenarios with
different types and numbers of sensors. Second, while both time series foundation models (Ansari
et al.,|2024; Zhang et al.| 2022;|Woo et al.| 2024) and spectral-based approaches (Semenoglou et al.,
2023; [Wimmer & Rekabsaz, [2023) attempt to address this issue by training a generic encoder that
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Figure 1: The role of our framework. Several icons from [Freepik| (n.d.);/Zhang et al. (2024a)).)

can handle type-agnostic series, they remain limited to processing only univariate series. Because
of this constraint, these previous works fail to account for the heterogeneity of multivariate input
data; specifically, they do not capture the complex relationships between signals from sensors located
on different body parts. These two limitations of recent approaches hinder their generalization and
usefulness for wearable health monitoring.

Moreover, Wearable-based multimodal physiological signals present unique challenges that distin-
guish them from general time series data, such as stock prices or weather patterns. Wearable signal
modalities, such as PPG and EEG, vary in characteristics like dimensionality, sampling rate, and
resolution, often requiring modality-specific preprocessing. Existing methods tokenize raw signals
(Ansari et al., [2024} [Zhang et al.| 2022) or convert them into image or spectral representations (Wu
et al.| 2023} Mathew et al. 2024} Vaid et al., 2023). While effective for specific tasks, these ap-
proaches lack generalizability and fail to provide a consistent preprocessing pipeline across multiple
modalities. A consistent framework that accommodates diverse signal requirements is essential for
training deep learning-based foundation models and advancing multimodal signal analysis.

In this work, we present NORMWEAR, a normative foundation model, aiming to learn effective
wearable sensing representations, addressing the above-discussed research gaps. NORMWEAR has
been pretrained on more than 2.5 million multivariate wearable sensing segments, comprising total of
14,943 hours of sensor signal series, using publicibly avaliable datasets. We evaluated NORMWEAR
on 18 public downstream tasks against competitive baselines across zero-shot, few-show, and full-shot
settings. Overall, our contributions with the proposed NORMWEAR healthcare modeling framework
can be summarized as follows:
* To our knowledge, we are the first to develop a foundation model specifically designed for
wearable sensing data, capable of processing arbitrary configuration of multivariate signals
from sources such as the heart, skin, brain, and physical body.

* NORMWEAR comprises novel methodologies built upon the advanced practice in both the
fields of signal processing and deep learning, including (a) continuous wavelet transform
(CWT) based multi-scale representations for modality- and number-agnostic tokenization,
(b) channel-aware attention layer that enables the model to process arbitrary multivariate
inputs, and (c) a human sensing adapted fusion mechanism that enabled NORMWEAR to
achieve zero-shot inference on health related wearable sensing tasks.

* We are also the first to integrate and process a comprehensive wearable signals dataset
with varied number of input channels for training self-supervised learning algorithms, with
thorough downstream evaluation. These datasets cover key health applications, including
mental and physical state inference, vital sign estimation, and disease risk evaluation.

Our proposed NORMWEAR aims to provide a generalized data representation solution for smart
health monitoring, benefiting the general public, and serving as a fundamental tool for researchers
and professionals to address future healthcare challenges. We made the code and cleaned data to be
publicly available to spur reproducible research.

2 Related Work

Foundation models have emerged as a transformative paradigm in machine learning, enabling
generalizable and reusable representations across diverse downstream tasks (Bommasani et al., [2022).
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In the time series domain, recent works (Ansari et al., |2024; Foumani et al., 2024} |Abbaspourazad;
et al., 2023; |[Narayanswamy et al., 2024) have demonstrated success in tasks such as forecasting,
classification, and anomaly detection. However, their generalizability to health-related wearable
signals remains limited due to the lack of in-depth evaluation, reliance on specific sensor types (Wang
et al.| [2025; Jiang et al.| [2024;|Yang et al., 2023)) and univariate data (Pillai et al.,2024;[McKeen et al.}
2024]), as well as the inability to handle the heterogeneity of multivariate wearable signals. In contrast,
NORMWEAR builds upon these principles by introducing a modeling framework that is agnostic to
the sensor modality and number of input channels, as stated in section[I] and is presented in details
in section 3] NORMWEAR has been evaluated on 18 digital healthcare tasks and demonstrate peak
performance against solid time series modeling baselines, including common statistical approach,
SoTA model in time series with self-supervised learning (Zhang et al., |2022), SoTA spectrum based
modeling approach (Wu et al.l 2023)), and SoTA time series forecasting model (Ansari et al., [2024).
Our work not only generalizes to arbitrary sensor configurations but also ensures compatibility across
multivariate data, addressing key limitations of earlier approaches.

3 Method

3.1 Dataset construction for model pretraining and downstream evaluation

We curated a collection of 9 publicly available datasets (Table[5) exclusively for model pretraining,
resulting in approximately 230,962 multivariate time series segments, comprising 4,294 hours of
total sensor signal series, across various modalities, including PPG, ECG, EEG, GSR, PCG, and
inertial measurement unit (IMU) data. To address the dataset size limitation, we then applied herustic
data augmentation (algorithm I)) to expand the pretrain dataset to 2.5 million segments, comprising
14,943 hours of total sensor signal series. Notably, each sample segment may contain a variable
number of input channels depending on the sensor signals provided by the respective datasets. This
input configuration aligns seamlessly with our model’s design, which is optimized to flexibly handle
arbitrary numbers and configurations of sensor signal inputs.

To prevent potential data leakage in downstream tasks, we evaluate our model’s transferability using
an additional 11 publicly available datasets encompassing 18 modeling tasks, which include affective
state classification, physical state recognition, biological estimation, and disease risk evaluation.
Details about the datasets is presented in Table §]

3.2 Tokenization

Tokenization is a fundamental term widely used in natural language processing. In the context of
wearable sensing, we leverage this term to represent the stage of signal processing before sending the
processed data to the deep learning-based encoder. Spectral methods, which utilize the short-time
Fast Fourier Transform (FFT) (Brigham), [1988)) with a sliding window to compute spectrograms,
are widely regarded as the benchmark approach for tokenization. However, due to the inherent
trade-off between time and frequency resolution, the spectral representation with a fixed window size
cannot be generalized. This is because the window size has to be modulated accordingly when the
modality varies. To enhance transferability, we propose a well-designed signal processing pipeline
that preserves information in both the frequency and time domains across multiple scales. We begin
by calculating the first and second derivatives for each single signal series, as suggested by |Slapnicar|
et al.[(2019)), followed by computing the continuous wavelet transform (CWT) on both the raw and
derivative series, resulting in three scalograms. Then, we stack the three scalograms to form data
in RGB-image-like format. The derivatives capture the rate of signal change at different moments,
while the wavelet transform provides a multi-resolution encoding that preserves information from
both the time and frequency domains [Torrence & Compo| (1998)). For the wavelet transform, we
use the Mexican Hat wavelet for signal convolution, as recommended by previous studies (Burke
& Nasor, 20045 [Hosni & Atef, 2023} [Hassanil [2021; [Negi et al., 2024} [Nedorubova et al., [2021b)).
We apply scales ranging from 1 to 64, following the guidance of (Sengupta et al.| 2022; Nedorubova;
et al.,|2021a), which sufficiently covers most frequency bands of interest for physiological signals.
Finally, this RGB-like scalogram is divided into patches, which is treated in the same way as tokens
in an ViT (Dosovitskiy et al., 2020). In this way, this tokenization approach can be applied to various
types of sensing signals without sensor-specific adjustments or reconfigurations.

3.3 Share-weighted Encoder

Rather than concatenating tokens from all channels into a single long sequence and processing them
with a full attention transformer, we treat each channel of the multivariate signal as an independent
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input stream. Although all channels share the same transformer backbone, the forward pass is executed
separately for each one. This design allows the model to first learn the temporal characteristics of each
sensor without interference from others. It not only reduces computational cost but also increases
flexibility. Because each channel is processed independently, the model can be pretrained on datasets
with varying numbers or types of sensors and later fine-tuned on a target task with a different sensor
configuration.

3.4 Channel-Aware Attention with Liaison Special Token

Following the tokenization step, we adopt common reconstruction-based pretraining strategies from
Masked Auto Encoder (MAE) (He et al., 2021} [Huang et al.| 2023} [Zhang et al.|[2023)), where input
tokens are randomly masked and the model is trained to reconstruct the original time series using
mean squared error (MSE) loss. Inspired by [Huang et al.| (2023)), we experiment with four masking
strategies, as shown in Figure [2] (a), including masking on (1) temporal and scale, (2) scale only,
(3) temporal only, and (4) unstructured axes. We observe that the temporal and scalar masking
yields the best performance for the downstream tasks. For the model architecture, we construct the
backbone of our proposed framework with a convolutional patching layer followed by 12 standard
Transformer blocks (Vaswani et al.},[2023)). For the same reason, NORMWEAR uses a lightweight
decoder consisting of 2 Transformer blocks, combined with a linear projection layer and a convolution
layer to reconstruct the raw physiological signals both temporally and spatially. We also prepend a
[CLS] token to each signal channel, following standard practice in transformer models, for learning a
global representation of the input sequence for that channel.

Another important point to consider is that although empirical studies (Nie et al.| 2023;|Abbaspourazad|
2023)) show that channel-independent structures effectively capture local patterns, they fail to
account for relationships across channels. To address this, we use the [CLS] token from each signal
channel as a liaison token, allowing them to exchange information through the channel-aware fusion
layer afrer every other encoder block. We explore several fusion approaches and different design of
liaison token as shown in Figure |Z| (b), with each method described below:

(1) All-Attention Fusion: This approach involves concatenating all tokens from each modality
without considering their individual properties and fusing the information through a self-attention
module. However, this method requires quadratic computation time, as every token passes through
the self-attention module, making it impractical for real-world applications.

(2) Cross-Attention Fusion: In addition to the cross-attention mechanism used in Cross-ViT
2021)), we introduce a slight modification to fit in our problem setting. We propose a symmetric
fusion method, using the [CLS] token from each modality as an intermediary to exchange information
between the patch tokens of another modality, then projecting the information back to its original
modality in the subsequent Transformer layer. While this strategy is efficient, it restricts the model
to handling only two time series signals or modalities, which deviates from our goal of building a
general model capable of processing an arbitrary number of channels.
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Figure 3: Memory stream inspired temporal fusion mechanism for representation alignment.

(3) [CLS]-Attention Fusion The [CLS] token serves as an abstract global representation for each
signal modality. Here, we propose a hybrid fusion approach. We stack the [CLS] tokens from all
signal modalities and perform feature fusion using a self-attention mechanism. The fused [CLS] token
is then reattached to its original channel, enabling the newly learned information to be propagated to
each patch token in subsequent transformer encoder layers.

(4) Mean-Pooling Fusion Similar to the [CLS]-Attention Fusion approach, we employ mean-pooling
within each channel instead of using the [CLS] token as an abstract global representation.

Our empirical results show that [CLS]-attention fusion achieves the best downstreaming performance
for our proposed NORMWEAR model. Details of all the ablation studies are reported in Appendix [C]
Beyond accuracy, we want to emphasize that the [CLS]-Attention Fusion design is highly flexible.
This flexibility arises from the fact that self-attention is length-flexible and permutation-invariant
(Vaswani et al.} 2023). Consequently, it integrates naturally with our shared-weight encoder, allowing
the model to accommodate a variable number of sensor channels presented in any order. We provide
additional empirical evidence of NormWear’s permutation invariance in Table [I2} Appendix [C]

3.5 Sensor-Semantic Representation Alignment

Zero-shot inference is an important aspect to evaluate foundation model. We evaluate our model in
this setting by retrieving the closest text-derived label for each unseen task in the shared embedding
space. Specifically, to unify information across diverse modalities, we incorporate a representation
alignment objective that encourages the embeddings of physiological sensor data to reside in the same
latent space as paired textual descriptions. Once this shared space is established, it naturally supports
zero-shot inference by allowing unseen sensor inputs to be interpreted through their proximity to
text-derived anchors, without additional task-specific training. Several important works in this
direction focusing on domains of vision-language Radford et al.| (2021)), audio-language |Wu et al.
(2023)), and motion-language (Zhang et al.,|2024b). These works leverage end-to-end training to bind
their modality of interest into semantic space. In this work, we extend this methodology to explore
NORMWEAR’s ability to generalize across unseen datasets and tasks.

Building on prior work in representation alignment, we notice that in healthcare-related tasks where
flexible inference across diverse scenarios is often required, the ground truth labels often have
substantial overlap. For instance, depression is inferred from stress levels (LeMoult, [2020), and
running and cycling produce similar IMU signals (Li et al.,2019). Due to these nested relationships, it
create potential challenge to representation alignment when using contrastive learning, which requires
clearly defined positive and negative pairs. To address this, we first propose a novel way to fuse the
signal representations together with improved qualities, then align the representation with vector
distance as an auxiliary loss for contrastive learning method. In addition, to reduce computation
cost and counteract the issue of catastrophic forgetting (L1 et al.| | 2023)), we use off-the-shelf frozen
encoders for both signal and text modalities.

Human physiological signals are task-specific, dynamic, and often weakly labeled (He et al.l 2018}
Kim et al.| 2022;|Qian et al.|[2021; Ma et al., 2021)). To address these characteristics, we introduce
three complementary scoring mechanisms during feature aggregation: relevance scores prioritize
patches aligned with the task objective (e.g., IMU for activity recognition), guided by query sentences
such as “What activity is the subject doing?”’; recency scores emphasize recent segments to better
reflect the current physiological or emotional state (Roelofs| |2017;|Chowdhury et al.,|2020; /Chaudhury
et al.l [2021); and importance scores weigh signal segments that contain meaningful or transient
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patterns often buried in weakly labeled sequences. Together, these scores guide the MSiTF fusion
module to generate compact, task-aware representations. This design is inspired by memory-stream
retrieval mechanisms (Park et al.| [2023)) and is tailored to the demands of human-centered sensing
tasks such as risk assessment, affect detection, and activity recognition.

Memory Stream inspired Temporal Fusion (MSiTF). Our Aggregation or Fusion Module, MSiTF,
is designed to addresses the above-discussed three challenges through three scores discussed below.
Specifically, we denote f as the function that takes the semantic embedding of query sentence ¢ and
backbone output H € RP*F as input, where P is the patch size and E is the embedding size, thus
having the final fused representation f(¢q, H) =Y € RE.

We define the Relevance score as the cross attention between the key representations of each sensor
time step and the query sentence embedding, obtained from a pretrained language model (Clinical
TinyLlama (Muzammil, 2021))). This mechanism allows the model to identify distinct but contextually
relevant segments in the sensor input. For the Recency score, we use an exponential decay function to
reflect the intuition that recent time steps are more important than earlier ones. Finally, we consider
the importance score IMP in this case to be whether to keep the representation at each time step or not.
In order to achieve this, we assign binary parameters to each time step, denoted as 6; = p(v;) € R?
where v; € R¥ is the representation vector at time step ¢ and p is a trainable linear transformation
function which will be optimized during pretraining. We then have the importance score for each

patch defined as
exp ((1og(0m) + e) /T)
Wimp(t) = arg max
SO0y e ( (10861 +.)7)

where € is the noise term sampled from Gumbel distribution (Jang et al., 2017), and 7 is the
temperature controlling the sharpness of the softmax function. Because arg max is not a differentiable
function, we will directly take the resulting probability corresponding to index at j = 1 to be the
importance score, with 7 being set to a small number to push the result closer to one hot vector
from the softmax function. As a result, this logit function will determine to what extent to activate
the gate during forward pass on each patch of the input signals. The final score for each patch is
the summation of the three scores as described above. This score will be treated as the weight for
aggregating the representations from all the patches to form the fixed length embedded output (vector
with size of 768 in our case).

ey

Once the signal embeddings are aggregated, we adopt a variational-inspired approach (Kingma &
‘Welling}, |2022). This design injects stochasticity into the representation, encouraging the model to
explore and capture nuanced variations in semantic representations. Finally, we leverage contrastive
learning with auxiliary loss on vector distance to train the MSiTF module with a projection layer to
text representation on the pretraining datasets. The sentence template formation and training details
are presented in Appendix [B.5]

4 Experiments

NORMWEAR is pretrained exclusively on the data shown in Table[5] In this section, we present a
comprehensive evaluation across 11 downstream publicly available datasets, focusing on 18 widely-
recognized digital healthcare tasks. We evaluate the methods following order of zero-shot capability,
partial-shot learning, and full-shot learning.

4.1 Selection of baselines covering representative modeling strategies

Modeling multivariate wearable signals with arbitrary input channels and sensor types, such as those
capturing activities of heart, brain, and body physical motions, presents unique challenges, as no
universally recognized open-source baseline or state-of-the-art (SOTA) model exists in this domain.
To evaluate our approach, we selected diverse and representative baselines (as shown in Table [3).

In the literature, various modeling strategies have been proposed. Firstly, early approaches involved
handcrafting statistical features, which was a widely adopted practice in signal processing (Yan et al.|
2023a; Reyes-Ortiz et al., [2012; Mikelsons et al., 2017). We include this simple baseline as sanity
check. Secondly, since sensory data can be naturally represented as time series (Woo et al., [2024;
Semenoglou et al.,2023)), we benchmarked our model against Chronos (Ansari et al.,[2024)) , as well
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as a self-supervised framework TF-C (Zhang et al.,[2022)). Finally, the spectrum-based modeling

264
265 methods (Vishnupriya & Meenakshil, 2018}, [Chun et al., [2016; Krishnan et al.l 2020) are widely
266 used for signal modeling. Therefore, we incorporate CLAP (Wu et al.l [2023)) into baselines that

267 has demonstrates SOTA performance in spectrogram-based modeling. Regarding the comparison
268 with concurrent works proposing foundation models for a specific sensor modality, we leverage
269 PaPaGei (Pilla1 et al., 2024) for PPG datasets, ECG-FM (McKeen et al., 2024) for ECG datasets, and
270 CBraMod (Wang et al.|[2025) for EEG datasets. These baselines span distinct paradigms, providing
271 a solid foundation to demonstrate the strengths of our model in wearable signal tasks. For uni-modal

baselines like Chronos and CLAP, we feed each signal separately into model and concatenate their

272
273 representations after the forward pass. This ensures that all models have the same field of view,
274 making the comparison fair.

2715 4.2 Zero-shot Evaluation
We achieve zero-shot inference by pretraining our proposed novel temporal fusion module on the task

276

277 of representation alignment. We include the SoTA spectral-based model CLAP|Wu et al.| (2023) as a
278  baseline to provide a more comprehensive comparison of the results. For CLAP, we experimented
279 with both Manhattan distance (MD) and dot product (DP) as similarity metrics during inference. We

280 observe that there are no statistically significant differences in performance when using MD and DP
281 for label retrieval in CLAP. From table [} we could observe that overall, NORMWEAR equipped
282 with MSiTF outperforms the baselines. We compare NORMWEAR with a few ablations by removing

importance score (w/o IMP) and removing text augmentation (w/o text aug). We can observe that

283

284 performance drop after removing each of the above components, verifying their respective importance
285 in improving generalization across various downstream tasks. We present this outcome to demonstrate
286 the zero-shot capability in the wearable signal domain, an aspect not present in recent studies. We
287  also hope this outcome could potentially provide a new perspective that can help drive progress in

288 this direction within the field.
Table 1: Zero-shot performance on the downstream datasets, with AUC ROC being reported. The last
two columns show the average across the tasks and across group types respectively.

o &
s S ~ =
> = )
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| Bl e & & & S8 E|8|2(e §|8|4|s
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S| € |4 E|E|E E|E|5 5|58 38|53
5 = = = = = = = O @] @] O 2 |8 <
Model £ S| 5|5 |& |5 |& & |5 |5 |E2|5 &8 8 |F |5 |=s
CLAP-MD | 453 | 628 | 585 | 53.1 | 449 | 45.1 | 476 | 305 | 849 | 59.4 | 41.8 | 46.0 | 57.4 | 229 | 554 | 504 | 51.2
CLAP-DP | 507 | 523 | 61.1 | 51.6 | 544 | 41.9 | 58.6 | 464 | 743 | 522 | 414 | 50.6 | 58.9 | 42.7 | 383 | 51.7 | 52.2
Doforo bind | 44.1 | 482 | 521 | 484 | 541 | 626 | 539 | 52.5 | 246 | 488 | 49.6 | 463 | 568 | 543 | 482 | 496 | 494
N/‘;foEAR 558 | 712 | 572 | 51.0 | 557 | 613 | 67.6 | 55.8 | 66.0 | 57.1 | 62.5 | 70.0 | 59.0 | 63.1 | 70.1 | 61.6 | 61.5
“WloIMP | 562 | 703 | 554 | 498 | 540 | 565 | 66.9 | 57.3 | 52.9 | 56.5 | 543 | 61.7 | 60.7 | 73.4 | 652 | 59.4 | 59.6
“wiotextaug | 548 | 65.8 | 552 | 492 | 31.0 | 584 | 586 | 32.8 | 58.1 | 502 | 52.6 | 50.8 | 50.6 | 47.7 | 33.6 | 50.0 | 514
TwWiorcfine | 595 | 72.8 | 42.7 | 57.3 | 506 | 69.0 | 433 | 505 | 74.8 | 483 | 38.8 | 44.6 | 44.1 | 72.4 | 75.7 | 563 | 56.6

4.3 Partial-shot and Full-shot Evaluation
We evaluate the learned representations using linear probing through supervised training on each

290
291 downstream dataset, and report performance on the corresponding held-out test set. To ensure
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Table 2: Detailed performance on various downstream wearable-signal-based health related
applications under full-shot linear probing evaluation.

Downstream Tasks Statistical Chronos CLAP TF-C Modality-Specific | NORMWEAR (Ours)
WESAD 66.213 71.489 72.383 | 69.865 56.656 76.060
UCI-HAR 95.784 91.593 96.420 | 96.892 - 98.954
DriverFatigue 63.249 76.722 61.889 | 66.882 80.430 74.292
Activity Recognition Avg. 75.082 79.935 76.897 77.880 - 83.102
Epilepsy (eye open state) 82.489 82.41 85.094 89.153 90.436 92.743
Epilepsy (eye relaxation) 87.457 88.218 89.867 | 94.416 95.552 94.828
Epilepsy (health area) 86.274 81.08 83.711 85.619 88.065 88.541
Epilepsy (tumor area) 82.816 81.034 83.644 | 86.348 87.258 87.197
Epilepsy (seizure) 88.272 97.572 97.734 | 93.998 94.616 97.053
GAMEEMO 51.009 53.747 52.551 56.275 55.420 54.937
EEG Main Tasks Avg. 79.720 80.677 82.100 | 84.302 85.225 85.883
ECG-Abnormal 97.092 98.585 97.23 98.275 89.898 99.140
PPG-BP (HTN) 59.499 52.425 56.757 | 65.229 61.839 62.341
PPG-BP (DM) 47.823 51.164 42.455 | 57.883 55.668 55.893
PPG-BP (CVA) 71.250 50.278 51.667 | 58.125 73.125 70.625
PPG-BP (CVD) 51.219 58.31 50.91 58.674 49.066 51.773
PhysioNet EMG 99.309 61.6 98.627 | 78.308 - 99.216
Risk Evaluation Avg. 71.032 62.060 66.274 | 69.416 - 73.165
Noninvasive-BP 92.310 91.79 91.922 | 87.481 90.596 92.420
PPG-Hgb 94.219 95.005 94.291 93.408 94.912 94.632
Fetal-fPCG 98.929 99.048 99.195 | 99.077 - 99.072
Vital Signs Avg. 95.153 95.281 95.136 | 93.322 - 95.375
Micro Avg. 78.623 76.782 78.130 | 79.773 - 82.762
Macro Avg. 80.247 79.488 80.103 81.230 - 84.381

Table 3: Baselines

Baseline Methods Modeling Strategies
Modality Specific (Zhang et al.||2022) | PaPaGei (Pillai et al.|[2024}, ECG-FM (McKeen et al.)2024), CBraMod (Wang et al.,[2025).
TF-C (Zhang et al..,72022) SoTA in TS SSL; modeling time and frequency domain information at same time.
CLAP (Wu et al.}[2023] SoTA in audio modeling; process signal as spectrogram
Chronos (Ansari et al.}2024) SoTA in TS forecasting, leverage LLM for modeling
Statistical approach ) Reserve full interpretability

fair comparison, we use a unified evaluation protocol with identical hyperparameter settings and
implementation across all models and the dataset (Yuan et al., [2024). This design ensures that
performance differences are not due to variations in learning rate, regularization, or data augmentation
(Oliver et al.| 2018). Specifically, the classification tasks, using logistic regression, are solved by
Newton’s method with conjugate gradient, with AUC ROC being reported as main metric. The
regression (vital signs) tasks, using ridge regression, are solved by Cholesky’s method with closed
form solution, with relative accuracy being reported. For partial-shot evaluation, we leverage 10% of
the training data for the linear probing, and detailed performance result is presented in Table [T} The
full-shot evaluation results is presented in Table[2] All scores are the higher the better.

From Figure ] Table [2] and Table [T5] we observe that NORMWEAR consistently achieves peak
performance across all task groups, including activity recognition, EEG signal analysis, disease risk
evaluation, and vital sign estimation. Furthermore, its leading performance remains consistent across
various evaluation metrics. Based on the macro-averaged total score across task groups, NORMWEAR
delivers a 3.9% improvement over the state-of-the-art (SoTA) time-series self-supervised learning
framework (Zhang et al., [2022)), a 5.3% improvement over the SoTA spectrum-based modeling
method (Wu et al.,2023)), a 6.1% improvement over SOTA time-series forecasting models with LLM
backbones (Ansari et al., [2024)), and a 5.2% improvement over standard statistical baselines. On
larger datasets, NORMWEAR significantly outperforms the statistical baseline by 9.0% and 7.5% for
activity recognition and EEG brain activity monitoring tasks, respectively. On smaller datasets, it
still achieves peak performance in disease risk evaluation. For vital sign estimation, all methods
yield comparable results, suggesting inherent challenges in these regression tasks that warrant further
investigation but are beyond the scope of this study.
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When comparing with recent modality specific foundation models, NormWear’s main benefit is
that it capture cross-modal relationships, making it more versatile for wearable health tasks. While
it sacrifices modality-specific optimization for adaptability, this may slightly reduce performance
in highly specialized tasks. Single-signal models excel in their domains due to deeper modality-
focused training. Instead of maximizing single-modality data, we prioritize signal diversity for better
generalization. Benchmarking shows that NormWear, trained on a smaller dataset than EEG-only
models, still achieves competitive results, highlighting the effectiveness of our pre-training approach.
These findings illustrate NORMWEAR’s capacity to balance consistency and adaptability across a
diverse range of tasks and conditions. By excelling across standard benchmarks while addressing the
intricacies of varied applications, NORMWEAR exemplifies the philosophy of a foundation model: a
reliable generalist capable of performing robustly across both typical and challenging scenarios.
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(a) Adaptation summary (b) Inspect performance contribution. ‘CA’ refers to
channel-aware attention.
Figure 5: Summary of adaptation performance and module-level performance contributions. Details
of ablation study results are presented in Appendix E}

5 Conclusion and Discussion

Conclusion. In this work, we mainly propose a foundation model for wearable physiological signals.
NORMWEAR is a practical tool that could serve as a starting point for researchers and clinicians when
tackling a problem with wearable based signal data. Our proposed model could extract informative
representations from raw signal series, which can be leveraged for further machine learning modeling,
clustering, embedding vector-based information retrieval, and deployment of real-time health states
monitoring with minimal tuning. We’ve justified the utilizability and generalization of NORMWEAR
through an extensive evaluation of various ubiquitous health applications. As for future works, it is
important to leverage our framework on larger scale clinical applications and explore the applicability
of embedding vectors as state representations for intervention modeling problems that comprise the
decision-making process.

Limitation and Future Work. We acknowledge several limitations to be addressed in future work.
(1) The representation alignment component is currently trained on a limited set of healthcare-related
objectives, and expanding the pretraining corpus with more diverse semantic labels may improve
generalization. (2) While our design supports classification tasks well, adapting the framework
for regression remains an open challenge, and future work may explore alternative formulations
beyond label discretization. (3) NormWear currently focuses on physiological signals with relatively
narrow frequency bands; extending its applicability to higher-frequency modalities such as audio or
lower-resolution clinical summaries is a promising direction.

Broad Impact. NORMWEAR is the first foundation model tailored for multivariate physiological
signals that supports a wide range of wearable health tasks across sensor modalities, device types, and
clinical applications. Through a unified CWT-based tokenization pipeline and a channel-aware fusion
mechanism, it enables robust, modality-agnostic representation learning. Our extensive evaluation
across zero-shot, partial-shot, and full-shot settings demonstrates NormWear’s strong generalizability
and practical relevance. We believe NormWear provides a valuable resource for advancing foundation
modeling in digital health and promoting more unified benchmarks in the community.
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Ethics Statement

This study contains applications in the field of healthcare. We ensured that all the data being used
during pretraining and evaluations were made publicly available by the original authors, and all these
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Reproducibility Statement

The full code base is submitted in supplementary material referred to as NormWear_main.zip,
comprising all the scripts for exploratory data analysis and preprocessing, model construction,
pretraining, downstream evaluation, result analysis, and all the visualizations that are described in
this paper. The GitHub repository containing all the documentation will be published simultaneously
with the paper.
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A Datasets

Few openly accessible multi-channel or multi-device datasets for physiological signals exist, limiting
advancements in this field. To address this gap, we curated a dataset comprising approximately
385 hours of recordings. Using the augmentation algorithm described below, we expanded this
dataset to 4294 hours. The distribution of the pretraining dataset, as shown in Figure [6] reflects
the inherent diversity of the original recordings, ensuring balanced representation across channels
and devices. This curated and augmented dataset provides a critical resource for developing robust
models, facilitating progress in multi-channel physiological signal research.

Table 4: Downstream evaluation data that are Table 5: Pretraining data.
unseen during pretraining.
Downstream Dataset Sensor # Channels | Tasks #Samp. (#Subj.) Pretrain Dataset Sensors #Samp (hours).
WESAD IMU, PPG, Stress Cuff-Less-BP
(Sehmidt etal. 12018] ECG,GSR | ' Detection | 1001 : ECG,PPG | 42934(72)
= (Kachuee et al.,2016)
(Reyes-Ortiz et al[2012] MU 6 HAR 10299G0) PPG-Dalia ECG, PPG 42606(71)
Dri.verFaligue : EEG 4 Fatigue 2400(12) JReiss Attilal[2019] IMU, GSR
| (Min et al. 12017} Detection Auditory-EEG
Activity Recognition Total | - B - 23749(57) (Alzahab ot al2022] EEG 13601(23)
Epilepsy State M .
(Andrzejak et al.|2023] EEG ! Recognize | | 20000 Phyf\./\t . EEG 19550(33)
GAMEEMO BEG 4 Valence- [ < o8y (Bajaj et al. {2020}
(Alakus et al.. 2020} Arousal MAUS ECG, PPG 13068(22
EEG Main Tasks Total - - - 17100(528) (Beh et al..[2021] GSR (22)
ECG-Abnormal Abnormal 7Mende|e _YAAD
{Bousseliot ct al. 12009} Ece ! Detection | 10404 Y g ECG, GSR | 2964(5)
- (Dar et al.}2022)
PPG-BP PPG 1 Risk of 657(219) e —
{Liang et al [2018) Diseases Brain-Cognitive EEG 51201(85)
PhysioNet EMG EMG \ Muscular 1633) (Fekri Azgomi et al.}2023)
(Goldberger et al. 12000} Diseases o EPHNOGRAM
bt . - - ECG,PCG | 36611(61
Risk Evaluation Total 12460(471) {Kazemnejad et al.|2021] (61)
Noninvasive-BP BP —
(Esmaili et al. 2017} PPG 3 Estimate 12526) BIDMC ECG, PPG 8427(14)
PPG Hgb Heb (Pimentel et al.{2017]
| {Esmaili etal.J2017) PPG 2 Estimate | 00O Num S (# Segm.) . 230,962(385)
Fetal-fPCG . PCG ) FewlHR | # Segm. w/ Augment = 2,576,418(4,294)
(Bhaskaran et al. 12022} Estimate - -
Vital Signs Total - - - 2200141 Num Sensor Signals (# Sign.) - 802,019(1,337)
Total All - - - 53549(1197) # Sign. w/ Augment - 8,965,538(14,943)
GSR Skin Conductance
9.7% 9.7%
EEG MU Brain Physical
35.7% 15.5% 35.7% 15.9%
4.6%
PCG
15.8%
18.3% 38.7%
PPG
ECG Heart

Figure 6: Distribution of sensor signals used for pretraining. Left: Distribution by sensor modality.
Right: Distribution by type of physiological information.

Table [d] overviews used dataset in our experiement along with the modality and task type. We will
gives further details for each dataset below:

WESAD (Schmidt et al., 2018)) is a publicly available multimodal dataset used for wearable stress
and affect detection, formulated as a classification task with labels: neutral, stress, and amusement.
The dataset includes physiological and motion data collected from 15 subjects during a lab study,
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using a chest-worn RespiBAN device and a wrist-worn Empatica E4 device. From the chest device,
we use electrocardiogram (ECG), galvanic skin response (GSR), and triaxial acceleration (ACC-X,
ACC-Y, ACC-Z), all sampled at 700 Hz. From the wrist device, we use photoplethysmogram (PPG),
galvanic skin response (GSR, 4 Hz), and triaxial acceleration (ACC-X, ACC-Y, ACC-Z, 32 Hz).
The selected channels span multiple physiological and motion modalities from both chest and wrist
sensors. Each data segment is labeled with one of the three affective states, serving as the target
output for classification tasks.

UCI-HAR (Reyes-Ortiz et al.,|2012) dataset is publicly available and is used for classifying human
activities based on sensor data. It comprises data from 30 volunteers, aged 19 to 48, each performing
six activities: walking, walking upstairs, walking downstairs, sitting, standing, and laying. During
these activities, participants carried a waist-mounted smartphone equipped with embedded accelerom-
eter and gyroscope sensors. The input channels consist of triaxial linear acceleration and triaxial
angular velocity, totaling six channels. Each data segment is labeled with one of the six activities,
serving as the target output for classification tasks. The sensors recorded data at a constant rate of 50
Hz.

Driver Fatigue EEG Dataset (Min et al.,[2017) is a publicly available dataset used for detecting
driver fatigue based on electroencephalogram (EEG) signals. EEG data were collected using a
40-channel Neuroscan amplifier. The recordings include EEG data corresponding to two states: alert
and fatigued. Each data segment is labeled with one of these states, serving as the target output for
classification tasks.

Epileptic Seizure Recognition (Andrzejak et al., 2023)) dataset is publicly available and is used
for classifying neurological and physiological states based on EEG signals. It comprises data from
500 subjects, each recorded for 23.6 seconds using a single EEG channel at a sampling rate of 178
Hz. Each sample is labeled with one of five brain states, allowing for the construction of multiple
binary classification tasks that target different aspects of neurological assessment. Specifically, we
formulated five tasks:

* Eye Relaxation: Detects eye fatigue by distinguishing between relaxed and alert states based

on EEG changes related to eye closure.

* Health Area: Classifies brain regions as healthy or affected by neurological abnormalities.
* Tumor Area: Detects EEG patterns indicative of tumor presence in specific brain regions.
 Seizure: Identifies seizure activity from non-seizure states.

* Eyes Open vs. Closed: Differentiates EEG signals associated with visual input states.
GAMEEMO (Alakus et al.,[2020) is a publicly available dataset used for emotion recognition based
on EEG signals. It comprises data from 28 subjects, each playing four emotion-inducing computer
games (boring, calm, horror, and funny) for five minutes per game, totaling 20 minutes of EEG data
per subject. EEG signals were recorded using the EMOTIV EPOC+ headset, which includes 14
channels (AF3, AF4, F3, F4, F7, F§, FC5, FC6, O1, 02, P7, P8, T7, and T8) positioned according to
the 10-20 system. The signals were sampled at 128 Hz. After each gameplay session, subjects rated
their emotional response using the Self-Assessment Manikin (SAM) form, providing continuous
scores for arousal and valence. These scores were quantized into binary values using subject-specific
median thresholds: arousal and valence ratings above the median were labeled as high, and those
below or equal to the median as low. Combining the binarized arousal and valence ratings yields four
discrete emotional classes: low arousal and low valence, low arousal and high valence, high arousal
and low valence, and high arousal and high valence. Each data segment is labeled with one of these
four classes, serving as the target output for four-class emotion classification tasks.

ECG Heartbeat Categorization (Bousseljot et al., [2009) is a publicly available dataset used for
classifying heartbeat signals based on electrocardiogram (ECG) recordings. It comprises two col-
lections of heartbeat signals derived from PhysioNet’s MIT-BIH Arrhythmia Dataset and the PTB
Diagnostic ECG Database. The first collection includes 109,446 samples categorized into five classes:
normal (N), supraventricular ectopic (S), ventricular ectopic (V), fusion (F), and unknown (Q), with
ECG signals sampled at 125 Hz. The second collection consists of 14,552 samples categorized into
two classes: normal and abnormal, also sampled at 125 Hz. For our analysis, we restructured the
dataset into a binary classification framework by consolidating the original categories into two classes:
normal and abnormal heartbeats.

17



693
694
695
696
697
698
699
700
701

702

703
704

705

707
708
709
710
71
712
713

714
715
716
717
718
719

720
721
722
723
724
725
726

727
728
729

731
732
733

734

735

736
737
738
739
740
741
742
743

744
745

PPG-China (Liang et al.; 2018) is a publicly available dataset used for classifying cardiovascular and
metabolic conditions based on photoplethysmography (PPG) signals. It comprises 657 data records
from 219 subjects, aged 20 to 89 years, including individuals with conditions such as hypertension
and diabetes. PPG signals were recorded using a single channel at a sampling rate of 125 Hz.
Each subject’s data includes PPG waveforms and corresponding clinical information, facilitating the
construction of multiple classification tasks focused on cardiovascular and systemic health monitoring.
Specifically, we formulated four tasks:

* PPG-HTN: Identifies stages of hypotension severity by classifying PPG signals into four

levels.

* PPG-DM: Detects diabetes by distinguishing between diabetic and non-diabetic individuals.

* PPG-CVA: Identifies the presence or absence of cerebrovascular accidents (strokes) based
on PPG patterns.

* PPG-CVD: Assesses cardiovascular disease by classifying PPG signals into three cardiovas-
cular health categories.

PhysioNetEMG (Goldberger et al.||2000) is a publicly available dataset used for classifying neuro-
muscular conditions based on electromyography (EMG) signals. It comprises single-channel EMG
recordings from the tibialis anterior muscle of three subjects: one healthy, one with neuropathy, and
one with myopathy. The EMG signals were recorded at a sampling rate of 4,000 Hz. Each recording
was segmented into time series samples using a fixed-length window of 6 second. Each segment
is labeled according to the subject’s condition—healthy, neuropathy, or myopathy—serving as the
target output for classification tasks.

Non-invasive Blood Pressure Estimation (Esmaili et al.l 2017) is a publicly available dataset
used for cuff-less blood pressure (BP) estimation. It comprises data from 26 subjects, each with
recorded electrocardiogram (ECG) and photoplethysmogram (PPG) signals, sampled at 1,000 Hz.
Reference BP measurements were taken during signal acquisition. Each subject’s data also includes
demographic information such as age, weight, and height. The dataset is structured to facilitate
regression tasks aimed at predicting systolic and diastolic BP values.

PPG-HGB (Abuzairi et al.,|2024)) is a publicly available dataset used for non-invasive hemoglobin
(Hb) measurement based on photoplethysmography (PPG) signals. It comprises data from 68 subjects,
aged 18 to 65 years, with a gender distribution of 56% female and 44% male. PPG signals were
recorded using the MAX30102 sensor, which emits red and infrared light. The sensor’s analog-to-
digital converter (ADC) output data rate can be programmed from 50 samples per second (sps) to
3200 sps. Each subject contributed 12 sets of PPG signals, totaling 816 data records. We formulate
regression tasks aimed at predicting Hb concertration levels.

Fetal-fPCG (Bhaskaran et al., 2022) is a publicly available dataset designed for estimating fetal heart
rate (FHR) using fetal phonocardiography (fPCG) signals. It includes recordings from 60 pregnant
women, aged 18 to 37 years, with gestational ages between 31 and 40 weeks. The recordings were
collected at St. John’s Hospital in Bangalore using an electronic stethoscope (SS30LA) connected to
a Biopac MP36 data acquisition system. The stethoscope was placed on the lower abdomen of each
subject to capture the fPCG signal, which was sampled at 2,000 Hz. The dataset supports regression
tasks, where the goal is to predict continuous FHR values directly from the fPCG waveforms.

B Implementation Detail

B.1 Data Preprocess.

For the data preparation, we set the uniform sampling rate and interval length to 65 HZ and 6 seconds
respectively. In our case, 65 Hz covers most of the frequency bands of interest such as heart activity,
physical motions, and neuron activity up to the beginning of Gamma power (above 30 Hz). And
a great amount of samples are less than 6 seconds such as (Reyes-Ortiz et al., 2012 [Liang et al.|
2018} Bousseljot et al., 2009). We conduct basic pre-processing for each signal with identical setting:
(1) de-trended by subtract the result of a linear least-squares fit to series data from the raw time
series, and (2) Gaussian smoothed with standard deviation of 1.3 (0.02 seconds), ensuring a highly
consistent dataset for training.

Since the Transformer’s computational requirements scale quadratically with input length, to release
the full potential of our self-supervised algorithm, we segment our multivariate time series into
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intervals with a uniform length and pad shorter samples with zeros. This approach not only enables
parallel processing of samples in large minibatches but also addresses variation in the length of
individual samples.

For the downstream task, we split the data into train and test sets for linear probing evaluation with
portion of 80% and 20% correspondingly. The split is stratified on the anonymized subject ID if this
information is provided by the dataset.

B.2 Data Augmentation.

Since there are very few publicly available datasets containing multiple devices or modalities, we aim
to expand our curated training set to fully leverage the potential of self-supervised learning. Inspired
by data augmentation techniques in computer vision and natural language processing (Zhang et al.|
2017; |Carmona et al.| [2021)), we adopt a heuristic approach to augment the dataset. Specifically,
we augment each sub-dataset by a factor of 10. For each dataset, we sample two time series,
randomly extract a segment from one, and substitute it with a transformed counterpart, as outlined
in the pseudocode in Algorithm|I] As a result, our training set is expanded to 2,586,404 segments,
corresponding to 4,294 hours of data.

Algorithm 1 Time Series Mixup Augmentation
Input: Time series dataset X, gumber of augmentations n
Output: Augmented Dataset X

I: for: =1tondo

2:  Sample two time series x(1), x(?) ~ X
3:  Sample a chunk size A ~ U(0,1)
4
5

Sample start indices s1, s2 ~ U(0,1 — X)
Swap chunk from x® into x(1:

(1) (2)
S1:81+A — X82152+)\

x
6:  Append xV) into X

7: end for _

8: return X

B.3 Pretraining Framework.

Normwear is derived from the Masked Autoencoder (MAE) (He et al.,[2021)). The detailed hyper-
parameter choice is descibe in[6] We use a Conv2D layer with a kernel size of (9, 5) and a stride
of (9, 5), ensuring no overlapping patches. This layer takes input with 3 channels and projects
it to 768 channels, matching the hidden size of our encoders. In Normwear, we apply structured
masking independently to each variate along both the frequency and time axes, with respective
masking ratios of 0.6 and 0.5. This results in an expected overall masking ratio of 0.8 for each
variate. Only the unmasked tokens are passed to the encoder, reducing computational complexity.
To enhance representation learning, we introduce six additional transformer blocks as fusion layers,
interleaved with the original 12 encoder blocks, creating a total of 18 blocks. Each transformer block
has a hidden dimension of 768 and uses LayerNorm as in the original MAE. The latent embeddings
obtained from the encoder are projected from 768 to 512 dimensions. Learnable masked tokens are
reinserted at their original positions, and positional embeddings are added to guide the decoder in
reconstructing the input series. The lightweight decoder consists of two transformer blocks with
a hidden dimension of 512, followed by two Conv1D layers. The first Conv1D layer maps from
the flattened multivariate signal embedding to an intermediate dimension, and the second Conv1D
layer maps from this intermediate dimension back to the original multivariate signal space. A GELU
activation function is used between these layers, with BatchNorm applied to the input. The decoder
reconstructs the original input series, and the model is trained using Mean Squared Error (MSE) loss
on all data points. Our models are pre-trained for 45,000 steps with a batch size of 256, using the
AdamW optimizer with a learning rate of 10~*. We did not perform on-the-fly data augmentation,
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Figure 7: Visualization of original time series (left), CWT transformation image with structured
masking (middle), and reconstructed time series (right).

as suggested in the MAE framework, due to the high masking ratio. (An end-to-end example of the
input and output of this pretraining pipeline is illustrated in Fig. [7)

All the models are pretrained on 4 NVIDIA RTX 3090 graphical computing unit (GPU), with 24GB
of GPU memory on each card.

B4 MSITFE

For pretraining the representation alignment module, we have the training hyper-parameters in Table

Table 6: NormWear Pretraining Hyper-parameters.

Hyper-parameter Value

# cross-patches Transformer Encoder 12

# cross-channels Transformer Encoder 6 Table 7: MSiTF Hyper-parameter
# Transformer Decoder 2

# Attention Heads 12 Hyper-parameter | Value
Encoder Latent Size 768 Learning rate (Ir) le-3
Decoder Latent Size 512 Epochs 40
Feedforward Latent Size 3072 Batch size 32
Normalization LayerNorm L2 regularization 5e-6
Patch size (time axis) 9 Ir decay rate 0.997
Patch size (scale axis) 5 A 0.5
Optimizer AdamW T 0.5
Loss Scalar NativeScaler

Base Learning Rate (blr) le-3

Epochs 140

Batch size 192

20



789

791
792
793
794
795

796
797
798
799

800

801

802
803
804
805
806

807

808
809

810

811
812
813
814
815
816
817
818
819

820

821
822

B.5 Aligner Module, Objective Function, and Pretraining.

The Aligner Module matches two vectors: the fused representation f(q, H) = Y € RE with the
semantic embedding (Y") of ground truth sentence, which is obtained from prompting the ground
truth label using a template, for example, “The subject is presently {activity_label}". In the same
manner as the query embedding, the ground truth sentence is encoded using the same pre-trained
language model (Muzammil, 2021). At this stage, Y is leveraged to supervise the fused output Y.
The vanilla contrastive learning loss formula following [Zhang et al.| (2024b)) is:

N 1
Lossqy (K Y) = _% Z IOg eXp(Y Y ) ¥ @

1
i=1 Zk:1 eXp(Yi Yi)o
where N is the batch size and + is the learnable temperature parameter. We denote this loss function
as contrastive loss with batch normalizer. We also leverage a refine process after contrastive learning
using simlarity loss with per sample normalizer, which is essentially cosine similarity loss, with
vector distance as supplemental penalty:

ATY‘ R
Lossrefzne Y Y -t + )\|Y; - Yz|> (3)
NZ(( |Y||Y||>

where ) is hyper-parameters controlling the weight of the supplemental loss components.

B.6 Sentence template example for signal-sext alignment.

To enhance the expressiveness and diversity of supervision signals for our MSiTF alignment module,
we convert categorical labels into natural language descriptions using varied prompt templates. We
apply this strategy to several pretraining tasks. We present example sentence templates below for
emotion recognition and activity recognition to demonstrate the general idea of how we derive text
modality from the raw label:

For the emotion recognition task, we use:

¢ “The emotion detected is {}.”
 “This subject is feeling {}.”

¢ “The emotional state is {}.”

¢ “The identified emotion is {}.”

For the activity recognition task, we use:

* “ This subject is currently {}.”

2

* “The subject is engaged in { }.
 “ Current activity is {}.”
* “ Subject’s activity is {}.”

By exposing the model to multiple phrasings for the same label, this design helps it learn modality-
invariant representations that are more robust to linguistic variation and better aligned across modal-
ities. Specifically, to increase the diversity of semantic representations of query and ground truth
sentences in the pretraining signal corpus, we utilize large language models (GPT-3.5) (Achiam
et al., [2023) to generate 20 alternative variations for each sentence, from which only one is randomly
sampled during pre-training. During test-time inference on downstream datasets, each ground truth
label is converted into a sentence (details in appendix [B.6€), which is transformed into a semantic
embedding using a frozen text encoder. The sentence with the closest distance with the embedding
from our foundation model is used as the final inferential result.

B.7 Statistical Feature List.

Our statistical baseline includes features extracted from both the time and frequency domains. In the
time domain, we compute the mean, standard deviation, maximum, minimum, skewness, kurtosis,
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25% quantile, median, and 75% quantile. In the frequency domain, we extract the spectral centroid,
spectral spread, mean frequency, peak frequency, as well as the 25%, 50% (median), and 75% quantile
frequencies.

B.8 Radar Plot or Performance Trend.

To enhance the visual contrast between model performances across tasks, we applied the Softmax
function to the raw performance scores. This transformation rescales the scores to a range between
0 and 1, accentuating relative differences between models. While the Softmax transformation
emphasizes the relative improvement of our model over others, we note that the absolute scores may
differ from those originally reported.

C Ablation Study

Due to computational constraints, we will conduct the ablation study on our smaller dataset (37k
samples) to train and evaluate the model, establishing a proof of concept and demonstrating the
effectiveness of our approach in a controlled setting.

Fusion Schemes. Table [8| shows the performance of different fusion schemes, including (1) no
fusion, (2) cross-attention fusion, (3) [CLS]-attention fusion, and (4) mean-pooling fusion. We
excluded all-attention fusion in our ablation study because it is computationally prohibitible. Among
all the compared strategies, the [CLS] token fusion generally achieves the best accuracy with a minor
increase in parameters.

Table 8: Performance Comparison of Various Fusion Schemes

Downstream Tasks No fusion | Cross-Attention fusion | Mean pooling fusion |[CLS] Token fusion
WESAD 72.209 74.165 71.99 75.390
UCI-HAR 97.793 96.908 97.566 98.928
DriverFatigue 73.252 60.308 72.552 75.167

Activity Recognition Avg. 81.085 77.127 80.703 83.162
Epilepsy (eye open state) 90.966 84.075 89.817 92.203
Epilepsy (eye relaxation) 94.399 93.589 93.912 94.908
Epilepsy (health area) 87.866 86.899 87.248 88.117
Epilepsy (tumor area) 86.599 86.861 87.152 86.888
Epilepsy (seizure) 97.477 96.351 96.719 96.638
GAMEEMO 57.695 56.724 58.079 56.532

EEG Main Tasks Avg. 85.834 84.083 85.488 85.881
ECG-Abnormal 99.429 99.441 99.268 99.041
PPG-BP (HTN) 61.850 60.983 63.577 60.344
PPG-BP (DM) 58.333 62.800 62.200 59.459
PPG-BP (CVA) 61.319 61.458 59.236 70.278
PPG-BP (CVD) 48.417 53.585 46.961 52.596
PhysioNet EMG 93.715 95.49 86.749 98.184
Risk Evaluation Avg. 70.511 72.293 69.665 73.317
Noninvasive-BP 88.356 92.759 88.719 92.470
PPG-Hgb 95.031 93.413 95.086 94.766
Fetal-fPCG 98.582 99.145 98.771 99.088
Vital Signs Avg. 93.990 95.106 94.192 95.441
Micro Avg. 81.294 80.831 80.867 82.833
Macro Avg. 82.855 82.152 82.512 84.450
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s41 Masking Strategies in Pre-training. We ablated our masking strategy introduced in Section [3.4]
s42  Using a consistent mask ratio of 0.8 in all strategies, we found that applying masking along the scale
and time axes produced the best performance (details in Table [9).

Table 9: Performance Comparison of Different Masking Strategies

Unstructured Mask Time Mask Scale Mask Structured Mask
Downstream Tasks
(P =0.8) (P =0.8,P; =0.0) | (P, =0.0,Pf =0.8) | (P, =0.6,Pf =0.5)

WESAD 71.46 71.952 72.201 75.390
UCI-HAR 97.097 98.438 98.106 98.928
DriverFatigue 72.719 73.424 78.354 75.167
Activity Recognition Avg. 80.425 81.271 82.887 83.162
Epilepsy (eye open state) 89.521 91.895 89.407 92.203
Epilepsy (eye relaxation) 93.471 94.808 93.786 94.908
Epilepsy (health area) 86.812 88.510 87.317 88.117
Epilepsy (tumor area) 86.524 88.254 85.502 86.888
Epilepsy (seizure) 96.59 97.791 95.29 96.638
GAMEEMO 58.043 56.770 55.771 56.532
EEG Main Tasks Avg. 85.160 86.338 84.512 85.881
ECG-Abnormal 99.085 99.316 98.296 99.041
PPG-BP (HTN) 58.880 55.333 59.230 60.344
PPG-BP (DM) 61.074 48.386 58.896 59.459
PPG-BP (CVA) 56.389 58.472 64.167 70.278
PPG-BP (CVD) 52.572 46.557 55.666 52.596
PhysioNet EMG 85.160 95.490 83.922 98.184
Risk Evaluation Avg. 68.860 67.259 70.030 73.317
Noninvasive-BP 90.124 90.650 91.152 92.470
PPG-Hgb 95.314 95.055 94.713 94.766
Fetal-fPCG 98.630 99.121 98.926 99.088
Vital Signs Avg. 94.689 94.942 94.930 95.441
Micro Avg. 80.526 80.568 81.150 82.833
Macro Avg. 82.284 82.453 83.090 84.450
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Input Representations. TabldI0]compares the performance of two input representations: (1) CWT
scalogram and (2) raw time series. The CWT scalogram converts the time series into a time-
frequency representation, while the raw time series retains the original sensor data. Among the two
representations, the model trained on CWT scalograms demonstrates better performance, suggesting
that the time-frequency features enhance model accuracy.

Table 10: Performance Comparison Between CWT Scalogram and Raw Time Series as Inputs.

Downstream Tasks Raw Series Input | CWT Scalogram Input
WESAD 70.862 75.390
UCI-HAR 97.969 98.928
DriverFatigue 73.854 75.167
Activity Recognition Avg. 80.895 83.162
Epilepsy (eye open state) 91.978 92.203
Epilepsy (eye relaxation) 94.781 94.908
Epilepsy (health area) 88.045 88.117
Epilepsy (tumor area) 85.619 86.888
Epilepsy (seizure) 97.722 96.638
GAMEEMO 54.651 56.532
EEG Main Tasks Avg. 85.466 85.881
ECG-Abnormal 97.701 99.041
PPG-BP (HTN) 52.614 60.344
PPG-BP (DM) 62.012 59.459
PPG-BP (CVA) 56.181 70.278
PPG-BP (CVD) 54.812 52.596
PhysioNet EMG 93.756 98.184
Risk Evaluation Avg. 69.513 73.317
Noninvasive-BP 89.850 92.470
PPG-Hgb 93.832 94.766
Fetal-fPCG 98.977 99.088
Vital Signs Avg. 94.220 95.441
Micro Avg. 80.845 82.833
Macro Avg. 82.523 84.450

Semi-Supervised Learning (Partial-shot). To evaluate the generalizability and quality of learned
representations, we conducted a semi-supervised learning evaluation following the protocol estab-
lished by prior self-supervised methods (Caron et al.| 2021). Specifically, we assessed performance
on the NORMWEAR dataset using frozen features and a limited labeled subset (10%). We deliberately
excluded the commonly used 1% label evaluation due to the inherently small sample size of our
downstream medical dataset. A 1% labeling scenario would provide fewer than ten labeled instances,
rendering the results statistically unreliable and scientifically unjustified. Instead, we sampled 10% of
the training data while preserving the original label distribution, and then trained a linear classifier
atop the frozen NORMWEAR features for classification tasks and regression tasks. The results, sum-
marized in Table [IT] demonstrate the effectiveness of our method under realistic semi-supervised
constraints.
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Table 11: Semi-supervised learning on Downstream tasks. We linear-prob the model with 10%
labels and report AUCROC scores.

Downstream Tasks Statistical Chronos CLAP TF-C Modality-Specific | NORMWEAR (Ours)
WESAD 64.869 64.908 68.626 | 62.218 59.371 70.25
UCI-HAR 94.124 73.124 92.794 | 92.334 - 98.355
DriverFatigue 63.237 72.454 50.193 | 54.613 69.004 55.094
Activity Recognition Avg. 74.077 70.162 70.538 69.722 - 74.566
Epilepsy (eye open state) 82.186 80.082 84.103 88.02 89.152 85.456
Epilepsy (eye relaxation) 87.480 81.820 88.716 | 93.670 95.191 92.369
Epilepsy (health area) 86.096 77.682 82.651 84.940 87.377 85.471
Epilepsy (tumor area) 82.153 78.364 82.579 85.450 86.962 83.033
Epilepsy (seizure) 88.179 96.786 97.386 | 92.900 94.063 92.345
GAMEEMO 54.527 50.176 51.952 | 49.714 52.046 52.633
EEG Main Tasks Avg. 80.104 77.485 81.231 82.449 84.132 81.885
ECG-Abnormal 96.420 97.613 95.432 | 94.769 79.918 93.921
PPG-BP (HTN) 52.491 49.407 48.397 | 53.800 57.544 53.967
PPG-BP (DM) 41.254 48.574 38.664 | 45.383 56.532 57.545
PPG-BP (CVA) 83.056 51.944 48.125 | 51.667 64.792 66.597
PPG-BP (CVD) 55.753 47.547 59.505 | 55.651 47.586 54.614
PhysioNet EMG 92.993 70.248 92.415 | 79412 - 87.503
Risk Evaluation Avg. 70.328 60.888 63.756 | 63.447 - 69.025
Noninvasive-BP 90.589 93.783 91.614 | 92.707 92.671 90.694
PPG-Hgb 95.068 94.999 94712 | 94.981 94.916 94.633
Fetal-fPCG 99.020 99.153 98.889 | 98.902 - 98.813
Vital Signs Avg. 94.892 95.978 95.072 | 95.530 - 94.713
Micro Avg. 78.305 73.815 75.931 76.174 - 78.516
Macro Avg. 79.850 76.129 77.649 | 77.787 - 80.047

Permutation-Invariant Input Channel Analysis. In many multimodal or multichannel sensing tasks,
the input channel order is typically fixed and determined by hardware or preprocessing pipelines,
limiting flexibility during deployment. This constraint raises the question of whether Normwear
relies on a specific channel ordering to perform well. To examine this, we conducted an experiment
on datasets with multiple input channels by circularly shifting the channel order by one position and
evaluating the resulting model performance. As shown in Table[I2] the model performance remains
consistent across different permutations. These results suggest that our model does not rely on a fixed
input channel configuration and is robust to variations in channel ordering, making it more applicable
in practical scenarios where such inconsistencies may occur.

k-fold Analysis. To evaluate whether Normwear maintains consistent performance on datasets with
limited subject diversity, we conducted 5-fold cross-validation stratified by subject ID. We applied this
protocol to all downstream tasks containing 30 or fewer subjects to ensure a robust assessment. As
shown in Table[I3] our model consistently outperformed the baselines across all tasks, demonstrating
the robustness of our evaluation metric.

of Table 13: Performance on downstream health-related
tasks under linear probing using 5-fold subject-stratified
cross-validation. Classification reports AUC ROC; regres-
sion reports relative accuracy. All metrics are higher-is-

Table 12: Performance
NormWear with original input
channel order compared to random
shuffling across tasks.

better.
Task Original Order | Random Shuffle Downstream Tasks | Statistical Chronos CLAP TF-C :\g’::re“"'“
JgS::R“erL} ERGECGGSR) :: Z;‘L 333: WESAD 79.992 +0.707 | 83.332+0.841 | 87.824 £ 0.463 | 82701 +0.536 | 89.585 =+ 0.683
bR = e C (E)EG) TE7E e UCI-HAR 95.602 + 0.148 | 91.956 + 0.256 | 96.864 £ 0.175 | 97382+ 0.138 | 98.179 + 0.06
rive Fatigue 743 .72 - - -

MO ) RN 211 = 17> | 3051 507 | oo 2055 | 20099 | 7902075
Noninvasive-BP (PCG, PPG, ECG) 0.924 0.914 s — - i - - e 2925 + 0. - -
PPG-HGB (Red, IR) 0936 0938 92.83 +0.386 | 92.223 0356 | 92.612+0.272 | 88707 £0.622 | 93.381 + 0.516

Avg. 80.464 & 0.734 | 79.337 £ 1.036 | 81.534 £ 0.385 | 79.348 £ 0.699 | 83.596 % 0.660
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Table 14: Checking reliance on demographic information. Simple baseline: for regression tasks
(yellow), the mean prediction is used; for classification tasks (blue and red), the mode prediction is
used. NormWear-Medium and NormWear-Large refer to NormWear’s pretrained checkpoints trained
on 2.58 million and 8.97 million signal segments, respectively.

Downstream Tasks Empirical Distribution | Demographic NormWear-Medium 32‘:[2%;:::‘;4:&“'“ NormWear-Large 32::%;::::;@
WESAD 50.000 49.907 74.227 69.06 76.06 68.755
Noninvasive-BP 92.988 92.954 91.427 90.84 92.42 92.528
PPG-Hgb 94.816 95.634 94911 95.835 94.632 96.384
Fetal-fPCG 99.033 99.039 98.997 99.001 99.072 99.097
Vital Signs Avg. 95.612 95.876 95.112 95.225 95.375 96.003
PPG-BP (HTN) 50.000 59.899 62.746 64.482 62.341 61.291
PPG-BP (DM) 50.000 47.297 62.613 47.86 55.893 60.135
PPG-BP (CVA) 50.000 81.875 67.639 83.681 70.625 77.847
PPG-BP (CVD) 50.000 71.011 51.504 70.37 51.773 67.466
Risk Evaluation Avg. 50.000 65.021 61.126 66.598 60.158 66.685
Micro Avg. 67.105 74.702 75.508 77.641 75.352 77.938
Macro Avg. 65.204 70.268 76.821 76.961 77.198 77.148

Demographic Anlysis. Several previous works (Abbaspourazad et al., 2023} [Narayanswamy et al.,
2024) have used learned representations to infer demographic labels. These results suggest that
wearable signals do contain demographic information. In Table [T4] we wanted to investigate that
NormWear does not extract only demographic information (e.g. age, sex, height, etc. depending
on what is available within each dataset), hence indicating that the representation that our proposed
model extracted and the demographic could be used as complementary features to each other during
downstream modeling. From Table we observe that demographic information and wearable
signal representations each excel at different tasks. In most cases, concatenating them improves
overall performance. However, the occasional performance drop after concatenation suggests a
confounding relationship between the two, implying that demographic data and NormWear’s wearable
representations capture different aspects.

D Statistical significance on the model comparison

We performed a statistical analysis to test the significance of the differences in model performance.
First, we ran the downstream evaluations 100 times for each model on every task without fixing the
random seed. The results remained consistent due to the stable optimization process.

Next, we applied a permutation test on the results from these 100 runs to determine whether
NormWear’s AUC ROC score is greater than that of the baselines. The reported p-value repre-
sents the probability of observing a test statistic as extreme or more extreme than the observed
difference under the null hypothesis, which assumes that NormWear’s score is not higher than the
baseline. In nearly all cases, the p-value is less than 0.01, confirming the statistical significance
and indicating the robustness and superiority of our approach. Table [§] presents the statistical test
results across different task groups (as indicated by the color coding in the main tables) along with
the overall average scores.

We also include a critical difference (CD) diagram to visually compare the performance of multiple
models across datasets and highlight statistically significant differences. To generate the CD diagram,
we first conducted a Friedman Chi-square test on the models’ scores across all downstream tasks,
which yielded a p-value of P < 0.001, confirming that the models’ performances come from different
distributions. We then applied the Conover post hoc test to examine pairwise differences between
model performances; the p-values for NormWear compared with the baselines are shown in the last
row of Table[§] Finally, based on these results, we generated the CD diagram displayed in Figure
[ In this diagram, our proposed model, NormWear, is well separated from the others, indicating its
statistical superiority over the competitive baselines.
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- - S = < Critical difference diagram of average score ranks
Ours/Baselines Stats Chronos CLAP TFC 0.55 0.60 0.65 0.70 075 0.80 0.85

NormWear - activity P<.01 P<.01 P<.01 P<.01 :
NormWear - eeg P<.01l P<.01 P<01 P<.01 —;—o T L

NormWear - risk P<01 P<01 P<.01 P<.01
NormWear - vital P <.01 P <.01 P <01 P<.01 stats j ’ 0.83) normwear
NormWear - micro avg. P < .01 P<.01 P<.01 P<.01 chronos (0.5! {0.65) tfc

NormWear - macro avg. P < .01 P <.01 P<.01 P<.01
Conover post hoc P <.001 P<.001 P<.001 P<.05

Figure 8: Permutation test on models’ Figure 9: Critical Difference Diagram.

performance.
s E Supplementary Metrics

907 Normwear’s performance is summarized in Fig. f] and detailed in Table [T5] Normwear consistently
exceeds the baseline models by a wide margin, demonstrating a clear advantage.

Table 15: Details of Incidental Performance Metrics.

Task Group |Methods AUC ROC | AUCPR | Accuracy | Precision | Recall | F1 Score
Statistical 75.082 63.996 65.298 61.450 61.56 61.034
Activity Chronos 79.935 65.622 66.175 62.044 61.512 | 60.522
Recognition | CLAP 76.897 67.026 66.349 62.790 62.826 62.435
TF-C 77.880 68.228 67.175 64.967 64.798 | 64.783
NormWear (Ours) 83.102 76.232 75.254 72.606 72177 | 72.053
Statistical 79.720 50.172 73.921 63.567 57.529 57.948
EEG Main Chronos 80.677 55.507 75.285 72.442 52.520 | 47.671
Tasks CLAP 82.100 57.518 76.391 68.506 61.961 62.650
TF-C 84.302 61.864 76.825 71.702 65.517 | 67.889
NormWear (Ours) 85.883 66.841 79.182 72.485 69.158 | 69.698
Statistical 71.032 53.783 79.688 52.718 53.235 | 50.807
Disease Risk | Chronos 62.060 40.673 71.910 45.512 43.739 40.569
Evaluation CLAP 66.274 48.232 81.327 53.028 54.721 52.804
TF-C 69.416 46.312 78.929 52.123 52.352 | 51.349
NormWear (Ours) 73.165 51.666 81.530 54.133 56.314 | 54.428
Statistical 75.317 51.596 74.503 58.804 56.618 55.709
Micro Chronos 73.082 51.596 72.113 59.590 50.806 | 47.401
Average CLAP 74.729 55.705 76.357 61.171 59.238 | 58.669
TF-C 77.063 56.916 75.737 62.523 60.107 | 60.652
NormWear (Ours) 80.240 62.649 79.336 65.168 64.624 | 64.061
Statistical 75.278 55.983 72.969 59.245 57.441 56.596
Macro Chronos 74.224 53.934 71.123 59.999 52.590 | 49.587
Average CLAP 75.091 57.592 74.689 61.441 59.836 59.296
TF-C 77.199 58.801 74.310 62.931 60.889 | 61.340
NormWear (Ours) 80.717 64.913 78.656 66.408 65.883 | 65.393
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F Scaling up the Pretraining Data Size

In addition to demonstrating that NormWear outperforms all
strong baselines, we further investigate the effect of varying
pretraining data size on the model’s downstream performance
to examine whether the scaling law applies to our proposed
methodology. As shown in Figure[I(] the overall performance
(measured by accuracy) significantly improves as the pretrain-
ing data size increases from approximately 37k (62 hours) to
nearly 2.5M (4000 hours) samples of wearable signal data. This
observation indicates that our model adheres to the scaling law,
highlighting its potential scalability and suitability for future
large-scale applications.

G Channel Fusion Complexity analysis

When conducting multi-channel modeling, for example, when
the input comprises an arbitrary number of signals, a fusion
operation needs to be conducted across all channels in order to
let the model extract correlation information. Because we will
deploy the model on an edge device like Jetson Nano, other
than empirical evidence of the performance, we also have to
consider the computation complexity of different approaches.
A brief visualization of the runtime complexity of different
approaches is presented in figure[TT] The detailed derivation is

presented in the following subsections.
le6
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Figure 10: Impact of scaling
the pretraining dataset on down-
stream tasks. The y-axis repre-
sents the average accuracy across
tasks, while the x-axis denotes the
size of the pretraining dataset in
terms of the number of samples.
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Figure 11: Visualization of runtime complexity when scaling up the number of channels or the

sequence length.

G.1 All-Attention

For the approach of conducting self-attention by concatenating all the patches, we arrive the Big-O

complexity expression as follows:

* We denote C' as the number of input channels, d as the embedding size, L as the number of
patches convolved from the time series in each channel (proportional to sequence length),
and 2 € RE*L*4 a5 the input data before feeding into the fusion block. We have a total of

L - C patches.

* When calculating the attention scores, dot products are computed for each pair of the patches,

which results in the following calculation process:

where "1), 2), 3)" represents the operations conducted at the first, second, and third rounds
of entering the entire nested loops. The complexity for the first round of operation results in
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Algorithm 2 All-Attention Complexity

fori € [1,2,...,C] do
for j €[1,2,...,L] do
N « exp(attn(z; ;)) == O(L-C)
fork €[1,2,...,C] do
fori € [1,2,...,L] do
1) Calculate dot product: attn(xz; j, x,;) = xT T = 0(2d)

2) Softmax over attention scores: SRUN(TLs.Tk.1)) 50.0) = 0(1)
3) Weighted average: x; ; + attn x”,xk]\g zpy = 0(2d)

end for
end for
end for
end for
943 a complexity of:
cC L C L c L C c L
> 2d=>3NL-2d=> > C-L-2d=0(d-(L-C)*) (4
i=1 j=1k=1 (=1 i=1 j=1k=1 i=1 j=1

944 where in the case of multi-head attention, the dot product still has the complexity of O(2d),
945 and because the number of heads is a constant, the final complexity is equivalent to the
946 result in equation 4]
947 * Similarly, the softmax operation will result in a complexity of O((L - C')?), and the final
948 weighted average operation will also have a complexity of O(d - (L - C')?), which results in
949 total complexity of

O(d-(L-C)*)+O((L-C))+0(d-(L-C)*)=0(d-(L-C)?% (5)

950 G.2 Cross-Attention

951 For the pairwise cross-attention approach following guidance of |Chen et al.| (2021]), we have the
952 operation defined as

Algorithm 3 Cross-Attention Complexity

foriin[1,2,....,C — 1] do
for jin[1,2,...,C] do
2) N = exp(attn(z;1)), = O(L)
for kin [2,3,...,L] do
1) Calculate attn(z; 1,z %), = O(2d)
2) Softmax over all-attention scores, w, = 0(1)
3) Weighted average: z; 1 + %5, = O(2d)
end for
end for
end for

953 with the same notion in the previous subsection. The total complexity is
O(C?-L-2d)+0O(C*-L)+0(C?-L-2d) =0(d-L-C?% (6)

94 G.3 [CLS]-Attention

955 This is the approach that we adopted for the final version of our proposed foundation model. Only

956 the embedding corresponding to the [CLS] token of each channel is involved during the self-attention
957 operation. Therefore, the complexity is

O(d-C?) @)
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G.4 Mean-pool Attention

For fusion with mean-pool attention, we first calculate the mean representation for each channel,
resulting in a complexity of O(C - L - d). And self-attention with Tese mean representations has the
same complexity as [CLS]-attention, which is O(d - C?). Thus, the total complexity is

O(C-L-d)+0(d-C*)=0(d- (L C+C?) ®)

H MSITF Complexity analysis

Algorithm 4 MSiTF Runtime Complexity

key embedding Ej, = k(S) € RP*? = O(d?)

value embedding £, = v(S) € RP*4, — O(d?)

Relevance score Rel = E}'Q € RP, = O(pd)

likelihood parameter E; = [(S) € RP*2 = O(d?)

Importance score sampling Wi, € R? (equation[l) = O(p)

Fused embedding Einat = EL (aWimp + BWrer + Wyee) € RY, = O(pd)

Inference final score ¢ = arg max C’iTEfiml, = O(cd)
1€|C|

Where d being the latent size, p being the number of total patches, ¢ being the number of available
ground truth choice, k and v being the key and value linear mapping, S € RP*? as the signal
embeddings, ) as the query sentence embedding, and C as the list of available answer choice
sentences. The total runtime complexity is O(d? 4+ pd + p+ cd). Since d is constant, we have runtime
complexity of O(p + ¢).

Regarding memory complexity of MSiTF, with m being the size of text encoder, w being the size of
normwear, we have (i) Signal representations: O(pd); (ii) Text representations: O(cd); (iii) Total:
O(m+w+d(p+c)). Since m, w, and d are all constants, we have memory complexity of O(p + c¢).

I Feature Visualization

Feature visualization serves as a tool to interpret and analyze the internal representations learned
by the model. By examining activation patterns or embedding structures at various layers, we aim
to understand how the model encodes input signals and whether these representations align with
relevant semantic or structural information. This analysis provides insight into the effectiveness of
the learned features and can inform architectural or training modifications to improve performance
and generalization.

I.1 The model is agnostic to the input signals

This section investigates whether, without requiring the signal modality type information as input,
NORMWEAR can effectively distinguish between different signal sources. We randomly sampled
500 samples for each sensor type and fed them into our pretrained model. We use t-SNE (Van der
Maaten & Hinton, 2008)), with PCA (Jolliffe & Cadimal, [2016)) initialization to visualize the learned
representations corresponding to the [CLS] special token at the last layer. The PCA preserves the
global structure, while t-SNE emphasizes local relationships in the data. From Figure [I3a), we
observe that representations from sensors located at the same body position are clustered closely
together, while representations from different body locations are clearly separated. This suggests that
our model is signal-agnostic, as it can recognize the signal type differences, map their representations
appropriately in the embedding space, and guide feature extraction within each Transformer block.

1.2 Waveform visualization

Figure [I3](b) under “Feature Associations" shows the features extracted by our model. Each patch
corresponds to a representation with a vector size of R7%®. When ordered by time sequence, these
representations form 768 waveforms per layer, representing the model’s extracted features. The figure
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displays 64 randomly sampled waveforms from a selected layer. The features highlighted in purple
and gray indicate the top 10 patterns positively and negatively associated with the target task (diabetes
classification, in this example), with associations determined by linear regression parameters during
linear probing. Additionally, our relevance-based fusion mechanism identifies the contribution of
each time step during inference, highlighted by red dots in the “Time Step Relevance" section of

Figure[I3](b).

Such a visualization pipeline can assist researchers and clinicians by offering insights into how the
model reaches its final predictions. Given the millions of parameters and hundreds of waveform
features per layer, visualizing these features individually is inefficient for understanding the overall
behavior of the proposed foundation model. As a result, we use several techniques in nonlinear
dynamic analysis (Thompson et al., [{1990) to quantify the overall patterns of these extracted features,
which are discussed in detail in section[L3]

LI.3 Quantify the intrinsic behaviors: nonlinear dynamics analysis on the layer-wise
waveforms

Understanding the representations extracted by intermediate layers is crucial to interpreting our
model’s behavior. To quantify the meaningfulness of these representations, we conducted a nonlinear
dynamics analysis inspired by chaos theory. This method analyzes the features’ intrinsic behaviors
through metrics like the Lyapunov exponent (Wolf et al. |1985) (sensitivity to initial conditions),
Hurst exponent (Q1ian & Rasheed, 2004)) (self-correlation/seasonality), and persistence entropy (Yan
et al.,[2023b) (unpredictability in system states). We obtain the following key observations:

1. Deeper Layers Capture Higher-Order Complexity.

* For signals such as GSR, EEG, and ACC, deeper layers show lower self-correlation (DFA
(Hu et al., )2001)) and higher unpredictability (persistence entropy), indicating a transition to
representations that are less periodic and more chaotic.

* The decrease in the Lyapunov exponent across layers suggests reduced variation in extracted
features, aligning with the idea that deeper layers capture more abstract, long-term patterns
with broader receptive fields.

2. Modalities with Simpler Dynamics. In contrast, PPG and ECG signals, dominated by regular
heart activity, exhibit more stable patterns across layers. This aligns with their simpler waveform
structures and less complex dynamics compared to signals related to neural and physical activities.

These visualizations reveal that the model progressively transforms raw sensory data into representa-
tions aligned with the complexity of each signal. For GSR and EEG, deeper layers exhibit increased
unpredictability and reduced periodicity, highlighting the extraction of nuanced, higher-order patterns
critical for human sensing. In contrast, the stability of representations for PPG and ECG reflects
their simpler dynamics, demonstrating the model’s adaptability to varying signal characteristics. This
analysis confirms that the intermediate representations are purposefully optimized to capture the
temporal and structural nuances of each modality, supporting the conclusion that the model learns
meaningful features tailored to human sensing tasks.

DFA . Persistence Entropy H1 . Persistence Entropy HO . Lyapunov Exponent

s 10 o s 10 o s 10 o s 10

. .
Layers

. .
Layers

. .
Layers
—4— PPG ECG —+$- GSR —4 EEGF —- ACC_X

. .
Layers

Figure 12: Nonlinear dynamic analysis on the waveforms extract at different layers of our model.
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Figure 13: Feature visualization.

I.4 T-SNE plot among classes

In this section, we present T-SNE plots of NormWear’s embeddings across different classes to provide
insights into their structure and assess their suitability for sample similarity-based information
retrieval. It is important to note that these plots are exploratory in nature and do not serve as a claim
of the embeddings’ superiority. As shown in Figures [[4a] and [T4D] clear class separations can be
observed in certain scenarios. For example, EEG samples from seizure subjects and normal subjects
are distinctly separated, and physical activity types are well-clustered. For ECG data, abnormal
heartbeats tend to form cohesive clusters. However, it is essential to recognize that these T-SNE plots
reduce the latent representations into a 2D space, which may not fully capture the inherent properties
of the embeddings in their original high-dimensional form.

Standing

Walking

Laying

Walking Downstairs
Walking Upstairs
Sitting

® Normal State
© Experiencing Seizure

ecoceeo0

(a) Visualization of embedding on EEG signals. (b) Visualization of embedding on signals from IMU
Sensors.

Figure 14: Visualization of example signal embeddings.
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L.5 Supplementary Qualitative Analysis of MSiTF

Relevance Score Importance Score

QI: Is the person's eyes open?

Q2: Is the person under relexation? N[\

Q3: What is the situation of the
person's brain?

531008

Q4: Is this an area with tumor ?

Q5: Is the person not /\/\
experiencing a seizure? | \f L
161 161

Time Step ’ ! Time Step

— Single Channel EEG

0

Figure 15: Visualization of relevance scores(left) and importance scores (right) for a single chan-
nel EEG sample from the Epilepsy dataset under five task-specific questions. The background
color follows a yellow-to-red scale, where darker regions indicate higher scores.

To understand how each of our proposed gating modules in MSiTF—relevance, recency, and im-
portance—select useful features for different tasks, we visualize the scores assigned to each time
window. As shown qualitatively in Figure[I3] the heatmaps reveal that both relevance and importance
scores are sensitive to task differences. For example, in the eye closure detection task, the model
focuses on the last few patches, whereas in the seizure detection task, it emphasizes patches with
large fluctuations. A similar pattern is observed for the importance score, where patches are weighted
differently across tasks. This suggests that our gating mechanism can adaptively select relevant
features based on the task. We include a figure of the recency score (Figure [I6) for completeness.
Since the recency score is derived from a fixed decay function and is not learned, it remains the same
across tasks.

To improve visualization, we aggregated token scores using a window size of 9, which matches our
tokenization patch size. We then applied Z-score normalization to ensure comparability across tasks.
The sample was selected from the Epilepsy dataset due to its multiple and diverse task types.

Recency Score
1.0

$0100§

0.0

160

0 Time Step

Figure 16: Recency score generated by a decay function. The sample is selected from the Epilepsy
dataset.
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Figure 17: Uncurated random samples on Phyatt scalogram, using a NORMWEAR trained in our
training set. The masking ratio is 80%
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NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:
* You should answer [Yes] , ,or [NA] .

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).
The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:
* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
* Keep the checklist subsection headings, questions/answers and guidelines below.
* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: [NA|

Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: [NA|

Guidelines:
* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.
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 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
Justification: [NA|
Guidelines:
* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

» The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: [NA|
Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

* If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
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* Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: [NA|

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
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Answer: [Yes]
Justification: [NA]
Guidelines:
* The answer NA means that the paper does not include experiments.
* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.
* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: [NA|

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: [NA]
Guidelines:
* The answer NA means that the paper does not include experiments.
* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.
* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.
* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
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10.

11.

Answer: [Yes]
Justification: [NA|

Guidelines:
* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.
* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: [NA|

Guidelines:

» The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]
Justification: [NA]
Guidelines:
* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.
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12.

13.

14.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: [NA]
Guidelines:
* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: [NA|
Guidelines:
* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: [NA|

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.
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15.

16.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: [NA]

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]
Justification: [NA]

Guidelines:
* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.
* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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