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Abstract

Time-series foundation models excel at tasks like forecasting across diverse data1

types by leveraging informative waveform representations. Wearable sensing data,2

however, pose unique challenges due to their variability in patterns and frequency3

bands, especially for healthcare-related outcomes. The main obstacle lies in crafting4

generalizable representations that adapt efficiently across heterogeneous sensing5

configurations and applications. To address this, we propose NORMWEAR, the6

first multi-modal and ubiquitous foundation model designed to extract generalized7

and informative representations from wearable sensing data. Specifically, we8

design a channel-aware attention mechanism with a shared special liaison [CLS]9

token to detect signal patterns in both intra-sensor and inter-sensors. This helps10

the model to extract more meaningful information considering both time series11

themselves and the relationships between input sensors. This helps the model to12

be widely compatible with various sensors settings. NORMWEAR is pretrained13

on a diverse set of physiological signals, including PPG, ECG, EEG, GSR, and14

IMU, from various public datasets. Our model shows exceptional generalizability15

across 11 public wearable sensing datasets, spanning 18 applications in mental16

health, body state inference, vital sign estimation, and disease risk evaluation. It17

consistently outperforms competitive baselines under zero-shot, partial-shot, and18

full-shot settings, indicating broad applicability in real-world health applications.19

1 Introduction20

Mobile and wearable sensors have been shown to be valuable for the field of healthcare by passively21

and continuously tracking physiological signals such as photoplethysmography (PPG) for pulse, elec-22

trocardiography (ECG) for heart activity, galvanic skin response (GSR), and electroencephalography23

(EEG) for brain activity. These time series signals are beneficial for early diagnosis, personalized24

health insights, and remote patient monitoring (Zhang et al., 2024a).25

Recently, several foundation models have emerged for time series modeling, including Ansari et al.26

(2024); Abbaspourazad et al. (2023); Woo et al. (2024); Foumani et al. (2024). Another common27

approach for signal modeling involves converting raw signal series into 2D images or spectrograms,28

using fixed-size sliding windows, followed by the use of visual encoders like Vision Transformers29

(ViT) to extract representations for making inferences (Semenoglou et al., 2023; Wimmer & Rekabsaz,30

2023; Vishnupriya & Meenakshi, 2018; Chun et al., 2016; Krishnan et al., 2020; Dosovitskiy et al.,31

2020). These works have significantly advanced the field and provided valuable insights, yet two32

main issues still exists which need further exploration to fully understand their potential in wearable33

scenarios. First, contrastive learning-based foundation models (Abbaspourazad et al., 2023) rely on34

a predefined set of input signal types, making them unsuitable when transferring to scenarios with35

different types and numbers of sensors. Second, while both time series foundation models (Ansari36

et al., 2024; Zhang et al., 2022; Woo et al., 2024) and spectral-based approaches (Semenoglou et al.,37

2023; Wimmer & Rekabsaz, 2023) attempt to address this issue by training a generic encoder that38
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Figure 1: The role of our framework. Several icons from Freepik (n.d.); Zhang et al. (2024a).)

can handle type-agnostic series, they remain limited to processing only univariate series. Because39

of this constraint, these previous works fail to account for the heterogeneity of multivariate input40

data; specifically, they do not capture the complex relationships between signals from sensors located41

on different body parts. These two limitations of recent approaches hinder their generalization and42

usefulness for wearable health monitoring.43

Moreover, Wearable-based multimodal physiological signals present unique challenges that distin-44

guish them from general time series data, such as stock prices or weather patterns. Wearable signal45

modalities, such as PPG and EEG, vary in characteristics like dimensionality, sampling rate, and46

resolution, often requiring modality-specific preprocessing. Existing methods tokenize raw signals47

(Ansari et al., 2024; Zhang et al., 2022) or convert them into image or spectral representations (Wu48

et al., 2023; Mathew et al., 2024; Vaid et al., 2023). While effective for specific tasks, these ap-49

proaches lack generalizability and fail to provide a consistent preprocessing pipeline across multiple50

modalities. A consistent framework that accommodates diverse signal requirements is essential for51

training deep learning-based foundation models and advancing multimodal signal analysis.52

In this work, we present NORMWEAR, a normative foundation model, aiming to learn effective53

wearable sensing representations, addressing the above-discussed research gaps. NORMWEAR has54

been pretrained on more than 2.5 million multivariate wearable sensing segments, comprising total of55

14,943 hours of sensor signal series, using publicibly avaliable datasets. We evaluated NORMWEAR56

on 18 public downstream tasks against competitive baselines across zero-shot, few-show, and full-shot57

settings. Overall, our contributions with the proposed NORMWEAR healthcare modeling framework58

can be summarized as follows:59

• To our knowledge, we are the first to develop a foundation model specifically designed for60

wearable sensing data, capable of processing arbitrary configuration of multivariate signals61

from sources such as the heart, skin, brain, and physical body.62

• NORMWEAR comprises novel methodologies built upon the advanced practice in both the63

fields of signal processing and deep learning, including (a) continuous wavelet transform64

(CWT) based multi-scale representations for modality- and number-agnostic tokenization,65

(b) channel-aware attention layer that enables the model to process arbitrary multivariate66

inputs, and (c) a human sensing adapted fusion mechanism that enabled NORMWEAR to67

achieve zero-shot inference on health related wearable sensing tasks.68

• We are also the first to integrate and process a comprehensive wearable signals dataset69

with varied number of input channels for training self-supervised learning algorithms, with70

thorough downstream evaluation. These datasets cover key health applications, including71

mental and physical state inference, vital sign estimation, and disease risk evaluation.72

Our proposed NORMWEAR aims to provide a generalized data representation solution for smart73

health monitoring, benefiting the general public, and serving as a fundamental tool for researchers74

and professionals to address future healthcare challenges. We made the code and cleaned data to be75

publicly available to spur reproducible research.76

2 Related Work77

Foundation models have emerged as a transformative paradigm in machine learning, enabling78

generalizable and reusable representations across diverse downstream tasks (Bommasani et al., 2022).79
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In the time series domain, recent works (Ansari et al., 2024; Foumani et al., 2024; Abbaspourazad80

et al., 2023; Narayanswamy et al., 2024) have demonstrated success in tasks such as forecasting,81

classification, and anomaly detection. However, their generalizability to health-related wearable82

signals remains limited due to the lack of in-depth evaluation, reliance on specific sensor types (Wang83

et al., 2025; Jiang et al., 2024; Yang et al., 2023) and univariate data (Pillai et al., 2024; McKeen et al.,84

2024), as well as the inability to handle the heterogeneity of multivariate wearable signals. In contrast,85

NORMWEAR builds upon these principles by introducing a modeling framework that is agnostic to86

the sensor modality and number of input channels, as stated in section 1, and is presented in details87

in section 3. NORMWEAR has been evaluated on 18 digital healthcare tasks and demonstrate peak88

performance against solid time series modeling baselines, including common statistical approach,89

SoTA model in time series with self-supervised learning (Zhang et al., 2022), SoTA spectrum based90

modeling approach (Wu et al., 2023), and SoTA time series forecasting model (Ansari et al., 2024).91

Our work not only generalizes to arbitrary sensor configurations but also ensures compatibility across92

multivariate data, addressing key limitations of earlier approaches.93

3 Method94

3.1 Dataset construction for model pretraining and downstream evaluation95

We curated a collection of 9 publicly available datasets (Table 5) exclusively for model pretraining,96

resulting in approximately 230,962 multivariate time series segments, comprising 4,294 hours of97

total sensor signal series, across various modalities, including PPG, ECG, EEG, GSR, PCG, and98

inertial measurement unit (IMU) data. To address the dataset size limitation, we then applied herustic99

data augmentation (algorithm 1) to expand the pretrain dataset to 2.5 million segments, comprising100

14,943 hours of total sensor signal series. Notably, each sample segment may contain a variable101

number of input channels depending on the sensor signals provided by the respective datasets. This102

input configuration aligns seamlessly with our model’s design, which is optimized to flexibly handle103

arbitrary numbers and configurations of sensor signal inputs.104

To prevent potential data leakage in downstream tasks, we evaluate our model’s transferability using105

an additional 11 publicly available datasets encompassing 18 modeling tasks, which include affective106

state classification, physical state recognition, biological estimation, and disease risk evaluation.107

Details about the datasets is presented in Table 4.108

3.2 Tokenization109

Tokenization is a fundamental term widely used in natural language processing. In the context of110

wearable sensing, we leverage this term to represent the stage of signal processing before sending the111

processed data to the deep learning-based encoder. Spectral methods, which utilize the short-time112

Fast Fourier Transform (FFT) (Brigham, 1988) with a sliding window to compute spectrograms,113

are widely regarded as the benchmark approach for tokenization. However, due to the inherent114

trade-off between time and frequency resolution, the spectral representation with a fixed window size115

cannot be generalized. This is because the window size has to be modulated accordingly when the116

modality varies. To enhance transferability, we propose a well-designed signal processing pipeline117

that preserves information in both the frequency and time domains across multiple scales. We begin118

by calculating the first and second derivatives for each single signal series, as suggested by Slapničar119

et al. (2019), followed by computing the continuous wavelet transform (CWT) on both the raw and120

derivative series, resulting in three scalograms. Then, we stack the three scalograms to form data121

in RGB-image-like format. The derivatives capture the rate of signal change at different moments,122

while the wavelet transform provides a multi-resolution encoding that preserves information from123

both the time and frequency domains Torrence & Compo (1998). For the wavelet transform, we124

use the Mexican Hat wavelet for signal convolution, as recommended by previous studies (Burke125

& Nasor, 2004; Hosni & Atef, 2023; Hassani, 2021; Negi et al., 2024; Nedorubova et al., 2021b).126

We apply scales ranging from 1 to 64, following the guidance of (Sengupta et al., 2022; Nedorubova127

et al., 2021a), which sufficiently covers most frequency bands of interest for physiological signals.128

Finally, this RGB-like scalogram is divided into patches, which is treated in the same way as tokens129

in an ViT (Dosovitskiy et al., 2020). In this way, this tokenization approach can be applied to various130

types of sensing signals without sensor-specific adjustments or reconfigurations.131

3.3 Share-weighted Encoder132

Rather than concatenating tokens from all channels into a single long sequence and processing them133

with a full attention transformer, we treat each channel of the multivariate signal as an independent134
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Figure 2: Overview of the pretrain pipeline.

input stream. Although all channels share the same transformer backbone, the forward pass is executed135

separately for each one. This design allows the model to first learn the temporal characteristics of each136

sensor without interference from others. It not only reduces computational cost but also increases137

flexibility. Because each channel is processed independently, the model can be pretrained on datasets138

with varying numbers or types of sensors and later fine-tuned on a target task with a different sensor139

configuration.140

3.4 Channel-Aware Attention with Liaison Special Token141

Following the tokenization step, we adopt common reconstruction-based pretraining strategies from142

Masked Auto Encoder (MAE) (He et al., 2021; Huang et al., 2023; Zhang et al., 2023), where input143

tokens are randomly masked and the model is trained to reconstruct the original time series using144

mean squared error (MSE) loss. Inspired by Huang et al. (2023), we experiment with four masking145

strategies, as shown in Figure 2 (a), including masking on (1) temporal and scale, (2) scale only,146

(3) temporal only, and (4) unstructured axes. We observe that the temporal and scalar masking147

yields the best performance for the downstream tasks. For the model architecture, we construct the148

backbone of our proposed framework with a convolutional patching layer followed by 12 standard149

Transformer blocks (Vaswani et al., 2023). For the same reason, NORMWEAR uses a lightweight150

decoder consisting of 2 Transformer blocks, combined with a linear projection layer and a convolution151

layer to reconstruct the raw physiological signals both temporally and spatially. We also prepend a152

[CLS] token to each signal channel, following standard practice in transformer models, for learning a153

global representation of the input sequence for that channel.154

Another important point to consider is that although empirical studies (Nie et al., 2023; Abbaspourazad155

et al., 2023) show that channel-independent structures effectively capture local patterns, they fail to156

account for relationships across channels. To address this, we use the [CLS] token from each signal157

channel as a liaison token, allowing them to exchange information through the channel-aware fusion158

layer afrer every other encoder block. We explore several fusion approaches and different design of159

liaison token as shown in Figure 2 (b), with each method described below:160

(1) All-Attention Fusion: This approach involves concatenating all tokens from each modality161

without considering their individual properties and fusing the information through a self-attention162

module. However, this method requires quadratic computation time, as every token passes through163

the self-attention module, making it impractical for real-world applications.164

(2) Cross-Attention Fusion: In addition to the cross-attention mechanism used in Cross-ViT (Chen165

et al., 2021), we introduce a slight modification to fit in our problem setting. We propose a symmetric166

fusion method, using the [CLS] token from each modality as an intermediary to exchange information167

between the patch tokens of another modality, then projecting the information back to its original168

modality in the subsequent Transformer layer. While this strategy is efficient, it restricts the model169

to handling only two time series signals or modalities, which deviates from our goal of building a170

general model capable of processing an arbitrary number of channels.171
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Figure 3: Memory stream inspired temporal fusion mechanism for representation alignment.

(3) [CLS]-Attention Fusion The [CLS] token serves as an abstract global representation for each172

signal modality. Here, we propose a hybrid fusion approach. We stack the [CLS] tokens from all173

signal modalities and perform feature fusion using a self-attention mechanism. The fused [CLS] token174

is then reattached to its original channel, enabling the newly learned information to be propagated to175

each patch token in subsequent transformer encoder layers.176

(4) Mean-Pooling Fusion Similar to the [CLS]-Attention Fusion approach, we employ mean-pooling177

within each channel instead of using the [CLS] token as an abstract global representation.178

Our empirical results show that [CLS]-attention fusion achieves the best downstreaming performance179

for our proposed NORMWEAR model. Details of all the ablation studies are reported in Appendix C.180

Beyond accuracy, we want to emphasize that the [CLS]-Attention Fusion design is highly flexible.181

This flexibility arises from the fact that self-attention is length-flexible and permutation-invariant182

(Vaswani et al., 2023). Consequently, it integrates naturally with our shared-weight encoder, allowing183

the model to accommodate a variable number of sensor channels presented in any order. We provide184

additional empirical evidence of NormWear’s permutation invariance in Table 12, Appendix C.185

3.5 Sensor-Semantic Representation Alignment186

Zero-shot inference is an important aspect to evaluate foundation model. We evaluate our model in187

this setting by retrieving the closest text-derived label for each unseen task in the shared embedding188

space. Specifically, to unify information across diverse modalities, we incorporate a representation189

alignment objective that encourages the embeddings of physiological sensor data to reside in the same190

latent space as paired textual descriptions. Once this shared space is established, it naturally supports191

zero-shot inference by allowing unseen sensor inputs to be interpreted through their proximity to192

text-derived anchors, without additional task-specific training. Several important works in this193

direction focusing on domains of vision-language Radford et al. (2021), audio-language Wu et al.194

(2023), and motion-language (Zhang et al., 2024b). These works leverage end-to-end training to bind195

their modality of interest into semantic space. In this work, we extend this methodology to explore196

NORMWEAR’s ability to generalize across unseen datasets and tasks.197

Building on prior work in representation alignment, we notice that in healthcare-related tasks where198

flexible inference across diverse scenarios is often required, the ground truth labels often have199

substantial overlap. For instance, depression is inferred from stress levels (LeMoult, 2020), and200

running and cycling produce similar IMU signals (Li et al., 2019). Due to these nested relationships, it201

create potential challenge to representation alignment when using contrastive learning, which requires202

clearly defined positive and negative pairs. To address this, we first propose a novel way to fuse the203

signal representations together with improved qualities, then align the representation with vector204

distance as an auxiliary loss for contrastive learning method. In addition, to reduce computation205

cost and counteract the issue of catastrophic forgetting (Li et al., 2023), we use off-the-shelf frozen206

encoders for both signal and text modalities.207

Human physiological signals are task-specific, dynamic, and often weakly labeled (He et al., 2018;208

Kim et al., 2022; Qian et al., 2021; Ma et al., 2021). To address these characteristics, we introduce209

three complementary scoring mechanisms during feature aggregation: relevance scores prioritize210

patches aligned with the task objective (e.g., IMU for activity recognition), guided by query sentences211

such as “What activity is the subject doing?”; recency scores emphasize recent segments to better212

reflect the current physiological or emotional state (Roelofs, 2017; Chowdhury et al., 2020; Chaudhury213

et al., 2021); and importance scores weigh signal segments that contain meaningful or transient214
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patterns often buried in weakly labeled sequences. Together, these scores guide the MSiTF fusion215

module to generate compact, task-aware representations. This design is inspired by memory-stream216

retrieval mechanisms (Park et al., 2023) and is tailored to the demands of human-centered sensing217

tasks such as risk assessment, affect detection, and activity recognition.218

Memory Stream inspired Temporal Fusion (MSiTF). Our Aggregation or Fusion Module, MSiTF,219

is designed to addresses the above-discussed three challenges through three scores discussed below.220

Specifically, we denote f as the function that takes the semantic embedding of query sentence q and221

backbone output H ∈ RP×E as input, where P is the patch size and E is the embedding size, thus222

having the final fused representation f(q,H) = Ŷ ∈ RE .223

We define the Relevance score as the cross attention between the key representations of each sensor224

time step and the query sentence embedding, obtained from a pretrained language model (Clinical225

TinyLlama (Muzammil, 2021)). This mechanism allows the model to identify distinct but contextually226

relevant segments in the sensor input. For the Recency score, we use an exponential decay function to227

reflect the intuition that recent time steps are more important than earlier ones. Finally, we consider228

the importance score IMP in this case to be whether to keep the representation at each time step or not.229

In order to achieve this, we assign binary parameters to each time step, denoted as θt = p(vt) ∈ R2230

where vt ∈ RE is the representation vector at time step t and p is a trainable linear transformation231

function which will be optimized during pretraining. We then have the importance score for each232

patch defined as233

Wimp(t) = argmax
i∈{0,1}

exp

((
log(θt,i) + ϵ

)
/τ

)
∑

j∈{0,1} exp

((
log(θt,j) + ϵj

)
/τ

) (1)

where ϵ is the noise term sampled from Gumbel distribution (Jang et al., 2017), and τ is the234

temperature controlling the sharpness of the softmax function. Because argmax is not a differentiable235

function, we will directly take the resulting probability corresponding to index at j = 1 to be the236

importance score, with τ being set to a small number to push the result closer to one hot vector237

from the softmax function. As a result, this logit function will determine to what extent to activate238

the gate during forward pass on each patch of the input signals. The final score for each patch is239

the summation of the three scores as described above. This score will be treated as the weight for240

aggregating the representations from all the patches to form the fixed length embedded output (vector241

with size of 768 in our case).242

Once the signal embeddings are aggregated, we adopt a variational-inspired approach (Kingma &243

Welling, 2022). This design injects stochasticity into the representation, encouraging the model to244

explore and capture nuanced variations in semantic representations. Finally, we leverage contrastive245

learning with auxiliary loss on vector distance to train the MSiTF module with a projection layer to246

text representation on the pretraining datasets. The sentence template formation and training details247

are presented in Appendix B.5.248

4 Experiments249

NORMWEAR is pretrained exclusively on the data shown in Table 5. In this section, we present a250

comprehensive evaluation across 11 downstream publicly available datasets, focusing on 18 widely-251

recognized digital healthcare tasks. We evaluate the methods following order of zero-shot capability,252

partial-shot learning, and full-shot learning.253

4.1 Selection of baselines covering representative modeling strategies254

Modeling multivariate wearable signals with arbitrary input channels and sensor types, such as those255

capturing activities of heart, brain, and body physical motions, presents unique challenges, as no256

universally recognized open-source baseline or state-of-the-art (SoTA) model exists in this domain.257

To evaluate our approach, we selected diverse and representative baselines (as shown in Table 3).258

In the literature, various modeling strategies have been proposed. Firstly, early approaches involved259

handcrafting statistical features, which was a widely adopted practice in signal processing (Yan et al.,260

2023a; Reyes-Ortiz et al., 2012; Mikelsons et al., 2017). We include this simple baseline as sanity261

check. Secondly, since sensory data can be naturally represented as time series (Woo et al., 2024;262

Semenoglou et al., 2023), we benchmarked our model against Chronos (Ansari et al., 2024) , as well263
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as a self-supervised framework TF-C (Zhang et al., 2022). Finally, the spectrum-based modeling264

methods (Vishnupriya & Meenakshi, 2018; Chun et al., 2016; Krishnan et al., 2020) are widely265

used for signal modeling. Therefore, we incorporate CLAP (Wu et al., 2023) into baselines that266

has demonstrates SoTA performance in spectrogram-based modeling. Regarding the comparison267

with concurrent works proposing foundation models for a specific sensor modality, we leverage268

PaPaGei (Pillai et al., 2024) for PPG datasets, ECG-FM (McKeen et al., 2024) for ECG datasets, and269

CBraMod (Wang et al., 2025) for EEG datasets. These baselines span distinct paradigms, providing270

a solid foundation to demonstrate the strengths of our model in wearable signal tasks. For uni-modal271

baselines like Chronos and CLAP, we feed each signal separately into model and concatenate their272

representations after the forward pass. This ensures that all models have the same field of view,273

making the comparison fair.274

4.2 Zero-shot Evaluation275

We achieve zero-shot inference by pretraining our proposed novel temporal fusion module on the task276

of representation alignment. We include the SoTA spectral-based model CLAP Wu et al. (2023) as a277

baseline to provide a more comprehensive comparison of the results. For CLAP, we experimented278

with both Manhattan distance (MD) and dot product (DP) as similarity metrics during inference. We279

observe that there are no statistically significant differences in performance when using MD and DP280

for label retrieval in CLAP. From table 1, we could observe that overall, NORMWEAR equipped281

with MSiTF outperforms the baselines. We compare NORMWEAR with a few ablations by removing282

importance score (w/o IMP) and removing text augmentation (w/o text aug). We can observe that283

performance drop after removing each of the above components, verifying their respective importance284

in improving generalization across various downstream tasks. We present this outcome to demonstrate285

the zero-shot capability in the wearable signal domain, an aspect not present in recent studies. We286

also hope this outcome could potentially provide a new perspective that can help drive progress in287

this direction within the field.288

Table 1: Zero-shot performance on the downstream datasets, with AUC ROC being reported. The last
two columns show the average across the tasks and across group types respectively.
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before bind 44.1 48.2 52.1 48.4 54.1 62.6 53.9 52.5 24.6 48.8 49.6 46.3 56.8 54.3 48.2 49.6 49.4
NORMWEAR

w/ MSiTF
55.8 71.2 57.2 51.0 55.7 61.3 67.6 55.8 66.0 57.1 62.5 70.0 59.0 63.1 70.1 61.6 61.5

- w/o IMP 56.2 70.3 55.4 49.8 54.0 56.5 66.9 57.3 52.9 56.5 54.3 61.7 60.7 73.4 65.2 59.4 59.6
- w/o text aug 54.8 65.8 55.2 49.2 31.0 58.4 58.6 32.8 58.1 50.2 52.6 50.8 50.6 47.7 33.6 50.0 51.4
- w/o refine 59.5 72.8 42.7 57.3 50.6 69.0 43.3 50.5 74.8 48.3 38.8 44.6 44.1 72.4 75.7 56.3 56.6

4.3 Partial-shot and Full-shot Evaluation289

We evaluate the learned representations using linear probing through supervised training on each290

downstream dataset, and report performance on the corresponding held-out test set. To ensure291
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Table 2: Detailed performance on various downstream wearable-signal-based health related
applications under full-shot linear probing evaluation.

Downstream Tasks Statistical Chronos CLAP TF-C Modality-Specific NORMWEAR (Ours)
WESAD 66.213 71.489 72.383 69.865 56.656 76.060
UCI-HAR 95.784 91.593 96.420 96.892 - 98.954
DriverFatigue 63.249 76.722 61.889 66.882 80.430 74.292

Activity Recognition Avg. 75.082 79.935 76.897 77.880 - 83.102

Epilepsy (eye open state) 82.489 82.41 85.094 89.153 90.436 92.743
Epilepsy (eye relaxation) 87.457 88.218 89.867 94.416 95.552 94.828
Epilepsy (health area) 86.274 81.08 83.711 85.619 88.065 88.541
Epilepsy (tumor area) 82.816 81.034 83.644 86.348 87.258 87.197
Epilepsy (seizure) 88.272 97.572 97.734 93.998 94.616 97.053
GAMEEMO 51.009 53.747 52.551 56.275 55.420 54.937

EEG Main Tasks Avg. 79.720 80.677 82.100 84.302 85.225 85.883

ECG-Abnormal 97.092 98.585 97.23 98.275 89.898 99.140
PPG-BP (HTN) 59.499 52.425 56.757 65.229 61.839 62.341
PPG-BP (DM) 47.823 51.164 42.455 57.883 55.668 55.893
PPG-BP (CVA) 71.250 50.278 51.667 58.125 73.125 70.625
PPG-BP (CVD) 51.219 58.31 50.91 58.674 49.066 51.773
PhysioNet EMG 99.309 61.6 98.627 78.308 - 99.216

Risk Evaluation Avg. 71.032 62.060 66.274 69.416 - 73.165

Noninvasive-BP 92.310 91.79 91.922 87.481 90.596 92.420
PPG-Hgb 94.219 95.005 94.291 93.408 94.912 94.632
Fetal-fPCG 98.929 99.048 99.195 99.077 - 99.072

Vital Signs Avg. 95.153 95.281 95.136 93.322 - 95.375
Micro Avg. 78.623 76.782 78.130 79.773 - 82.762
Macro Avg. 80.247 79.488 80.103 81.230 - 84.381

Table 3: Baselines
Baseline Methods Modeling Strategies

Modality Specific (Zhang et al., 2022) PaPaGei (Pillai et al., 2024), ECG-FM (McKeen et al., 2024), CBraMod (Wang et al., 2025).
TF-C (Zhang et al., 2022) SoTA in TS SSL; modeling time and frequency domain information at same time.
CLAP (Wu et al., 2023) SoTA in audio modeling; process signal as spectrogram
Chronos (Ansari et al., 2024) SoTA in TS forecasting, leverage LLM for modeling
Statistical approach Reserve full interpretability

fair comparison, we use a unified evaluation protocol with identical hyperparameter settings and292

implementation across all models and the dataset (Yuan et al., 2024). This design ensures that293

performance differences are not due to variations in learning rate, regularization, or data augmentation294

(Oliver et al., 2018). Specifically, the classification tasks, using logistic regression, are solved by295

Newton’s method with conjugate gradient, with AUC ROC being reported as main metric. The296

regression (vital signs) tasks, using ridge regression, are solved by Cholesky’s method with closed297

form solution, with relative accuracy being reported. For partial-shot evaluation, we leverage 10% of298

the training data for the linear probing, and detailed performance result is presented in Table 11. The299

full-shot evaluation results is presented in Table 2. All scores are the higher the better.300

From Figure 4, Table 2, and Table 15, we observe that NORMWEAR consistently achieves peak301

performance across all task groups, including activity recognition, EEG signal analysis, disease risk302

evaluation, and vital sign estimation. Furthermore, its leading performance remains consistent across303

various evaluation metrics. Based on the macro-averaged total score across task groups, NORMWEAR304

delivers a 3.9% improvement over the state-of-the-art (SoTA) time-series self-supervised learning305

framework (Zhang et al., 2022), a 5.3% improvement over the SoTA spectrum-based modeling306

method (Wu et al., 2023), a 6.1% improvement over SoTA time-series forecasting models with LLM307

backbones (Ansari et al., 2024), and a 5.2% improvement over standard statistical baselines. On308

larger datasets, NORMWEAR significantly outperforms the statistical baseline by 9.0% and 7.5% for309

activity recognition and EEG brain activity monitoring tasks, respectively. On smaller datasets, it310

still achieves peak performance in disease risk evaluation. For vital sign estimation, all methods311

yield comparable results, suggesting inherent challenges in these regression tasks that warrant further312

investigation but are beyond the scope of this study.313
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When comparing with recent modality specific foundation models, NormWear’s main benefit is314

that it capture cross-modal relationships, making it more versatile for wearable health tasks. While315

it sacrifices modality-specific optimization for adaptability, this may slightly reduce performance316

in highly specialized tasks. Single-signal models excel in their domains due to deeper modality-317

focused training. Instead of maximizing single-modality data, we prioritize signal diversity for better318

generalization. Benchmarking shows that NormWear, trained on a smaller dataset than EEG-only319

models, still achieves competitive results, highlighting the effectiveness of our pre-training approach.320

These findings illustrate NORMWEAR’s capacity to balance consistency and adaptability across a321

diverse range of tasks and conditions. By excelling across standard benchmarks while addressing the322

intricacies of varied applications, NORMWEAR exemplifies the philosophy of a foundation model: a323

reliable generalist capable of performing robustly across both typical and challenging scenarios.324
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channel-aware attention.

Figure 5: Summary of adaptation performance and module-level performance contributions. Details
of ablation study results are presented in Appendix C.

5 Conclusion and Discussion325

Conclusion. In this work, we mainly propose a foundation model for wearable physiological signals.326

NORMWEAR is a practical tool that could serve as a starting point for researchers and clinicians when327

tackling a problem with wearable based signal data. Our proposed model could extract informative328

representations from raw signal series, which can be leveraged for further machine learning modeling,329

clustering, embedding vector-based information retrieval, and deployment of real-time health states330

monitoring with minimal tuning. We’ve justified the utilizability and generalization of NORMWEAR331

through an extensive evaluation of various ubiquitous health applications. As for future works, it is332

important to leverage our framework on larger scale clinical applications and explore the applicability333

of embedding vectors as state representations for intervention modeling problems that comprise the334

decision-making process.335

Limitation and Future Work. We acknowledge several limitations to be addressed in future work.336

(1) The representation alignment component is currently trained on a limited set of healthcare-related337

objectives, and expanding the pretraining corpus with more diverse semantic labels may improve338

generalization. (2) While our design supports classification tasks well, adapting the framework339

for regression remains an open challenge, and future work may explore alternative formulations340

beyond label discretization. (3) NormWear currently focuses on physiological signals with relatively341

narrow frequency bands; extending its applicability to higher-frequency modalities such as audio or342

lower-resolution clinical summaries is a promising direction.343

Broad Impact. NORMWEAR is the first foundation model tailored for multivariate physiological344

signals that supports a wide range of wearable health tasks across sensor modalities, device types, and345

clinical applications. Through a unified CWT-based tokenization pipeline and a channel-aware fusion346

mechanism, it enables robust, modality-agnostic representation learning. Our extensive evaluation347

across zero-shot, partial-shot, and full-shot settings demonstrates NormWear’s strong generalizability348

and practical relevance. We believe NormWear provides a valuable resource for advancing foundation349

modeling in digital health and promoting more unified benchmarks in the community.350

9



Ethics Statement351

This study contains applications in the field of healthcare. We ensured that all the data being used352

during pretraining and evaluations were made publicly available by the original authors, and all these353

works were cited properly.354

Reproducibility Statement355

The full code base is submitted in supplementary material referred to as NormWear_main.zip,356

comprising all the scripts for exploratory data analysis and preprocessing, model construction,357

pretraining, downstream evaluation, result analysis, and all the visualizations that are described in358

this paper. The GitHub repository containing all the documentation will be published simultaneously359

with the paper.360
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Slapničar, G., Mlakar, N., and Luštrek, M. Blood pressure estimation from photoplethysmogram566

using a spectro-temporal deep neural network. Sensors, 19(15):3420, 2019.567

Thompson, J. M. T., Stewart, H. B., and Turner, R. Nonlinear dynamics and chaos. Computers in568

Physics, 4(5):562–563, 1990.569

Torrence, C. and Compo, G. P. A practical guide to wavelet analysis. Bulletin of the American570

Meteorological society, 79(1):61–78, 1998.571

Vaid, A., Jiang, J., Sawant, A., Lerakis, S., Argulian, E., Ahuja, Y., Lampert, J., Charney, A.,572

Greenspan, H., Narula, J., Glicksberg, B., and Nadkarni, G. N. A foundational vision transformer573

improves diagnostic performance for electrocardiograms. npj Digital Medicine, 6(1):108, Jun574

2023. ISSN 2398-6352. doi: 10.1038/s41746-023-00840-9. URL https://doi.org/10.1038/575

s41746-023-00840-9.576

Van der Maaten, L. and Hinton, G. Visualizing data using t-sne. Journal of machine learning research,577

9(11), 2008.578

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., and579

Polosukhin, I. Attention is all you need, 2023. URL https://arxiv.org/abs/1706.03762.580

Vishnupriya, S. and Meenakshi, K. Automatic music genre classification using convolution neural581

network. In 2018 International Conference on Computer Communication and Informatics (ICCCI),582

pp. 1–4, 2018. doi: 10.1109/ICCCI.2018.8441340. URL https://ieeexplore.ieee.org/583

document/8441340.584

14

https://arxiv.org/abs/2103.00020
https://www.sciencedirect.com/science/article/pii/S0893608022003902
https://www.sciencedirect.com/science/article/pii/S0893608022003902
https://www.sciencedirect.com/science/article/pii/S0893608022003902
https://doi.org/10.1038/s41746-023-00840-9
https://doi.org/10.1038/s41746-023-00840-9
https://doi.org/10.1038/s41746-023-00840-9
https://arxiv.org/abs/1706.03762
https://ieeexplore.ieee.org/document/8441340
https://ieeexplore.ieee.org/document/8441340
https://ieeexplore.ieee.org/document/8441340


Wang, J., Zhao, S., Luo, Z., Zhou, Y., Jiang, H., Li, S., Li, T., and Pan, G. Cbramod: A criss-cross585

brain foundation model for eeg decoding, 2025. URL https://arxiv.org/abs/2412.07236.586

Wimmer, C. and Rekabsaz, N. Leveraging vision-language models for granular market change587

prediction, 2023. URL https://arxiv.org/abs/2301.10166.588

Wolf, A., Swift, J. B., Swinney, H. L., and Vastano, J. A. Determining lyapunov exponents from a589

time series. Physica D: nonlinear phenomena, 16(3):285–317, 1985.590

Woo, G., Liu, C., Kumar, A., Xiong, C., Savarese, S., and Sahoo, D. Unified training of universal591

time series forecasting transformers, 2024. URL https://arxiv.org/abs/2402.02592.592

Wu, Y., Chen, K., Zhang, T., Hui, Y., Berg-Kirkpatrick, T., and Dubnov, S. Large-scale contrastive593

language-audio pretraining with feature fusion and keyword-to-caption augmentation. In ICASSP594

2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),595

pp. 1–5. IEEE, 2023.596

Yan, Y., Huang, Y.-C., Zhao, J., Liu, Y.-S., Ma, L., Yang, J., Yan, X.-D., Xiong, J., and Wang, L.597

Topological nonlinear analysis of dynamical systems in wearable sensor-based human physical598

activity inference. IEEE Transactions on Human-Machine Systems, 53(4):792–801, 2023a. doi:599

10.1109/THMS.2023.3275774.600

Yan, Y., Huang, Y.-C., Zhao, J., Liu, Y.-S., Ma, L., Yang, J., Yan, X.-D., Xiong, J., and Wang, L.601

Topological nonlinear analysis of dynamical systems in wearable sensor-based human physical602

activity inference. IEEE Transactions on Human-Machine Systems, 53(4):792–801, 2023b. doi:603

10.1109/THMS.2023.3275774.604

Yang, C., Westover, M., and Sun, J. Biot: Biosignal transformer for cross-data learning in the605

wild. In Oh, A., Naumann, T., Globerson, A., Saenko, K., Hardt, M., and Levine, S. (eds.),606

Advances in Neural Information Processing Systems, volume 36, pp. 78240–78260. Curran As-607

sociates, Inc., 2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/608

file/f6b30f3e2dd9cb53bbf2024402d02295-Paper-Conference.pdf.609

Yuan, H., Chan, S., Creagh, A. P., Tong, C., Acquah, A., Clifton, D. A., and Doherty, A. Self-610

supervised learning for human activity recognition using 700,000 person-days of wearable data.611

npj Digital Medicine, 7(1), April 2024. ISSN 2398-6352. doi: 10.1038/s41746-024-01062-3.612

URL http://dx.doi.org/10.1038/s41746-024-01062-3.613

Zhang, H., Cisse, M., Dauphin, Y. N., and Lopez-Paz, D. mixup: Beyond empirical risk minimization,614

2017.615

Zhang, W., Yang, L., Geng, S., and Hong, S. Self-supervised time series representation learning via616

cross reconstruction transformer. IEEE Transactions on Neural Networks and Learning Systems,617

2023.618

Zhang, X., Zhao, Z., Tsiligkaridis, T., and Zitnik, M. Self-supervised contrastive pre-training for time619

series via time-frequency consistency. Advances in Neural Information Processing Systems, 35:620

3988–4003, 2022.621

Zhang, X., Chowdhury, R. R., Gupta, R. K., and Shang, J. Large language models for time series: A622

survey. arXiv preprint arXiv:2402.01801, 2024a.623

Zhang, X., Teng, D., Chowdhury, R. R., Li, S., Hong, D., Gupta, R. K., and Shang, J. Unimts: Unified624

pre-training for motion time series, 2024b. URL https://arxiv.org/abs/2410.19818.625

15

https://arxiv.org/abs/2412.07236
https://arxiv.org/abs/2301.10166
https://arxiv.org/abs/2402.02592
https://proceedings.neurips.cc/paper_files/paper/2023/file/f6b30f3e2dd9cb53bbf2024402d02295-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/f6b30f3e2dd9cb53bbf2024402d02295-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/f6b30f3e2dd9cb53bbf2024402d02295-Paper-Conference.pdf
http://dx.doi.org/10.1038/s41746-024-01062-3
https://arxiv.org/abs/2410.19818


A Datasets626

Few openly accessible multi-channel or multi-device datasets for physiological signals exist, limiting627

advancements in this field. To address this gap, we curated a dataset comprising approximately628

385 hours of recordings. Using the augmentation algorithm described below, we expanded this629

dataset to 4294 hours. The distribution of the pretraining dataset, as shown in Figure 6, reflects630

the inherent diversity of the original recordings, ensuring balanced representation across channels631

and devices. This curated and augmented dataset provides a critical resource for developing robust632

models, facilitating progress in multi-channel physiological signal research.

Table 4: Downstream evaluation data that are
unseen during pretraining.

Downstream Dataset Sensor # Channels Tasks #Samp. (#Subj.)
WESAD
(Schmidt et al., 2018)

IMU, PPG,
ECG, GSR

10
Stress
Detection

11050(15)

UCI-HAR
(Reyes-Ortiz et al., 2012)

IMU 6 HAR 10299(30)

DriverFatigue
(Min et al., 2017)

EEG 4
Fatigue
Detection

2400(12)

Activity Recognition Total - - - 23749(57)

Epilepsy
(Andrzejak et al., 2023)

EEG 1
State
Recognize

11500(500)

GAMEEMO
(Alakus et al., 2020)

EEG 4
Valence-
Arousal

5600(28)

EEG Main Tasks Total - - - 17100(528)

ECG-Abnormal
(Bousseljot et al., 2009)

ECG 1
Abnormal
Detection

11640(249)

PPG-BP
(Liang et al., 2018)

PPG 1
Risk of
Diseases

657(219)

PhysioNet EMG
(Goldberger et al., 2000)

EMG 1
Muscular
Diseases

163(3)

Risk Evaluation Total - - - 12460(471)

Noninvasive-BP
(Esmaili et al., 2017)

PPG 3
BP
Estimate

125(26)

PPG-Hgb
(Esmaili et al., 2017)

PPG 2
Hgb
Estimate

68(68)

Fetal-fPCG
(Bhaskaran et al., 2022)

PCG 1
Fetal HR
Estimate

47(47)

Vital Signs Total - - - 240(141)
Total All - - - 53549(1197)

Table 5: Pretraining data.

Pretrain Dataset Sensors #Samp (hours).
Cuff-Less-BP
(Kachuee et al., 2016)

ECG, PPG 42934(72)

PPG-Dalia
(Reiss Attila, 2019)

ECG, PPG
IMU, GSR

42606(71)

Auditory-EEG
(Alzahab et al., 2022)

EEG 13601(23)

PhyAAt
(Bajaj et al., 2020)

EEG 19550(33)

MAUS
(Beh et al., 2021)

ECG, PPG
GSR

13068(22)

Mendeley-YAAD
(Dar et al., 2022)

ECG, GSR 2964(5)

Brain-Cognitive
(Fekri Azgomi et al., 2023)

EEG 51201(85)

EPHNOGRAM
(Kazemnejad et al., 2021)

ECG, PCG 36611(61)

BIDMC
(Pimentel et al., 2017)

ECG, PPG 8427(14)

Num Segments (# Segm.) - 230,962(385)
# Segm. w/ Augment - 2,576,418(4,294)
Num Sensor Signals (# Sign.) - 802,019(1,337)
# Sign. w/ Augment - 8,965,538(14,943)

Figure 6: Distribution of sensor signals used for pretraining. Left: Distribution by sensor modality.
Right: Distribution by type of physiological information.

633

Table 4 overviews used dataset in our experiement along with the modality and task type. We will634

gives further details for each dataset below:635

WESAD (Schmidt et al., 2018) is a publicly available multimodal dataset used for wearable stress636

and affect detection, formulated as a classification task with labels: neutral, stress, and amusement.637

The dataset includes physiological and motion data collected from 15 subjects during a lab study,638

16



using a chest-worn RespiBAN device and a wrist-worn Empatica E4 device. From the chest device,639

we use electrocardiogram (ECG), galvanic skin response (GSR), and triaxial acceleration (ACC-X,640

ACC-Y, ACC-Z), all sampled at 700 Hz. From the wrist device, we use photoplethysmogram (PPG),641

galvanic skin response (GSR, 4 Hz), and triaxial acceleration (ACC-X, ACC-Y, ACC-Z, 32 Hz).642

The selected channels span multiple physiological and motion modalities from both chest and wrist643

sensors. Each data segment is labeled with one of the three affective states, serving as the target644

output for classification tasks.645

UCI-HAR (Reyes-Ortiz et al., 2012) dataset is publicly available and is used for classifying human646

activities based on sensor data. It comprises data from 30 volunteers, aged 19 to 48, each performing647

six activities: walking, walking upstairs, walking downstairs, sitting, standing, and laying. During648

these activities, participants carried a waist-mounted smartphone equipped with embedded accelerom-649

eter and gyroscope sensors. The input channels consist of triaxial linear acceleration and triaxial650

angular velocity, totaling six channels. Each data segment is labeled with one of the six activities,651

serving as the target output for classification tasks. The sensors recorded data at a constant rate of 50652

Hz.653

Driver Fatigue EEG Dataset (Min et al., 2017) is a publicly available dataset used for detecting654

driver fatigue based on electroencephalogram (EEG) signals. EEG data were collected using a655

40-channel Neuroscan amplifier. The recordings include EEG data corresponding to two states: alert656

and fatigued. Each data segment is labeled with one of these states, serving as the target output for657

classification tasks.658

Epileptic Seizure Recognition (Andrzejak et al., 2023) dataset is publicly available and is used659

for classifying neurological and physiological states based on EEG signals. It comprises data from660

500 subjects, each recorded for 23.6 seconds using a single EEG channel at a sampling rate of 178661

Hz. Each sample is labeled with one of five brain states, allowing for the construction of multiple662

binary classification tasks that target different aspects of neurological assessment. Specifically, we663

formulated five tasks:664

• Eye Relaxation: Detects eye fatigue by distinguishing between relaxed and alert states based665

on EEG changes related to eye closure.666

• Health Area: Classifies brain regions as healthy or affected by neurological abnormalities.667

• Tumor Area: Detects EEG patterns indicative of tumor presence in specific brain regions.668

• Seizure: Identifies seizure activity from non-seizure states.669

• Eyes Open vs. Closed: Differentiates EEG signals associated with visual input states.670

GAMEEMO (Alakus et al., 2020) is a publicly available dataset used for emotion recognition based671

on EEG signals. It comprises data from 28 subjects, each playing four emotion-inducing computer672

games (boring, calm, horror, and funny) for five minutes per game, totaling 20 minutes of EEG data673

per subject. EEG signals were recorded using the EMOTIV EPOC+ headset, which includes 14674

channels (AF3, AF4, F3, F4, F7, F8, FC5, FC6, O1, O2, P7, P8, T7, and T8) positioned according to675

the 10–20 system. The signals were sampled at 128 Hz. After each gameplay session, subjects rated676

their emotional response using the Self-Assessment Manikin (SAM) form, providing continuous677

scores for arousal and valence. These scores were quantized into binary values using subject-specific678

median thresholds: arousal and valence ratings above the median were labeled as high, and those679

below or equal to the median as low. Combining the binarized arousal and valence ratings yields four680

discrete emotional classes: low arousal and low valence, low arousal and high valence, high arousal681

and low valence, and high arousal and high valence. Each data segment is labeled with one of these682

four classes, serving as the target output for four-class emotion classification tasks.683

ECG Heartbeat Categorization (Bousseljot et al., 2009) is a publicly available dataset used for684

classifying heartbeat signals based on electrocardiogram (ECG) recordings. It comprises two col-685

lections of heartbeat signals derived from PhysioNet’s MIT-BIH Arrhythmia Dataset and the PTB686

Diagnostic ECG Database. The first collection includes 109,446 samples categorized into five classes:687

normal (N), supraventricular ectopic (S), ventricular ectopic (V), fusion (F), and unknown (Q), with688

ECG signals sampled at 125 Hz. The second collection consists of 14,552 samples categorized into689

two classes: normal and abnormal, also sampled at 125 Hz. For our analysis, we restructured the690

dataset into a binary classification framework by consolidating the original categories into two classes:691

normal and abnormal heartbeats.692
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PPG-China (Liang et al., 2018) is a publicly available dataset used for classifying cardiovascular and693

metabolic conditions based on photoplethysmography (PPG) signals. It comprises 657 data records694

from 219 subjects, aged 20 to 89 years, including individuals with conditions such as hypertension695

and diabetes. PPG signals were recorded using a single channel at a sampling rate of 125 Hz.696

Each subject’s data includes PPG waveforms and corresponding clinical information, facilitating the697

construction of multiple classification tasks focused on cardiovascular and systemic health monitoring.698

Specifically, we formulated four tasks:699

• PPG-HTN: Identifies stages of hypotension severity by classifying PPG signals into four700

levels.701

• PPG-DM: Detects diabetes by distinguishing between diabetic and non-diabetic individuals.702

• PPG-CVA: Identifies the presence or absence of cerebrovascular accidents (strokes) based703

on PPG patterns.704

• PPG-CVD: Assesses cardiovascular disease by classifying PPG signals into three cardiovas-705

cular health categories.706

PhysioNetEMG (Goldberger et al., 2000) is a publicly available dataset used for classifying neuro-707

muscular conditions based on electromyography (EMG) signals. It comprises single-channel EMG708

recordings from the tibialis anterior muscle of three subjects: one healthy, one with neuropathy, and709

one with myopathy. The EMG signals were recorded at a sampling rate of 4,000 Hz. Each recording710

was segmented into time series samples using a fixed-length window of 6 second. Each segment711

is labeled according to the subject’s condition—healthy, neuropathy, or myopathy—serving as the712

target output for classification tasks.713

Non-invasive Blood Pressure Estimation (Esmaili et al., 2017) is a publicly available dataset714

used for cuff-less blood pressure (BP) estimation. It comprises data from 26 subjects, each with715

recorded electrocardiogram (ECG) and photoplethysmogram (PPG) signals, sampled at 1,000 Hz.716

Reference BP measurements were taken during signal acquisition. Each subject’s data also includes717

demographic information such as age, weight, and height. The dataset is structured to facilitate718

regression tasks aimed at predicting systolic and diastolic BP values.719

PPG-HGB (Abuzairi et al., 2024) is a publicly available dataset used for non-invasive hemoglobin720

(Hb) measurement based on photoplethysmography (PPG) signals. It comprises data from 68 subjects,721

aged 18 to 65 years, with a gender distribution of 56% female and 44% male. PPG signals were722

recorded using the MAX30102 sensor, which emits red and infrared light. The sensor’s analog-to-723

digital converter (ADC) output data rate can be programmed from 50 samples per second (sps) to724

3200 sps. Each subject contributed 12 sets of PPG signals, totaling 816 data records. We formulate725

regression tasks aimed at predicting Hb concertration levels.726

Fetal-fPCG (Bhaskaran et al., 2022) is a publicly available dataset designed for estimating fetal heart727

rate (FHR) using fetal phonocardiography (fPCG) signals. It includes recordings from 60 pregnant728

women, aged 18 to 37 years, with gestational ages between 31 and 40 weeks. The recordings were729

collected at St. John’s Hospital in Bangalore using an electronic stethoscope (SS30LA) connected to730

a Biopac MP36 data acquisition system. The stethoscope was placed on the lower abdomen of each731

subject to capture the fPCG signal, which was sampled at 2,000 Hz. The dataset supports regression732

tasks, where the goal is to predict continuous FHR values directly from the fPCG waveforms.733

B Implementation Detail734

B.1 Data Preprocess.735

For the data preparation, we set the uniform sampling rate and interval length to 65 HZ and 6 seconds736

respectively. In our case, 65 Hz covers most of the frequency bands of interest such as heart activity,737

physical motions, and neuron activity up to the beginning of Gamma power (above 30 Hz). And738

a great amount of samples are less than 6 seconds such as (Reyes-Ortiz et al., 2012; Liang et al.,739

2018; Bousseljot et al., 2009). We conduct basic pre-processing for each signal with identical setting:740

(1) de-trended by subtract the result of a linear least-squares fit to series data from the raw time741

series, and (2) Gaussian smoothed with standard deviation of 1.3 (0.02 seconds), ensuring a highly742

consistent dataset for training.743

Since the Transformer’s computational requirements scale quadratically with input length, to release744

the full potential of our self-supervised algorithm, we segment our multivariate time series into745
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intervals with a uniform length and pad shorter samples with zeros. This approach not only enables746

parallel processing of samples in large minibatches but also addresses variation in the length of747

individual samples.748

For the downstream task, we split the data into train and test sets for linear probing evaluation with749

portion of 80% and 20% correspondingly. The split is stratified on the anonymized subject ID if this750

information is provided by the dataset.751

B.2 Data Augmentation.752

Since there are very few publicly available datasets containing multiple devices or modalities, we aim753

to expand our curated training set to fully leverage the potential of self-supervised learning. Inspired754

by data augmentation techniques in computer vision and natural language processing (Zhang et al.,755

2017; Carmona et al., 2021), we adopt a heuristic approach to augment the dataset. Specifically,756

we augment each sub-dataset by a factor of 10. For each dataset, we sample two time series,757

randomly extract a segment from one, and substitute it with a transformed counterpart, as outlined758

in the pseudocode in Algorithm 1. As a result, our training set is expanded to 2,586,404 segments,759

corresponding to 4,294 hours of data.

Algorithm 1 Time Series Mixup Augmentation
Input: Time series dataset X , number of augmentations n
Output: Augmented Dataset X̃

1: for i = 1 to n do
2: Sample two time series x(1),x(2) ∼ X
3: Sample a chunk size λ ∼ U(0, l)
4: Sample start indices s1, s2 ∼ U(0, l − λ)
5: Swap chunk from x(2) into x(1):

x
(1)
s1:s1+λ ← x

(2)
s2:s2+λ

6: Append x(1) into X̃
7: end for
8: return X̃

760

B.3 Pretraining Framework.761

Normwear is derived from the Masked Autoencoder (MAE) (He et al., 2021). The detailed hyper-762

parameter choice is descibe in 6. We use a Conv2D layer with a kernel size of (9, 5) and a stride763

of (9, 5), ensuring no overlapping patches. This layer takes input with 3 channels and projects764

it to 768 channels, matching the hidden size of our encoders. In Normwear, we apply structured765

masking independently to each variate along both the frequency and time axes, with respective766

masking ratios of 0.6 and 0.5. This results in an expected overall masking ratio of 0.8 for each767

variate. Only the unmasked tokens are passed to the encoder, reducing computational complexity.768

To enhance representation learning, we introduce six additional transformer blocks as fusion layers,769

interleaved with the original 12 encoder blocks, creating a total of 18 blocks. Each transformer block770

has a hidden dimension of 768 and uses LayerNorm as in the original MAE. The latent embeddings771

obtained from the encoder are projected from 768 to 512 dimensions. Learnable masked tokens are772

reinserted at their original positions, and positional embeddings are added to guide the decoder in773

reconstructing the input series. The lightweight decoder consists of two transformer blocks with774

a hidden dimension of 512, followed by two Conv1D layers. The first Conv1D layer maps from775

the flattened multivariate signal embedding to an intermediate dimension, and the second Conv1D776

layer maps from this intermediate dimension back to the original multivariate signal space. A GELU777

activation function is used between these layers, with BatchNorm applied to the input. The decoder778

reconstructs the original input series, and the model is trained using Mean Squared Error (MSE) loss779

on all data points. Our models are pre-trained for 45,000 steps with a batch size of 256, using the780

AdamW optimizer with a learning rate of 10−4. We did not perform on-the-fly data augmentation,781
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Figure 7: Visualization of original time series (left), CWT transformation image with structured
masking (middle), and reconstructed time series (right).

as suggested in the MAE framework, due to the high masking ratio. (An end-to-end example of the782

input and output of this pretraining pipeline is illustrated in Fig. 7)783

All the models are pretrained on 4 NVIDIA RTX 3090 graphical computing unit (GPU), with 24GB784

of GPU memory on each card.785

B.4 MSiTF.786

For pretraining the representation alignment module, we have the training hyper-parameters in Table787

7.

Table 6: NormWear Pretraining Hyper-parameters.

Hyper-parameter Value
# cross-patches Transformer Encoder 12
# cross-channels Transformer Encoder 6
# Transformer Decoder 2
# Attention Heads 12
Encoder Latent Size 768
Decoder Latent Size 512
Feedforward Latent Size 3072
Normalization LayerNorm
Patch size (time axis) 9
Patch size (scale axis) 5
Optimizer AdamW
Loss Scalar NativeScaler
Base Learning Rate (blr) 1e-3
Epochs 140
Batch size 192

Table 7: MSiTF Hyper-parameter

Hyper-parameter Value
Learning rate (lr) 1e-3
Epochs 40
Batch size 32
L2 regularization 5e-6
lr decay rate 0.997
λ 0.5
τ 0.5

788
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B.5 Aligner Module, Objective Function, and Pretraining.789

The Aligner Module matches two vectors: the fused representation f(q,H) = Ŷ ∈ RE with the790

semantic embedding (Y ) of ground truth sentence, which is obtained from prompting the ground791

truth label using a template, for example, “The subject is presently {activity_label}". In the same792

manner as the query embedding, the ground truth sentence is encoded using the same pre-trained793

language model (Muzammil, 2021). At this stage, Y is leveraged to supervise the fused output Ŷ .794

The vanilla contrastive learning loss formula following Zhang et al. (2024b) is:795

Lossctl(Y, Ŷ ) = − 1

N

N∑
i=1

log
exp(Ŷi

T
Yi)

1
γ∑N

k=1 exp(Ŷi
T
Yk)

1
γ

(2)

where N is the batch size and γ is the learnable temperature parameter. We denote this loss function796

as contrastive loss with batch normalizer. We also leverage a refine process after contrastive learning797

using simlarity loss with per sample normalizer, which is essentially cosine similarity loss, with798

vector distance as supplemental penalty:799

Lossrefine(Ŷ , Y ) =
1

N

N∑
i=1

((
1− Ŷ T

i Yi

∥Ŷi∥∥Yi∥

)
+ λ|Ŷi − Yi|

)
(3)

where λ is hyper-parameters controlling the weight of the supplemental loss components.800

B.6 Sentence template example for signal-sext alignment.801

To enhance the expressiveness and diversity of supervision signals for our MSiTF alignment module,802

we convert categorical labels into natural language descriptions using varied prompt templates. We803

apply this strategy to several pretraining tasks. We present example sentence templates below for804

emotion recognition and activity recognition to demonstrate the general idea of how we derive text805

modality from the raw label:806

For the emotion recognition task, we use:807

• “ The emotion detected is {}.”
• “ This subject is feeling {}.”
• “ The emotional state is {}.”
• “ The identified emotion is {}.”

808

For the activity recognition task, we use:809

• “ This subject is currently {}.”
• “ The subject is engaged in {}.”
• “ Current activity is {}.”
• “ Subject’s activity is {}.”

810

By exposing the model to multiple phrasings for the same label, this design helps it learn modality-811

invariant representations that are more robust to linguistic variation and better aligned across modal-812

ities. Specifically, to increase the diversity of semantic representations of query and ground truth813

sentences in the pretraining signal corpus, we utilize large language models (GPT-3.5) (Achiam814

et al., 2023) to generate 20 alternative variations for each sentence, from which only one is randomly815

sampled during pre-training. During test-time inference on downstream datasets, each ground truth816

label is converted into a sentence (details in appendix B.6), which is transformed into a semantic817

embedding using a frozen text encoder. The sentence with the closest distance with the embedding818

from our foundation model is used as the final inferential result.819

B.7 Statistical Feature List.820

Our statistical baseline includes features extracted from both the time and frequency domains. In the821

time domain, we compute the mean, standard deviation, maximum, minimum, skewness, kurtosis,822
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25% quantile, median, and 75% quantile. In the frequency domain, we extract the spectral centroid,823

spectral spread, mean frequency, peak frequency, as well as the 25%, 50% (median), and 75% quantile824

frequencies.825

B.8 Radar Plot or Performance Trend.826

To enhance the visual contrast between model performances across tasks, we applied the Softmax827

function to the raw performance scores. This transformation rescales the scores to a range between828

0 and 1, accentuating relative differences between models. While the Softmax transformation829

emphasizes the relative improvement of our model over others, we note that the absolute scores may830

differ from those originally reported.831

C Ablation Study832

Due to computational constraints, we will conduct the ablation study on our smaller dataset (37k833

samples) to train and evaluate the model, establishing a proof of concept and demonstrating the834

effectiveness of our approach in a controlled setting.835

Fusion Schemes. Table 8 shows the performance of different fusion schemes, including (1) no836

fusion, (2) cross-attention fusion, (3) [CLS]-attention fusion, and (4) mean-pooling fusion. We837

excluded all-attention fusion in our ablation study because it is computationally prohibitible. Among838

all the compared strategies, the [CLS] token fusion generally achieves the best accuracy with a minor839

increase in parameters.

Table 8: Performance Comparison of Various Fusion Schemes

Downstream Tasks No fusion Cross-Attention fusion Mean pooling fusion [CLS] Token fusion
WESAD 72.209 74.165 71.99 75.390
UCI-HAR 97.793 96.908 97.566 98.928
DriverFatigue 73.252 60.308 72.552 75.167
Activity Recognition Avg. 81.085 77.127 80.703 83.162
Epilepsy (eye open state) 90.966 84.075 89.817 92.203
Epilepsy (eye relaxation) 94.399 93.589 93.912 94.908
Epilepsy (health area) 87.866 86.899 87.248 88.117
Epilepsy (tumor area) 86.599 86.861 87.152 86.888
Epilepsy (seizure) 97.477 96.351 96.719 96.638
GAMEEMO 57.695 56.724 58.079 56.532
EEG Main Tasks Avg. 85.834 84.083 85.488 85.881
ECG-Abnormal 99.429 99.441 99.268 99.041
PPG-BP (HTN) 61.850 60.983 63.577 60.344
PPG-BP (DM) 58.333 62.800 62.200 59.459
PPG-BP (CVA) 61.319 61.458 59.236 70.278
PPG-BP (CVD) 48.417 53.585 46.961 52.596
PhysioNet EMG 93.715 95.49 86.749 98.184
Risk Evaluation Avg. 70.511 72.293 69.665 73.317
Noninvasive-BP 88.356 92.759 88.719 92.470
PPG-Hgb 95.031 93.413 95.086 94.766
Fetal-fPCG 98.582 99.145 98.771 99.088
Vital Signs Avg. 93.990 95.106 94.192 95.441
Micro Avg. 81.294 80.831 80.867 82.833
Macro Avg. 82.855 82.152 82.512 84.450

840
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Masking Strategies in Pre-training. We ablated our masking strategy introduced in Section 3.4.841

Using a consistent mask ratio of 0.8 in all strategies, we found that applying masking along the scale842

and time axes produced the best performance (details in Table 9).

Table 9: Performance Comparison of Different Masking Strategies

Downstream Tasks
Unstructured Mask

(P = 0.8)
Time Mask

(Pt = 0.8, Pf = 0.0)
Scale Mask

(Pt = 0.0, Pf = 0.8)
Structured Mask

(Pt = 0.6, Pf = 0.5)
WESAD 71.46 71.952 72.201 75.390
UCI-HAR 97.097 98.438 98.106 98.928
DriverFatigue 72.719 73.424 78.354 75.167
Activity Recognition Avg. 80.425 81.271 82.887 83.162
Epilepsy (eye open state) 89.521 91.895 89.407 92.203
Epilepsy (eye relaxation) 93.471 94.808 93.786 94.908
Epilepsy (health area) 86.812 88.510 87.317 88.117
Epilepsy (tumor area) 86.524 88.254 85.502 86.888
Epilepsy (seizure) 96.59 97.791 95.29 96.638
GAMEEMO 58.043 56.770 55.771 56.532
EEG Main Tasks Avg. 85.160 86.338 84.512 85.881

ECG-Abnormal 99.085 99.316 98.296 99.041
PPG-BP (HTN) 58.880 55.333 59.230 60.344
PPG-BP (DM) 61.074 48.386 58.896 59.459
PPG-BP (CVA) 56.389 58.472 64.167 70.278
PPG-BP (CVD) 52.572 46.557 55.666 52.596
PhysioNet EMG 85.160 95.490 83.922 98.184
Risk Evaluation Avg. 68.860 67.259 70.030 73.317
Noninvasive-BP 90.124 90.650 91.152 92.470
PPG-Hgb 95.314 95.055 94.713 94.766
Fetal-fPCG 98.630 99.121 98.926 99.088
Vital Signs Avg. 94.689 94.942 94.930 95.441
Micro Avg. 80.526 80.568 81.150 82.833
Macro Avg. 82.284 82.453 83.090 84.450

843
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Input Representations. Table10 compares the performance of two input representations: (1) CWT844

scalogram and (2) raw time series. The CWT scalogram converts the time series into a time-845

frequency representation, while the raw time series retains the original sensor data. Among the two846

representations, the model trained on CWT scalograms demonstrates better performance, suggesting847

that the time-frequency features enhance model accuracy.

Table 10: Performance Comparison Between CWT Scalogram and Raw Time Series as Inputs.

Downstream Tasks Raw Series Input CWT Scalogram Input
WESAD 70.862 75.390

UCI-HAR 97.969 98.928
DriverFatigue 73.854 75.167

Activity Recognition Avg. 80.895 83.162

Epilepsy (eye open state) 91.978 92.203
Epilepsy (eye relaxation) 94.781 94.908

Epilepsy (health area) 88.045 88.117
Epilepsy (tumor area) 85.619 86.888

Epilepsy (seizure) 97.722 96.638
GAMEEMO 54.651 56.532

EEG Main Tasks Avg. 85.466 85.881

ECG-Abnormal 97.701 99.041
PPG-BP (HTN) 52.614 60.344
PPG-BP (DM) 62.012 59.459
PPG-BP (CVA) 56.181 70.278
PPG-BP (CVD) 54.812 52.596
PhysioNet EMG 93.756 98.184

Risk Evaluation Avg. 69.513 73.317

Noninvasive-BP 89.850 92.470
PPG-Hgb 93.832 94.766

Fetal-fPCG 98.977 99.088
Vital Signs Avg. 94.220 95.441

Micro Avg. 80.845 82.833
Macro Avg. 82.523 84.450

848

Semi-Supervised Learning (Partial-shot). To evaluate the generalizability and quality of learned849

representations, we conducted a semi-supervised learning evaluation following the protocol estab-850

lished by prior self-supervised methods (Caron et al., 2021). Specifically, we assessed performance851

on the NORMWEAR dataset using frozen features and a limited labeled subset (10%). We deliberately852

excluded the commonly used 1% label evaluation due to the inherently small sample size of our853

downstream medical dataset. A 1% labeling scenario would provide fewer than ten labeled instances,854

rendering the results statistically unreliable and scientifically unjustified. Instead, we sampled 10% of855

the training data while preserving the original label distribution, and then trained a linear classifier856

atop the frozen NORMWEAR features for classification tasks and regression tasks. The results, sum-857

marized in Table 11, demonstrate the effectiveness of our method under realistic semi-supervised858

constraints.859
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Table 11: Semi-supervised learning on Downstream tasks. We linear-prob the model with 10%
labels and report AUCROC scores.

Downstream Tasks Statistical Chronos CLAP TF-C Modality-Specific NORMWEAR (Ours)
WESAD 64.869 64.908 68.626 62.218 59.371 70.25
UCI-HAR 94.124 73.124 92.794 92.334 - 98.355
DriverFatigue 63.237 72.454 50.193 54.613 69.004 55.094

Activity Recognition Avg. 74.077 70.162 70.538 69.722 - 74.566

Epilepsy (eye open state) 82.186 80.082 84.103 88.02 89.152 85.456
Epilepsy (eye relaxation) 87.480 81.820 88.716 93.670 95.191 92.369
Epilepsy (health area) 86.096 77.682 82.651 84.940 87.377 85.471
Epilepsy (tumor area) 82.153 78.364 82.579 85.450 86.962 83.033
Epilepsy (seizure) 88.179 96.786 97.386 92.900 94.063 92.345
GAMEEMO 54.527 50.176 51.952 49.714 52.046 52.633

EEG Main Tasks Avg. 80.104 77.485 81.231 82.449 84.132 81.885

ECG-Abnormal 96.420 97.613 95.432 94.769 79.918 93.921
PPG-BP (HTN) 52.491 49.407 48.397 53.800 57.544 53.967
PPG-BP (DM) 41.254 48.574 38.664 45.383 56.532 57.545
PPG-BP (CVA) 83.056 51.944 48.125 51.667 64.792 66.597
PPG-BP (CVD) 55.753 47.547 59.505 55.651 47.586 54.614
PhysioNet EMG 92.993 70.248 92.415 79.412 - 87.503

Risk Evaluation Avg. 70.328 60.888 63.756 63.447 - 69.025

Noninvasive-BP 90.589 93.783 91.614 92.707 92.671 90.694
PPG-Hgb 95.068 94.999 94.712 94.981 94.916 94.633
Fetal-fPCG 99.020 99.153 98.889 98.902 - 98.813

Vital Signs Avg. 94.892 95.978 95.072 95.530 - 94.713

Micro Avg. 78.305 73.815 75.931 76.174 - 78.516
Macro Avg. 79.850 76.129 77.649 77.787 - 80.047

Permutation-Invariant Input Channel Analysis. In many multimodal or multichannel sensing tasks,860

the input channel order is typically fixed and determined by hardware or preprocessing pipelines,861

limiting flexibility during deployment. This constraint raises the question of whether Normwear862

relies on a specific channel ordering to perform well. To examine this, we conducted an experiment863

on datasets with multiple input channels by circularly shifting the channel order by one position and864

evaluating the resulting model performance. As shown in Table 12, the model performance remains865

consistent across different permutations. These results suggest that our model does not rely on a fixed866

input channel configuration and is robust to variations in channel ordering, making it more applicable867

in practical scenarios where such inconsistencies may occur.868

k-fold Analysis. To evaluate whether Normwear maintains consistent performance on datasets with869

limited subject diversity, we conducted 5-fold cross-validation stratified by subject ID. We applied this870

protocol to all downstream tasks containing 30 or fewer subjects to ensure a robust assessment. As871

shown in Table 13, our model consistently outperformed the baselines across all tasks, demonstrating872

the robustness of our evaluation metric.

Table 12: Performance of
NormWear with original input
channel order compared to random
shuffling across tasks.

Task Original Order Random Shuffle
WESAD (IMU, PPG, ECG, GSR) 0.761 0.763
UCI-HAR (IMU) 0.989 0.975
Drive Fatigue (EEG) 0.743 0.721
GAMEEMO (EEG) 0.549 0.530
Noninvasive-BP (PCG, PPG, ECG) 0.924 0.914
PPG-HGB (Red, IR) 0.946 0.948

Table 13: Performance on downstream health-related
tasks under linear probing using 5-fold subject-stratified
cross-validation. Classification reports AUC ROC; regres-
sion reports relative accuracy. All metrics are higher-is-
better.

Downstream Tasks Statistical Chronos CLAP TF-C
NormWear-L
(Ours)

WESAD 79.992 ± 0.707 83.332 ± 0.841 87.824 ± 0.463 82.701 ± 0.536 89.585 ± 0.683
UCI-HAR 95.602 ± 0.148 91.956 ± 0.256 96.864 ± 0.175 97.382 ± 0.138 98.179 ± 0.06
DriverFatigue 69.614 ± 1.138 72.48 ± 2.848 66.251 ± 0.471 65.026 ± 1.198 68.971 ± 1.32
GAMEEMO 64.281 ± 1.292 56.694 ± 0.878 64.119 ± 0.543 62.925 ± 0.999 67.863 ± 0.72

Noninvasive-BP 92.83 ± 0.386 92.223 ± 0.356 92.612 ± 0.272 88.707 ± 0.622 93.381 ± 0.516
Avg. 80.464 ± 0.734 79.337 ± 1.036 81.534 ± 0.385 79.348 ± 0.699 83.596 ± 0.660
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Table 14: Checking reliance on demographic information. Simple baseline: for regression tasks
(yellow), the mean prediction is used; for classification tasks (blue and red), the mode prediction is
used. NormWear-Medium and NormWear-Large refer to NormWear’s pretrained checkpoints trained
on 2.58 million and 8.97 million signal segments, respectively.

Downstream Tasks Empirical Distribution Demographic NormWear-Medium
Demographic +
NormWear-Medium

NormWear-Large
Demographic +
NormWear-Large

WESAD 50.000 49.907 74.227 69.06 76.06 68.755
Noninvasive-BP 92.988 92.954 91.427 90.84 92.42 92.528
PPG-Hgb 94.816 95.634 94.911 95.835 94.632 96.384
Fetal-fPCG 99.033 99.039 98.997 99.001 99.072 99.097
Vital Signs Avg. 95.612 95.876 95.112 95.225 95.375 96.003
PPG-BP (HTN) 50.000 59.899 62.746 64.482 62.341 61.291
PPG-BP (DM) 50.000 47.297 62.613 47.86 55.893 60.135
PPG-BP (CVA) 50.000 81.875 67.639 83.681 70.625 77.847
PPG-BP (CVD) 50.000 71.011 51.504 70.37 51.773 67.466
Risk Evaluation Avg. 50.000 65.021 61.126 66.598 60.158 66.685
Micro Avg. 67.105 74.702 75.508 77.641 75.352 77.938
Macro Avg. 65.204 70.268 76.821 76.961 77.198 77.148

Demographic Anlysis. Several previous works (Abbaspourazad et al., 2023; Narayanswamy et al.,874

2024) have used learned representations to infer demographic labels. These results suggest that875

wearable signals do contain demographic information. In Table 14, we wanted to investigate that876

NormWear does not extract only demographic information (e.g. age, sex, height, etc. depending877

on what is available within each dataset), hence indicating that the representation that our proposed878

model extracted and the demographic could be used as complementary features to each other during879

downstream modeling. From Table 14, we observe that demographic information and wearable880

signal representations each excel at different tasks. In most cases, concatenating them improves881

overall performance. However, the occasional performance drop after concatenation suggests a882

confounding relationship between the two, implying that demographic data and NormWear’s wearable883

representations capture different aspects.884

D Statistical significance on the model comparison885

We performed a statistical analysis to test the significance of the differences in model performance.886

First, we ran the downstream evaluations 100 times for each model on every task without fixing the887

random seed. The results remained consistent due to the stable optimization process.888

Next, we applied a permutation test on the results from these 100 runs to determine whether889

NormWear’s AUC ROC score is greater than that of the baselines. The reported p-value repre-890

sents the probability of observing a test statistic as extreme or more extreme than the observed891

difference under the null hypothesis, which assumes that NormWear’s score is not higher than the892

baseline. In nearly all cases, the p-value is less than 0.01, confirming the statistical significance893

and indicating the robustness and superiority of our approach. Table 8 presents the statistical test894

results across different task groups (as indicated by the color coding in the main tables) along with895

the overall average scores.896

We also include a critical difference (CD) diagram to visually compare the performance of multiple897

models across datasets and highlight statistically significant differences. To generate the CD diagram,898

we first conducted a Friedman Chi-square test on the models’ scores across all downstream tasks,899

which yielded a p-value of P < 0.001, confirming that the models’ performances come from different900

distributions. We then applied the Conover post hoc test to examine pairwise differences between901

model performances; the p-values for NormWear compared with the baselines are shown in the last902

row of Table 8. Finally, based on these results, we generated the CD diagram displayed in Figure903

9. In this diagram, our proposed model, NormWear, is well separated from the others, indicating its904

statistical superiority over the competitive baselines.905
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Ours/Baselines Stats Chronos CLAP TFC
NormWear - activity P < .01 P < .01 P < .01 P < .01

NormWear - eeg P < .01 P < .01 P < .01 P < .01

NormWear - risk P < .01 P < .01 P < .01 P < .01

NormWear - vital P < .01 P < .01 P < .01 P < .01

NormWear - micro avg. P < .01 P < .01 P < .01 P < .01

NormWear - macro avg. P < .01 P < .01 P < .01 P < .01

Conover post hoc P < .001 P < .001 P < .001 P < .05

Figure 8: Permutation test on models’
performance.

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85
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chronos (0.5)

(0.83) normwear
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Critical difference diagram of average score ranks

Figure 9: Critical Difference Diagram.

E Supplementary Metrics906

Normwear’s performance is summarized in Fig. 4 and detailed in Table 15. Normwear consistently907

exceeds the baseline models by a wide margin, demonstrating a clear advantage.

Table 15: Details of Incidental Performance Metrics.

Task Group Methods AUC ROC AUC PR Accuracy Precision Recall F1 Score
Statistical 75.082 63.996 65.298 61.450 61.56 61.034

Activity Chronos 79.935 65.622 66.175 62.044 61.512 60.522
Recognition CLAP 76.897 67.026 66.349 62.790 62.826 62.435

TF-C 77.880 68.228 67.175 64.967 64.798 64.783
NormWear (Ours) 83.102 76.232 75.254 72.606 72.177 72.053
Statistical 79.720 50.172 73.921 63.567 57.529 57.948

EEG Main Chronos 80.677 55.507 75.285 72.442 52.520 47.671
Tasks CLAP 82.100 57.518 76.391 68.506 61.961 62.650

TF-C 84.302 61.864 76.825 71.702 65.517 67.889
NormWear (Ours) 85.883 66.841 79.182 72.485 69.158 69.698
Statistical 71.032 53.783 79.688 52.718 53.235 50.807

Disease Risk Chronos 62.060 40.673 71.910 45.512 43.739 40.569
Evaluation CLAP 66.274 48.232 81.327 53.028 54.721 52.804

TF-C 69.416 46.312 78.929 52.123 52.352 51.349
NormWear (Ours) 73.165 51.666 81.530 54.133 56.314 54.428
Statistical 75.317 51.596 74.503 58.804 56.618 55.709

Micro Chronos 73.082 51.596 72.113 59.590 50.806 47.401
Average CLAP 74.729 55.705 76.357 61.171 59.238 58.669

TF-C 77.063 56.916 75.737 62.523 60.107 60.652
NormWear (Ours) 80.240 62.649 79.336 65.168 64.624 64.061
Statistical 75.278 55.983 72.969 59.245 57.441 56.596

Macro Chronos 74.224 53.934 71.123 59.999 52.590 49.587
Average CLAP 75.091 57.592 74.689 61.441 59.836 59.296

TF-C 77.199 58.801 74.310 62.931 60.889 61.340
NormWear (Ours) 80.717 64.913 78.656 66.408 65.883 65.393
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F Scaling up the Pretraining Data Size909
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Figure 10: Impact of scaling
the pretraining dataset on down-
stream tasks. The y-axis repre-
sents the average accuracy across
tasks, while the x-axis denotes the
size of the pretraining dataset in
terms of the number of samples.

In addition to demonstrating that NormWear outperforms all910

strong baselines, we further investigate the effect of varying911

pretraining data size on the model’s downstream performance912

to examine whether the scaling law applies to our proposed913

methodology. As shown in Figure 10, the overall performance914

(measured by accuracy) significantly improves as the pretrain-915

ing data size increases from approximately 37k (62 hours) to916

nearly 2.5M (4000 hours) samples of wearable signal data. This917

observation indicates that our model adheres to the scaling law,918

highlighting its potential scalability and suitability for future919

large-scale applications.920

G Channel Fusion Complexity analysis921

When conducting multi-channel modeling, for example, when922

the input comprises an arbitrary number of signals, a fusion923

operation needs to be conducted across all channels in order to924

let the model extract correlation information. Because we will925

deploy the model on an edge device like Jetson Nano, other926

than empirical evidence of the performance, we also have to927

consider the computation complexity of different approaches.928

A brief visualization of the runtime complexity of different929

approaches is presented in figure 11. The detailed derivation is930

presented in the following subsections.
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Figure 11: Visualization of runtime complexity when scaling up the number of channels or the
sequence length.931

G.1 All-Attention932

For the approach of conducting self-attention by concatenating all the patches, we arrive the Big-O933

complexity expression as follows:934

• We denote C as the number of input channels, d as the embedding size, L as the number of935

patches convolved from the time series in each channel (proportional to sequence length),936

and x ∈ RC×L×d as the input data before feeding into the fusion block. We have a total of937

L · C patches.938

• When calculating the attention scores, dot products are computed for each pair of the patches,939

which results in the following calculation process:940

where "1), 2), 3)" represents the operations conducted at the first, second, and third rounds941

of entering the entire nested loops. The complexity for the first round of operation results in942
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Algorithm 2 All-Attention Complexity

for i ∈ [1, 2, . . . , C] do
for j ∈ [1, 2, . . . , L] do
N ← exp(attn(xi,j)) =⇒ O(L · C)
for k ∈ [1, 2, . . . , C] do

for l ∈ [1, 2, . . . , L] do
1) Calculate dot product: attn(xi,j , xk,l) = xT

i,jxk,l =⇒ O(2d)

2) Softmax over attention scores: exp(attn(xi,j ,xk,l))
N =⇒ O(1)

3) Weighted average: xi,j + attn(xi,j , xk,l) · xk,l =⇒ O(2d)
end for

end for
end for

end for

a complexity of:943

C∑
i=1

L∑
j=1

C∑
k=1

L∑
l=1

2d =

C∑
i=1

L∑
j=1

C∑
k=1

L · 2d =

C∑
i=1

L∑
j=1

C · L · 2d = O(d · (L · C)2) (4)

where in the case of multi-head attention, the dot product still has the complexity of O(2d),944

and because the number of heads is a constant, the final complexity is equivalent to the945

result in equation 4.946

• Similarly, the softmax operation will result in a complexity of O((L · C)2), and the final947

weighted average operation will also have a complexity of O(d · (L · C)2), which results in948

total complexity of949

O(d · (L · C)2) +O((L · C)2) +O(d · (L · C)2) = O(d · (L · C)2) (5)

G.2 Cross-Attention950

For the pairwise cross-attention approach following guidance of Chen et al. (2021), we have the951

operation defined as952

Algorithm 3 Cross-Attention Complexity

for i in [1, 2, ..., C − 1] do
for j in [1, 2, ..., C] do

2) N = exp(attn(xi,1)), =⇒ O(L)
for k in [2, 3, ..., L] do

1) Calculate attn(xi,1, xj,k), =⇒ O(2d)

2) Softmax over all-attention scores, exp(attn(xi,1,xj,k))
N , =⇒ O(1)

3) Weighted average: xi,1 + xj,k, =⇒ O(2d)
end for

end for
end for

with the same notion in the previous subsection. The total complexity is953

O(C2 · L · 2d) +O(C2 · L) +O(C2 · L · 2d) = O(d · L · C2) (6)

G.3 [CLS]-Attention954

This is the approach that we adopted for the final version of our proposed foundation model. Only955

the embedding corresponding to the [CLS] token of each channel is involved during the self-attention956

operation. Therefore, the complexity is957

O(d · C2) (7)
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G.4 Mean-pool Attention958

For fusion with mean-pool attention, we first calculate the mean representation for each channel,959

resulting in a complexity of O(C · L · d). And self-attention with Tese mean representations has the960

same complexity as [CLS]-attention, which is O(d · C2). Thus, the total complexity is961

O(C · L · d) +O(d · C2) = O(d · (L · C + C2)) (8)

H MSiTF Complexity analysis962

Algorithm 4 MSiTF Runtime Complexity

key embedding Ek = k(S) ∈ Rp×d, =⇒ O(d2)
value embedding Ev = v(S) ∈ Rp×d, =⇒ O(d2)
Relevance score Rel = ET

k Q ∈ Rp, =⇒ O(pd)
likelihood parameter El = l(S) ∈ Rp×2, =⇒ O(d2)
Importance score sampling Wimp ∈ Rp (equation 1) =⇒ O(p)
Fused embedding Efinal = ET

v (αWimp + βWrel + κWrec) ∈ Rd, =⇒ O(pd)
Inference final score c = argmax

i∈|C|
CT

i Efinal, =⇒ O(cd)

Where d being the latent size, p being the number of total patches, c being the number of available963

ground truth choice, k and v being the key and value linear mapping, S ∈ Rp×d as the signal964

embeddings, Q as the query sentence embedding, and C as the list of available answer choice965

sentences. The total runtime complexity is O(d2+pd+p+ cd). Since d is constant, we have runtime966

complexity of O(p+ c).967

Regarding memory complexity of MSiTF, with m being the size of text encoder, w being the size of968

normwear, we have (i) Signal representations: O(pd); (ii) Text representations: O(cd); (iii) Total:969

O(m+w+ d(p+ c)). Since m, w, and d are all constants, we have memory complexity of O(p+ c).970

I Feature Visualization971

Feature visualization serves as a tool to interpret and analyze the internal representations learned972

by the model. By examining activation patterns or embedding structures at various layers, we aim973

to understand how the model encodes input signals and whether these representations align with974

relevant semantic or structural information. This analysis provides insight into the effectiveness of975

the learned features and can inform architectural or training modifications to improve performance976

and generalization.977

I.1 The model is agnostic to the input signals978

This section investigates whether, without requiring the signal modality type information as input,979

NORMWEAR can effectively distinguish between different signal sources. We randomly sampled980

500 samples for each sensor type and fed them into our pretrained model. We use t-SNE (Van der981

Maaten & Hinton, 2008), with PCA (Jolliffe & Cadima, 2016) initialization to visualize the learned982

representations corresponding to the [CLS] special token at the last layer. The PCA preserves the983

global structure, while t-SNE emphasizes local relationships in the data. From Figure 13(a), we984

observe that representations from sensors located at the same body position are clustered closely985

together, while representations from different body locations are clearly separated. This suggests that986

our model is signal-agnostic, as it can recognize the signal type differences, map their representations987

appropriately in the embedding space, and guide feature extraction within each Transformer block.988

I.2 Waveform visualization989

Figure 13 (b) under “Feature Associations" shows the features extracted by our model. Each patch990

corresponds to a representation with a vector size of R768. When ordered by time sequence, these991

representations form 768 waveforms per layer, representing the model’s extracted features. The figure992
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displays 64 randomly sampled waveforms from a selected layer. The features highlighted in purple993

and gray indicate the top 10 patterns positively and negatively associated with the target task (diabetes994

classification, in this example), with associations determined by linear regression parameters during995

linear probing. Additionally, our relevance-based fusion mechanism identifies the contribution of996

each time step during inference, highlighted by red dots in the “Time Step Relevance" section of997

Figure 13 (b).998

Such a visualization pipeline can assist researchers and clinicians by offering insights into how the999

model reaches its final predictions. Given the millions of parameters and hundreds of waveform1000

features per layer, visualizing these features individually is inefficient for understanding the overall1001

behavior of the proposed foundation model. As a result, we use several techniques in nonlinear1002

dynamic analysis (Thompson et al., 1990) to quantify the overall patterns of these extracted features,1003

which are discussed in detail in section I.3.1004

I.3 Quantify the intrinsic behaviors: nonlinear dynamics analysis on the layer-wise1005

waveforms1006

Understanding the representations extracted by intermediate layers is crucial to interpreting our1007

model’s behavior. To quantify the meaningfulness of these representations, we conducted a nonlinear1008

dynamics analysis inspired by chaos theory. This method analyzes the features’ intrinsic behaviors1009

through metrics like the Lyapunov exponent (Wolf et al., 1985) (sensitivity to initial conditions),1010

Hurst exponent (Qian & Rasheed, 2004) (self-correlation/seasonality), and persistence entropy (Yan1011

et al., 2023b) (unpredictability in system states). We obtain the following key observations:1012

1. Deeper Layers Capture Higher-Order Complexity.1013

• For signals such as GSR, EEG, and ACC, deeper layers show lower self-correlation (DFA1014

(Hu et al., 2001)) and higher unpredictability (persistence entropy), indicating a transition to1015

representations that are less periodic and more chaotic.1016

• The decrease in the Lyapunov exponent across layers suggests reduced variation in extracted1017

features, aligning with the idea that deeper layers capture more abstract, long-term patterns1018

with broader receptive fields.1019

2. Modalities with Simpler Dynamics. In contrast, PPG and ECG signals, dominated by regular1020

heart activity, exhibit more stable patterns across layers. This aligns with their simpler waveform1021

structures and less complex dynamics compared to signals related to neural and physical activities.1022

These visualizations reveal that the model progressively transforms raw sensory data into representa-1023

tions aligned with the complexity of each signal. For GSR and EEG, deeper layers exhibit increased1024

unpredictability and reduced periodicity, highlighting the extraction of nuanced, higher-order patterns1025

critical for human sensing. In contrast, the stability of representations for PPG and ECG reflects1026

their simpler dynamics, demonstrating the model’s adaptability to varying signal characteristics. This1027

analysis confirms that the intermediate representations are purposefully optimized to capture the1028

temporal and structural nuances of each modality, supporting the conclusion that the model learns1029

meaningful features tailored to human sensing tasks.1030
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Figure 12: Nonlinear dynamic analysis on the waveforms extract at different layers of our model.

31



75 50 25 0 25 50 75

Component 1

75

50

25

0

25

50

75

100

C
om

po
ne

nt
 2

PPG
ECG
GSR
ACC_X
ACC_Y
ACC_Z
EEG_F
EEG_O
EEG_R
EEG_L

(a) T-SNE plot of the embeddings of the
[CLS] special tokens, including

signals of PPG, ECG, GSR, tri-axis
accelerometer, and EEG at lobe of

front, occiput, right, and left

Diabetes Patient

Feature Associations

Time Step Relevance

PPG

(b) Visualization of features
extracted by the intermediate layer

Figure 13: Feature visualization.

I.4 T-SNE plot among classes1031

In this section, we present T-SNE plots of NormWear’s embeddings across different classes to provide1032

insights into their structure and assess their suitability for sample similarity-based information1033

retrieval. It is important to note that these plots are exploratory in nature and do not serve as a claim1034

of the embeddings’ superiority. As shown in Figures 14a and 14b, clear class separations can be1035

observed in certain scenarios. For example, EEG samples from seizure subjects and normal subjects1036

are distinctly separated, and physical activity types are well-clustered. For ECG data, abnormal1037

heartbeats tend to form cohesive clusters. However, it is essential to recognize that these T-SNE plots1038

reduce the latent representations into a 2D space, which may not fully capture the inherent properties1039

of the embeddings in their original high-dimensional form.1040
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(b) Visualization of embedding on signals from IMU
sensors.

Figure 14: Visualization of example signal embeddings.
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I.5 Supplementary Qualitative Analysis of MSiTF1041

0.0

1.0
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Time Step0 160
Time Step

0 160

Q1: Is the person's eyes open?  

Q2: Is the person under relexation?  

Q3: What is the situation of the 
person's brain?  

Q4: Is this an area with tumor ?

Q5: Is the person not 
experiencing a seizure? 

Relevance Score Importance Score

—  Single Channel EEG

Figure 15: Visualization of relevance scores(left) and importance scores (right) for a single chan-
nel EEG sample from the Epilepsy dataset under five task-specific questions. The background
color follows a yellow-to-red scale, where darker regions indicate higher scores.

To understand how each of our proposed gating modules in MSiTF—relevance, recency, and im-1042

portance—select useful features for different tasks, we visualize the scores assigned to each time1043

window. As shown qualitatively in Figure 15, the heatmaps reveal that both relevance and importance1044

scores are sensitive to task differences. For example, in the eye closure detection task, the model1045

focuses on the last few patches, whereas in the seizure detection task, it emphasizes patches with1046

large fluctuations. A similar pattern is observed for the importance score, where patches are weighted1047

differently across tasks. This suggests that our gating mechanism can adaptively select relevant1048

features based on the task. We include a figure of the recency score (Figure 16) for completeness.1049

Since the recency score is derived from a fixed decay function and is not learned, it remains the same1050

across tasks.1051

To improve visualization, we aggregated token scores using a window size of 9, which matches our1052

tokenization patch size. We then applied Z-score normalization to ensure comparability across tasks.1053

The sample was selected from the Epilepsy dataset due to its multiple and diverse task types.
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Scores

Time Step0 160

Recency Score

Figure 16: Recency score generated by a decay function. The sample is selected from the Epilepsy
dataset.

1054
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J Reconstruction Example1055

Figure 17: Uncurated random samples on Phyatt scalogram, using a NORMWEAR trained in our
training set. The masking ratio is 80%.
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Figure 18: Uncurated random samples on WESAD scalogram, using a NORMWEAR trained in
our training set. The masking ratio is 80%. Note that the IMU data are not in the training set and, in
general, NORMWEAR is able to reconstruct this with high accuracy.
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NeurIPS Paper Checklist1056

The checklist is designed to encourage best practices for responsible machine learning research,1057

addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove1058

the checklist: The papers not including the checklist will be desk rejected. The checklist should1059

follow the references and follow the (optional) supplemental material. The checklist does NOT count1060

towards the page limit.1061

Please read the checklist guidelines carefully for information on how to answer these questions. For1062

each question in the checklist:1063

• You should answer [Yes] , [No] , or [NA] .1064

• [NA] means either that the question is Not Applicable for that particular paper or the1065

relevant information is Not Available.1066

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).1067

The checklist answers are an integral part of your paper submission. They are visible to the1068

reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it1069

(after eventual revisions) with the final version of your paper, and its final version will be published1070

with the paper.1071

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.1072

While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a1073

proper justification is given (e.g., "error bars are not reported because it would be too computationally1074

expensive" or "we were unable to find the license for the dataset we used"). In general, answering1075

"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we1076

acknowledge that the true answer is often more nuanced, so please just use your best judgment and1077

write a justification to elaborate. All supporting evidence can appear either in the main paper or the1078

supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification1079

please point to the section(s) where related material for the question can be found.1080

IMPORTANT, please:1081

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",1082

• Keep the checklist subsection headings, questions/answers and guidelines below.1083

• Do not modify the questions and only use the provided macros for your answers.1084

1. Claims1085

Question: Do the main claims made in the abstract and introduction accurately reflect the1086

paper’s contributions and scope?1087

Answer: [Yes]1088

Justification: [NA]1089

Guidelines:1090

• The answer NA means that the abstract and introduction do not include the claims1091

made in the paper.1092

• The abstract and/or introduction should clearly state the claims made, including the1093

contributions made in the paper and important assumptions and limitations. A No or1094

NA answer to this question will not be perceived well by the reviewers.1095

• The claims made should match theoretical and experimental results, and reflect how1096

much the results can be expected to generalize to other settings.1097

• It is fine to include aspirational goals as motivation as long as it is clear that these goals1098

are not attained by the paper.1099

2. Limitations1100

Question: Does the paper discuss the limitations of the work performed by the authors?1101

Answer: [Yes]1102

Justification: [NA]1103

Guidelines:1104

• The answer NA means that the paper has no limitation while the answer No means that1105

the paper has limitations, but those are not discussed in the paper.1106
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• The authors are encouraged to create a separate "Limitations" section in their paper.1107

• The paper should point out any strong assumptions and how robust the results are to1108

violations of these assumptions (e.g., independence assumptions, noiseless settings,1109

model well-specification, asymptotic approximations only holding locally). The authors1110

should reflect on how these assumptions might be violated in practice and what the1111

implications would be.1112

• The authors should reflect on the scope of the claims made, e.g., if the approach was1113

only tested on a few datasets or with a few runs. In general, empirical results often1114

depend on implicit assumptions, which should be articulated.1115

• The authors should reflect on the factors that influence the performance of the approach.1116

For example, a facial recognition algorithm may perform poorly when image resolution1117

is low or images are taken in low lighting. Or a speech-to-text system might not be1118

used reliably to provide closed captions for online lectures because it fails to handle1119

technical jargon.1120

• The authors should discuss the computational efficiency of the proposed algorithms1121

and how they scale with dataset size.1122

• If applicable, the authors should discuss possible limitations of their approach to1123

address problems of privacy and fairness.1124

• While the authors might fear that complete honesty about limitations might be used by1125

reviewers as grounds for rejection, a worse outcome might be that reviewers discover1126

limitations that aren’t acknowledged in the paper. The authors should use their best1127

judgment and recognize that individual actions in favor of transparency play an impor-1128

tant role in developing norms that preserve the integrity of the community. Reviewers1129

will be specifically instructed to not penalize honesty concerning limitations.1130

3. Theory assumptions and proofs1131

Question: For each theoretical result, does the paper provide the full set of assumptions and1132

a complete (and correct) proof?1133

Answer: [NA]1134

Justification: [NA]1135

Guidelines:1136

• The answer NA means that the paper does not include theoretical results.1137

• All the theorems, formulas, and proofs in the paper should be numbered and cross-1138

referenced.1139

• All assumptions should be clearly stated or referenced in the statement of any theorems.1140

• The proofs can either appear in the main paper or the supplemental material, but if1141

they appear in the supplemental material, the authors are encouraged to provide a short1142

proof sketch to provide intuition.1143

• Inversely, any informal proof provided in the core of the paper should be complemented1144

by formal proofs provided in appendix or supplemental material.1145

• Theorems and Lemmas that the proof relies upon should be properly referenced.1146

4. Experimental result reproducibility1147

Question: Does the paper fully disclose all the information needed to reproduce the main ex-1148

perimental results of the paper to the extent that it affects the main claims and/or conclusions1149

of the paper (regardless of whether the code and data are provided or not)?1150

Answer: [Yes]1151

Justification: [NA]1152

Guidelines:1153

• The answer NA means that the paper does not include experiments.1154

• If the paper includes experiments, a No answer to this question will not be perceived1155

well by the reviewers: Making the paper reproducible is important, regardless of1156

whether the code and data are provided or not.1157

• If the contribution is a dataset and/or model, the authors should describe the steps taken1158

to make their results reproducible or verifiable.1159
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• Depending on the contribution, reproducibility can be accomplished in various ways.1160

For example, if the contribution is a novel architecture, describing the architecture fully1161

might suffice, or if the contribution is a specific model and empirical evaluation, it may1162

be necessary to either make it possible for others to replicate the model with the same1163

dataset, or provide access to the model. In general. releasing code and data is often1164

one good way to accomplish this, but reproducibility can also be provided via detailed1165

instructions for how to replicate the results, access to a hosted model (e.g., in the case1166

of a large language model), releasing of a model checkpoint, or other means that are1167

appropriate to the research performed.1168

• While NeurIPS does not require releasing code, the conference does require all submis-1169

sions to provide some reasonable avenue for reproducibility, which may depend on the1170

nature of the contribution. For example1171

(a) If the contribution is primarily a new algorithm, the paper should make it clear how1172

to reproduce that algorithm.1173

(b) If the contribution is primarily a new model architecture, the paper should describe1174

the architecture clearly and fully.1175

(c) If the contribution is a new model (e.g., a large language model), then there should1176

either be a way to access this model for reproducing the results or a way to reproduce1177

the model (e.g., with an open-source dataset or instructions for how to construct1178

the dataset).1179

(d) We recognize that reproducibility may be tricky in some cases, in which case1180

authors are welcome to describe the particular way they provide for reproducibility.1181

In the case of closed-source models, it may be that access to the model is limited in1182

some way (e.g., to registered users), but it should be possible for other researchers1183

to have some path to reproducing or verifying the results.1184

5. Open access to data and code1185

Question: Does the paper provide open access to the data and code, with sufficient instruc-1186

tions to faithfully reproduce the main experimental results, as described in supplemental1187

material?1188

Answer: [Yes]1189

Justification: [NA]1190

Guidelines:1191

• The answer NA means that paper does not include experiments requiring code.1192

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/1193

public/guides/CodeSubmissionPolicy) for more details.1194

• While we encourage the release of code and data, we understand that this might not be1195

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not1196

including code, unless this is central to the contribution (e.g., for a new open-source1197

benchmark).1198

• The instructions should contain the exact command and environment needed to run to1199

reproduce the results. See the NeurIPS code and data submission guidelines (https:1200

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.1201

• The authors should provide instructions on data access and preparation, including how1202

to access the raw data, preprocessed data, intermediate data, and generated data, etc.1203

• The authors should provide scripts to reproduce all experimental results for the new1204

proposed method and baselines. If only a subset of experiments are reproducible, they1205

should state which ones are omitted from the script and why.1206

• At submission time, to preserve anonymity, the authors should release anonymized1207

versions (if applicable).1208

• Providing as much information as possible in supplemental material (appended to the1209

paper) is recommended, but including URLs to data and code is permitted.1210

6. Experimental setting/details1211

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-1212

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the1213

results?1214
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Answer: [Yes]1215

Justification: [NA]1216

Guidelines:1217

• The answer NA means that the paper does not include experiments.1218

• The experimental setting should be presented in the core of the paper to a level of detail1219

that is necessary to appreciate the results and make sense of them.1220

• The full details can be provided either with the code, in appendix, or as supplemental1221

material.1222

7. Experiment statistical significance1223

Question: Does the paper report error bars suitably and correctly defined or other appropriate1224

information about the statistical significance of the experiments?1225

Answer: [Yes]1226

Justification: [NA]1227

Guidelines:1228

• The answer NA means that the paper does not include experiments.1229

• The authors should answer "Yes" if the results are accompanied by error bars, confi-1230

dence intervals, or statistical significance tests, at least for the experiments that support1231

the main claims of the paper.1232

• The factors of variability that the error bars are capturing should be clearly stated (for1233

example, train/test split, initialization, random drawing of some parameter, or overall1234

run with given experimental conditions).1235

• The method for calculating the error bars should be explained (closed form formula,1236

call to a library function, bootstrap, etc.)1237

• The assumptions made should be given (e.g., Normally distributed errors).1238

• It should be clear whether the error bar is the standard deviation or the standard error1239

of the mean.1240

• It is OK to report 1-sigma error bars, but one should state it. The authors should1241

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis1242

of Normality of errors is not verified.1243

• For asymmetric distributions, the authors should be careful not to show in tables or1244

figures symmetric error bars that would yield results that are out of range (e.g. negative1245

error rates).1246

• If error bars are reported in tables or plots, The authors should explain in the text how1247

they were calculated and reference the corresponding figures or tables in the text.1248

8. Experiments compute resources1249

Question: For each experiment, does the paper provide sufficient information on the com-1250

puter resources (type of compute workers, memory, time of execution) needed to reproduce1251

the experiments?1252

Answer: [Yes]1253

Justification: [NA]1254

Guidelines:1255

• The answer NA means that the paper does not include experiments.1256

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,1257

or cloud provider, including relevant memory and storage.1258

• The paper should provide the amount of compute required for each of the individual1259

experimental runs as well as estimate the total compute.1260

• The paper should disclose whether the full research project required more compute1261

than the experiments reported in the paper (e.g., preliminary or failed experiments that1262

didn’t make it into the paper).1263

9. Code of ethics1264

Question: Does the research conducted in the paper conform, in every respect, with the1265

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?1266
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Answer: [Yes]1267

Justification: [NA]1268

Guidelines:1269

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.1270

• If the authors answer No, they should explain the special circumstances that require a1271

deviation from the Code of Ethics.1272

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-1273

eration due to laws or regulations in their jurisdiction).1274

10. Broader impacts1275

Question: Does the paper discuss both potential positive societal impacts and negative1276

societal impacts of the work performed?1277

Answer: [Yes]1278

Justification: [NA]1279

Guidelines:1280

• The answer NA means that there is no societal impact of the work performed.1281

• If the authors answer NA or No, they should explain why their work has no societal1282

impact or why the paper does not address societal impact.1283

• Examples of negative societal impacts include potential malicious or unintended uses1284

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations1285

(e.g., deployment of technologies that could make decisions that unfairly impact specific1286

groups), privacy considerations, and security considerations.1287

• The conference expects that many papers will be foundational research and not tied1288

to particular applications, let alone deployments. However, if there is a direct path to1289

any negative applications, the authors should point it out. For example, it is legitimate1290

to point out that an improvement in the quality of generative models could be used to1291

generate deepfakes for disinformation. On the other hand, it is not needed to point out1292

that a generic algorithm for optimizing neural networks could enable people to train1293

models that generate Deepfakes faster.1294

• The authors should consider possible harms that could arise when the technology is1295

being used as intended and functioning correctly, harms that could arise when the1296

technology is being used as intended but gives incorrect results, and harms following1297

from (intentional or unintentional) misuse of the technology.1298

• If there are negative societal impacts, the authors could also discuss possible mitigation1299

strategies (e.g., gated release of models, providing defenses in addition to attacks,1300

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from1301

feedback over time, improving the efficiency and accessibility of ML).1302

11. Safeguards1303

Question: Does the paper describe safeguards that have been put in place for responsible1304

release of data or models that have a high risk for misuse (e.g., pretrained language models,1305

image generators, or scraped datasets)?1306

Answer: [Yes]1307

Justification: [NA]1308

Guidelines:1309

• The answer NA means that the paper poses no such risks.1310

• Released models that have a high risk for misuse or dual-use should be released with1311

necessary safeguards to allow for controlled use of the model, for example by requiring1312

that users adhere to usage guidelines or restrictions to access the model or implementing1313

safety filters.1314

• Datasets that have been scraped from the Internet could pose safety risks. The authors1315

should describe how they avoided releasing unsafe images.1316

• We recognize that providing effective safeguards is challenging, and many papers do1317

not require this, but we encourage authors to take this into account and make a best1318

faith effort.1319
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12. Licenses for existing assets1320

Question: Are the creators or original owners of assets (e.g., code, data, models), used in1321

the paper, properly credited and are the license and terms of use explicitly mentioned and1322

properly respected?1323

Answer: [Yes]1324

Justification: [NA]1325

Guidelines:1326

• The answer NA means that the paper does not use existing assets.1327

• The authors should cite the original paper that produced the code package or dataset.1328

• The authors should state which version of the asset is used and, if possible, include a1329

URL.1330

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.1331

• For scraped data from a particular source (e.g., website), the copyright and terms of1332

service of that source should be provided.1333

• If assets are released, the license, copyright information, and terms of use in the1334

package should be provided. For popular datasets, paperswithcode.com/datasets1335

has curated licenses for some datasets. Their licensing guide can help determine the1336

license of a dataset.1337

• For existing datasets that are re-packaged, both the original license and the license of1338

the derived asset (if it has changed) should be provided.1339

• If this information is not available online, the authors are encouraged to reach out to1340

the asset’s creators.1341

13. New assets1342

Question: Are new assets introduced in the paper well documented and is the documentation1343

provided alongside the assets?1344

Answer: [Yes]1345

Justification: [NA]1346

Guidelines:1347

• The answer NA means that the paper does not release new assets.1348

• Researchers should communicate the details of the dataset/code/model as part of their1349

submissions via structured templates. This includes details about training, license,1350

limitations, etc.1351

• The paper should discuss whether and how consent was obtained from people whose1352

asset is used.1353

• At submission time, remember to anonymize your assets (if applicable). You can either1354

create an anonymized URL or include an anonymized zip file.1355

14. Crowdsourcing and research with human subjects1356

Question: For crowdsourcing experiments and research with human subjects, does the paper1357

include the full text of instructions given to participants and screenshots, if applicable, as1358

well as details about compensation (if any)?1359

Answer: [NA]1360

Justification: [NA]1361

Guidelines:1362

• The answer NA means that the paper does not involve crowdsourcing nor research with1363

human subjects.1364

• Including this information in the supplemental material is fine, but if the main contribu-1365

tion of the paper involves human subjects, then as much detail as possible should be1366

included in the main paper.1367

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,1368

or other labor should be paid at least the minimum wage in the country of the data1369

collector.1370
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15. Institutional review board (IRB) approvals or equivalent for research with human1371

subjects1372

Question: Does the paper describe potential risks incurred by study participants, whether1373

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)1374

approvals (or an equivalent approval/review based on the requirements of your country or1375

institution) were obtained?1376

Answer: [NA]1377

Justification: [NA]1378

Guidelines:1379

• The answer NA means that the paper does not involve crowdsourcing nor research with1380

human subjects.1381

• Depending on the country in which research is conducted, IRB approval (or equivalent)1382

may be required for any human subjects research. If you obtained IRB approval, you1383

should clearly state this in the paper.1384

• We recognize that the procedures for this may vary significantly between institutions1385

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the1386

guidelines for their institution.1387

• For initial submissions, do not include any information that would break anonymity (if1388

applicable), such as the institution conducting the review.1389

16. Declaration of LLM usage1390

Question: Does the paper describe the usage of LLMs if it is an important, original, or1391

non-standard component of the core methods in this research? Note that if the LLM is used1392

only for writing, editing, or formatting purposes and does not impact the core methodology,1393

scientific rigorousness, or originality of the research, declaration is not required.1394

Answer: [Yes]1395

Justification: [NA]1396

Guidelines:1397

• The answer NA means that the core method development in this research does not1398

involve LLMs as any important, original, or non-standard components.1399

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)1400

for what should or should not be described.1401
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