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Abstract: Humanoid robots are well suited for human habitats due to their
morphological similarity, but developing controllers for them is a challenging
task that involves multiple sub-problems, such as control, planning and percep-
tion. In this paper, we introduce a method to simplify controller design by
enabling users to train and fine-tune robot control policies using natural lan-
guage commands. We first learn a neural network policy that generates behav-
iors given a natural language command, such as “walk forward”, by combin-
ing Large Language Models (LLMs), motion retargeting, and motion imitation.
Based on the synthesized motion, we iteratively fine-tune by updating the text
prompt and querying LLMs to find the best checkpoint associated with the clos-
est motion in history. We validate our approach using a simulated Digit hu-
manoid robot and demonstrate learning of diverse motions, such as walking, hop-
ping, and kicking, without the burden of complex reward engineering. In addi-
tion, we show that our iterative refinement enables us to learn 3× times faster
than a naive formulation that learns from scratch. See video of results here -
https://www.kniranjankumar.com/words into action/

1 INTRODUCTION

Humanoid robots have long fascinated both scientists and science fiction writers. Recent advance-
ments have led to controllers that enable these robots to execute complex maneuvers like jumping,
hopping, and even front-flips. However, the traditional approach to designing these controllers in-
volves labor-intensive engineering: creating a robot model, planning trajectories, and optimizing a
cost function. This process must be repeated for each new motion, making it an unscalable solution
for controllers that need to adapt to changing environments and skill sets [1, 2]. An alternative is to
use model-free deep Reinforcement Learning (DRL) techniques that learn control policies by max-
imizing a reward function through extensive simulation data. While these techniques have shown
promise in solving complex control problems, they come with their own challenges, particularly in
reward engineering. Designing a reward function that captures the nuances of desired behaviors for
high-DOF robots is no small feat.

We take inspiration from the recent advances in the control of virtual humanoids by imitating the
given reference motion [3, 4], which we refer to as motion imitation. This approach enables efficient
learning of a variety of motor skills by offering a unified task definition of imitating the correspond-
ing motions. Recent studies have explored using motion capture data as a reference for learned
policies, showing promising results in quadruped robot locomotion [5, 6].

Building on these insights, our work focuses on learning joint-level control policies for humanoid
robots directly from language commands, significantly simplifying the reward engineering process.
Our method allows for iterative fine-tuning of policies through interactive language commands,
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offering precise control over the robot’s behaviors. We achieve this by first generating human motion
based on language commands, retargeting them to a humanoid robot, and then learning control
policies using a motion imitation approach. We then develop language-based policy refinement, a
process which allows users to adjust the learned behavior by identifying the closest checkpoint with
a large language model and fine-tune the policy starting from it.

We demonstrate a wide range of behaviors for the humanoid robot Digit using our framework. From
simple language prompts, our framework learns diverse behaviors such as hopping, stepping to the
side, and kicking. In addition, we provide evidence supporting the benefits of iterative human-guided
policy refinement approach, which offers 3× better sample efficiency.

2 RELATED WORK

2.1 Robot learning for legged robots

A natural solution to building robots adapted to the human living environment, is to adopt a morphol-
ogy similar to human form. However, designing controllers for humanoid robots that are versatile
and robust to external perturbations is a challenging problem that has been studied extensively over
the last few decades. A classical approach is to develop a dynamics model for the robot and then
use it to develop controllers that plan and execute control actions, optimizing a specified objective.
These models [7, 8] span from simple approximations that reduce the robot to a linear inverted pen-
dulum [9, 10, 11, 12, 13] to more sophisticated alternatives that consider the entire dynamics of the
humanoid [1, 2] or some combination of the two strategies [14]. While simpler models make the
problem tractable from a computational standpoint, they sacrifice exploiting the full capabilities of
the robot dynamics and constrain themselves to motion feasible on the simple model. Modeling
the full dynamics of the robot, on the other hand, is difficult and time-consuming and may not be
applicable for real-time robot control.

In recent years, learning-based approaches, particularly deep reinforcement learning (DRL) [15]
have gained increasing attention from the humanoid robot control community, following impressive
results on quadruped [16, 17, 18] and bipedal robots [19, 20]. Some work incorporates learning
within other model-based frameworks to improve robustness and adaptability. For example, in [21]
a learned policy generates actuator trajectories that are then tracked using a feedback regulator de-
signed with the robot model. In a related work [22], a learned policy acts as a foot-trajectory modu-
lator while a low-level gait controller regulates the torso and ankle orientation. A recent line of work
takes an end-to-end learning-based framework to develop humanoid robot controllers [23, 24]. Un-
like model-based approaches, learning based techniques do not require solving for the control output
at every time-step using the robot dynamics model, which makes them suitable for high-frequency
real-time control. These policies can be trained in massively parallelized simulations [25] and trans-
ferred directly to the real-world without additional fine-tuning. While learning-based approaches
offer a powerful alternative to model-based control, it is often challenging to design and tune re-
ward functions to accomplish a given task. Recent work, [5, 26] leverages expert demonstrations to
ground the space of behaviors that emerge from the policy by imposing a motion prior.

2.2 Human motion generation

Generating human motion has a wide range of applications from animation [27] to modeling human
behaviors for human robot interaction. With the abundance of human motion capture datasets like
HumanML3D [28] researchers have been able to create generative model for human motion [29].
With the advent of Large Language Models (LLMs), using text to generate human motion has gained
considerable interest within the research community. Given the ease of prompting and guiding the
generation process, LLMs offer a promising strategy to control synthesis.

However, the generated motion from these methods is not grounded in physics and often demon-
strates foot sliding, jitters or self-collisions. So a line of work focuses on learning control policies
for virtual agents in a physics simulation to imitate motion capture trajectories while being physi-
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Figure 1: Overview of our proposed approach. Given a language instruction our framework outputs
a learned control policy for the corresponding behavior.

cally plausible [3, 4]. In this work, we build upon these ideas to use human motion as a reference to
guide on a humanoid robot control policies.

2.3 LLMs for Robot Control

LLMs have demonstrated human-level reasoning capabilities across a wide range of domains rang-
ing from code-generation [30], multi-step reasoning [31, 32, 33] to prompt-engineering [34]. One
limitation of LLMs is the lack of grounding in the real world. Robotics offers a promising approach
to ground LLMs into the real world. They have been rapidly adopted by the robotics research com-
munity in the past few months. With LLMs reaching human-level reasoning, they have the potential
to significantly augment a robot’s capabilities. They have been shown to generate long-horizon
plans [35], understand and process complex cluttered scenes [36], and explain the reasoning behind
decisions a robot takes [37]. In this work, we use LLMs to generate human motion trajectories to
build prompts based on interactive human instructions and to guide model initialization to reduce
training time.

3 LEARNING POLICIES FROM LANGUAGE PROMPTS

The first step is to learn control policies from the language prompts given by users. It consists of
three main components:

1. Human motion generation from text input

2. Motion retargeting from human to robot

3. Training a control policy to imitate retargeted motion

We provide an overview of our framework in Fig. 1. In the following section, we discuss each of
these components.

3.1 Human motion generation from text input

Human motion generation has a wide range of applications from animation to behavior modeling.
A natural modality to direct the generation of motion is through textual descriptions. Recently,
there has been rapid progress in generating diverse high-quality human motion trajectories from
language descriptions. Most of these approaches leverage large-scale annotated datasets of motion-
capture data to train generative models to map language input to a distribution of possible human
trajectories.

In this work, we follow T2M-GPT [29] to generate human trajectories from a language description.
We first train a VQ-VAE that builds a discrete latent representation of the human motion space.
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By selecting different parameters in the latent space, we have a handle on the nature of the motion
generated. For a motion sequence X = [x1, x2, · · · , xT ] where xt ∈ Rd, T is the number of
frames in the motion sequence, d is the dimension of the motion, the goal is to learn a codebook
C = {ck}Kk=1 of size K with ck ∈ Rdc where dc is the dimension of the codes. To accomplish
this, we train an autoencoder type architecture where an encoder E computes the latent variable
Z = E(X) from X and a decoder D reconstructs the motion from the latent variable. In contrast to
a traditional variational autoencoder, the latent variable is discrete, defined as Z = [z1, z2, · · · , zT/l]

where zi ∈ Rdc and l is the temporal downsampling rate. The encoded Z is then quantized to Ẑ by
finding the closest element in C.

ẑi = argmin
ck∈C

∥zi − ck∥2 (1)

The VQ-VAE objective is then to minimize the following:

L = Lre + Lembed + βLcommit (2)

where,
Lembed =

∥∥∥Z − sg[Ẑ]
∥∥∥
2
,Lcommit =

∥∥∥sg[Z]− Ẑ
∥∥∥
2

(3)

Lembed minimizes the embedding loss so that the predicted Z is close to the elements in the codebook
and Lcommit updates the codebook to better fit the encoded values. β is a hyper-parameter to control
the relative impact of these terms on the final loss. The reconstruction loss Lre is an L1 smooth loss
between the ground truth and the predicted position and velocity of the motion.

Given an expressive enough motion embedding, we can generate any arbitrary motion sequence by
auto-regressively generating a series of codebook indices. Including a text condition c provides a
handle on the generated codebook entries. This process is modeled using transformer architecture
and trained on the HumanML3D dataset [28]. Please refer to T2M-GPT [29] for more details about
training and architecture.

3.2 Motion retargeting from human to robot

Given a human motion trajectory generated from the previous step, we want to imitate it using
a learned control policy. Due to differences in the skeletons, we cannot directly map the joint
angles. We instead track just the end-effector locations i.e., 2 hands + 2 legs. We design an Inverse
Kinematics (IK) objective that minimizes error between the reference relative end-effector positions
and the robot end-effector positions. Given the list of reference positions xH and robot joint angles
qD the IK objective is defined as follows:

q∗ = argmin
q

∥xH − TFK(q)∥2 + λCf(q) (4)

TFK(q) is the forward kinematics function of the robot, Cf is a term that captures the feasibility of
a pose and λ is a scaling factor. Cf in our case simulates rod constraints to mimic the 4-bar linkage
present in the Digit robot and ensures that change in q over consecutive timesteps in minimal.

We solve this optimization for every timestep in the trajectory using Sequential Least Squares Pro-
gramming. To ensure the temporal smoothness, we initialize the variables with the solution of the
previous timestep. While the trajectory we get at the end is kinematically feasible, we cannot guar-
antee its success when subjected to robot dynamics and physics. Hence, we train a neural network
policy to track these reference poses while being embedded in a physics simulator. In the next
section, we discuss our policy learning framework.

3.3 Training control policy to imitate retargeted motion

Given a reference trajectory of the robot, we want to train a control policy that imitates it while being
dynamically feasible. It should be noted that some of these states might not be physically realistic
on the robot. We would like our approach to ignore these states and focus on parts of the trajectory
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that can be reliably tracked instead. Motion imitation approaches offer a promising solution to this
problem. Rather than forcing the policy to reach every segment in the reference, motion imitation
approaches typically only require that the trajectories generated from the policy resemble those
found in the reference. Therefore, the infeasible segments can be ignored as the policy is trained.
Thus, the mode collapse problem that often plagues generative models works to our advantage here,
eliminating the need to manually curate a set of dynamically feasible motions for the robot.

We use Adversarial Motion Priors (AMP) [3] to train neural network policies for joint-level control
of the robot. Given a dataset of state transitions M, a discriminator network D(s, s′) is trained to
predict if the transition is from the learned policy π or from M. This follows an architecture similar
to GAIL [38] but with state transitions (s, s′) instead of state-action pairs (s, a).

argmin
D

− EdM(s,s′) [log (D ( s, s′))]− Edπ(s,s′) [log (1−D ( s, s′))] . (5)

The discriminator is then used to compute reward during policy training.

r (st, st+1) = max[0, 1− 0.25(D(st, st+1)− 1)2] (6)

The neural network policy is learned with proximal-policy optimization(PPO) [39] using a value
function network and a gradient penalty to stabilize training. See AMP [3] for network architecture
and details about the training process.

4 LANGUAGE-GUIDED ITERATIVE POLICY REFINEMENT

Training control policies for high-DOF robots involves careful reward engineering to tune the style
of the behaviors that emerge, requiring expert knowledge about the impact of different reward terms
on the final policy. In this section, we seek to simplify this process by conditioning the behaviors
generated on natural language commands, iteratively adjusting the trained policy. We leverage the
general-purpose language understanding and reasoning capacity of LLMs to achieve this goal. Given
an input command update, the LLM is assigned two tasks:

1. Create/update the instruction given to T2M-GPT to incorporate the update

2. Initialize the policy with the closest previously trained model (if applicable) to improve
sample efficiency.

We prompt a conversational LLM (ChatGPT-4) to behave as a prompt generator and policy initalizer
using the following prompt:

Your role is to generate prompts for a motion model. You have to continuously cre-
ate/update the original prompt based on user input “command” and recover a motion “clos-
est prompt in history” from a history of generated prompts “motion history” that resemble the
generated prompt. If the motions in the history are completely unrelated to the generated prompt,
return “None”. Your prompts describe the actions of a person. Examples of prompts:

1. A person is walking forward

2. A person is hopping forward then turning around and hopping back to the start.

The user commands will have the format: ⟨command⟩
You should return :

• ⟨prompt⟩
• ⟨closest prompt in history⟩
• ⟨motion history⟩

“motion history”is a list of the motion history that includes the generated“prompt”. “clos-
est prompt in history” can be “None” if none of the motions are similar enough to the prompt. For
example, jumping is very different from walking. But walking slow is similar to walking fast.Wait
for the next user input.
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(a) Walk forward (b) Hop forward (c) Raise hand (d) Wave to a friend

(e) Step to the side gradually (f) Celebrate (g) Kick slowly

Figure 2: Motion frames demonstrating the skills learned with our approach

Given new instructions conversational LLM automatically updates the prompt given to T2M-GPT
and returns the closest model to initialize the policy with, if it exists. We present the behaviors
trained using our approach in the following section.

5 EXPERIMENTS

In our work, we train control policies for the humanoid robot Digit from Agility robotics. Digit has
“bird-legs” (digitigrades) which differ significantly from human legs. The robot walks on its toes
instead of its foot. We show that our approach is immune to such differences in morphology and can
learn a diverse set of joint-level control policies for Digit. We first define the underlying Markov
Decision Process (MDP) for our control policy, then describe the simulation setup and results.

5.1 Problem Formulation

Learning control policies for a robot can be modeled as a Markov Decision Process (MDP) where
the actions taken by the robot moves it from one state to another. In this work, we define the MDP
underlying the robot control problem as follows:

• States: The state is a 69 dimensional vector formed by the concatenation of the root height
(1), root orientation in normal-tangent encoding (6), root velocity (3), root angular velocity
(3), joint positions (22), joint velocities (22) and end-effector positions (4× 3).

• Actions: The action is a 22 dimensional vector of joint angle positions that are sent to a
PD controller to calculate the control torque.

• Rewards: We use a single reward term calculated using Eq. 6. However, more task specific
rewards can be added if required.

5.2 Simulation

We use IsaacGym [25] to train all our control policies on multiple parallelized simulated robots.
We simulate 4096 Digit robots in parallel to train our neural networks on a single NVIDIA Titan
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(a) Reward curves for the different skills in our
approach

(b) Iteratively fine-tuning a skill from similar pre-
vious skills reduces training time

Figure 3: Reward curves for the different behaviors trained using our approach

X GPU. However, IsaacGym does not support closed-loop chains which are necessary to model the
4-bar linkages in Digit’s legs. To handle this, we simulate virtual springs that mimic the physics of
the rods, similar to previous work [23]. To ensure that the policies learned are robust, we perform
domain randomization by adding Gaussian noise to observation, gravity, and actions taken by the
robot with standard deviations 0.02, 0.4, 0.02, respectively. We train each of our policies for a total
of 330M steps, taking ≈ 3 hours of training time.

5.3 Results

5.3.1 Learned Skills

Using our framework, we train a diverse set of skills for Digit. We list the behaviors generated using
our approach below:

1. Walk forward - a locomotion policy that makes the robot walk forward while swinging its
arms

2. Hop forward - a policy for that makes the robot hop forward continuously

3. Raise your hand - a policy that makes the robot stand in place and balance while lifting its
hand

4. Wave to a friend - a policy that makes the robot wave its hand to say hello

5. Step to the side gradually - a policy that makes the robot step to the side orthogonal to its
heading direction.

6. Celebrate - a policy that makes the robot act like a cheerleader

7. Kick slowly - a policy that makes the robot balance on one leg as it lifts the other leg up
and kicks

We present motion frames of these skills, along with the intermediate human motion generated in
Fig. 2. The reward curve for all our policies converge resulting in motions that recreate feasible
portions of the reference (See Fig. 3a). Our approach can handle abstract commands and generate
meaningful policies that demonstrate the intent behind the command. When instructed to “Cele-
brate”, our framework generates a cheerleader’s routine, hopping and swinging its arms as shown in
Fig. 2.

5.3.2 Human guided iterative refinement

In addition to generating behaviors given a language instruction, our framework allows us to inter-
actively fine-tune the robot motion. We show examples of interactive refinement in Fig. 4b. Notice
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(a) Iterative refinement to generate feasible behavior (b) Iterative refinement to reuse learned skills

Figure 4: Examples of human guided policy refinement using our framework

that as we interact with our framework, the generated command is continuously updated to account
for user feedback and the policy is initialized automatically using previously learned behaviors to
minimize training iterations. We demonstrate two examples of iterative skill refinement below:

1. We tell our framework to make the robot “Kick”. The LLM does not have any previously
learned skill it can reuse, so it initializes the model from scratch. But as the policy trains we
notice that the behavior is too sudden and is not feasible on the robot morphology. We tell
our framework to “Slow down”. The LLM updates the command prompt given to T2M-
GPT to kick slowly, realizes that we have already learned how to kick and initializes the
policy with pre-trained weights. A motion frame for the trained skill is shown in Fig. 2g

2. We tell our framework to make the robot “Wave to a friend” after learning a set of skills.
Our framework realizes that we have already learned how to “Stand still and raise your right
hand up” (Fig. 2c), and initializes the policy with pre-trained weights. A motion frame for
the trained skill is shown in Fig. 2d

In Fig. 3b we show the reward curves for training a “Kick slowly” skill from scratch, vs fine-tuning
from a previously learned “Kick” skill. Training using our approach takes significantly fewer steps
(≈ 40M fewer in this case) compared to training from scratch.

6 CONCLUSION

In this work, we presented preliminary results on a framework that generates control policies for
dynamic and agile behaviors on a humanoid robot from language instruction. We demonstrated the
behaviors learned by our approach on 6 different instructions and discussed an iterative human-in-
the-loop refinement approach to fine-tune the learned behaviors. For future work, we are interested
in building a robot motion embedding that directly translates language commands into control ac-
tions, without requiring us to retrain a new policy for every instruction. We would also like to deploy
our policy on a real Digit robot to test the robustness of our learned policy against environmental
perturbations and the sim-to-real gap.
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