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Abstract001

This study investigates the effectiveness of002
transfer learning in machine translation across003
diverse linguistic families by evaluating five004
distinct language pairs. Leveraging pre-trained005
models on high-resource languages, these mod-006
els were fine-tuned on low-resource languages,007
examining variations in hyperparameters such008
as learning rate, batch size, number of epochs,009
and weight decay. The research encompasses010
language pairs from different linguistic back-011
grounds: Semitic (Modern Standard Arabic -012
Levantine Arabic), Bantu (Hausa - Zulu), Ro-013
mance (Spanish - Catalan), Slavic (Slovakian014
- Macedonian), and language isolates (East-015
ern Armenian - Western Armenian). Results016
demonstrate that transfer learning is effective017
across different language families, although the018
impact of hyperparameters varies. A moderate019
batch size (e.g., 32) is generally more effec-020
tive, while very high learning rates can disrupt021
model training. The study highlights the uni-022
versality of transfer learning in multilingual023
contexts and suggests that consistent hyperpa-024
rameter settings can simplify and enhance the025
efficiency of multilingual model training.026

1 Introduction027

Recent advancements in machine translation have028

been predominantly driven by the adoption of029

transformer-based models, which have shown re-030

markable performance improvements across var-031

ious language pairs. These models, such as the032

widely acclaimed BERT (Bidirectional Encoder033

Representations from Transformers) and its deriva-034

tives, leverage attention mechanisms to capture con-035

textual dependencies effectively. This capability036

has significantly enhanced translation accuracy and037

fluency, marking a paradigm shift in natural lan-038

guage processing.039

Machine translation systems traditionally relied040

on statistical methods and rule-based approaches,041

which often struggled with syntactic nuances and042

semantic intricacies. The advent of transform- 043

ers mitigates these limitations by leveraging large- 044

scale parallel corpora and vast computational re- 045

sources, enabling models to learn complex linguis- 046

tic patterns directly from data. This shift has im- 047

proved translation quality and paved the way for 048

exploring more nuanced approaches to handling 049

low-resource languages. 050

1.1 Cross-linguistic examination 051

The paper Small Data, Big Impact: Leveraging 052

Minimal Data for Effective Machine Translation 053

by Jean Maillard et al trains machine translation 054

models for under-resourced languages with a few 055

thousand sentences. The paper initializes the train- 056

ing process with a model trained on a similar well- 057

resourced language. The paper uses Spanish, Ital- 058

ian, Catalan, and English as well-resourced lan- 059

guages paired with Friulian, Ligurian, Lombard, Si- 060

cilian, Sardinian and Venetian under-resourced lan- 061

guages. The paper proved that using high-quality 062

parallel data significantly improved the translation 063

of the under-resourced languages. 064

However, all the language pairs used in this pa- 065

per are from the Indo-European Language family, 066

3 of which are Romance languages. This means 067

the method they used cannot be cross-linguistic. 068

Moreover, the paper did not experiment with differ- 069

ent hyper-parameters while training but used set of 070

pre-determined ones. 071

1.2 Transfer Learning in Machine Translation 072

Transfer learning in machine translation involves 073

initializing models with parameters pre-trained on 074

a source language and fine-tuning them on a tar- 075

get language with minimal resources (Hujon et al., 076

2023). This process not only accelerates conver- 077

gence but also enhances the robustness of the model 078

by transferring syntactic and semantic representa- 079

tions learned from high-resource languages. Such 080

adaptations are crucial for languages lacking ex- 081
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tensive parallel corpora, where building effective082

translation systems from scratch remains challeng-083

ing.084

The paper "Cross-Attention is All You Need:085

Adapting Pre-trained Transformers for Machine086

Translation" by Gheini et al. trains and fine-tunes087

models for machine translation using various lan-088

guages, including widely spoken languages and089

some low-resource languages. Additionally, the090

author presents the following formal definition of091

transfer learning;092

Transfer Learning Formal Definition. Con-093

sider a model fθ trained on the parent dataset,094

where each training instance (xsp, ytp) is a pair095

of source and target sentences in the parent lan-096

guage pair sp–tp. Then fine-tuning is the practice097

of taking the model’s parameters θ from the model098

fθ to initialize another model gθ. The model gθ099

is then further optimized on a dataset of (xsc, ytc)100

instances in the child language pair sc–tc until it101

converges to gϕ. We assume either sc = sp or102

tc = tp (i.e., child and parent language pairs share103

one of the source or target sides) (Gheini et al.,104

2021).105

As shown above, the authors conduct a series of106

experiments by fine-tuning a translation model on107

data where either the source or target language has108

changed. These experiments reveal that fine-tuning109

only the cross-attention parameters is nearly as ef-110

fective as fine-tuning the entire translation model.111

They observe that limiting fine-tuning in this man-112

ner yields cross-linguistically aligned embeddings113

(Gheini et al., 2021).114

These results prove that when transferring knowl-115

edge from one model trained on one language to116

another to be trained on a different language, the117

model indeed transfers some knowledge from the118

old one without change. This is due to some of the119

parameters being cross-linguistic and the model120

does not learn all of the parameters during the121

fine-tuning process. This means the fine-tuning122

process needs much fewer resources and can be123

performed with communities that cannot access124

high-performance computers. However, one im-125

portant step of the fine-tuning process is finding126

suitable hyper-parameters, which this paper does127

not discuss.128

The paper "Transfer Learning Based Neural129

Machine Translation of English-Khasi on Low-130

Resource Settings" by Hujon et al uses long short-131

term memory (LSTM) models to apply the trans-132

fer learning method. First, it trains a baseline133

model and then it uses this model to train another 134

model using the transfer learning concept. After 135

evaluation, the experiments indicate a satisfactory 136

improvement in the translation accuracy of ma- 137

chine translation of the English-Khasi language 138

pair. However, this paper uses a language pair in 139

which the two languages are not related, which 140

makes it harder for the transfer learning method to 141

work. 142

The article "Hyperparameter optimization for 143

fine-tuning pre-trained transformer models from 144

Hugging Face" by Klein et al experimented with 145

fine-tuning machine translation models while ex- 146

perimenting with hyperparameters like learning 147

rate and batch size. These hyper-parameters 148

were fine-tuned using ASHA, which stops poorly 149

performing configurations early. This approach 150

showed that fine-tuning hyper-parameters can im- 151

prove performance by 1-3 percent compared to 152

default configurations. However, this article fine- 153

tunes general transformer-based parameters and 154

mentions that the improved accuracy changes ac- 155

cording to the specific task of the model, for ex- 156

ample, text classification improved accuracy by 5 157

percent instead of 1-3. 158

This paper will examine fine-tuning 5 different 159

transformer-based models based on 5 different lan- 160

guage pairs. One Semitic language pair (Modern 161

Standard Arabic - Levantine Arabic), One Bantu 162

language Pair (Hausa - Zulu), Three Indo-European 163

Language Pair; One Romance (Spanish - Catalan), 164

one Slavic (Slovakian - Macedonian), and one lan- 165

guage isolate (Eastern Armenian - Western Arme- 166

nian). This way, the language pairs are from dif- 167

ferent parts of the world, with diverse linguistic 168

patterns ensuring cross-lingual examination. The 169

languages were sampled using convenience sam- 170

pling, as the author or someone in his vicinity knew 171

the linguistic structures of these languages. To en- 172

rich the diversity of the sample, Zulu and Hausa 173

were included, as the other four pairs are from a 174

close geographical area. 175

Using this diverse set of models will be challeng- 176

ing. For example, sentences with similar meanings 177

can have almost the exact syntactic and morpho- 178

logical structure in some pairs whereas other pairs 179

would have bigger differences. The following fig- 180

ure compares the sentence "In Canada, studying 181

computer science is hard" in two language pairs. 182

From 1, it can be seen that the Arabic pair has an 183

identical syntactic form with minor morphological 184

changes, whereas the Armenian pair has some sim- 185
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Figure 1: Sentence in Two Language Pairs

ilar syntactic form but with some changes in the186

order of verbs and major morphological changes.187

To account for this, the experiments do not have188

set hyper-parameters while training. Instead, the189

training process on each pair is done 4-6 different190

times each with different hyper-parameters. The191

hyper-parameters that will be modified in each run192

are;193

1. Learning rate: since the learning rate deter-194

mines how fast parameters, which represent195

the relation between words, change, the vari-196

able learning rate will account for the variable197

syntactic changes.198

2. Number of epochs and weight decay: Differ-199

ent language pairs may have varying complex-200

ities and require different amounts of training201

to converge effectively. By varying the num-202

ber of epochs, the training process will ensure203

it captures the variable complexity of each lan-204

guage model. Weight decay will avoid over-205

fitting and the disruption of the model.206

3. Batch size per GPU: since each language207

pair has varying morphological changes, the208

amount of data it needs to learn on every209

epoch can vary. Therefore, different batch210

sizes per GPU will ensure the model captures211

the morphological complexities of each lan-212

guage pair.213

The choice of these hyper-parameters is taken from214

an article online discussing the effect of hyper-215

parameters online216

Formally, based on the formal definition from217

(Gheini et al., 2021), the problem this paper is try-218

ing to solve can be defined as follows.219

Formal Definition. Given 5 models fθ1 to fθ5,220

trained on xsp1 to xsp5 source languages and ytp221

being English in all of them, find the set of common222

hyper-parameter values set q in the models gϕ1 to223

gϕ5 where xscn is related to xspn for n from 1 to 5224

and ytc remains English.225

The reason for choosing the target language as 226

English and not the source language is for evalua- 227

tion. Native speakers weren’t able to evaluate the 228

output in the respective languages, therefore the 229

evaluation had to be made by English speakers. 230

By conducting experiments across the five dif- 231

ferent language pairs, this paper aims to address a 232

critical gap in the field of multilingual NLP. The 233

study will provide evidence that transfer learning 234

is indeed cross-linguistic in the context of machine 235

translation transfer learning, meaning that models 236

trained on any language can effectively transfer 237

knowledge to another similar language no matter 238

the language family they belong to. Additionally, 239

the research will demonstrate that the values of 240

hyper-parameters used during fine-tuning are con- 241

sistent across different languages. This finding 242

suggests that fine-tuning hyper-parameters may not 243

need to be specifically adjusted for each language 244

pair, potentially simplifying the model training pro- 245

cess and improving efficiency in multilingual ap- 246

plications. By clarifying these aspects, this paper 247

will contribute to a deeper understanding of the 248

universality and robustness of transfer learning in 249

multilingual contexts. 250

2 Experiment Set-up 251

2.1 Data and Model Collection 252

To save time and computation power, the experi- 253

ment used a publicly-available pre-trained model 254

on the higher-resourced language of each pair. 255

Some languages had Large Language Models like 256

Arabic trained and others only had smaller Lan- 257

guage Models like Armenian. Table 1 gives the 258

specifications of Arabic and Armenian models. The 259

other models’ specifications can be found in the ref- 260

erences, they all are from the Helsinki Project and 261

have the Apache license 2.0 and are available on 262

HuggingFace (NLP, 2024) (Helsinki-NLP, 2024). 263

As seen in table 1, both models are transformer- 264

based and they both use the OPUS dataset for train- 265

ing. Both models use SentencePiece tokenization, 266

with the Armenian model using an additional Nor- 267

malization step. Moreover, it can be noticed that 268

the Arabic model has higher BLEU score of 44,4 269

compared to the Armenian model with only 29.5 270

indicating better translation accuracy in the Arabic 271

model. 272

To evaluate the effectiveness of Transfer Learn- 273

ing across lower-resourced languages, a dataset of 274
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Specification Arabic Model Armenian Model
Model Name opus-mt-tc-big-ar-en opus-mt-hy-en
Language Arabic to English Armenian to English
Model Size Big Smaller
Architecture Transformer Transformer
Training Data Size OPUS dataset OPUS dataset
Pre-processing SentencePiece Normalization, SentencePiece
Performance Metrics BLEU: 44.4 (tico19-test) BLEU: 29.5 (Tatoeba)

Table 1: Specifications of Arabic and Armenian models from Helsinki-NLP.

5000 parallel sentences was collected from English275

and five lower-resourced languages (Boyacıoğlu276

and Niehues, 2024) (et al, 2022). In this context,277

maintaining a constant number of sentences—5000278

for each language pair—is essential to control for279

variations in data quantity. This approach ensures280

that the impact of Transfer Learning can be as-281

sessed independently of the data volume. The focus282

is on determining whether Transfer Learning meth-283

ods are effective across different languages with284

limited resources. Additionally, while sentence285

quantity is controlled, the quality and representa-286

tiveness of the sentences remain critical factors for287

the validity of the experiment. The 5000 sentences288

were automatically divided into training, validation,289

and testing sets. Where the training data is used290

to learn, validation is used for testing during the291

training, and the testing set is used to test after the292

training. Adding separate validation and test sets is293

crucial to avoid the model being evaluated on seen294

data. Consequently, only the BLEU score of the295

evaluation on testing was used.296

To run the experiments, 1 NVIDIA GeForce297

RTX 6000 GPU along with 20 cores CPU, Intel298

Xeon with 10 physical cores [include exact] were299

used on a LINUX Debian 12 system. The code was300

adopted from an article explaining the fine-tuning301

process (Notebook, 2024) . The code for all of the302

runs along with the code to manually test and use303

the models can be found on github.304

2.2 Hyper-parameter Variability305

As discussed before; learning rate, batch size, num-306

ber of epochs, and weight decay will be variable.307

The variability will be measured as a uniform dis-308

tribution for the learning rate and the weight decay309

since such variables vary continuously between310

two set numbers. On the other hand, the number of311

epochs and batch size will be discrete data points312

since these two variables are not continuous.313

The uniform distribution of the learning rate will 314

be as follows; 315

Xlearning rate ∼ U(0.002, 0.1) 316

By examining different papers applying Transfer 317

Learning to machine translation, the range chosen 318

for the learning rate was 0.002 to 0.1 (Kocmi and 319

Bojar, 2018) (Karda, 2023) 320

The uniform distribution of the weight decay 321

will be as follows; 322

Xweight decay ∼ U(0.0, 0.3) 323

Similar to the learning rate, examining different 324

experiments done in the same context, the optimal 325

range was between 0.0 and 0.3 (Kocmi and Bojar, 326

2018) (Marie, 2024) 327

For the epochs number, 4 points were chosen 328

(5,8,10,12). As it was noticed from previous works 329

that epochs higher than 10 caused over-fitting, only 330

1 point (12) was added to prove our observation. 331

Moreover, the batch sizes were 4 (8,16,32,64) rang- 332

ing from quite small to the highest number the 333

hardware setup could handle. 334

2.3 Experiment Set-up 335

First, the experiment started with training a low- 336

resourced language using a model trained on an 337

unrelated language (Catalan and Hausam Catalan 338

and Finnish) to prove that this method works better 339

when the training happens using a model trained 340

on a closely related language. Then, the training 341

of the 5 pairs started with firstly the languages 342

the researcher was most familiar with, Levantine 343

Arabic and Western Armenian. Each of these had 6 344

planned runs with different points from the learning 345

rates and weight decay along with a combination 346

of the 4 epochs and batch sizes. 347

Table 2 shows the setup for each experiment 348

run. Each experiment was set to run on both LA 349
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Learning Rate Weight Decay Batch Size Num Epochs
1 0.06 0.2 8 8
2 0.0002 0.02 8 12
3 0.0002 0.2 32 8
4 0.003 0.02 32 12
5 0.0004 0.2 64 5
6 0.008 0.12 16 10

Table 2: Hyper-parameters of initial LA and HYW experiments.

and HYW, therefore planned to run 12 initial runs.350

However, runs with a learning rate lower than351

n× 10−4 (1)352

where n is a number ranging from 1 to 9 broke353

the model and started giving BLEU scores lower354

than 0.00001. After manually examining the output355

of one of these models, it was clear that the high356

learning rate broke the parameters. Therefore, the357

6 combinations were revised to 4 with only one358

having a high learning rate to ensure its effect is359

cross-linguistic.360

As shown in table 3, the new runs setup changed,361

mainly due to the learning rate problem mentioned362

above. In the new set, the learning rate remained363

in the range mentioned above with the addition of364

one experiment where the learning rate was higher.365

This last run was added to prove that a high learning366

rate will corrupt the trained model. Other variables367

stayed roughly the same with the removal of batch368

size 16 and epoch 10 since 3 runs, without the high369

learning rate run, cannot handle 4 variables.370

These 4 runs were applied to each of the 5 mod-371

els trained on the higher-resourced language in the372

pair using data from the lower-resourced language.373

For example, a model trained in Spanish was fine-374

tuned 4 times each time with each of the 4 different375

setups in table 3 using Catalan data, similar to East-376

ern and Western Armenian, Modern Standard and377

Levantine Arabic, Hausa and Zulu, and Bulgarian378

and Macedonian, resulting in 20 models.379

At the end of each experiment, the model was380

evaluated using BLEU score on a test parallel sen-381

tence set and the test BLEU score was recorded for382

each experiment. However, noticing that the BLEU383

score does not take into account sentences with dif-384

ferent words or grammatical structures but similar385

meanings, which such models have a very high386

chance of outputting, a human evaluation method387

was needed.388

To human test the models, three sentences were389

composed.390

Each of the three sentences was translated by 391

Google Translate into each of the 4 lower-resourced 392

languages and then evaluated by native speakers of 393

these languages. Convenience sampling was used 394

to find these native speakers. They were contacted 395

and they all provided verbal consent to review the 396

sentences. Then the translation of each of these 397

3 sentences was fed to each of the 4 trained mod- 398

els in their respective languages, and the English 399

output was evaluated. Each English output was 400

evaluated on a scale of 1 to 3, with 1 indicating that 401

the outputted sentence is completely wrong, 2 in- 402

dicating that the outputted sentence has the stance 403

of the target translation but with some mistakes, 404

and 3 indicating that the outputted sentence has the 405

exact meaning of the target translation. For each 406

model, the score of each of the 3 sentences was 407

added and divided by 9. This score will be called 408

the human-eval-score (HES). HES was then multi- 409

plied by the BLEU score, which was used due to its 410

objective nature as a metric to assess the quality of 411

the translations based on n-gram overlaps between 412

the model outputs and reference translations. This 413

approach ensures that if the HES was quite low, 414

indicating the output sentences were not good, but 415

the BLEU score was high, the overall eval-score 416

(OES) would be low, reflecting the actual quality of 417

the translations. Therefore, OES takes into account 418

both the BLEU score and human input. The full 419

table of all 5 languages is presented in Figure 3 and 420

will be analyzed in the next section. 421

3 Results and Analysis 422

First, the initial experiments proved that machine 423

translation for low-resourced languages using trans- 424

fer learning should be done using models trained 425

on similar languages. the Catalan model trained on 426

Hausa gave a BLEU score of 0.0007, comparing 427

this BLEU score to the one from the Catalan model 428

obtained from fine-tuning a Spanish model in figure 429

3. Moreover, Catalan was trained using a Finnish 430
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Learning Rate Weight Decay Batch Size Num Epochs
1 0.0002 0.02 8 12
2 0.0002 0.2 32 8
3 0.0004 0.2 64 5
4 0.06 0.14 8 8

Table 3: Hyper-parameters of experiments for each run (1-4).

Test Sentences
1. If I spoke with him, even if he doesn’t want to speak with me, will my mom be happy?
2. I want to run fast around the neighborhood.
3. I love languages.

Table 4: Test sentences used in the experiment.

model, giving a BLEU score of around 20. While431

both languages are not directly from the same fam-432

ily, they are related. This shows that the closer the433

main models’ language to the fine-tuning language434

the better the translation gets. All of the models435

did much better at translating longer sentences, and436

many of them were unable to translate sentences437

of pure subject-verb-object structures, this might438

be because the training data is all of long sentences439

with complicated linguistic structures. Moreover,440

the long sentence in Levantine Arabic was tested441

using the parent MSA model. The model was un-442

able to output good translation, but the fine-tuned443

LA model was. Now, it is appropriate to start ana-444

lyzing the effect of hyper-parameters on fine-tuning445

these models.446

By looking at figure 3, it can be noticed that the447

last trial, which contains the high learning rate, of448

all of the languages resulted in the disruption of449

the model learning values. All of the trails have an450

OES score of 0. This score means the outcome of451

the model’s output does not match at all with the452

expected translation. The outcome was a series of453

repeated characters like "»>". As mentioned above,454

the model already knows a lot of the patterns in the455

language it is learning, and the changes as shown456

in figure 1 are minor. Therefore, the high learning457

rate won’t give the model the chance to learn the458

details and results in the disruption of the param-459

eters. Moreover, these models used significantly460

more time and power. Proving that the learning461

rate in the context of this experiment should be in462

the range suggested in equation 1. Moreover, this463

result allows to safely ignore trial 4 in all of the 5464

pairs since it disrupted the model.465

In figure 2 The x-axis is chosen to be the batch466

size since each trial of the 3 initial trials in table467

Figure 2: Overall Eval Score vs Batch Size by Language

3 have a distinct batch size, therefore the batch 468

size will be treated as a label to each trial and the 469

analysis will be over the OES and all of the hyper- 470

parameters in each trial. 471

There is a positive correlation between the trial 472

BLEU score and the OES difference between the 473

trials. As seen in figure 2 when the OES is in the 474

40s range, the difference between the first and sec- 475

ond trail is 5.1, and when it is in the high 20s, the 476

difference is 5.3. When the range is in the low 20s 477

the difference is 0.06 and when it is below 10, the 478

difference is -2.5. Since the OES is composed of 479

the BLEU score times the HES, the HES is a value 480

between 0 and 1 and is only meant to modify the 481

BLEU score. The main value of the OES comes 482

from the BLEU score. Therefore, the higher the 483

BLEU score the higher the difference is. However, 484

there is an outlier in the Arabic data, the difference 485

is the highest at 6.6. This outlier might have differ- 486

ent reasons. For example, LA shares fewer words 487

with MSA than other language pairs which might 488

disrupt the learning process. 489

Since the BLEU score measures the accuracy 490

of the output, this correlation can be proven as 491
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causation relation between batch size and accuracy.492

However, to prove this we need to isolate weight493

decay from the other variables. It was proven that494

the number of epochs should be between 6-7 that495

the exact number does not make big differences,496

and that the learning rate can be any number in the497

range shown in equation 1. The number of epochs498

and learning rate were isolated, and only weight499

decay was left to isolate.500

Weight decay did not highly influence the learn-501

ing process. As seen in table 3 weight decay is502

the same in trials 2 and 3 of all language pairs. In503

all 5 pairs, the 3rd trial is the worst, and in 4 of504

the 5 pairs, the 2nd trial is the best. From this, it505

was suspected the minor difference weight decay506

had in the context of this experiment. To further507

confirm this, an experiment on Catalan was run508

with 3 different weight decays (0.22, 0.02, 0.002)509

while keeping all other factors constant. Firstly,510

it was noticed that all of the models gave almost511

identical outputs. Moreover, the BLEU score after512

each epoch in each of the 3 trials was recorded in513

the table 5;514

ANOVA test was conducted with the null hy-515

pothesis being "weight decay does not have a sig-516

nificant effect on this experiment". The p-value517

was 0.981 which is way bigger than the threshold518

of 0.05, therefore the null hypothesis is not rejected519

proving that weight decay is insignificant in this520

experiment. By extension and since all other lan-521

guages had similar behaviour during training, we522

can say weight decay did not significantly affect523

the training process in this context.524

Finally, after proving the insignificance of525

weight decay along with proving that the learn-526

ing rate should be of any value in the equation 1527

and that the number of epochs could be around 6-7,528

the relationship between the BLEU score, or the529

OES, and the batch size can be safely analyzed.530

Medium and low batch sizes appear to be531

more effective for transferring learning from high-532

resourced to low-resourced languages. As shown533

in Figure 2, the medium batch size of 32 achieved534

the best OES in 4 out of 5 language pairs, while a535

batch size of 8 was most effective for Zulu. This536

suggests that medium batch sizes strike a balance537

between training efficiency and the model’s ability538

to capture data details, whereas smaller batch sizes,539

such as 8, may be advantageous when the model540

needs to focus on fewer, more intricate details.541

Changes in the similarity of language pairs cause542

changes in the required batch size. To measure this543

similarity, we translated the sentences in Table 4 544

into the respective languages and computed the 545

Liechtenstein Distance as a similarity score. The 546

results indicated that language pairs like Zulu and 547

Hausa, with a Liechtenstein Distance of 0.55, were 548

less similar compared to pairs with scores ranging 549

from 0.74 to 0.85. This lower similarity suggests 550

that Zulu and Hausa, being less mutually intelligi- 551

ble, require more granular learning, which is why 552

a smaller batch size of 8 was found to be optimal. 553

Conversely, languages with higher similarity did 554

not need such detailed focus, making medium batch 555

sizes effective for them. 556

In summary, A causal relationship between lan- 557

guage similarity and the required batch size during 558

transfer learning for low-resourced languages is 559

suggested by the results of the experiments. Vari- 560

ables such as learning rate and weight decay were 561

isolated and controlled, revealing that a higher sim- 562

ilarity in language pairs is correlated with a need 563

for larger batch sizes. This correlation is supported 564

by empirical data indicating that better translation 565

results are generally achieved with medium batch 566

sizes, particularly when languages are more sim- 567

ilar. Conversely, smaller batch sizes are found to 568

be beneficial for less similar language pairs, ac- 569

commodating the need for more detailed learning. 570

The consistency of these findings across different 571

language pairs emphasizes the importance of ad- 572

justing batch size based on language similarity to 573

optimize performance in machine translation tasks. 574

4 Conclusion 575

In conclusion, this paper has provided a compre- 576

hensive examination of machine translation transfer 577

learning across diverse linguistic pairs, spanning 578

different language families and degrees of resource 579

availability. By employing a robust experimental 580

framework involving five distinct language pairs, 581

we have demonstrated that transfer learning can 582

be effectively applied across languages with varied 583

linguistic characteristics, including Semitic, Bantu, 584

Indo-European, and language isolates. 585

The experiments highlighted several critical find- 586

ings, summarised below: 587

1. Transfer learning in machine translation 588

should be done with similar languages; the 589

more similar the languages are, the better. 590

2. During the fine-tuning process in this context, 591

the learning rate must be in the range n×10−4, 592

but the exact value does not matter. 593
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Weight Decay 1 2 3 4 5 6 7 8
0.2 37.4 39.5 39.8 40.3 40.4 40.7 40.7 41.2
0.02 37.2 39.3 39.6 40.3 40.5 40.5 40.8 40.9
0.002 37.2 39.1 39.9 40.5 40.4 40.5 40.7 41.0

Table 5: BLEU scores for different weight decays.

3. During the fine-tuning process in this con-594

text, the number of epochs does not need to595

be very high; epochs between 6-7 are cross-596

linguistically enough.597

4. Weight decay does not have a significant im-598

pact on the fine-tuning process in this context.599

5. Changes in the similarity of language pairs600

cause changes in the required batch size.601

Hyper-parameter tuning emerged as a crucial602

factor influencing model performance. The results603

indicate that the learning rate has a substantial im-604

pact on the model’s ability to generalize, while the605

number of epochs required for effective fine-tuning606

is relatively low due to the pre-existing knowledge607

in the source models. Weight decay, however, was608

found to have minimal effect, suggesting that its609

optimization may be less critical in the context of610

this study. Batch size, on the other hand, demon-611

strated varying effects depending on the language612

pair, with medium batch sizes generally proving613

more effective, except in cases where smaller sizes614

were beneficial due to the intricate details of less615

similar language pairs.616

Overall, our findings contribute to a nuanced un-617

derstanding of transfer learning in machine transla-618

tion, providing evidence that, while general princi-619

ples apply, specific parameter settings and language620

pair characteristics play a crucial role in achieving621

optimal results.622

On a final note, it must be acknowledged that623

generative AI was used to write minimal parts of624

this paper and to review the coherence and gram-625

matical issues, along with reviewing small parts of626

the code used in the experiment.627

5 Limitations628

While this study provides valuable insights into the629

application of transfer learning in machine transla-630

tion, it is not without its limitations. One key limi-631

tation is the relatively narrow selection of language632

pairs. Although we covered a range of linguistic633

families, further investigation involving additional634

language pairs, particularly those with less sim- 635

ilar characteristics, would help to generalize the 636

findings. 637

Additionally, the study focused on relatively sim- 638

ple model architectures, and more advanced models 639

might yield different results, particularly in terms 640

of parameter optimization. The limited exploration 641

of hyperparameter optimization techniques could 642

also be expanded in future research to identify po- 643

tentially more effective configurations. 644

Finally, although batch size was found to vary 645

based on the language pair, the exploration of dif- 646

ferent batch sizes for a wider range of languages 647

would help to further refine the conclusions. Fu- 648

ture research could also investigate the impact of 649

other hyperparameters, such as optimizer type or 650

learning rate schedules, to provide a more compre- 651

hensive understanding of the factors influencing 652

machine translation performance. 653

References 654
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