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ABSTRACT

Utilizing DNA language models based on the transformer architecture represents
a significant advancement in the field of computational genomics. However, these
models face a critical challenge due to their inherent limitations in handling input
lengths comparable to those of individual vertebrate genes (ranging from 104 to
105 nucleotides) and complete genomes (typically around 109 nucleotides). Cur-
rently, the architecture with the longest sequence input among publicly available
transformer-based DNA language models, GENA-LM, is constrained to a maxi-
mum input length of merely 3 · 104 nucleotides. In this study, we investigate the
efficacy of the Recurrent Memory Transformer (RMT) in enhancing GENA-LM
for multiple genomic analysis tasks that require processing long DNA sequence
inputs. Our results demonstrate that augmenting GENA-LMs with RMT leads to
a substantial enhancement in performance, particularly in tasks such as species
classification and prediction of epigenetic features. This underscores the signifi-
cance of the recurrent memory approach in advancing the field of computational
genomics and its potential for addressing critical challenges associated with pro-
cessing long sequence inputs.

1 INTRODUCTION

Computational methods of genomics encounter several significant challenges. Firstly, the inter-
connection of various genomic characteristics is complex, with non-linear dependencies originating
from multiple underlying mechanisms. For example, gene expression is often coordinated by multi-
ple enhancers, with their effects depending on enhancer-promoter compatibility (Drew T. Bergman
et al., 2022), spatial distance (Belokopytova et al., 2020), enhancer redundancy (Kvon et al., 2021),
competition between promoters (Oudelaar et al., 2019), and many other factors, making gene ex-
pression prediction a challenging task. Machine learning methods, with their ability to resolve
such complex dependencies, show promise in deducing unknown epigenetic properties either from
measured characteristics or directly from DNA sequences. In the past decade, these computational
approaches have evolved from ensemble trees (Belokopytova et al., 2020) to more sophisticated
models like convolutional neural networks (Kelley et al., 2018; Zhou & Troyanskaya, 2015), re-
current neural networks (Quang & Xie, 2016), and, most notably, transformer-based architectures
(Linder et al., 2023; Avsec et al., 2021). These advanced models have significantly improved the
precision of inferring multiple genomic characteristics from DNA sequences (Linder et al., 2023;
Avsec et al., 2021).

However, the expanding scale of datasets and the complexity of neural network architectures intro-
duce a second challenge: the substantial computational resources required for training state-of-the-
art models from scratch, which are often beyond the reach of many research groups. A promising
solution to this has been the introduction of pretrained transformer models, which allow for achiev-
ing top-tier results through cost-effective fine-tuning of publicly available models (Zaheer et al.,
2020; Dalla-Torre et al., 2023; Fishman et al., 2023; Ji et al., 2021; Nguyen et al., 2023; Zhou et al.,
2023).
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Transformer models generate high-quality predictions but face a limitation due to their quadratic
increase in computation with the length of the input sequence. For instance, DNABERT, the pre-
trained transformer model for DNA, was limited to processing sequences of only 512 base pairs (Ji
et al., 2021). This limitation is particularly problematic in genomic data processing, where under-
standing long-range dependencies is crucial, as sequences located millions of base pairs apart can be
spatially and functionally interconnected, presenting yet another challenge in the field of genomics
(Fudenberg et al., 2020).

Architectural innovations like the sparse attention mechanism of BigBird (Zaheer et al., 2020), have
expanded the capability of transformer models to handle sequences up to 32,000 base pairs (bp) or
32 kb in length. This extended capacity has allowed BigBird to outperform DNABERT in various
downstream tasks due to its ability to process longer sequences, highlighting the critical role of
processing extended DNA in genomic research.

Further advancements were made with the introduction of GENA DNA language models (GENA-
LMs, Fishman et al. (2023)), which incorporate both the sparse attention mechanism and a Byte
Pair Encoding (BPE) tokenization strategy. This combination allows handling inputs of 36 kb and
demonstrated enhanced performance across a range of downstream tasks compared to both BigBird
and DNABERT.

Recently, Recurrent Memory Transformers (RMT) have emerged as a novel solution to the challenge
of extending the input length capacity of transformer models (Bulatov et al., 2022). Drawing inspi-
ration from the principles of recurrent and memory networks, RMT sequentially processes lengthy
inputs in chunks (or segments). To facilitate the transfer of information across these segments, RMT
incorporates additional memory tokens into the standard BERT transformer architecture (Devlin
et al., 2019), enabling the accumulation and retention of information over segments. RMT bench-
marking (Bulatov et al., 2024) demonstrates the capability to handle extremely long inputs effec-
tively (up to 2 million tokens). When integrated with GENA DNA language models (GENA-LMs),
RMT has shown promise in various biological applications (Fishman et al., 2023). However, in ge-
nomic contexts, the performance of RMT-augmented GENA-LMs with sequence lengths surpassing
the original limits of GENA-LMs (about 36kb) had not been thoroughly evaluated.

Here, we present the augmentation of GENA-LM with RMT, tested on three specific tasks: promoter
and splice site prediction, prediction of epigenetic features and gene expression, and species classi-
fication. Our results indicate that augmenting GENA-LMs with RMT improves its performance in
all three tasks examined and extends GENA-LMs to sequences up to 196,000bp. This underscores
the potential of RMT in advancing the capabilities of genomic computational methods, particularly
in handling and analyzing lengthy DNA sequences.

2 RECURRENT MEMORY FOR GENA-LM

The GENA-LMs encompasses a variety of models, each distinguished by its architecture, training
dataset, parameter count, and maximum input length (Fishman et al., 2023). We use GENA-LM
transformer-based encoder-only models1 trained on T2Tv2 human genome assembly of base (110M,
bert-base-t2t) and large (350M, bert-large-t2t) sizes with 512 input sequence length, and sparse
model (110M, bigbird-base-t2t, 4096 tokens) based on the BigBird architecture (Zaheer et al., 2020).

Recurrent Memory Transformers (Bulatov et al., 2022) is a plug-and-play approach for augmenting
pre-trained transformers with memory to recurrently process segmented long sequences. Special
memory tokens are added to each segment, and the corresponding outputs are passed as inputs to
the next segment (Figure 1a).

Extending the input length of DNA language models with RMT can be approached through several
strategies. One method involves integrating RMT at the initial pre-training phase of the foundational
model (Figure 1a). Although this approach enables the model to capture long-range dependencies
inherent in DNA sequences during pre-training, the extensive computational resources required for
pre-training may render this option impractical in many scenarios. An alternative strategy entails
utilizing a foundational model that has been pre-trained without RMT enhancements and incorpo-

1https://huggingface.co/collections/AIRI-Institute/
dna-language-models-65b229c1cd9b73cf8462ac96
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Figure 1: Recurrent memory augmentation of GENA-LM models. (a) Transformer-based
GENA-LM model is augmented with recurrent memory ([mem]) and pre-trained on a long DNA
sequence split on a fixed number of consecutive segments with MLM objective. During fine-tuning
number of segments can be scaled up. (b) After training recurrent GENA-LM can be employed for
predictions on a number of segments exceeding those encountered during training.
rating RMT during the fine-tuning stage. This allows the model to learn how to utilize memory
tokens for information storage and retrieval throughout the fine-tuning process, offering a more
resource-efficient solution.

An additional aspect that can be optimized in RMT applications is the number of segments processed
during both training and inference phases. An important characteristic of RMT is its ability to
generalize the use of memory tokens across a variable number of segments, beyond those seen
during training (Figure 1b). For instance, recent experiments have demonstrated that a model trained
with only 7 segments can effectively utilize its memory capabilities during inference on up to 4096
segments (Bulatov et al., 2024). This feature of RMT allows for reducing computation during the
training or fine-tuning stages, as full-length samples may only need to be processed during the
inference stage, offering a more resource-efficient approach to handling extensive sequences.

The training schedule plays an important role in the development of RMT models. Research has
indicated that RMT training is particularly effective with curriculum learning (Bulatov et al., 2024).
It involves initial RMT training on a small number of segments, and once the model reaches a
point of convergence, the length is incrementally increased with additional segments. This makes
possible for the RMT to adapt progressively to longer sequences, enhancing its ability to handle
extended inputs effectively.

As backbones for memory augmentation, this study takes gena-lm-bert-base-lastln-t2t and gena-lm-
bert-large-t2t models. In all RMT pre-training experiments, memory had 10 tokens and a segment
length was 512 tokens. As a result, we pre-trained two models in the following setups:

• gena-lm-bert-base-lastln-t2t, 8 segments, no curriculum, 440k iterations
• gena-lm-bert-large-t2t, 2-4-8 segments, with curriculum, 200k-30k-60k iterations per cur-

riculum step accordingly.

We used data pipeline from (Fishman et al., 2023) to pre-train RMT on Masked Language Mod-
eling (MLM) task (Devlin et al., 2019). In this task, a fraction of input tokens is replaced by a
special ”[MASK]” token and should be predicted by the model. The MLM loss was computed on
all segments without stop gradients and backprop truncation. We used batch size 256, AdamW op-
timizer, learning rate in {2e-05, 1e-05}, and constant linear rate schedule with 50k warm-up steps.
The pre-training dataset comprises the human T2Tv2 genome along with SNP augmentations from
gnomAD 1000-genomes2. To enrich the dataset, we used the same augmentations as in (Fishman
et al., 2023): reverse-complementary sequences and random shifts. We employ the same tokenizer
as used in GENA-LMs. The total size of the dataset is about 480× 109 bp and 73× 109 tokens. Our
code is based on the original RMT implementation3. The results of RMT pre-training can be found
in Appendix A.

2T2T: T2T-CHM13v2.0, NCBI: GCF 009914755.1; gnomAD: v3.1.2
3https://github.com/booydar/recurrent-memory-transformer
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3 RESULTS

3.1 PROMOTERS AND SPLICE SITES PREDICTION

The accurate prediction of promoters and splice sites is a critical task in genomics, as these regions
play key roles in the regulation of gene expression. Improved predictive models for these genomic
features can significantly enhance our understanding of gene regulation mechanisms and contribute
to advancements in areas such as disease research, personalized medicine, and biotechnology. In
Table 1, we report results for the best configurations of each model, we choose from {5, 10, 20}
memory tokens for RMT. Results are averaged over 5 folds for promoters and over 3 runs with
different seeds for splice sites. Detailed information regarding dataset construction can be found in
Appendix B.1 and comparison with non-RMT GENA-LM models in Table 3.

Experiments using models pre-trained with RMT show superior results compared to those using
fine-tuning with RMT alone on both tasks. There is no significant difference for large models on the
promoter prediction task.

Table 1: RMT pre-training of GENA-LM improves promoters and splice site prediction com-
pared to fine-tuning only. Models denoted with (+P) indicate those with RMT pre-training.

Model Promoters (16 kb), F1 Splice sites (15 kb), PR-AUC

RMT+GENA-LM base 93.70 ±0.46 0.9353 ±0.001

RMT+GENA-LM base (+P) 94.61 ±0.54 0.9429 ±0.001

RMT+GENA-LM large 95.58 ±0.43 0.9471 ±0.001

RMT+GENA-LM large (+P) 95.36 ±0.44 0.9518 ±0.001

3.2 EPIGENETIC FEATURES AND GENE EXPRESSION PREDICTION

Predicting epigenetic characteristics and gene expression from DNA sequences is one of the most
challenging tasks in the field of computational genomics. The complexity of this task is heightened
by the functional interconnections between genomic sequences that can be separated by substan-
tial distances, ranging from tens to hundreds of kb. These long-range dependencies within the
genome render the task particularly well-suited for applications of recurrent memory. RMT’s ability
to process and integrate information from long sequences makes promise for tackling the intricate
relationships and interactions that underlie epigenetic features and gene expression patterns in the
genome.

To establish a baseline for this task, we fine-tuned GENA-LMs without the integration of RMT.
Utilizing the gena-lm-bert-large-t2t model, which accommodates an input length of 512 tokens
corresponding to 24 bins (equivalent to 3072 bp), we achieved a Pearson correlation coefficient (R)
of 0.5899. However, gena-lm-bigbird-base-t2t, which has the same number of parameters as gena-
lm-bert-base-t2t, but allows processing longer inputs (4096 tokens, equal to 192 bins or 24576 bp)
due to sparse attention mechanism, results in substantially better performance: R=0.6146. Please
refer to Appendix B.2 for details on data processing and models training.

We subsequently enhanced the gena-lm-bert-large-t2t model with RMT, enabling the processing of
longer sequences with the GENA-LM that has the largest parameter count. As previously shown
(Bulatov et al., 2024), the application of curriculum learning proved to be critical for the effective
training of RMT models (Figure 2). The rmt+gena-lm-bert-large-t2t model, when trained on just
2 segments, does not generalize to a higher number of segments. Conversely, models trained on
four or more segments demonstrated robust generalization when tested with an increased number
of segments during inference. The best performance was achieved with the model trained on 24
segments and evaluated on 48 segments, achieving R = 0.6151. Eventually, RMT with segments
of 512 tokens achieves slightly better results on 48 segments compared to a sparse model capable of
processing 4096 tokens.

In RMT, samples are processed from left to right, which means that the latter segments benefit from
a significantly richer contextual information accumulated in the memory tokens, as opposed to the
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Figure 2: RMT makes GENA-LM significantly better for epigenetic features and gene expres-
sion prediction. RMT demonstrates the ability to generalize to lengths not seen during training,
starting with training on 4 segments. As the number of training segments increases, RMT continues
to improve. RMT significantly enhances GENA-LM results by utilizing a longer context, up to 24
segments in fine-tuning. While extending the input length at inference from 24 to 48 segments still
brings some improvements, they are not as pronounced. The best results for RMT with GENA-LM
large are obtained with both test time augmentations and with half of the segments used as additional
context.

initial segments. In line with this, we adopted a strategy where half of the segments were designated
as additional context (Figure 4). Specifically, for an input consisting of 24 segments, we updated
memory states with the first 12 segments and performed predictions solely based on the subsequent
12 segments. This approach resulted in achieving an R-value of 0.619 for inputs with 48 segments.
The RMT’s ability to process sequences beyond its backbone model length of 512 tokens resulted
in improvements over a sparse model, which handles 4096 tokens per segment, but lacks recurrence
and generalization to longer inputs.

It was observed that augmenting the sequence during inference enhances the accuracy of predictions.
By averaging the predictions over 8 augmentations: the original sequence, its reverse-complement,
and sequences derived by shifting the original sequence by several base pairs, as suggested in (Avsec
et al., 2021), we obtained our best result of R = 0.6331.

3.3 SPECIES CLASSIFICATION

The task of classifying mammalian species based on genomic sequence fragments was recently
established as a benchmark for evaluating the capability of models to process long DNA sequences
(Nguyen et al., 2023). The initial benchmarking conducted by Nguyen et al. (2023) highlighted a
pronounced correlation between sequence length and classification accuracy: the accuracy surged
from 61.1 with 1 kb sequences to an impressive 99.5 when the sequence length was extended to
1000 kb, as summarized in Table 2.

Without augmentation with RMT, the gena-lm-bert-base-t2t model is constrained to processing se-
quences with a maximum length of approximately 4 kb. To allow the processing of longer sequences,
we augmented it with RMT. As a baseline, we used HyenaDNA scores reported recently (Nguyen
et al., 2023).

For sequence inputs of 1 kb, the classification accuracy of both the rmt+gena-lm-bert-base-t2t model
and HyenaDNA was relatively low, with the former achieving 61.45 ± 0.91 and the latter 61.1. A
significant enhancement in classification accuracy was observed when the sequence length was in-
creased to 32 kb, with rmt+gena-lm-bert-base-t2t achieving 99.24 ± 0.06, thereby surpassing the
performance of HyenaDNA (93.4), as detailed in Table 2. Further extending the sequence length
to 50 kb elevated the classification accuracy of rmt+gena-lm-bert-base-t2t to 99.67 ± 0.059, ex-
ceeding the accuracy HyenaDNA attained with 1000 kb sequences. This indicates that, within this
experimental framework, RMT and the associated model architecture extract and leverage informa-
tion from extended DNA sequences more efficiently than other technologies designed for processing
long input sequences such as Hyena layers underlying HyenaDNA.
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Table 2: RMT with GENA-LM overperforms HyenaDNA on the species classification task.
RMT+GENA-LM achieves over 99% accuracy starting from 32kb, surpassing HyenaDNA, which
needs 1000kb to reach 99.5% accuracy.

Model Sequence length

1kb 32kb 50kb 1000kb

HyenaDNA (Nguyen et al., 2023) 61.1 93.4 - 99.5
RMT+gena-lm-bert-base-t2t 61.45 ± 0.91 99.24 ± 0.06 99.67 ± 0.059 -

4 DISCUSSION AND CONCLUSIONS

In our study, we applied recurrent memory augmentation with RMT to GENA-LM DNA language
models and assessed the resulting performance across several biological tasks. Initially, we explored
the impact of incorporating RMT during the model’s pre-training phase. Our findings indicate that
the use of RMT does not markedly enhance the MLM accuracy. For promoters and splice site predic-
tion, the inclusion of RMT during pre-training yielded improvement in results, but the advantage is
not dramatic compared to those pre-trained without RMT. We speculate that RMT pre-training may
be more beneficial for downstream tasks characterized by shorter input sequences, where the model
has limited opportunity to learn how to utilize memory during fine-tuning. Identifying the specific
attributes of datasets for which RMT pre-training is advantageous remains an area for further inves-
tigation. Based on our current results, we recommend utilizing models pre-trained with RMT when
available. When such models are not accessible, starting experiments from augmentation with RMT
during the fine-tuning phase represents a viable approach.

Our results suggest that RMT application during the fine-tuning phase is unequivocally beneficial
for all the biological tasks examined in the study. Interestingly, the gene expression prediction
task underscored the superiority of the model employing sparse attention mechanisms over larger
models enhanced with RMT for processing inputs of similar lengths. This might suggest that models
with sparse attention extract information from inputs more efficiently than RMT-based models. An
alternative explanation could be that in an RMT setup, where the model processes sequences from
left to right, the initial segments lack sufficient contextual information. Supporting this notion, our
experiments indicated that the RMT-based model’s predictions for the latter parts of a sequence
were more accurate. Employing a bidirectional approach for processing samples, coupled with
a sampling strategy that prioritizes segments with more extensive contextual information, could
potentially mitigate this limitation. As input lengths exceed the capacity of models with sparse
attention, RMT-enhanced models demonstrate significantly improved performance. This is likely
due to the RMT-based model’s ability to harness long-range regulatory connections prevalent among
genomic elements, which becomes increasingly feasible with extended input lengths.

While our findings convincingly demonstrate the benefits of employing RMT for processing ex-
tended DNA sequences, the availability of suitable biological datasets for benchmarking this
methodology remains limited. Most high-throughput genomic assays, including massive parallel
reporter assays, CRISPR-based mutagenesis, and various biotechnological applications, typically
focus on measuring the properties of relatively short DNA sequences, ranging from tens to hundreds
of base pairs. However, with the ongoing advancements and wider adoption of long-read sequencing
technologies, coupled with significant improvements in the quantity and quality of genome assem-
blies, genome editing techniques, and in vitro DNA synthesis systems, the importance of efficiently
processing long DNA sequences in genomics is set to increase markedly.

In conclusion, this study explores the effectiveness of Recurrent Memory Transformers (RMT) in
augmenting GENA-LM, a transformer-based DNA language model, for processing long DNA se-
quences. The application of RMT both during the pre-training and fine-tuning phases across various
genomic tasks showed significant improvements, particularly in species classification where it out-
performed existing models. An essential aspect of this research is the recurrent nature of the RMT
approach, which enables the processing of entire genomes with a single model in one pass, thus
opening new avenues in genomic research. Another feature of RMT is its versatility, as it can extend
any pre-trained transformer model to be integrated into various existing genomic computational
frameworks, thereby advancing the field’s capabilities in handling and analyzing extensive DNA
sequences.
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A RMT PRE-TRAINING

We augmented GENA-LM with recurrent memory and pre-trained it on the MLM task. As shown
in Figure 3, both base and large-sized models do not exhibit consistent improvements in MLM accu-
racy with increased length. This observation aligns with the results of the GENA-LM sparse model,
which can handle 4096 tokens (equivalent to 8 segments for RMT models), but only marginally
enhances the base model from 0.2297 to 0.2306. However, we find that pre-training with RMT en-
hances the base model’s performance on sequences ranging from 2 to 10 segments, and from 8 to 10
segments for the large model. Unfortunately, models of both size exhibit a drop in MLM accuracy
when processing beyond 8 segments they were trained on.

The MLM accuracy serves solely as a metric for pre-training and does not directly represent the final
performance of the model on downstream tasks. We suppose that pre-training should be helpful for
RMT to effectively learn memory operations. However, pre-training with memory for the large
model appears to keep nearly the same results in MLM accuracy.
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Figure 3: Pre-training RMT with GENA-LM on the MLM task yields improved results on 2–10
segments for the base-size model. However, the large model shows no clear benefit from pre-training
in terms of MLM accuracy. Similarly, GENA-LM sparse, with an input length of 4096 tokens
(equivalent to 8 segments), also doesn’t show a noticeable advantage from increased context length
on MLM accuracy. Results are averaged over 5 runs on valid set with different seeds for masking.

B DATASETS AND TASKS

B.1 PROMOTERS AND SPLICE SITES PREDICTION

We followed GENA-LM (Fishman et al., 2023) setup to run experiments on promoter activity pre-
diction and splice site annotation tasks. For promoters, we used 16kb sequences from the EPDnew
database4 and followed instructions from GENA-LM repository5 to get train/valid/test splits. For
splice sites, we used data from (Jaganathan et al., 2019) and followed GENA-LM instructions6 to
get 15,000bp sequences. Comparison with non-RMT GENA-LM models is in Table 3.

B.2 EPIGENETIC FEATURES AND GENE EXPRESSION

For the prediction of epigenetic features and gene expression, a subset of human data from the
Enformer (Avsec et al., 2021) dataset was utilized. This subset comprises processed signals from
5,313 experimental measurements. The dataset’s structure is elaborated upon in detail in the cited
reference. In summary, each sample in the dataset encompasses a target region spanning 114,688
bp, which is divided into 896 consecutive genomic bins, each 128 bp in length. This central target

4https://epd.epfl.ch/EPDnew_select.php
5https://github.com/AIRI-Institute/GENA_LM/tree/main/downstream_tasks/

promoter_prediction
6https://github.com/AIRI-Institute/GENA_LM/tree/main/downstream_tasks/

SpliceAI
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Table 3: Augmenting GENA-LMs with RMT improves results on promoter and splice site
prediction tasks for both base and large size models. In addition, RMT with GENA-LM large
outperforms the GENA-LM model with sparse attention. For base size models, RMT shows com-
petitive results compared to the sparse attention model. Models denoted with (+P) indicate those
with RMT pre-training.

Model Len, bp Promoters, F1 Len, bp Splice sites, PR-AUC

GENA-LM base (Fishman et al., 2023) 2000 91.18 ±0.62 4500 0.9263 ±0.001

GENA-LM large (Fishman et al., 2023) 2000 93.70 ±0.44 4500 0.9360 ±0.001

GENA-LM base sparse (Fishman et al., 2023) 16000 94.64 ±0.30 15000 0.9478 ±0.001

RMT+GENA-LM base 16000 93.70 ±0.46 15000 0.9353 ±0.001

RMT+GENA-LM base (+P) 16000 94.61 ±0.54 15000 0.9429 ±0.001

RMT+GENA-LM large 16000 95.58 ±0.43 15000 0.9471 ±0.001

RMT+GENA-LM large (+P) 16000 95.36 ±0.44 15000 0.9518 ±0.001

AAACAGATG ATATTCAGA ATATCTAAT

TATAGATTA GATATCATG AGACATAAA

context segments

context segments

reverse-complement

1 2 3

3 2 1

average
predictions

target segments

TCTGTATTTCTATAGTAC

Figure 4: Augmenting RMT with context segments and reverse-complement. Context segments
allow the use of longer context before making predictions for target segments. Since RMT processes
sequences from left to right, reverse-complement adds information from the right context to target
segments predictions. As a result, information from both directions is taken into account for target
segments.

region is further surrounded by 40,960 bp of contextual information on either side, bringing the total
length of each sample to 196,608 bp (calculated as 128 · 896 + 40960 · 2 bp). For every one of the
896 target bins, there are 5,313 measurements available. The train-test split was maintained as per
the original configuration in the Enformer dataset.

To process the samples, we use the following strategy. Initially, the target region is segmented into
bins, each comprising 128 base pairs (bp), and each bin is tokenized independently. Subsequently,
these tokenized bins are concatenated, with SEP tokens added to separate each bin. The sequence is
then divided into segments, with each segment accommodating a number of tokens that corresponds
to the input capacity of the GENA-LM being utilized (either 512 or 4096 tokens). If the model’s
input exceeds the resulting sample length, we add a tokenized context sequence. The formatted
input for processing thus adopts the following structure: [CLS] left context [SEP] bin1 [SEP] bin2
[SEP] ... [SEP] rigth context [SEP].

We started RMT curriculum learning from gena-lm-bert-large-t2t fine-tuned on the Enformer dataset
and gradually increased the number of segments: 2-4-16-24, making up to 12k tokens per sample.
Each segment consists of 512 tokens, including 5 memory tokens and special tokens. We followed
(Avsec et al., 2021) and augmented the training data with reverse-complement and random shifts
(±0–3bp). To evaluate model quality, we compute Persons’s correlation between targets and pre-
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dictions across samples for each feature independently. Next, we averaged correlations obtained for
each of the 5313 features to derive a single score.

B.3 SPECIES CLASSIFICATION

We constructed a dataset for species classification as described in (Nguyen et al., 2023).
Genomes from 5 species (human, lemur, mouse, pig, hippo) were downloaded from NCBI (Ref-
Seq assemblies GCF 000001405.40, GCF 020740605.2, GCF 000001635.27, GCF 000003025.6,
GCF 030028045.1 respectively). Four chromosomes (chromosomes 1, 3, 12, and 13) were used for
models evaluation, other chromosomes were utilized during training. We sampled sequences from
chromosomes randomly, using the uniform distribution. We used 5-way classification and reported
top-1 accuracy. For each task length, we collected a total of 50000 DNA subsequences from each
species, ensuring a comprehensive dataset for our analysis.

We used gena-lm-bert-base-t2t model that has been augmented with RMT (8 segments) during the
pre-training phase. The processes of fine-tuning were enhanced through the application of a cur-
riculum learning strategy. This meant that our initial step includes fine-tuning the model on DNA
subsequences of 1000 bp in length (single segment). Following this initial phase, we proceeded to
extend the fine-tuning process to handle longer DNA subsequences while using the model weights
from the 1000 bp fine-tuned model as an initial weights, increasing the task length to 32 kb (8 seg-
ments). Continuing with this progressive training methodology, we further advanced our model’s
capabilities by eventually fine-tuning it to efficiently process and analyze DNA subsequences ex-
tending up to 50 kb in length (12 segments). This gradual fine-tuning approach, in line with the
principles of curriculum learning, facilitated the model in sequentially learning tasks of increas-
ing complexity, thereby enhancing its analytical precision and performance on genetic classification
tasks.
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