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ABSTRACT

Lifting 2D open-vocabulary understanding into 3D Gaussian Splatting (3DGS)
scenes is a critical challenge. However, mainstream methods suffer from three
key flaws: (i) their reliance on costly per-scene retraining prevents plug-and-
play application; (ii) their restrictive monosemous design fails to represent com-
plex, multi-concept semantics; and (iii) their vulnerability to cross-view seman-
tic inconsistencies corrupts the final semantic representation. To overcome these
limitations, we introduce MUSplat, a training-free framework that abandons fea-
ture optimization entirely. Leveraging a pre-trained 2D segmentation model, our
pipeline generates and lifts multi-granularity 2D masks into 3D, where we es-
timate a foreground probability for each Gaussian point to form initial object
groups. We then optimize the ambiguous boundaries of these initial groups us-
ing semantic entropy and geometric opacity. Subsequently, by interpreting the
object’s appearance across its most representative viewpoints, a Vision-Language
Model (VLM) distills robust textual features that reconciles visual inconsisten-
cies, enabling open-vocabulary querying via semantic matching. By eliminating
the costly per-scene training process, MUSplat reduces scene adaptation time from
hours to mere minutes. On benchmark tasks for open-vocabulary 3D object selec-
tion and semantic segmentation, MUSplat outperforms established training-based
frameworks while simultaneously addressing their monosemous limitations.

1 INTRODUCTION

Open-vocabulary 3D scene understanding enables the parsing of 3D scenes with arbitrary natural
language queries, moving beyond the limitations of predefined categories to offer enhanced gen-
eralization and richer semantics for applications like autonomous driving and robotics. The pri-
mary challenge in this domain lies in finding an efficient and effective 3D scene representation.
Traditional methods such as voxels, point clouds, and meshes, while useful for structure model-
ing, struggle with the trade-off between detail and computational expense. Recently, 3D Gaussian
Splatting (3DGS) (Kerbl et al., 2023) has provided a compelling solution by merging the explicit
structure of traditional methods with the efficiency of neural techniques. It achieves high-quality
modeling and rendering while maintaining high rendering speeds, making it an ideal foundation for
next-generation 3D scene understanding.

More recently, several methods have leveraged 3DGS for point-level open-vocabulary 3D scene
understanding, achieving remarkable results. Current research is largely dominated by the train-
ing-based contrastive learning paradigm (L1 et al.| [2025; Wu et al., 2024), as illustrated in Fig. a).
These methods rely on a laborious optimization pipeline: they first perform tens of thousands of
mask-guided contrastive learning iterations to embed semantic features into each Gaussian, fol-
lowed by clustering and post-processing steps to achieve feature-language alignment. Furthermore,
a minority of studies (Jun-Seong et al., 2025) have explored a feature projection paradigm, which
trains a specialized model to compress Contrastive Language-Image Pre-training (CLIP) (Radford
et al., |2021) features and subsequently assigns these compressed features to the 3D Gaussians for
open-vocabulary understanding. While these approaches have shown promising results, we argue
that they suffer from three critical limitations that hinder their performance and practical deploy-
ment: 1) Reliance on Expensive Optimization: The dominant contrastive learning paradigm re-
quires tens of thousands of iterations for per-scene semantic optimization. Similarly, the feature
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Figure 1: Pipelines for open-vocabulary understanding of 3D Gaussian scenes. (a) Training-based
approaches: semantic features are learned via mask-guided contrastive learning, followed by clus-
tering and post-processing. (b) Our training-free matching-based approach: semantic associations
are determined directly through matching, without feature learning.

projection paradigm necessitates pre-training a specialized feature compression model. Both path-
ways introduce significant time and computational overhead, undermining the efficiency advantages
of 3DGS. 2) Deficient Semantic Representation: Existing methods lack richness and precision
in their semantic representations. On one hand, the prevailing contrastive methods are restricted
by a “one-to-one” semantic assignment, attributing a single semantic concept to each Gaussian.
This makes them incapable of capturing polysemy, the phenomenon where a single point may be-
long to multiple semantic concepts (e.g., a desk point being simultaneously “desk”, “wooden”, and
“furniture”). On the other hand, feature projection methods suffer from degraded feature quality.
Their reliance on lossy feature compression often impairs the model’s fine-grained understanding
and semantic discriminability. 3) Fragile Multi-view Feature Aggregation: A critical yet often
overlooked issue is the viewpoint variance of CLIP’s image features, where the same object instance
yields significantly inconsistent embeddings across different viewpoints. Current aggregation strate-
gies fail to robustly handle view-dependent variations. For instance, mainstream methods typically
assign single-view masked CLIP features to Gaussians, while projection-based approaches perform
a weighted average of multi-view features; both tactics lead to inaccurate 3D semantic representa-
tions. These concerns motivate the central question of our work: “Can we construct a framework for
open-vocabulary understanding of 3D Gaussian scenes that robustly aggregates multi-view features,
supports polysemous representations, and operates without requiring any additional training?”

To answer this question, we introduce Matching-based Understanding with 3D Gaussian Splatting
(MUSplat), a novel training-free framework that bypasses feature optimization entirely. As illus-
trated in Fig. [T(b), our framework determines the semantics of each Gaussian through a matching
mechanism, which is inherently designed to handle polysemy and operate without per-scene retrain-
ing. Our framework first lifts 2D masks to form 3D object groups, then refines their boundaries with
neutral point processing for enhanced precision. After that, We leverage a Vision-Language Model
(VLM) to generate textual features for each object, enabling precise language-based retrieval. Our
contributions are summarized as follows: 1) We introduce MUSplat, a training-free and polysemy-
aware framework for open-vocabulary understanding in 3D Gaussian scenes. 2) We propose an
object-level grouping method that achieves precise 3D instance grouping by probabilistically lifting
2D masks and subsequently refining ambiguous boundaries with a neutral point processing mech-
anism. 3) We present a VLM-based distillation technique that forges a robust and unified textual
representation from inconsistent multi-view visual features.
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2 RELATED WORKS

2.1 PRELIMINARY: 3D GAUSSIAN SPLATTING

3D Gaussian Splatting (3DGS) (Kerbl et al.l [2023)) models 3D scenes with explicit 3D Gaussians,
enabling high-quality, real-time rendering. It represents a scene as a collection of 3D Gaussians
G=A{ gi}lNzl, each defined by its position, covariance (governing scale and orientation), color, and
opacity. To generate a 2D image, these 3D Gaussians are projected onto an image plane and then
blended in a depth-sorted order via “splatting”. The final color C(p) for any pixel p is determined
through alpha compositing (Munkberg et al.| 2022):

|Gy

i—1
C(p) =chf0¢gfn(1—a9§g), (1)
i=1 j=1

where cg» and e are the color and opacity of the ¢-th Gaussian in the sorted set for pixel p. The

product term, H;;ll (1 — ayp), calculates the accumulated transmittance, which represents the light
7
that reaches the i-th Gaussian after passing through all prior ones.

2.2 OPEN VOCABULARY UNDERSTANDING BASED ON 3DGS

Prevailing methods for semanticizing 3DGS for open-vocabulary understanding follow two pri-
mary paradigms: pixel-based and point-based. Pixel-based methods employ a “render-then-match”
paradigm: they first render the entire scene into dense 2D feature maps and subsequently perform se-
mantic matching in the image space. In contrast, point-based methods adopt a “match-then-render”
strategy, first identifying a sparse set of semantically relevant 3D points and then rendering only this
pre-filtered subset.

In pixel-based methods, Feature-3DGS (Zhou et al.| 2024)) distills semantic features from 2D foun-
dation models into 3DGS, enabling fast semantic rendering. LEGaussians (Shi et al.,[2024) adds un-
certainty and semantic to each Gaussian and compares rendered semantic maps with quantized CLIP
and DINO features. LangSplat (Qin et al.| 2024) learns language features in a scene-specific latent
space and renders them as semantic maps. GS-Grouping (Ye et al., 2024) assigns a compact identity
encoding to each Gaussian and leverages masks from the Segment Anything Model (SAM) (Kirillov
et al. [2023) for supervision. GOI (Qu et al. [2024) introduces an optimizable semantic hyperplane
to separate pixels relevant to language queries, improving open-vocabulary accuracy.

However, these methods rely on rendered 2D semantic maps, so reasoning remains in 2D. They
lack awareness of 3D structure and are thus less suited for tasks requiring direct 3D interaction,
such as embodied intelligence. To overcome these limitations, point-based methods have been
proposed. These approaches operate on a foundational “select-then-render” pipeline. OpenGaus-
sian (Wu et al.| |2024) uses SAM masks to learn instance features with 3D consistency, introduces
a two-stage codebook for feature discretization, and links 3D points with 2D masks and CLIP fea-
tures for open-vocabulary selection. InstanceGaussian (Li et al., [2025)), based on Scaffold-GS (Lu
et al.| 2024)), jointly learns appearance and semantics and adaptively aggregates instances, reducing
semantic—appearance misalignment. Dr.Splat (Jun-Seong et al., [2025) trains a feature compressor
for each scene and assigns compressed CLIP features to every Gaussian. All these approaches rely
on computationally expensive iterative training. Our model instead follows a training-free match-
ing framework that establishes a semantic link between 3D Gaussian points and a query by directly
matching their uncompressed CLIP features.

3 METHOD

We propose a training-free pipeline for point-level 3D open-vocabulary semantic segmentation, as
shown in Fig. 2] Our method takes a pre-trained 3DGS scene representation and its correspond-
ing image sequence as input. First, the Data Preparation stage (§3.1) generates multi-view, multi-
granularity object masks. Next, the Object-level Grouping stage (§3.2) links 2D masks to 3D Gaus-
sian points and purifies the resulting object boundaries by identifying and excluding ambiguous
neutral points. Finally, the Instance Feature Extraction stage (§3.3) uses a VLM to extract textual
features for each object, enabling alignment with open-vocabulary queries.
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Figure 2: Overview of our method. (a) Multi-view 2D segmentation masks are first extracted from
the input scene. (b) Based on these masks, our method lifts the objects into 3D point groups via
back-projection, refining their boundaries by filtering ambiguous neutral points. (c) Each refined
group is then grounded by using a VLM to generate textual hypotheses from its key views, which
are encoded into semantic features via a CLIP text encoder.

3.1 DATA PREPARATION

Our goal is to extract a comprehensive set of multi-view segmentation masks for all objects in a
scene. To this end, we first employ SAM on the initial frame, [, leveraging its ability to produce
object masks at three distinct granularity levels (e.g., part, object, scene). To ensure stable tracking
throughout the sequence, especially in complex scenes with visually similar distractors, we employ
the DAM2SAM (Videnovic et al., 2025) model. Its specialized distractor-aware memory is crucial
for maintaining accurate object identities where other trackers might fail. To capture new objects
that appear later, we introduce a periodic detection mechanism that re-segments the scene at fixed
intervals and identifies new instances based on a minimal IoU overlap criterion with existing tracks.
The entire pipeline, from tracking to new object detection, is executed independently for each of the
three granularity levels to yield a complete and hierarchical set of masks.

Our pipeline is designed for robustness, as potential data preparation artifacts, such as tracking fail-
ures or re-identification errors, are gracefully handled by our downstream object grouping and query
matching modules. This design minimizes the requirements for perfect input data (see Appendix[A]
for details).

3.2 OBIJECT-LEVEL GROUPING

To precisely group 3D Gaussian instances, we resolve ambiguous boundary points that corrupt seg-
mentation using a two-stage, coarse-to-fine strategy. We first identify the object’s high-confidence
core via mask back-projection, then refine its boundaries by identifying and excluding ambiguous
points with our neutral point processing module, ensuring a clean result.

Initial 3D Grouping via Mask Back-projection. We link 2D masks to 3D Gaussian points by
back-projecting them to estimate a per-point foreground probability. For each object, we process its
multi-view masks, first discarding any null (entirely black) masks from viewpoints where the object
is unseen. For each valid mask, we then cast a ray through each pixel r and sum the contributions of
all intersected Gaussians. The contribution of the j-th Gaussian G; along ray r is determined by its
accumulated transmittance and opacity, defined as:

U)(?“, GJ) = T(ﬁ G]) ’ Oé(?“, Gj)7 2
where T'(r, G;) denotes the accumulated transmittance up to G, and «(r, G;) is its effective opac-

ity. To ensure design consistency, we define the weight w(r, G;), representing the contribution of
Gaussian G; to pixel r, to be identical to the forward color rendering weight of 3DGS given in Eq. E
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For each 3D Gaussian point G ;, we compute its total foreground (W7) and background (W) weights
by aggregating contributions from multi-view 2D masks:

Wk(GJ) = Z Z 5(mv(r> —k)- wv<r7 Gj)> ke {07 1}’ (3)

veEV reP,

where V is the set of visible views, P, the pixels in a view, m,,(r) the mask value, J(-) the indicator
function, and w, (r, G j) the contribution weight. Based on these weights, we form an initial set
of foreground points, F, using a simple hard assignment: F = {G,; | W1(G;) > Wy(G;)}. All
remaining points are consequently assigned to the background.

Neutral Point Processing. During rendering, it is inevitable that some points lie at the bound-
aries between objects but do not semantically belong to any specific category. We refer to these
points as neutral points. Their semantic assignment directly affects the accuracy of rendered object
boundaries. Existing methods typically assume that each 3D Gaussian point belongs either to the
foreground or to the background, i.e., every point has a clear semantic label. In practice, however,
many points at boundaries are transitional and may not carry a well-defined semantic meaning. Such
points should be considered neither foreground nor background. Our goal is to identify and exclude
these neutral points from semantic supervision, thereby mitigating potential artifacts and improving
the accuracy of the final segmentation.

To identify neutral points, we leverage multi-view semantic consistency. While points deep within
an object are consistently labeled across views, those near boundaries often exhibit conflicting se-
mantics. To quantify this ambiguity, we treat each viewpoint as providing a discrete semantic label
for a given Gaussian point. Specifically, for each point p, we project its center into every visible
view and record whether it lands inside (foreground) or outside (background) the corresponding 2D
mask. This process yields a set of binary labels {l, }, ¢y for each 3D point. The semantic entropy
H (p), which quantifies the disagreement among these discrete labels, is calculated as:

Ve Ve W W
H(p)=—<vlogzv+vlog2v ; @
where V; and V; are the respective counts of foreground and background labels within the set
{lu}vev, and V = |V| = V; + V. Points with entropy H (p) exceeding a threshold 7, form an
initial candidate set C of ambiguous points.

This set C is impure, containing both true neutral points used for smooth blending and mislabeled
solid points that belong to an object’s surface. To distinguish them, we use a geometric property:
opacity («v). Points on solid surfaces typically have high opacity, while transitional points used for
anti-aliasing have low opacity. We filter C based on this idea: if a point p € C has an opacity
a(p) > T4, we classify it as a mislabeled solid point. These points, identified as part of a solid
surface, are removed from the neutral candidate set C, thereby retaining their initial classification as
either foreground or background.

The remaining points in C are confirmed as the final neutral point set, which is excluded from all
semantic supervision. The final set of foreground points is thus defined by the expression F \ C.
Likewise, the background set is refined by removing these same points. We use fixed values for
the thresholds 7, and 7, across all experiments for simplicity and robustness. A detailed sensitivity
analysis on their selection is provided in Appendix [B.2]

3.3 INSTANCE FEATURE EXTRACTION

To enable open-vocabulary understanding, we extract semantic features for each 3D Gaussian clus-
ter. As illustrated in Fig. [3(a), prevailing methods approach this by extracting visual features from
multi-view masks of all objects. The semantic feature for a given 3D cluster is then derived by
either selecting the feature from the most similar mask or by computing a weighted average of fea-
tures from all associated masks. However, this approach suffers from two major drawbacks. First,
it overlooks the inherent semantic inconsistency across viewpoints. The visual features of the same
object instance can vary significantly from different views (see Appendix for a visualization),
leading to a biased and inaccurate 3D semantic representation. Second, extracting and storing CLIP
features for every object mask across all views incurs substantial computational and storage over-
head, rendering the process inefficient. To avoid this, we propose semantic distillation: we use
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Figure 3: Comparison of 2D-3D Feature Association Pipelines. (a) Mainstream Method (via direct
extraction): All object masks, typically generated by SAM, are used to directly extract CLIP image
features. (b) Our Method (via semantic distillation): We leverage DAM2SAM to track a single
instance. The top-N most visible masks are then interpreted by a VLM, distilling volatile visual
appearances into a stable CLIP text representation derived from the generated object identity.

SAM

a VLM to interpret key views and generate textual hypotheses of the object’s identity. As shown
in Fig. 3[b), this converts volatile visual appearances into a stable, canonical text representation,
providing a robust foundation for open-vocabulary matching.

Specifically, for each object, we select the top-/N masked views with the largest visible areas and
feed them into a VLM along with a predefined text prompt, which instructs the model to generate
a set of candidate names describing the object (see Appendix [A.] for details). Our framework is
VLM-agnostic; for this study, we employ Gemini 2.5 Pro (Comanici et al., 2025)) , but other models
can be readily substituted (see Appendix for an ablation on VLM choice). Using a pre-trained
CLIP text encoder, we encode the candidate names into a feature set QQ and an open-vocabulary text
query into a feature vector s. We quantify their semantic relevance using cosine similarity:

S-q
Isllllall”

We then form a set of matching features, Qy,, by selecting all candidates whose similarity to the
query exceeds a threshold n: Qn = {q € Q | sim(s, q) > n}. The final segmentation for the query
is the union of all 3D Gaussian point sets associated with the features in Q.

&)

sim(s, q) =

4 EXPERIMENTS

4.1 OPEN-VOCABULARY OBJECT SELECTION IN 3D SPACE

Settings 1) Task. Given a text query as input, the task is to produce multi-view renderings of
the semantically corresponding 3D instance(s). First, the textual feature of the input query is ex-
tracted using the CLIP model. Then, cosine similarity is computed between the query feature and
the textual features of each instance, and the most similar instance(s) are selected. Finally, all 3D
Gaussian points belonging to the selected instances are rendered into multi-view images through
the 3DGS rasterization pipeline. 2) Baselines. We compare our method with several recent repre-
sentative approaches, including Dr.Splat (Jun-Seong et al., 2025), OpenGaussian (Wu et al., [2024)),
LangSplat (Qin et al) 2024), LEGaussian (Shi et al., 2024), InstanceGaussian (L1 et al., |2025)),
Feature-3DGS (Zhou et al.,|2024), GS-Grouping (Ye et al.|[2024), and GOI (Qu et al.|[2024). These
approaches fall into the two primary categories of point-based and pixel-based methods. To provide
a clear comparison, we detail the comparative aspects such as training time and search thresholds
for these methods in Tab. |1} 3) Dataset. We adopt the LERF (Kerr et al., [2023) dataset, annotated
by LangSplat. This dataset consists of multi-view images capturing 3D scenes with long-tail objects
and provides ground-truth 2D annotations for texture-level queries. For a fair comparison, we use
the same predefined query texts as those used in OpenGaussian.

Results 1) Quantitative Evaluation. As shown in Tab. 2] our method achieves a new state-of-the-
art (SOTA) result, outperforming the previous best-performing method by 10.7 mIoU. Although our
method does not operate at the pixel level, its performance on average surpasses that of SOTA pixel-
based approaches. As shown in Tab. [T} our zero-shot framework eliminates per-scene optimization
and training, reducing feature storage by nearly 1000x and significantly lowering VRAM overhead.
These results demonstrate that our approach delivers SOTA performance without the substantial
computational overhead of previous methods. 2) Qualitative Evaluation. Qualitative results are
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Table 1: This caption compares computational resources for the LERF figurines scene, includ-
ing per-scene optimization time, peak VRAM use during object-level grouping, and storage for
instance feature extraction. Our method is highly efficient, cutting CLIP feature storage from giga-
bytes to megabytes and using the least amount of VRAM. Notably, it is the only method that works

directly in 3D without any training. Note that

T3]

marks methods that do not use CLIP features.

Method Venue Domain  Scene Opt.  Train Time  CLIP Feat. Stor. Peak VRAM
LEGaussians CVPR’24 2D Required ~2h ~3GB ~20 GB
LangSplat CVPR’24 2D Required ~2h ~3GB ~20 GB
Feature-3DGS CVPR’24 2D Required ~1h ~3GB ~26 GB
GS-Grouping ECCV’24 2D Required ~1h - ~28 GB
GOI MM’24 2D Required ~1h - ~24 GB
OpenGaussian NIPS’25 3D Required ~1h ~3GB ~22 GB
InstanceGaussian ~ CVPR’25 3D Required ~2h ~3GB ~24 GB
Dr.Splat CVPR’25 3D None ~1h ~3GB ~24 GB
Ours - 3D None None ~3MB ~8 GB

Table 2: mloU results for open-vocabulary object selection in 3D space on the LERF dataset.
Bold/Underline indicates the best/second-best performance per category.

Method Venue ramen teatime figurines Waldo_kitchen Mean
Pixel-based

LEGaussians CVPR’24 46.0 60.3 40.8 39.4 46.6
LangSplat CVPR’24 51.2 65.1 44.7 44.5 514
Feature-3DGS CVPR’24 43.7 58.8 40.5 39.6 45.7
GS-Grouping ECCV’24 455 60.9 40.0 38.7 46.3
GOI MM’24 52.6 63.7 44.5 414 50.6
Point-based

LangSplat-m CVPR’24 6.1 16.6 8.3 8.3 9.8

LEGaussians-m CVPR’24 15.8 19.3 18.0 11.8 16.2
OpenGaussian NIPS’25 31.0 60.4 393 227 38.4
InstanceGaussian CVPR’25 24.6 63.4 45.5 29.2 40.7
Dr.Splat(Top-40) CVPR’25 24.7 57.2 53.4 39.1 43.6
Ours - 45.6 64.4 66.4 40.9 54.3
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Figure 4: Qualitative results on object selection from the LERF dataset. OpenGaussian fails to
separate nearby objects or maintain sharp boundaries, while InstanceGaussian struggles to capture
fine-grained details. In contrast, our method correctly interprets fine-grained instructions to generate
precise selections with well-defined boundaries.
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Table 3: Quantitative results for open-vocabulary 3D semantic segmentation on the ScanNet dataset.

Method Venue 19 classes 15 classes 10 classes
mloUt mAccT mloU?T mAccT mloU?T mAcct
LangSplat-m CVPR’24 3.8 9.1 5.4 13.2 8.4 22.1
LEGaussians-m CVPR’24 1.6 7.9 4.6 16.1 7.7 249
OpenGaussian NIPS’25 24.7 41.5 30.1 48.3 38.3 55.2
InstanceGaussian CVPR’25 40.7 54.0 42.5 59.1 47.9 64.0
Dr.Splat(Top-40) CVPR’25 29.6 47.7 38.2 60.4 50.8 73.5
Ours - 45.5 58.4 47.2 61.7 53.7 74.9
Reference mesh “bookshelf" o floor” “bed" “swivel chair"
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Figure 5: Qualitative results of our 3D object segmentation on the ScanNet dataset. OpenGaussian
and InstanceGaussian rely on matching CLIP features extracted from 2D images. This approach is
susceptible to feature inconsistencies arising from different mask viewpoints, often leading to incor-
rect matches (e.g., for the bed and chair). In contrast, our method achieves accurate 3D segmentation
with sharp and well-defined boundaries.

shown in Fig.[d] Relying on spatial clustering, OpenGaussian often yields incorrect matches with
imprecise boundaries and includes irrelevant points (e.g., spatula, apple). Dr.Splat struggles with
fine-grained instructions (e.g., bear nose, noodles), as its compressed CLIP features fail to capture
full semantic richness, leading to interpretation errors. In contrast, our method uses uncompressed
CLIP representations for linguistic precision, while our independent assignment and neutral-point
handling mechanisms ensure sharp boundaries and superior performance.

4.2 OPEN-VOCABULARY 3D SEMANTIC SEGMENTATION

Settings 1) Task. The objective is to automatically extract 3D Gaussian points corresponding to
input class names (e.g., wall, chair, table). The segmented Gaussian points are then converted into
a point cloud to be evaluated against the ground-truth annotated point cloud. To ensure a pre-
cise correspondence between the converted point cloud and the ground truth, we disable the 3D
Gaussian densification process during training. 2) Baselines. Consistent with the object selection
task, we compare our method against several recently proposed approaches: Dr.Splat (Jun-Seong
et al.| 2023), InstanceGaussian (Li et al.,[2025)), OpenGaussian (Wu et al.| [2024), LangSplat-m, and
LEGaussians-m. LangSplat-m and LEGaussians-m are adaptations of existing pixel-based meth-
ods (Shi et al., [2024; |Qin et al., |2024)), specifically modified to perform direct 3D referring op-
erations. As this task requires a direct understanding of 3D points, pixel-based methods are not
applicable and are therefore excluded from our comparison. 3) Dataset. We employ the Scan-
Net (Dai et al.|[2017) dataset, a large-scale benchmark comprising indoor scene data with calibrated
RGB-D images and 3D point clouds annotated with ground-truth semantic labels. For a fair and
direct comparison, we adopt the same scenes and evaluation categories used in OpenGaussian.



Under review as a conference paper at ICLR 2026

Results 1) Quantitative Analysis. Tab[3|shows the performance on the ScanNet dataset using text
queries for 19, 15, and 10 of its classes. The results show that our method consistently achieves
SOTA segmentation performance across all scenes relative to the baselines. Notably, our method
is training-free, which highlights its efficiency and precision. 2) Qualitative Analysis. Qualitative
results are presented in Fig[5] In complex scenes from ScanNet, both OpenGaussian and Instance-
Gaussian frequently exhibit incorrect matches, which limits their accuracy. This limitation arises
from their reliance on matching masked CLIP image features, as semantic inconsistencies across
different viewing angles make it difficult for such methods to achieve high-precision results. In
contrast, by leveraging a VLM to acquire instance-level features, our method demonstrates correct
segmentation with sharp and clear boundaries.

4.3 ABLATION STUDY

Neutral Point Processing. We ablate our neutral
point processing on the LERF dataset with results
in Tab.[4] Case #1 is the baseline without any filter- i —
ing. Case #2 adds our entropy-based filtering. Case ~ Case  Entropy Fil.  Opacity Fil. =~ mIoU?
#3 introduces our full model, which further incor-

Table 4: Ablation on neutral point processing.

porates an opacity filter. As shown, entropy filtering #l 530
alone provides a minor gain by suppressing noise, #2 v 532
but its aggressive nature can inadvertently remove #3 v v 54.3
valid foreground points. Adding the opacity fil-
ter resolves this issue, achieving the highest mIoU. Table 5: Ablation on feature extraction.
This demonstrates that both stages are complemen-
tary and essential for the final performance.
Case Method mloU?t

Instance Feature Extraction. To demonstrate the
advantages of using a VLM for language feature ex- #1 Single-View Image Mat. 36.9
traction, we compare our approach with three base- #2 Averaged Image Mat. 392
lines derived from the CLIP image eqcoder.. Case #3 Filtered Tmage Mat. 50.1
#1 uses the feature from the single view with the

#4 VLM-Text Mat. (Ours) 54.3

largest mask area. Case #2 averages features from
all valid views. Case #3 first renders the class fore-
ground points onto each view and computes the IoU between the rendered foreground masks and
candidate masks. We then discard the low-IoU masks and average the features of the remaining
ones. The results are presented in Tab.[5} Single-view methods struggle to capture comprehensive
semantics, while multi-view averaging methods often yield ambiguous features due to occlusions.
Although filtering-based methods significantly improve matching accuracy, they require a rendering
pass for each view, which incurs high runtime costs. Moreover, these methods can obscure discrim-
inative details due to feature discrepancies across different views (see Appendix [E.3]for details). In
contrast, our VLM-based method distills these multi-view cues into a consistent textual representa-
tion, effectively capturing the nuanced attributes required for complex and abstract queries.

5 CONCLUSION AND LIMITATION

In this work, we introduced MUSplat, a training-free and plug-and-play model for open-vocabulary
understanding of 3D Gaussian scenes. Our approach shifts the focus from feature learning to direct
matching, supported by a back-projection mechanism for initial grouping, a neutral point process for
boundary refinement, and a VLM that distills visual appearance into a robust textual representation.
Evaluations on the LERF dataset and other benchmarks confirm that MUSplat delivers SOTA-level
performance on point-level open-vocabulary tasks at a fraction of the computational cost. These
results suggest that matching-based solutions can serve as viable alternatives to current training-
based paradigms for point-level open-vocabulary understanding in 3DGS.

Despite its strong performance, our method has certain limitations: 1) The accuracy of our object-
level grouping can be compromised in instances of substantial inaccuracies in the initial segmen-
tation masks from SAM. 2) On rare occasions, the VLM may assign incorrect semantic labels to
objects within the masks. For a detailed analysis of failure cases, please refer to Appendix [D] Ad-
dressing these edge cases offers promising avenues for future research.
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APPENDIX

A IMPLEMENTATION DETAILS

A.1 MODEL IMPLEMENTATION DETAILS

Data Preparation. Initially, we employ SAM with grid-based point prompting to acquire initial
static object masks at varying granularities from the first input frame, /. Subsequently, these masks
extracted from I are utilized by the DAM2SAM (Videnovic et al.||2025) model to track the corre-
sponding objects throughout the entire image sequence.

To ensure all objects appearing throughout the sequence are captured, we introduce a periodic new-
object detection mechanism. This check is performed at a fixed interval of At = 10 frames. At each
check, we first compute the total area of all tracked masks in the current frame, A;. We then trigger a
full re-segmentation on this frame using SAM to get a candidate mask area, A.qnq4. A potential new
object event is flagged if the ratio A¢/Acqnq falls below a threshold 74, = 0.9. When triggered,
we identify a mask from the candidate set as a “new” object if its maximum Intersection over Union
(IoU) with any existing tracked mask is below a threshold of 7;,,, = 0.6. Once identified, these new
objects are added to the tracking pool and propagated by DAM2SAM henceforth.

Existing research (Lu et al., 2025) suggests that such a detection mechanism can introduce two
potential drawbacks: (1) tracking failures for some objects, resulting in incomplete object tracks,
and (2) re-appearing objects being misidentified as new after their tracking has been lost, leading
to a single object being assigned multiple instance IDs. Our model, however, does not need to
overcome these issues during the data preparation stage.

Regarding the first issue, we simply discard views with empty masks (i.e., where object tracking
has failed) during our object-level grouping stage. As demonstrated in Appendix our model
achieves robust performance even with a reduced number of views per object. Consequently, this
issue has a negligible impact on the overall model accuracy.

Regarding the second issue, the emergence of multiple instances for a single object is handled by
our matching process. The matching between open-vocabulary queries and instance point clusters
is a one-to-many operation based on similarity. In the event of multiple matches, we take the union
of their results as the final output. Therefore, the presence of multiple instances for the same object
does not degrade the final matching accuracy.

In summary, our model imposes minimal requirements on the data preparation stage and functions
effectively even with partial mask information for each object. This demonstrates the robustness of
our approach to imperfections in the input data.

Object-Level Grouping. The object-level grouping process is accomplished within a single forward
rendering pass. In our implementation, we simply accumulate the contribution weights of all par-
ticipating 3D Gaussians during the forward pass of the 3D Gaussian Splatting render. Throughout
this process, the contribution weight of each Gaussian is naturally aggregated, obviating the need for
auxiliary data structures or redundant computations. By leveraging the highly optimized volumetric
projection inherent to 3D Gaussian Splatting, our method achieves exceptional computational effi-
ciency while maintaining semantic coherence. For the subsequent neutral point processing, we use
fixed thresholds across all experiments to ensure robustness and consistency. The semantic entropy
threshold is set to 7, = 0.9, and the opacity threshold for filtering is set to 7, = 0.1. A detailed
sensitivity analysis for these hyperparameters is provided in Appendix

Instance Feature Extraction. We acquire features for each object instance as follows. First, we
identify the three largest masks for the instance based on pixel area. For each selected mask, we
highlight the corresponding object on the original image with a green bounding box, creating three
distinct input images. These images are then processed by a VLM, which generates a set of five
nouns that describe the instance.

To match an instance against a user’s text query, we compute the cosine similarity between the CLIP
feature embedding of the query and the CLIP embeddings of the five nouns associated with that
instance. This design allows a single query to potentially match multiple instances. A match is
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deemed successful if the similarity score for any of an instance’s five candidate nouns surpasses a
predefined threshold of n = 0.9.

The specific prompt template used to elicit these nouns from the VLM is defined as follows:

In the images, identify the object that is

enclosed by a bright green outline. Provide

five distinct and appropriate nouns to describe

ONLY that specific object. Return ONLY

the five nouns separated by slashes (e.g.,
car/automobile/vehicle/motorcar/transport). Do not
add any other explanatory text, titles, or formatting.

A.2 LERF DATASET EVALUATION

We evaluate our model on the LERF dataset, using annotations from LangSplat. Due to the absence
of 3D ground truth, we follow the 2D-based evaluation protocol from OpenGaussian. This protocol
measures 3D understanding by computing the multi-view IoU accuracy between rendered occupancy
masks from our selected 3D Gaussians and the ground-truth masks, which were manually annotated
and provided by OpenGaussian for a set of text queries.

A.3 SCANNET DATASET EVALUATION

For evaluation on the ScanNet dataset, we select the same 10 scenes as used in OpenGaus-
sian: scene0000_00, scene0062_00, scene0070_00, scene0097_00, scene0140_00, scene0200_00,
scene0347_00, scene0400_00, scene0590_00, and scene0645_00.

The 19 categories defined by ScanNet used for text queries are: wall, floor, cabinet, bed, chair,
sofa, table, door, window, bookshelf, picture, counter, desk, curtain, refrigerator, shower curtain,
toilet, sink, and bathtub. 15 categories are without picture, refrigerator, shower curtain, bathtub; 10
categories are further without cabinet, counter, desk, curtain, sink.

B ADDITIONAL EXPERIMENTAL RESULTS

B.1 ADDITIONAL QUALITATIVE RESULTS

Fig.[6|presents additional qualitative results for the task of object selection in 3D space on the LERF
dataset. Fig.[/|showcases more results of our model on the open-vocabulary 3D semantic segmen-
tation task on the ScanNet dataset. These results were not included in the main manuscript due to
space limitations. Consistent with our previous observations, both OpenGaussian and InstanceGaus-
sian exhibit limitations in handling object boundaries and in fine-grained semantic understanding.
In contrast, our model yields results with significantly sharper and more accurate semantic interpre-

tations.
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Figure 6: Additional qualitative results for open-vocabulary object selection on the LERF dataset.
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Figure 7: Additional qualitative results for open-vocabulary 3D semantic segmentation on the Scan-
Net dataset.

B.2 ADDITIONAL ABLATION STUDIES

Scene Understanding with Limited Mask Supervision. Our method leverages a mask-matching
mechanism for semantic understanding, a characteristic that enables it to perform 3D segmentation
from only a sparse set of 2D masks. To validate this capability, we conduct experiments using
progressively sparser subsets of 2D masks (corresponding to 1/2, 1/4, 1/8, 1/16, and 1/32 of
the total available views), while all other model settings are held constant. Finally, we perform an
open-vocabulary 3D object extraction task and qualitatively evaluate the results.

As illustrated in the Fig. |8) our method exhibits high robustness to the number of provided masks.
Even with masks from only 1/8 of the views, our method maintains high-quality segmentation. This
demonstrates our model’s high data efficiency and its ability to generalize from sparse supervision.
However, when the number of masks becomes excessively sparse, such as at 1,/16 or 1/32, a portion
of the 3D Gaussians may not be observed by any masked camera view. This lack of supervision
results in noticeable artifacts. Notably, the 1,/32 subset often corresponds to merely 5-10 foreground
masks. While these extreme cases produce artifacts, the ability to generate a coherent result from
such minimal data underscores our method’s low reliance on dense supervision and corroborates its
strong generalization capabilities.

Ablation Study on Neutral Point Thresholds. On the LERF dataset, we investigate the influence
of the entropy threshold 73, and the opacity threshold 7, in our two-stage neutral point processing
module. The results of this sensitivity analysis are presented in Tab. 8| The baseline configuration,
which bypasses entropy-based filtering by setting 75, = 1.0, achieves an mloU of 53.0. A notable
improvement is observed when 74, is lowered to 0.9, underscoring the efficacy of pruning points with
high semantic ambiguity.

The necessity of the subsequent opacity-based filtering is also validated. With 7;, = 0.9, setting
To = 0 removes all high-entropy points indiscriminately and degrades performance to 53.2 mloU.
This suggests that high-entropy points with high opacity are geometrically significant and should
be retained. Peak performance is achieved at (74,7,) = (0.9,0.1), which obtains an mloU of
54.3. This configuration strikes a favorable trade-off between removing ambiguous transitional
points and preserving geometrically salient structures. While the model demonstrates reasonable
robustness to other settings, further reductions in 75, to 0.8 or 0.5 yield diminished returns, likely
due to the erroneous exclusion of valid surface points. Based on these findings, we adopt 7, = 0.9
and 7, = 0.1 for all main experiments.

Instance Feature Extraction. The core of our instance feature extraction module is a VLM that
grounds textual queries to 3D visual features. The representational capacity of the VLM is therefore
a critical determinant of performance. To investigate this dependency, we ablate the VLM compo-
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Figure 8: Open-Vocabulary 3D Object Extraction from Sparse Masks. We perform an open-
vocabulary 3D object extraction task on the figurines scene from the LERF dataset, providing a
progressively smaller subset of 2D masks as supervision. The results demonstrate that our model’s
accuracy experiences negligible degradation when using > 1/4 of the total masks. With only 1/8 of
the masks, it still exhibits a strong capability to capture the object’s geometry. Even in the extreme
case with as few as 1/32 of the masks, our model can still recover the object’s coarse shape.

nent with three different pre-trained models on the LERF dataset: SenseNova 6.5 Pro, InternVL3-
78B (Chen et al.| [2024), and Gemini 2.5 Pro (Comanici et al., 2025) .

The results, presented in Tab. [f] reveal a strong positive correlation between the representational
power of the VLM and final segmentation accuracy. More specifically, employing VLMs known for
more robust vision-language grounding consistently yields substantial gains in mIoU. This indicates
that the quality of the semantic features provided by the VLM is a critical determinant of perfor-
mance in this task. Therefore, the performance ceiling of our model is not static; it is set to rise in
tandem with the ongoing evolution of Vision-Language Models.

We further analyze the method’s sensitivity to the number of descriptive text prompts used for in-
stance matching on the LERF dataset. As shown in Tab.[/] the relationship between prompt quantity
and segmentation accuracy is non-monotonic. Starting from a single prompt, performance improves
as the number of descriptors increases to five. This suggests that a richer set of semantic cues helps
the VLM disambiguate instances, particularly for concepts too nuanced to be captured by a single
term. However, increasing to 10 prompts leads to performance degradation. We hypothesize that an
excessive number of prompts may introduce semantic noise or redundant information, thereby in-
terfering with the VLM’s feature matching process. Consequently, we use five descriptive prompts,
as this configuration strikes a favorable balance between semantic richness and feature ambiguity.

B.3 OPEN-VOCABULARY 3D OBIJECT EDITING

Our method enables open-vocabulary editing of objects in 3DGS scenes by mapping a language
query to corresponding instance IDs and then applying targeted manipulations. Fig.[9]demonstrates
the scene editing capabilities of our method. Starting from an original scene reconstructed via 3DGS,
we can select an object to perform operations such as removal (Fig[9(a)), translation (Fig.[9(b)), or
stylization (Fig.[9(c)).

B.4 OPEN-VOCABULARY OBJECT EXTRACTION IN COMPLEX AND REAL-WORLD SCENES

To evaluate our model’s comprehension capabilities in complex scenes, we conduct experiments
on the Grasp-Net dataset (Fang et al. 2023). This dataset is characterized by challenging object
arrangements, including overlapping, adjacent, and contained instances. Despite the close proximity
between instances, our model successfully distinguishes and segments them. As shown in Fig.
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our method produces sharp, well-defined rendering boundaries, demonstrating its effectiveness in
such challenging scenarios.

Furthermore, to assess its practical applicability, we validate our method on a real-world scene. We
captured an office environment using a standard mobile phone and tasked our model with open-
vocabulary object extraction. The qualitative results, presented in Fig. [[1} demonstrate that our
model performs robustly on this in-the-wild data. This highlights the method’s strong generalization
capabilities and its potential for real-world applications.
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Figure 10: Qualitative results for the open-vocabulary object extraction task on the Grasp-Net
dataset.
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Figure 11: Qualitative results for the open-vocabulary object extraction task on a real-world scene
captured with a mobile phone.

C EFFICIENCY ANALYSIS

To dissect our method’s efficiency, we provide a detailed component-wise runtime breakdown in
Tab. E based on the teatime scene in the LERF dataset, which contains 131 distinct instance
categories. The total end-to-end processing time for this complex scene is approximately 9.25 min-
utes (555.14s), including all computational and I/O stages. The results clearly identify the primary
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computational bottlenecks, with three stages accounting for over 99% of the total computational
workload: VLM Text Feature Acquisition (37.7%), Backward Matching (32.0%), and the initial
Mask Acquisition (29.7%). The analysis also highlights the efficiency of the neutral point process-
ing module, which constitutes only 0.1% of the total computational cost. This low figure indicates
that the boundary refinement step is achieved with minimal performance overhead.

Notably, despite the aforementioned bottlenecks, our method’s runtime holds a significant advan-
tage over mainstream methods, which typically require several hours of processing. For instance, in
our evaluation on the LERF dataset, we found that InstanceGaussian (L1 et al., 2025) requires ap-
proximately 140 minutes for the 3D Gaussian training phase alone. Furthermore, our model offers
potential for even greater speed. In principle, it processes each category independently, allowing for
significant acceleration through parallelization. However, as a key design goal is to ensure deploya-
bility on consumer-grade hardware, this imposes a constraint on the model’s total memory footprint.
Consequently, we did not pursue further parallelization in the current implementation.

Table 9: Component-wise runtime breakdown for our method on the teat ime scene in the LERF
dataset. The analysis highlights that VLM inference and backward matching are the primary compu-
tational bottlenecks. All timings are in seconds, measured on a single NVIDIA Tesla V100 (32GB)
GPU.

Component Time (s) Time / Cat. (s) Compute %

Computational Stages

Mask Acquisition 156.99 1.1984 29.7%
Backward Matching 169.23 1.2919 32.0%
Neutral Point Processing 0.54 0.0041 0.1%
VLM Text Feature Acquisition 199.67 1.5242 37.7%
CLIP Feature Extraction 2.63 0.0201 0.5%
Total Computation 529.06 4.0386 100.0%
1/0 Stages
Data Loading 16.12 - -
Saving Output 9.96 - -
Grand Total (incl. I/0O) 555.14 - -

D ANALYSIS OF FAILURE CASES

Impact of Mask Inaccuracy. Our method demonstrates considerable robustness to sporadic seg-
mentation errors, provided that the initial masks generated by DAM2SAM are generally accurate.
However, when these masks suffer from large-scale or frequent inaccuracies, our model can produce
erroneous foreground-background distinctions during the backward weight accumulation process.
This, in turn, adversely affects the final segmentation accuracy, as illustrated in a failure case in

Fig.[12]a).

Mismatches from the VLM. Incorrect matching can also arise from the VLM itself, attributable to
two primary sources, as shown in Fig. [[2[b). First, ambiguous segmentation masks or challenging
viewing angles in the input images can provide misleading guidance to the VLM. Second, inherent
limitations in the VLM’s comprehension capabilities can lead to incorrect judgments even with clear
inputs. Either type of error can result in incorrect category assignments, ultimately causing the point
clusters to be mismatched with the intended text query.
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Figure 12: Examples of Failure Cases. (a) Inaccurate Masks: The segmentation model outputs
incorrect 2D object masks. (b) VLM Misunderstanding: The VLM provides an incorrect object
name for the given input images.

E DIiscussioN

E.1 DIVERSITY OF SEMANTIC CATEGORIES

Prior work has noted that a single Gaussian point can belong to multiple semantic categories (Shen
et al [2024; |Qin et al [2024; |Shi et al.|, |2024). To verify this phenomenon, we conduct a statistical
analysis of the semantic categories for all 3D Gaussian points within the teatime scene of the
LERF dataset, as illustrated in Fig.[I3] Our analysis reveals that approximately 25% of all visible
3D points exhibit multi-dimensional semantic attributes. In the context of our model, this means
a substantial portion of 3D Gaussian points inherently possess multiple semantic labels simulta-
neously. For instance, a single point on a tree branch may belong to the categories of “branch”,
“tree”, and “vegetation” all at once.This phenomenon is consistent with how humans perceive 3D
environments.

This semantic diversity suggests that relying on a single semantic label is often insufficient to com-
prehensively describe the properties of a point. Therefore, this inherent polysemy must be fully
considered when performing 3D semantic understanding.

E.2 NEUTRAL POINTS

Prior work on so-called “boundary points” (Li et al., 2024} Zhang et al.| |2025)) has primarily focused
on refining their positions through dedicated training strategies to enhance semantic understanding.
However, while repositioning these boundary points can improve semantic segmentation accuracy,
it often compromises the realism and fidelity of the final rendering. This trade-off arises because
boundary points include a special subset of points that belong neither to the foreground nor the
background. These points serve as transitional elements that are crucial for ensuring rendering
realism but lack specific semantic meaning. We term these as neutral points.

Neutral points are abundant in 3DGS scenes, making them non-negligible for semantic understand-
ing. Nevertheless, accurately identifying and removing these neutral points in an unsupervised man-
ner remains a significant challenge. In our implementation, precisely filtering out these points during
the matching stage is difficult due to computational efficiency constraints. In Fig.[T4] we present the
visualization of neutral points from our model on the LERF dataset. Developing more effective
methods to model and eliminate neutral points is a key direction for future improvement of our
method.
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Figure 13: Category distribution of visible Gaussian points in the teat ime scene from the LERF
dataset.
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Figure 14: Qualitative results for rendering foreground, neutral, and background points on the
figurines scene from the LERF dataset.
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Figure 15: Illustration of the inconsistency of semantic features across different viewpoints. (a) The
same object can present different semantic characteristics from different viewpoints. (b) Visualiza-
tion of feature similarity for the “Jake the Dog” object in the figurines scene. The plot shows
the cosine similarity scores between feature vectors from different views; a higher value (closer to
1) indicates that the features are more similar.
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E.3 INCONSISTENCY OF SEMANTIC FEATURES

Our work diverges from the common practice in related literature of feeding masked object regions
into a CLIP image encoder to obtain semantic features. This decision is based on the observation
that for the same object, its semantic features can exhibit significant variations across different view-
points (Cen et al., [2025). As shown in Fig. [I5|a), acquiring accurate CLIP image features becomes
more challenging from certain angles. Due to the existence of such views, strategies like select-
ing the features from the view with the largest mask area or averaging the features across all views
inevitably introduce errors.

To validate this phenomenon, we selected the “Jake the Dog” object from the figurines scene in
the LERF dataset and extracted its CLIP image features from multiple viewpoints. A visualization of
these features is presented in Fig. [I5(b). The figure clearly shows that even for the same object, the
semantic features vary noticeably with the observation angle. This feature inconsistency suggests
that conventional strategies based on single-mask or averaged-mask feature extraction can lead to
information loss, thereby degrading matching performance. In contrast, our VLM-based feature
extraction approach alleviates this issue to a certain extent, enhancing the stability and robustness of
the semantic representation.
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