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ABSTRACT

As a significant task within the field of unsupervised learning, Incomplete Multi-
View Clustering (IMVC) faces considerable challenges in scenarios involving
large-scale datasets, heterogeneous data, and missing views. Existing anchor-
based clustering approaches primarily reduce computational and storage over-
head by introducing anchors, yet they often focus on binary sample-anchor re-
lationships. These methods lack robust learning of consensus anchors under miss-
ing conditions and fail to effectively model high-order relationships among sam-
ples. Furthermore, systematic discussions regarding implementation details and
robustness mechanisms remain insufficient. To address this, this paper proposes
a Missing-aware Consensus Anchor-guided Hypergraph Clustering (MCAHC)
framework. This method constructs hypergraph through sample-anchor connec-
tions and anchor guidance to capture high-order relationships among samples,
effectively mitigating view-missing and noise interference. Concurrently, it de-
signs sample-level and view-level reweighting mechanisms to suppress inter-view
imbalance and promote cross-view consistency, while explicitly down-weighting
severely incomplete samples to prevent them from biasing anchor selection. Ex-
perimental results demonstrate that MCAHC provides an efficient and robust so-
lution for multi-view clustering in large-scale and high-missing-value scenarios.

1 INTRODUCTION

Incomplete Multi-View Clustering (IMVC) aims to partition incomplete data into semantically con-
sistent clusters by exploiting information from multiple heterogeneous views(Lin et al. (2021);Wen
et al. (2023);Xu et al. (2024)). In many applications, the complementarity among views can signif-
icantly improve clustering performance. However, some challenges remain insufficiently addressed
in practice.

Some samples are missing features in certain views, which invalidates the traditional assumption
that each sample has observations in all views. A number of works have been proposed to tackle
this issue. Wen et al. (2024) introduced a diffusion-based framework for missing-view generation,
combined with data augmentation strategies to improve clustering under high missing rates. Chao
et al. (2024) developed an contrastive learning framework that jointly optimizes missing-view han-
dling, representation learning, and clustering assignment via graph consistency transfer, instance-
level attention, and high-confidence guidance. Yu et al. (2025b) proposed a simple yet effective
method, which performs similarity-level imputation and introduces hybrid prototype groups for each
view, thereby enhancing multi-scale similarity modeling and clustering performance within a uni-
fied framework. Additionally, another clustering methods simplifies graph structure construction
by utilizing anchors, thereby reducing computational overhead while balancing efficiency and ef-
fectiveness. Such anchor-based clustering approaches offer advantages such as scalability, reduced
memory for graph storage, and improved stability. For instance, Zhang et al. (2024) propose a clus-
ter structure regularization method that simultaneously optimizes anchor and cluster assignments,
making anchors adaptive and more discriminative while balancing efficiency and accuracy. Liu et al.
(2024a) systematically review anchor generation and anchor map construction workflows, propos-
ing plug-and-play anchor enhancement strategies that leverage cross-view correlations to strengthen
anchor maps and improve multi-view fusion performance. Zhang et al. (2025) demonstrate that an-
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Figure 1: Overview of the proposed MCAHC framework for incomplete multi-view clustering.
Incomplete multi-view input set {Xi}vi=1 is projected onto a low-dimensional representation via the
projection set {Wi}vi=1. Consensus anchor learning then produces the anchor A ∈ Rl×m and the
anchor graph Z ∈ Rm×n. Each anchor induces a hyperedge, and samples are connected to their most
similar anchors, forming an anchor-guided hypergraph G with connected samples. The hypergraph
Laplacian regularization term captures high-order information, leading to robust clustering results.

chors significantly reduce computational complexity in large-scale scenarios and propose an anchor-
aware representation learning scheme to model latent relationships between anchors while maintain-
ing scalability.

Despite progress along these two directions, existing methods still face limitations in real-world
scenarios. For incomplete multi-view clustering, many methods assume that view-missingness is
random or balanced, or that observed samples are evenly distributed across views, which rarely
holds in practice(Xu et al. (2024);Han et al. (2024)). Missing samples often exhibit distributional
shifts compared to complete ones, leading to bias. Furthermore, methods relying on view recovery
or similarity-graph construction may introduce noise during imputation or estimation, which can
propagate and deteriorate clustering performance. For anchor-based approaches, anchor selection
or generation is often fixed or heuristic, making them less adaptable to structural differences across
views. Moreover, most methods only consider pairwise relations between anchors and samples,
while neglecting high-order relations involving groups of samples and anchors(Li et al. (2022);Mei
et al. (2024);Chen et al. (2025)).

To overcome these limitations, we introduce a missing-aware mechanism that adaptively adjusts the
contributions of incomplete samples across views via sample-level masks and weighting matrices.
In addition, we propose an anchor-guided hypergraph framework for multi-view clustering. In our
design, each anchor induces a hyperedge, and samples are connected to their most similar anchors
according to similarity scores, naturally forming an anchor-sample hypergraph that captures high-
order relations beyond pairwise connections. We further incorporate a hypergraph Laplacian regu-
larization term to enforce cross-view structural consistency while preserving the scalability benefits
of anchors. This yields a unified model capable of handling incomplete multi-view data.

The main contributions of this paper are summarized as follows:

• Unlike anchor-based methods that only encode pairwise relations, we propose a anchor-
guided hypergraph Laplacian regularization term, which elevates bipartite anchor
graphs into high-order structures to better capture anchor–sample group interactions.

• We incorporate a missing-aware mechanism that performs sample-level and view-level
reweighting, not only alleviating inter-view imbalance and enhancing cross-view consis-
tency, but also preventing severely missing data points from dominating anchor selection.

• We propose an alternating optimization algorithm and provide detailed derivations of its
update rules. Experiments demonstrate that it achieves strong performance across diverse
datasets and missing-rate regimes while significantly improving efficiency.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 RELATED WORK

In multi-view clustering, directly constructing similarity graphs in the original high-dimensional
feature space is computationally prohibitive and difficult to scale(He et al. (2025);Liu et al.
(2024b);Wang et al. (2022b);Yu et al. (2025a)). To tackle this, the basic anchor graph model in-
troduces view-specific projection matrices to map original data into a shared low-dimensional la-
tent space, while employing a small set of representative anchors to approximate the entire sample
set(Chen et al. (2024);Sun et al. (2021);Wang et al. (2022a);Qin et al. (2025);Qin et al. (2025)).
This joint modeling of projection and anchors effectively reduces computational complexity while
preserving essential structural information, and has thus become the cornerstone for subsequent
methodological advances.

Given v views {Xp}vp=1 with Xp ∈ Rdp×n, let Wp ∈ Rdp×l be view projections to a l-dimensional
consensus space, A ∈ Rl×m the shared anchor matrix, Z ∈ Rm×n the anchor graph, and βp ≥ 0
the view weights with

∑v
p=1 βp = 1. The model can be written as

min
{Wp},A,Z, {βp}

v∑
p=1

β2
p

∥∥Xp −WpAZ
∥∥2
F

+
∥∥Z∥∥2

F

s.t. W⊤
p Wp = I, A⊤A = I, Z ≥ 0, Z⊤1 = 1,

v∑
p=1

βp = 1. (1)

Clustering is then performed on the consensus graph derived from Z.

Following this paradigm, Wang et al. (2022a) first introduced the anchor graph framework into
incomplete multi-view clustering, where unified anchor learning and incomplete anchor graph con-
struction are combined to form a consensus anchor graph, thereby maintaining cross-view struc-
tural consistency and alleviating the high complexity of large-scale IMVC. Liu et al. (2022) unified
anchor learning and graph construction within a single framework, further imposing connectivity
constraints to directly generate graphs with precise cluster structures, enabling one-step clustering
results without additional post-processing or hyperparameter tuning. Chen et al. (2024) enhanced the
classical anchor graph framework by introducing an index matrix to naturally handle both complete
and incomplete data, and by stacking anchor graphs from multiple views into a tensor with low-rank
constraints to explicitly capture high-order cross-view correlations. Ou et al. (2024) proposed hier-
archical feature descent within the anchor model, mapping views of varying dimensionalities into a
unified subspace, and then learning a shared anchor matrix and consensus bipartite graph to alleviate
view discrepancy and improve scalability. Qin et al. (2025) further integrated graph construction,
anchor learning, and graph partition into a unified framework where the three components reinforce
each other; by learning a shared anchor graph to ensure cross-view consistency and explicitly linking
it with symmetric nonnegative matrix factorization, the clustering results can be directly obtained.

3 METHODOLOGY

Building upon the baseline anchor graph formulation in model (1), we develop a novel missing-
aware anchor-guided hypergraph multi-view clustering framework. Specifically, we extend the con-
ventional bipartite anchor graph into a hypergraph structure to capture high-order relations (Section
3.1), introduce a missing-aware weighting mechanism to adaptively handle incomplete data (Section
3.2), and finally integrate these components into a unified framework (Section 3.3).

3.1 ANCHOR-GUIDED HYPERGRAPH

We build an anchor-guided hypergraph H = (V, E) where vertices contain both samples and an-
chors, V = Vs ∪ Va with |Vs| = n and |Va| = m. Each anchor induces exactly one hyperedge,
hence |E| = m and E = {e1, . . . , em}, where ej aggregates samples that are similar to anchor j.

The weighted incidence matrix H ∈ R(n+m)×m represents the hypergraph over n samples and
m anchors. Let Z ∈ Rm×n denote the anchor graph, where each entry zj,i ≥ 0 measures the
similarity between sample xi and anchor aj . For each sample i ∈ {1, . . . , n}, we identify the index
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set NT (i) ⊆ {1, . . . ,m}, (1 ≤ T ≤ m), corresponding to the T anchors with the largest similarity
scores zj,i. The sample–to–hyperedge incidences are then defined as

Hi,j =

{
zj,i, j ∈ NT (i),

0, otherwise.
(2)

For the anchor rows, each anchor is associated with a dedicated hyperedge. Specifically, for j =
1, . . . ,m, we set Hn+j, j = 1,Hn+j, ℓ = 0(ℓ ̸= j). Thus, each hyperedge consists of its T most
similar samples, weighted by their similarity scores zj,i, together with the anchor aj itself, which is
included with unit weight.

Define vertex degrees d(v) =
∑

e Hve and edge degrees δ(e) =
∑

v Hve. Let Dv = Diag
(
d(v)

)
∈

R(n+m)×(n+m) and De = Diag
(
δ(e)

)
∈ Rm×m. Using unit hyperedge weights, the normalized

hypergraph Laplacian is

LH = I − D−1/2
v HD−1

e H⊤ D−1/2
v ∈ R(n+m)×(n+m). (3)

We form a sample embedding Zs = AZ ∈ Rl×n and stack it with the anchor embedding A ∈ Rl×m

to obtain Zaug = [Zs A] ∈ Rl×(n+m), so that samples and anchors lie in the same latent space
and are jointly regularized by LH through a Laplacian regularization term Tr

(
ZaugLHZ⊤

aug

)
.

3.2 MISSING-AWARE FRAMEWORK

Let Sp = Diag(s
(i)
p ) ∈ Rn×n be a per-view diagonal mask matrix with s

(i)
p ∈ {0, 1} indicating

whether sample i is observed in view p. We define the completeness weight of view p as

αp =

∑n
i=1 s

(i)
p∑v

u=1

∑n
i=1 s

(i)
u

,

v∑
p=1

αp = 1, (4)

and the missingness of sample i by qi = 1 −
∑v

p=1 αp s
(i)
p ∈ [0, 1]. Let Q = Diag(qi) be the

missing-rate regularizer. To downweight highly-missing samples during reconstruction, we use
adaptive sample weights mi = e−γqi ,M = Diag(mi). Intuitively, the larger qi, the less reli-
able the sample, hence the smaller mi, meanwhile the penalty term ∥ZQ1/2∥2F discourages anchor
assignments that rely on highly-missing samples.

3.3 OUR FRAMEWORK

Overall, the object function can be written as

min
β,{Wp},A,Z

v∑
p=1

β2
p

∥∥(W⊤
p Xp −AZ

)
Sp M

1/2
∥∥2
F

+ λ1 Tr
(
ZaugLHZ⊤

aug

)
+ λ2 ∥ZQ1/2∥2F

s.t. βp ≥ 0,

v∑
p=1

βp = 1; W⊤
p Wp = I; A⊤A = I; Z ≥ 0, Z⊤1 = 1. (5)

The first term aligns multi-view reconstructions to the shared anchor embedding, masked by Sp and
reweighted by M. The second term imposes hypergraph regularization on both samples Zs and
anchors A through Zaug and LH . The third penalty term primarily serves to reduce the impact of
samples with high missing rates on anchor quality.

4 OPTIMIZATION

We design an alternating algorithm for optimizing each variable in Eq.(5) by fixing the others.

Updating Wp: With other variables fixed, the p-th view subproblem reduces to

max
W⊤

p Wp=I
Tr

(
W⊤

p Gp

)
, Gp = Xp SpMZ⊤A⊤. (6)

Let the SVD be Gp = Up Σp V
⊤
p . The optimum is W⋆

p = UpV
⊤
p .

4
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Algorithm 1 Z-update Algorithm

Input: K ⪰ 0 ∈ Rn×n, J ∈ Rm×n; initial Z(0) = Z(1), t1 = 1; stepsize L ≥ 2λmax(K);
tolerance ε.

1: while not converged do
2: tt+1 ←

(
1 +

√
1 + 4t2t

)
/2

3: Y(t) ← Z(t) +
(
tt − 1/tt+1

)(
Z(t) − Z(t−1)

)
4: Z̃← Y(t) − L−1

(
2Y(t)K− 2J

)
5: for each column j = 1, . . . , n do Z

(t+1)
:,j ← Π∆

(
Z̃:,j

)
, where ∆ = {z ∈ Rm | z ≥

0, 1⊤z = 1}

6: if
∥Z(t+1) − Z(t)∥F
max{1, ∥Z(t)∥F }

< ε then break

7: end while
Output: Updated Z

Updating A: With other variables fixed and discarding constants gives

max
A⊤A=I

Tr
(
A⊤P

)
, P =

v∑
p=1

β2
p W

⊤
p Xp SpMZ⊤. (7)

Let P = UΣV⊤. Then A⋆ = UV⊤.

Updating Z: Block-partitioned as LH =
[
Ldd Lda

Lad Laa

]
with Lad = L⊤

da. Using Zaug = [Zs A] and
the block form of LH , we obtain

Tr(ZaugLHZ⊤
aug) = Tr(ZLddZ

⊤) + 2 Tr(Z⊤Lad) + Tr(ALaaA
⊤), (8)

where the last term is constant. Collecting the quadratic and linear terms, the Z-subproblem becomes

min
Z∈Rm×n

f(Z) = Tr(ZKZ⊤)− 2 Tr(Z⊤J) s.t. Z ≥ 0, Z⊤1 = 1, (9)

with K =
∑v

p=1 β
2
pSpM + λ1Ldd + λ2Q ⪰ 0,J =

∑v
p=1 β

2
pA

⊤W⊤
p XpSpM − λ1Lad. We

solve Eq.(9) by FISTA(Beck & Teboulle (2009)) with gradient ∇f(Z) = 2ZK − 2J and stepsize
L≥ 2λmax(K), followed by column-wise Euclidean projection onto the probability simplex ∆ =
{z ∈ Rm : z ≥ 0, 1⊤z = 1}; see Algorithm 1.

Updating β: With other variables being fixed, the objective function for βp is

min
β≥0,

∑
βp=1

∑
p

β2
pR

2
p, (10)

where Rp =
∥∥(W⊤

p Xp −AZ)SpM
1/2

∥∥
F

. We can obtain the optimal based on Cauchy-Schwarz

inequality as β⋆
p =

R−1
p∑v

u=1 R−1
u

.

Updating LH : We rebuild the anchor-guided hypergraph from the current embeddings. For each
sample i, form its latent code zi (the i-th column of Z); connect i to its T most similar anchors with
the largest zji. Construct the incidence matrix H ∈ {0, 1}(n+m)×m. Then update the normalized
Laplacian

LH = I−D−1/2
v HD−1

e H⊤D−1/2
v , (11)

where Dv and De are vertex and edge degree diagonals.

We summarize the overall procedure for solving the optimization problem (2) in Algorithm 2.

5
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Algorithm 2 Alternating optimization for the proposed model

Input: {Xp,Sp}vp=1, diagonal M,Q, anchor number m, cluster number k; λ1, λ2; T for hyper-
graph.

1: repeat
2: Update {Wp}vp=1 by solving (6);
3: Update A by solving (7);
4: Update Z by Algorithm 1;
5: Update {βp}vp=1 by solving (10);
6: Update LH by equation (11)
7: until relative change < ε;

Output: Cluster labels from k-means on Uk (derived via SVD of Z)

5 EXPERIMENTS

In this section, we evaluate MCAHC on six multi-view datasets under three missingness levels and
compare it against eight representative baselines. We also report running-time comparisons, abla-
tion studies, convergence analysis, and parameter-sensitivity analyses to demonstrate the model’s
effectiveness and efficiency.

5.1 BASELINES AND DATASETS

We conduct experiments on six multi-view datasets, with specific details provided in Table 1.

Table 1: General Statistics of Datasets

Dataset Sample View Class Feature Dimension

NGs 500 3 5 2000/2000/2000
Caltech101-20 2396 6 20 48/40/254/1984/512/928
BDGP 2500 3 5 1000/500/250
CCV 6773 3 20 20/20/20
Animal 11673 4 50 2689/2000/2001/2000
MNIST 60000 3 10 342/1024/64

MCAHC is compared with the following multi-view clustering approaches: non-anchor-based
clustering methods (BSV(Ng et al. (2001));HCP-IMSC(Li et al. (2022));UOMVSC(Tang et al.
(2023));SCSL(Liu et al. (2024c))) and anchor-based clustering methods (EMKMC(Yang et al.
(2023));FastMICE(Huang et al. (2023));FDAGF)(Zhang et al. (2023));MVSC-HFD(Ou et al.
(2024))).

5.2 RESULTS AND DISCUSSIONS

We employ three widely adopted metrics to evaluate clustering results: Accuracy (ACC), Normal-
ized Mutual Information (NMI), and Purity (PUR). To mitigate randomness, each experiment is
repeated 20 times, with the mean and variance reported. Specifically, Tables 2 and 3 present the
clustering results for all multi-view clustering methods under ACC, NMI, and PUR metrics at miss-
ing rates of 30%, 50%, and 70%. Methods unable to compute on a dataset due to insufficient
memory are denoted as N/A. Based on the clustering results obtained from Tables 2 and 3, we draw
the following conclusions:

• MCAHC outperformed most comparison algorithms under various missing rates and eval-
uation metrics. For instance, it consistently achieved the best performance on the NGs and
BDGP datasets, while yielding second-best results on Caltech101-20 and Animal datasets.
Even with a missing rate as high as 70%, MCAHC demonstrated satisfactory performance
across three metrics. This demonstrates that MCAHC effectively addresses the IMVC task.

6
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Table 2: Clustering Results on Datasets

Method NGs

30% 50% 70%
ACC NMI PUR ACC NMI PUR ACC NMI PUR

BSV 39.07±1.58 19.43±0.87 39.68±1.60 33.15±1.42 13.80±1.39 34.03±1.14 25.74±0.83 6.71±0.75 26.28±0.85
HCP-IMSC 93.40±0.00 80.31±0.00 93.40±0.00 89.00±0.00 71.46±0.00 89.00±0.00 85.10±0.00 60.49±0.00 85.10±0.00
SCSL 60.77±0.73 42.52±0.10 64.60±0.22 38.72±0.65 39.92±0.22 36.86±0.19 29.11±0.16 38.31±0.11 30.18±0.14
UOMVSC 73.17±0.01 67.02±0.00 73.93±0.00 73.04±0.01 65.81±0.00 72.88±0.00 71.11±0.00 60.84±0.00 70.74±0.00
EMKMC 45.13±0.00 38.01±0.00 45.15±0.00 44.78±0.00 37.62±0.00 44.76±0.00 42.53±0.00 34.57±0.00 41.30±0.00
FastMICE 40.42±0.03 18.23±0.09 41.37±0.08 39.23±0.05 16.34±0.07 40.41±0.07 37.23±0.03 14.25±0.17 38.23±0.07
FDAGF 53.33±0.00 34.75±0.00 54.99±0.00 52.93±0.00 33.82±0.00 54.10±0.00 52.82±0.00 33.21±0.00 54.32±0.00
MVSC-HFD 46.76±6.46 24.01±5.77 47.88±6.24 42.40±2.78 17.87±2.62 42.92±3.21 37.80±2.62 12.38±1.27 38.12±2.80
Ours 94.20±0.00 83.53±0.00 94.20±0.00 91.20±0.00 77.38±0.00 91.20±0.00 87.42±0.09 69.37±0.13 87.42±0.09

Method Caltech101-20

30% 50% 70%
ACC NMI PUR ACC NMI PUR ACC NMI PUR

BSV 39.71±3.14 53.04±1.05 68.77±1.13 36.86±3.84 49.04±1.68 65.32±1.46 33.01±2.75 43.96±1.06 61.05±1.11
HCP-IMSC 46.44±2.21 50.38±0.99 66.76±0.59 42.66±1.82 50.97±0.96 67.07±0.92 41.13±1.48 50.50±0.66 66.42±0.69
SCSL 43.84±1.66 57.30±0.68 75.50±0.61 43.39±1.83 55.83±0.57 72.78±0.84 45.05±1.64 52.81±0.73 70.04±0.77
UOMVSC 44.98±0.01 60.17±0.00 75.68±0.07 41.79±0.00 57.48±0.01 72.63±0.00 38.57±0.00 53.79±0.00 68.57±0.02
EMKMC 30.87±0.00 32.64±0.00 56.12±0.00 28.57±0.00 31.47±0.00 54.01±0.00 27.50±0.00 31.02±0.00 53.45±0.00
FastMICE 34.27±2.02 59.32±0.86 75.24±0.57 33.50±1.42 57.23±0.31 73.25±0.52 34.50±1.22 53.34±0.23 70.26±0.84
FDAGF 41.22±2.46 49.23±0.07 67.25±2.61 43.12±2.56 50.15±0.00 69.36±1.96 40.49±3.72 48.13±0.02 66..20±2.84
MVSC-HFD 51.09±3.17 45.63±1.94 64.69±1.79 48.01±2.53 42.81±1.58 63.10±1.81 41.94±3.88 38.25±1.61 58.18±2.33
Ours 55.23±1.99 59.81±0.64 76.34±0.44 55.34±2.42 57.27±0.60 73.34±0.42 51.53±1.99 55.91±0.45 73.72±0.42

Method BDGP

30% 50% 70%
ACC NMI PUR ACC NMI PUR ACC NMI PUR

BSV 36.22±0.85 21.40±0.92 38.02±0.92 32.88±0.66 16.76±0.71 33.82±0.69 31.42±0.69 14.77±0.75 32.69±0.71
HCP-IMSC 34.28±0.36 12.76±0.02 36.38±0.01 32.44±0.20 12.37±0.04 35.35±0.01 33.25±0.04 11.72±0.02 34.75±0.02
SCSL 29.08±0.89 9.19±2.69 30.28±0.11 30.89±1.96 6.72±1.94 31.29±1.96 29.69±1.88 4.71±2.54 30.09±1.88
UOMVSC 38.97±0.03 15.56±0.00 41.69±0.01 36.34±0.00 14.24±0.01 39.36±0.04 33.29±0.00 13.97±0.00 35.16±0.00
EMKMC 31.46±0.00 8.34±0.00 32.76±0.00 31.05±0.00 6.77±0.00 31.34±0.00 28.53±0.00 6.78±0.00 29.21±0.00
FastMICE 35.05±0.00 12.78±0.00 33.27±0.00 34.05±0.00 12.18±0.00 32.16±0.00 33.14±0.00 11.66±0.00 31.37±0.00
FDAGF 48.65±3.61 25.65±5.05 49.18±2.98 46.38±2.41 25.15±4.64 48.71±2.28 43.04±3.52 22.12±3.17 42.68±0.94
MVSC-HFD 39.06±1.06 13.37±0.83 39.27±0.87 34.89±2.78 9.77±1.43 35.47±2.91 32.89±2.55 8.26±0.77 33.71±2.17
Ours 50.57±0.05 26.43±0.09 50.83±0.04 48.52±0.05 25.22±0.13 49.06±0.05 46.80±0.01 22.36±0.01 47.32±0.00

• Non-anchor-based clustering methods such as HCP-IMSC and SCSL, fail to operate cor-
rectly on slightly larger datasets like MNIST. In contrast, the proposed MCAHC can func-
tion reliably in large-scale missing scenarios while still achieving satisfactory results, which
demonstrates MCAHC’s relatively stronger practicality.

5.3 TIME COMPARISON

We present the runtime results of various comparison methods and MCAHC across different
datasets, as shown in Figure 2. It should be noted that the vertical axis of the figure employs a log-
arithmic scale to represent runtime, enabling a more intuitive comparison of the efficiency among
different methods. The figure reveals that MCAHC achieves shorter runtime than most comparison
methods across the majority of multi-view datasets. For cases where results could not be obtained
due to insufficient memory, the corresponding histogram column in the figure remains blank. Thus,
MCAHC not only delivers superior clustering results on diverse datasets but also maintains high
computational efficiency.

5.4 ABLATION

To evaluate the contribution of the hypergraph (HG) module, we compared two variants: w/o HG,
which removes HG and retains only the point–anchor bipartite graph; and HG, our proposed anchor-
guided hypergraph that models higher-order sample relationships by forming hyperedges around
shared anchors. Experiments across diverse datasets and varying proportions of missing views
demonstrate that HG consistently outperforms the baseline methods on ACC/NMI/PUR metrics.
These results indicate that hyperedges, by jointly make samples connected to the same anchor point,
better preserve clustering structures while suppressing cross-view imbalance and noise, thereby
achieving more robust and generalizable clustering (see Table 4).
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Figure 2: Running time on different datasets.

Table 3: Clustering Results on Datasets

Method CCV

30% 50% 70%
ACC NMI PUR ACC NMI PUR ACC NMI PUR

BSV 19.26±0.06 9.86±0.05 17.40±0.08 18.35±0.05 13.90±0.03 20.56±0.04 17.38±0.04 12.88±0.02 19.35±0.03
HCP-IMSC 10.78±0.07 10.76±0.11 10.67±0.09 10.03±0.09 9.91±0.15 10.15±0.05 9.42±0.07 9.13±0.07 9.95±0.15
SCSL N/A N/A N/A N/A N/A N/A N/A N/A N/A
UOMVSC 10.91±0.01 10.89±0.04 10.80±0.04 10.21±0.00 10.86±0.01 9.85±0.00 9.45±0.01 9.79±0.02 9.21±0.02
EMKMC 11.25±0.00 5.77±0.00 15.46±0.00 10.84±0.00 5.73±0.00 15.23±0.00 10.44±0.00 2.98±0.00 14.35±0.00
FastMICE 20.12±0.23 8.23±0.09 21.37±0.08 19.23±0.15 7.34±0.07 20.41±0.07 15.23±0.03 4.25±0.17 18.23±0.07
FDAGF 10.50±1.03 5.97±0.03 19.80±3.65 10.12±3.41 5.56±0.05 19.18±3.36 9.45±2.15 5.16±0.06 18.72±2.78
MVSC-HFD 20.58±0.00 14.41±0.00 23.40±0.00 18.74±0.00 12.89±0.00 21.79±0.00 16.67±0.00 11.13±0.04 19.43±0.00
Ours 23.25±0.17 16.58±0.04 25.96±0.05 21.63±0.05 15.48±0.04 25.09±0.05 18.25±0.05 13.82±0.07 22.02±0.08

Method Animal

30% 50% 70%
ACC NMI PUR ACC NMI PUR ACC NMI PUR

BSV 15.32±0.08 10.11±0.04 16.38±0.12 14.69±0.07 9.28±0.05 15.55±0.03 13.58±0.09 7.95±0.09 14.68±0.03
HCP-IMSC N/A N/A N/A N/A N/A N/A N/A N/A N/A
SCSL N/A N/A N/A N/A N/A N/A N/A N/A N/A
UOMVSC 13.45±1.79 11.56±3.64 17.78±1.36 12.13±2.13 10.45±2.79 16.42±1.63 10.67±2.31 9.37±1.56 14.41±3.14
EMKMC 11.45±0.00 6.88±0.00 11.32±0.00 10.43±0.00 6.82±0.00 10.29±0.00 11.14±0.00 5.85±0.00 11.28±0.00
FastMICE 9.08±0.00 8.18±0.00 11.23±0.00 9.18±0.00 8.17±0.00 11.34±0.00 8.87±0.00 7.58±0.00 10.93±0.00
FDAGF 15.71±0.14 9.15±0.25 16.55±0.47 13.67±0.31 7.11±0.14 15.11±0.25 12.52±0.65 6.44±0.23 14.51±0.26
MVSC-HFD 17.60±0.22 13.19±0.18 20.52±0.10 16.13±0.25 11.85±0.20 19.59±0.13 16.15±0.45 11.09±0.46 19.22±0.57
Ours 17.30±0.00 12.65±0.18 20.56±0.19 16.79±0.07 11.59±0.02 19.85±0.04 16.46±0.01 11.21±0.01 19.38±0.02

Method MNIST

30% 50% 70%
ACC NMI PUR ACC NMI PUR ACC NMI PUR

BSV 75.88±0.49 74.67±0.19 78.58±0.33 66.49±0.69 65.39±0.27 69.45±0.49 60.69±0.52 58.93±0.22 62.66±0.38
HCP-IMSC N/A N/A N/A N/A N/A N/A N/A N/A N/A
SCSL N/A N/A N/A N/A N/A N/A N/A N/A N/A
UOMVSC N/A N/A N/A N/A N/A N/A N/A N/A N/A
EMKMC 71.21±0.30 70.88±0.22 72.32±0.43 70.43±0.23 70.82±0.43 71.29±0.20 70.14±0.00 70.25±0.25 71.18±0.30
FastMICE 97.45±0.00 96.08±0.00 97.89±0.00 97.53±0.01 95.52±0.00 97.68±0.00 97.24±0.01 95.05±0.00 96.89±0.01
FDAGF 98.64±0.15 96.12±0.47 97.08±0.95 98.23±0.21 95.89±0.11 97.10±0.23 98.05±0.36 95.01±0.24 96.85±0.34
MVSC-HFD 75.88±4.86 74.67±1.92 78.58±3.34 66.50±6.99 65.39±2.77 69.45±4.88 60.69±5.21 58.93±2.19 62.66±3.76
Ours 98.70±0.00 96.27±0.00 98.42±0.00 98.59±0.00 96.59±0.00 98.42±0.00 98.36±0.00 95.16±0.00 98.32±0.00

5.5 CONVERGENCE

During the iteration process, we plotted the variation curve of the objective function value. As
shown in Figure 3, the objective function value monotonically decreases with increasing iteration
count, typically converging after several iterations. Furthermore, we observed that the algorithm
exhibits rapid convergence properties, usually reaching a stable state within 20 iterations. These
findings undoubtedly validate the convergence of MCAHC.
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Table 4: Hypergraph Ablation Results

NGs Caltech101-20 BDGP CCV Animal MNIST

AB MR ACC NMI PUR ACC NMI PUR ACC NMI PUR ACC NMI PUR ACC NMI PUR ACC NMI PUR

w/o HG 30% 90.80 77.44 90.80 51.26 53.48 71.22 48.26 24.32 48.20 21.71 16.17 24.14 15.65 11.62 18.31 98.33 95.43 97.89
w/ HG 94.20 83.53 94.20 55.23 58.51 76.34 50.57 26.43 50.83 23.25 16.58 25.96 17.30 12.65 20.56 98.60 95.87 98.32

w/o HG 50% 89.40 73.33 89.40 52.01 50.38 69.21 44.31 22.68 45.31 18.35 13.82 21.90 14.83 10.80 17.61 98.21 95.24 97.89
w/ HG 91.20 77.38 91.20 55.34 56.07 73.34 48.52 25.22 49.06 21.63 15.48 25.09 16.79 11.59 19.85 98.49 95.59 98.32

w/o HG 70% 83.60 62.93 83.60 47.56 50.12 70.23 42.98 18.77 43.23 18.08 13.16 21.35 15.35 10.61 16.93 98.12 94.95 97.89
w/ HG 87.42 69.37 87.42 51.53 53.91 73.72 46.80 21.36 47.32 18.25 13.82 22.02 16.46 11.21 19.38 98.36 95.16 98.32

(a) NGs (b) Caltech101-20 (c) BGDP (d) CCV

Figure 3: The objective value on on different datasets. (a) NGs (b) Caltech101-20 (c) BDGP (d)
CCV.

5.6 PARAMETER SENSITIVITY

MCAHC incorporates two hyperparameters, λ1 and λ2, which govern the hypergraph penalty term
and the missingness penalty term respectively. This subsection investigates the influence of these
parameters via a grid search method under a 50% missingness rate. Specifically, we set the range for
λ1 to 10−5, 10−2, . . . , 100 and the range for λ2 to 10−4, 10−2, . . . , 101. We documented the cluster-
ing performance of MCAHC under various parameter combinations, as illustrated in Figure 4. The
figure indicates that the optimal values for λ1 and λ2 lie within the ranges 10−5 to 10−2 and 10−5

to 10−1, respectively. This phenomenon demonstrates that the MCAHC we propose exhibits stable
performance across a wide range of parameters, empirically validating its efficiency and robustness.

(a) NGs (b) Caltech101-20 (c) BGDP (d) CCV

Figure 4: ACC with different parameter combinations across different datasets (a) NGs (b)
Caltech101-20 (c) BDGP (d) CCV.

6 CONCLUSION

We propose MCAHC, a missing-aware consensus anchor-guided hypergraph framework for incom-
plete multi-view clustering. By introducing anchor-guided hypergraphs, MCAHC captures high-
order anchor-sample group interactions. Simultaneously, it incorporates reweighting mechanisms at
both sample and view levels to explicitly mitigate view imbalance and missingness while suppress-
ing the impact of missing data on anchor selection. The hypergraph Laplacian regularization term
further enhances cross-view structural consistency without sacrificing scalability driven by anchors.
Extensive experiments across multiple datasets and varying missingness rates demonstrate that MC-
AHC achieves stable performance improvements and exhibits strong robustness against noise.
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APPENDIX

A LLM USAGE

We used a large language model for language editing, including spelling and grammar checks.

B SYMBOL SUMMARY

v: the number of views;
n: the number of samples;
k: the number of clusters;
m: the number of anchors;
dp: the feature dimension on view p;
l: the dimension of the consensus subspace;
Xp: the data matrix on view p, dp × n;
Wp: the projection matrix on view p to the consensus space, dp × l;
A: the consensus anchor matrix, l ×m;
Z: the anchor graph, m× n ;
zi: the i-th column of Z, m× 1;
βp: the view-weight vector;
s
(i)
p : indicator that sample i is observed in view p (1) or missing (0);
Sp: the diagonal observation mask on view p, n× n;
qi: the missing rate of sample i;
Q: the diagonal matrix Diag(qi), n× n;
mi: the sample weight, e.g., mi = e−γqi ;
M: the diagonal matrix Diag(mi), n× n;
γ: the decay coefficient controlling the missingness penalty;
H: the hypergraph incidence matrix, (n+m)×m;
Dv, De: the vertex-degree and hyperedge-degree diagonal matrices;
LH : the normalized hypergraph Laplacian, (n+m)× (n+m);
Zs: the sample embeddings in the consensus space, l × n;
Zaug: the joint embeddings of samples and anchors, l × (n+m);
λ1, λ2: the coefficients of the two regularizers;

C DETAILED DERIVATIONS OF OPTIMIZATION

With constants λ1, λ2 ≥ 0, the problem is

min
{Wp},A,Z, β

v∑
p=1

β2
p

∥∥(W⊤
p Xp −AZ

)
SpM

1
2

∥∥2
F

+ λ1 Tr
(
ZaugLHZ⊤

aug

)
+ λ2 ∥ZQ

1
2 ∥2F .

1. UPDATE OF Wp

When fixing all other variables unrelated to Wp, the subproblem for updating Wp is

min
W⊤

p Wp=I

∥∥(W⊤
p Xp −AZ

)
SpM

1
2

∥∥2
F
.

For a fixed p, define the residual Ep = (W⊤
p Xp −AZ)SpM

1
2 . Using the properties of trace, and

S2
p = Sp, M

1
2M

1
2 = M,

∥Ep∥2F = Tr
(
(W⊤

p XpSpM
1
2 −AZSpM

1
2 )(W⊤

p XpSpM
1
2 −AZSpM

1
2 )⊤

)
= Tr

(
W⊤

p XpSpMX⊤
p Wp

)
+Tr

(
AZSpMZ⊤A⊤)

− 2Tr
(
W⊤

p XpSpMZ⊤A⊤).
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For fixed A,Z, the second term is constant in Wp, hence minimizing ∥Ep∥2F is equivalent to

max
W⊤

p Wp=I
Tr
(
W⊤

p Gp

)
, Gp = XpSpMZ⊤A⊤.

Let the thin SVD be Gp = UpΣpV
⊤
p . The orthogonal Procrustes solution gives

W⋆
p = UpV

⊤
p .

2. UPDATE OF A

Fixing {Wp}, Z, and β, the subproblem for updating A is

min
A⊤A=I

v∑
p=1

β2
p

∥∥(W⊤
p Xp −AZ

)
SpM

1
2

∥∥2
F
.

From the previous expansion, for each p we have

∥Ep∥2F = Tr
(
W⊤

p XpSpMX⊤
p Wp

)
+Tr

(
AZSpMZ⊤A⊤)− 2Tr

(
W⊤

p XpSpMZ⊤A⊤).
For the second term, using the cyclic property of the trace and the orthogonality constraint A⊤A =
I, we obtain

Tr
(
AZSpMZ⊤A⊤) = Tr

(
A⊤AZSpMZ⊤) = Tr

(
ZSpMZ⊤),

which is constant with respect to A. Therefore, discarding the terms independent of A, the opti-
mization reduces to

v∑
p=1

β2
p∥Ep∥2F = − 2Tr

(
A⊤

v∑
p=1

β2
p W

⊤
p XpSpMZ⊤

)
+ const.

Hence, updating A is equivalent to solving

max
A⊤A=I

Tr
(
A⊤P

)
, P =

v∑
p=1

β2
p W

⊤
p XpSpMZ⊤.

Although the augmented representation includes A, the Laplacian quadratic form
λ1 Tr

(
ZaugLHZ⊤

aug

)
is in fact invariant with respect to A. To see this, partition the hypergraph

Laplacian over samples and anchors:

LH =

[
Ldd Lda

Lad Laa

]
, Zaug = [AZ, A ].

Expanding the trace gives

Tr
(
ZaugLHZ⊤

aug

)
= Tr

(
AZLddZ

⊤A⊤)+ 2Tr
(
AZLdaA

⊤)+Tr
(
ALaaA

⊤).

Because A is column-orthonormal (A⊤A = I), applying this to every term above yields that
Tr
(
ZaugLHZ⊤

aug

)
contains no A. Consequently, ∂

∂A Tr
(
ZaugLHZ⊤

aug

)
= 0. By the same reasoning,

the term λ2∥ZQ1/2∥2F is independent of A as it does not involve A at all.

Let P = UΣV⊤ be the SVD of P. The optimal solution is then given by A⋆ = UV⊤.

3. UPDATE OF Z

Fixing {Wp}, A, and βp, the Z-subproblem is a convex quadratic with simplex constraints:

min
Z≥0, Z⊤1=1

v∑
p=1

β2
p

∥∥(W⊤
p Xp −AZ)SpM

1
2

∥∥2
F
+ λ1 Tr(Z

⊤
augLHZaug) + λ2 ∥ZQ

1
2 ∥2F .
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Collecting the Z-dependent part of the data term via the same expansion gives
v∑

p=1

β2
p∥Ep∥2F = Tr

(
ZCZ⊤)−2Tr(Z⊤A⊤B

)
+const, C =

v∑
p=1

β2
pSpM, B =

v∑
p=1

β2
pW

⊤
p XpSpM,

where we used Tr(AZSpMZ⊤A⊤) = Tr(ZSpMZ⊤) (from A⊤A = I) and
−2

∑
p β

2
pTr(W

⊤
p XpSpMZ⊤A⊤) = −2Tr(Z⊤A⊤B). For the Laplacian term, with Zaug =

[AZ, A ] and LH =

[
Ldd Lda

Lad Laa

]
, we obtain the blockwise trace expansion

Tr
(
ZaugLHZ⊤

aug

)
= Tr

(
AZLddZ

⊤A⊤)+ 2Tr
(
AZLdaA

⊤)+Tr
(
ALaaA

⊤).

so the Z-dependent contribution is λ1

(
Tr(ZLddZ

⊤) + 2Tr(ZLda)
)
. The missing-rate regularizer

satisfies ∥ZQ 1
2 ∥2F = Tr(ZQZ⊤). Putting pieces together and discarding constants yields

f(Z) = Tr(ZKZ⊤)− 2Tr(Z⊤J), K = C+ λ1Ldd + λ2Q, J = A⊤B− λ1Lad,

where K ⪰ 0 since C,Ldd,Q ⪰ 0. The gradient and a global Lipschitz constant are

∇f(Z) = 2ZK− 2J, L≥2λmax(K).

A projected FISTA scheme proceeds as follows: initialize t0 = 1 and Z(0) = Z(−1), then for
k = 0, 1, 2, . . .

tk+1 =
1 +

√
1 + 4t2k
2

,Y(k) = Z(k) +
tk − 1

tk+1

(
Z(k) − Z(k−1)

)
, Z̃ = Y(k) − 1

L

(
2Y(k)K− 2J

)
,

Z
(k+1)
:,j = Π∆

(
Z̃:,j

)
for j = 1, . . . , n, ∆ = {z ∈ Rm | z ≥ 0, 1⊤z = 1},

where the Euclidean projection Π∆ onto the probability simplex is computed columnwise by sorting:
for u = Z̃:,j , let µ be u sorted in descending order, find ρ = max{k : µk + 1

k

(
1−

∑k
i=1 µi

)
> 0}

and set θ = 1
ρ

(∑ρ
i=1 µi − 1

)
, then (Π∆(u))i = max{ui − θ, 0}.

4. UPDATE OF β

Fixing {Wp}, A, and Z, the β-subproblem is

min
β≥0, 1⊤β=1

v∑
p=1

β2
p R

2
p, Rp =

∥∥(W⊤
p Xp −AZ

)
SpM

1
2

∥∥
F
.

Introduce the Lagrangian L(β, λ, µ) =
∑v

p=1 β
2
pR

2
p − λ

(∑v
p=1 βp − 1

)
−
∑v

p=1 µpβp with multi-
pliers λ ∈ R and µp ≥ 0.

For any p with Rp > 0, optimality yields βp > 0 and hence µp = 0, giving 2βpR
2
p − λ = 0 ⇒

βp = λ
2R2

p
. Enforcing

∑
p βp = 1 gives λ = 2∑v

u=1 R−2
u

, and therefore

β⋆
p =

R−2
p∑v

u=1 R
−2
u

, p = 1, . . . , v.

5. UPDATE OF LH

Given the current Z:

1. For each sample i, take indices of its T most similar anchors by the largest entries of zj,i;
create a hyperedge for each selected anchor j that connects the data vertices. Form the
incidence matrix H ∈ R(n+m)×E by Hi,e = 1 if vertex i participates in hyperedge e.

2. Optionally add an anchor self-edge for each anchor vertex to stabilize degrees.
3. Compute Dv = Diag(H1), De = Diag(1⊤H), and

LH = I−D
− 1

2
v HD−1

e H⊤D
− 1

2
v .
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