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ABSTRACT

As a significant task within the field of unsupervised learning, Incomplete Multi-
View Clustering (IMVC) faces considerable challenges in scenarios involving
large-scale datasets, heterogeneous data, and missing views. Existing anchor-
based clustering approaches primarily reduce computational and storage over-
head by introducing anchors, yet they often focus on binary sample-anchor re-
lationships. These methods lack robust learning of consensus anchors under miss-
ing conditions and fail to effectively model high-order relationships among sam-
ples. Furthermore, systematic discussions regarding implementation details and
robustness mechanisms remain insufficient. To address this, this paper proposes
a Missing-aware Consensus Anchor-guided Hypergraph Clustering (MCAHC)
framework. This method constructs hypergraph through sample-anchor connec-
tions and anchor guidance to capture high-order relationships among samples,
effectively mitigating view-missing and noise interference. Concurrently, it de-
signs sample-level and view-level reweighting mechanisms to suppress inter-view
imbalance and promote cross-view consistency, while explicitly down-weighting
severely incomplete samples to prevent them from biasing anchor selection. Ex-
perimental results demonstrate that MCAHC provides an efficient and robust so-
lution for multi-view clustering in large-scale and high-missing-value scenarios.

1 INTRODUCTION

Incomplete Multi-View Clustering IMVC) aims to partition incomplete data into semantically con-
sistent clusters by exploiting information from multiple heterogeneous views(Lin et al.| (2021);Wen
et al.[(2023)1Xu et al.{(2024)). In many applications, the complementarity among views can signif-
icantly improve clustering performance. However, some challenges remain insufficiently addressed
1n practice.

Some samples are missing features in certain views, which invalidates the traditional assumption
that each sample has observations in all views. A number of works have been proposed to tackle
this issue. [Wen et al.| (2024) introduced a diffusion-based framework for missing-view generation,
combined with data augmentation strategies to improve clustering under high missing rates. (Chao
et al.[(2024) developed an contrastive learning framework that jointly optimizes missing-view han-
dling, representation learning, and clustering assignment via graph consistency transfer, instance-
level attention, and high-confidence guidance. |Yu et al.|(2025b) proposed a simple yet effective
method, which performs similarity-level imputation and introduces hybrid prototype groups for each
view, thereby enhancing multi-scale similarity modeling and clustering performance within a uni-
fied framework. Additionally, another clustering methods simplifies graph structure construction
by utilizing anchors, thereby reducing computational overhead while balancing efficiency and ef-
fectiveness. Such anchor-based clustering approaches offer advantages such as scalability, reduced
memory for graph storage, and improved stability. For instance,[Zhang et al.|(2024) propose a clus-
ter structure regularization method that simultaneously optimizes anchor and cluster assignments,
making anchors adaptive and more discriminative while balancing efficiency and accuracy. |L1iu et al.
(20244a) systematically review anchor generation and anchor map construction workflows, propos-
ing plug-and-play anchor enhancement strategies that leverage cross-view correlations to strengthen
anchor maps and improve multi-view fusion performance. |[Zhang et al.| (2025) demonstrate that an-



Under review as a conference paper at ICLR 2026

Consensus Anchor Graph Z € R™*"

Projection o}§oo [e) Ou[pul
Learning 050
(¢}
View 1 X; € RU*" Wy € RUx!
( g O Hyper-Laplacian|Regularization
Projection o) o ot 3 '[ ¢
Learning O Anchor Consensus Anchor
Learning 1 + 4+
; daxn ;. daxl N T [ o o T
View2 X, € R W, € R*? o .+
oo ] Anchor iy O O *s LA
Guided{ . 0 O < O K
Projection (o) | . N o
o] ~_9® @
Learning o L [ g
o . o .
Anchor Matrix Clustering Result
Viewv X, € R%xn W, € Révx! A e RX™
Observed Sample
Input {X;}i_; Anchor Structure Hypergraph (&' Missing Sample

Figure 1: Overview of the proposed MCAHC framework for incomplete multi-view clustering.
Incomplete multi-view input set { X; }¥_; is projected onto a low-dimensional representation via the
projection set {W;}?_,. Consensus anchor learning then produces the anchor A € R'*™ and the
anchor graph Z € R™*", Each anchor induces a hyperedge, and samples are connected to their most
similar anchors, forming an anchor-guided hypergraph G with connected samples. The hypergraph
Laplacian regularization term captures high-order information, leading to robust clustering results.

chors significantly reduce computational complexity in large-scale scenarios and propose an anchor-
aware representation learning scheme to model latent relationships between anchors while maintain-
ing scalability.

Despite progress along these two directions, existing methods still face limitations in real-world
scenarios. For incomplete multi-view clustering, many methods assume that view-missingness is
random or balanced, or that observed samples are evenly distributed across views, which rarely
holds in practice(Xu et al.| (2024)jHan et al.| (2024)). Missing samples often exhibit distributional
shifts compared to complete ones, leading to bias. Furthermore, methods relying on view recovery
or similarity-graph construction may introduce noise during imputation or estimation, which can
propagate and deteriorate clustering performance. For anchor-based approaches, anchor selection
or generation is often fixed or heuristic, making them less adaptable to structural differences across
views. Moreover, most methods only consider pairwise relations between anchors and samples,
while neglecting high-order relations involving groups of samples and anchors(Li et al.|(2022))jMei
et al.|(2024);Chen et al.|(2025)).

To overcome these limitations, we introduce a missing-aware mechanism that adaptively adjusts the
contributions of incomplete samples across views via sample-level masks and weighting matrices.
In addition, we propose an anchor-guided hypergraph framework for multi-view clustering. In our
design, each anchor induces a hyperedge, and samples are connected to their most similar anchors
according to similarity scores, naturally forming an anchor-sample hypergraph that captures high-
order relations beyond pairwise connections. We further incorporate a hypergraph Laplacian regu-
larization term to enforce cross-view structural consistency while preserving the scalability benefits
of anchors. This yields a unified model capable of handling incomplete multi-view data.

The main contributions of this paper are summarized as follows:

* Unlike anchor-based methods that only encode pairwise relations, we propose a anchor-
guided hypergraph Laplacian regularization term, which elevates bipartite anchor
graphs into high-order structures to better capture anchor—sample group interactions.

* We incorporate a missing-aware mechanism that performs sample-level and view-level
reweighting, not only alleviating inter-view imbalance and enhancing cross-view consis-
tency, but also preventing severely missing data points from dominating anchor selection.

* We propose an alternating optimization algorithm and provide detailed derivations of its
update rules. Experiments demonstrate that it achieves strong performance across diverse
datasets and missing-rate regimes while significantly improving efficiency.
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2 RELATED WORK

In multi-view clustering, directly constructing similarity graphs in the original high-dimensional
feature space is computationally prohibitive and difficult to scale(He et al. (2025)iLiu et al.
(2024b);Wang et al.| (2022b);Yu et al.[ (2025a)). To tackle this, the basic anchor graph model in-
troduces view-specific projection matrices to map original data into a shared low-dimensional la-
tent space, while employing a small set of representative anchors to approximate the entire sample
set(Chen et al.| (2024)iSun et al.[ (2021);Wang et al.| (2022a);Qin et al.| (2025)iQin et al. (2025)).
This joint modeling of projection and anchors effectively reduces computational complexity while
preserving essential structural information, and has thus become the cornerstone for subsequent
methodological advances.

Given v views {X, },_; with X, € Rd» X" let W, € R4 *! be view projections to a [-dimensional
consensus space, A € R'™ the shared anchor matrix, Z € R™" the anchor graph, and 3, > 0
the view weights with 22:1 Bp = 1. The model can be written as

v

1 2 - 2 2
o A%, (5, 2 0 [P = WoAZ ]+ 2]

st. W)W, =1, ATA=1, 2>0, 2'1=1, ) B,=1 (1)

p=1
Clustering is then performed on the consensus graph derived from Z.

Following this paradigm, Wang et al.| (2022a) first introduced the anchor graph framework into
incomplete multi-view clustering, where unified anchor learning and incomplete anchor graph con-
struction are combined to form a consensus anchor graph, thereby maintaining cross-view struc-
tural consistency and alleviating the high complexity of large-scale IMVC. |Liu et al.[(2022) unified
anchor learning and graph construction within a single framework, further imposing connectivity
constraints to directly generate graphs with precise cluster structures, enabling one-step clustering
results without additional post-processing or hyperparameter tuning. (Chen et al.|(2024) enhanced the
classical anchor graph framework by introducing an index matrix to naturally handle both complete
and incomplete data, and by stacking anchor graphs from multiple views into a tensor with low-rank
constraints to explicitly capture high-order cross-view correlations. |Ou et al.| (2024)) proposed hier-
archical feature descent within the anchor model, mapping views of varying dimensionalities into a
unified subspace, and then learning a shared anchor matrix and consensus bipartite graph to alleviate
view discrepancy and improve scalability. Qin et al.| (2025) further integrated graph construction,
anchor learning, and graph partition into a unified framework where the three components reinforce
each other; by learning a shared anchor graph to ensure cross-view consistency and explicitly linking
it with symmetric nonnegative matrix factorization, the clustering results can be directly obtained.

3 METHODOLOGY

Building upon the baseline anchor graph formulation in model (I}, we develop a novel missing-
aware anchor-guided hypergraph multi-view clustering framework. Specifically, we extend the con-
ventional bipartite anchor graph into a hypergraph structure to capture high-order relations (Section
[3.1), introduce a missing-aware weighting mechanism to adaptively handle incomplete data (Section
[3.2), and finally integrate these components into a unified framework (Section [3.3).

3.1 ANCHOR-GUIDED HYPERGRAPH

We build an anchor-guided hypergraph H = (V,£) where vertices contain both samples and an-
chors, V = Vs UV, with |V4| = n and |V,| = m. Each anchor induces exactly one hyperedge,
hence |€| = mand € = {e1, ..., ey}, where e; aggregates samples that are similar to anchor j.

The weighted incidence matrix H € R("+")*™ represents the hypergraph over n samples and
m anchors. Let Z € R™*™ denote the anchor graph, where each entry z;; > 0 measures the
similarity between sample x; and anchor a;. For each sample ¢ € {1, ..., n}, we identify the index
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set N7 (i) C {1,...,m}, (1 < T < m), corresponding to the 7" anchors with the largest similarity
scores z; ;. The sample—to-hyperedge incidences are then defined as
IRT j c NT (Z)v
H . =77 2
" {O, otherwise. @

For the anchor rows, each anchor is associated with a dedicated hyperedge. Specifically, for j =
1,....,m,weset H, ; ; = 1,H,; y = 0(¢ # j). Thus, each hyperedge consists of its 7" most
similar samples, weighted by their similarity scores z; ;, together with the anchor a; itself, which is
included with unit weight.

Define vertex degrees d(v) = Y, H,. and edge degrees 6(¢) = >, H,.. Let D,, = Diag(d(v)) €
R(m+m)x(n+m) and D, = Diag(d(e)) € R™*™. Using unit hyperedge weights, the normalized
hypergraph Laplacian is

Ly =1 - D;1/2 HDgl HT D;1/2 c R(’n+’m)><(n+m). (3)

We form a sample embedding Z, = AZ € R'*™ and stack it with the anchor embedding A € R/*™
to obtain Z,,, = [Zs A] € RIX(ntm) s that samples and anchors lie in the same latent space
and are jointly regularized by L through a Laplacian regularization term Tr(Z, Lz Z),,,).

3.2 MISSING-AWARE FRAMEWORK

Let S, = Diag(sl(;i)) € R™ " be a per-view diagonal mask matrix with sl(j) € {0,1} indicating
whether sample ¢ is observed in view p. We define the completeness weight of view p as

n (2) v
.1 S
Oép = —UZl—lnp Ok E Oép = 1, (4)
Zu:1 Zi:1 Su p=1

and the missingness of sample i by ¢; = 1 — >/, oy sg) € [0,1]. Let Q = Diag(q;) be the

missing-rate regularizer. To downweight highly-missing samples during reconstruction, we use
adaptive sample weights m; = e~ 7% M = Diag(m;). Intuitively, the larger ¢;, the less reli-
able the sample, hence the smaller 1;, meanwhile the penalty term || ZQ'/?||% discourages anchor
assignments that rely on highly-missing samples.

3.3 OUR FRAMEWORK

Overall, the object function can be written as

min " B2|[(W) X, — AZ) S, M'2|[} + A\ T(ZawsLiZ),,) + A2 [|1ZQY?|%
BAW, 1 AZ

v
st. Bp>0,> By=1 W, W,=I ATA=I Z>0,Z'1=1 (5
p=1

The first term aligns multi-view reconstructions to the shared anchor embedding, masked by S, and
reweighted by M. The second term imposes hypergraph regularization on both samples Z, and
anchors A through Z,,, and Ly. The third penalty term primarily serves to reduce the impact of
samples with high missing rates on anchor quality.

4  OPTIMIZATION

We design an alternating algorithm for optimizing each variable in Eq.(5) by fixing the others.
Updating W,,: With other variables fixed, the p-th view subproblem reduces to

T TAT
WS T (W] G,), G, = X,S,MZ AT 6)

Let the SVD be G, = U, 3, V;. The optimum is W7 = UpV;.
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Algorithm 1 Z-update Algorithm

Input: K = 0 € R™*", J € R™*"; initial Z(®) = ZW), t; = 1; stepsize L > 2Apax(K);
tolerance €.
1: while not converged do

2ty (1+/1+487)/2

300 YO —Z® 4 (¢, — 1/t,44) (20 — Z¢-D)

4 Z+ YO - LT(2YWK - 27)

5:  for each column j = 1,...,n do Z:(f’;rl) — HA(zJ), where A = {z € R™ | z >
0,17z=1}

20D — 7O

max{L,[|Z®")| p}
7: end while
Output: Updated Z

6: < ¢ then break

Updating A: With other variables fixed and discarding constants gives

T _ 2 T T
nax Tr(ATP), P = ;ﬁp W, X,S,MZ". (7)

LetP=UXV'. Then A* =UV'.
Updating Z: Block-partitioned as Ly = [[%¢ [*] with Lyg = LJ,. Using Zy, = [Z, A] and
the block form of L, we obtain -

Tt(ZaeLZy,) = Tr(ZLgaZ") + 2 Tr(Z Lag) + Tr(ALG,AT), (8)

aug

where the last term is constant. Collecting the quadratic and linear terms, the Z-subproblem becomes

,nin f(Z) = Te(ZKZ") -2 Tr(Z'T) st. Z>0,Z"1=1, )
€ mXn

with K = Z;Zl Bf,SpM + MLagg + 22Q >~ 0,J = ZZ:1 ﬁZQ,ATW;XpSpM — AMLgq. We
solve Eq.@) by FISTA(Beck & Teboulle| (2009)) with gradient V f(Z) = 2ZK — 2J and stepsize

L > 2)\ax(K), followed by column-wise Euclidean projection onto the probability simplex A =
{ze€R™: 2>0, 1"z =1};see Algorithm

Updating 3: With other variables being fixed, the objective function for 3, is

: 22
R, 10
B205 5,=1 Zp: Py {10
where R, = H (W; X, —AZ) Sle/ 2 H - We can obtain the optimal based on Cauchy-Schwarz
inequality as 3, = %.
u=1 1tu

Updating L;;: We rebuild the anchor-guided hypergraph from the current embeddings. For each
sample ¢, form its latent code z; (the ¢-th column of Z); connect ¢ to its 7" most similar anchors with
the largest z;;. Construct the incidence matrix H € {0, 1}("+™)*™ Then update the normalized
Laplacian

Ly = I-D;Y?HD;'H D, /2, (11)

where D, and D, are vertex and edge degree diagonals.

We summarize the overall procedure for solving the optimization problem (2) in Algorithm [2]
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Algorithm 2 Alternating optimization for the proposed model

Input: {X,, Sp}gzl, diagonal M, Q, anchor number m, cluster number k; A1, A\o; T for hyper-
graph.
1: repeat
2:  Update {W,,}_; by solving (@);
3:  Update A by solving (7);
4:  Update Z by Algorithm [T}
5. Update {/3,},_; by solving ;
6:  Update L by equation (I1)
7. until relative change < «;
Qutput: Cluster labels from k-means on Uy, (derived via SVD of Z)

5 EXPERIMENTS

In this section, we evaluate MCAHC on six multi-view datasets under three missingness levels and
compare it against eight representative baselines. We also report running-time comparisons, abla-
tion studies, convergence analysis, and parameter-sensitivity analyses to demonstrate the model’s
effectiveness and efficiency.

5.1 BASELINES AND DATASETS

We conduct experiments on six multi-view datasets, with specific details provided in Table

Table 1: General Statistics of Datasets

Dataset Sample View Class Feature Dimension
NGs 500 3 5 2000/2000/2000
Caltech101-20 2396 6 20 48/40/254/1984/512/928
BDGP 2500 3 5 1000/500/250
CCVv 6773 3 20 20/20/20
Animal 11673 4 50 2689/2000/2001/2000
MNIST 60000 3 10 342/1024/64

MCAHC is compared with the following multi-view clustering approaches: non-anchor-based
clustering methods (BSV(Ng et al.| (2001));HCP-IMSC(Li et al.| (2022));UOMVSC(Tang et al.
(2023));SCSL(Liu et al| (2024c))) and anchor-based clustering methods (EMKMC(Yang et al.
(2023)));FastMICE(Huang et al. (2023));FDAGF)(Zhang et al.| (2023));MVSC-HFD(Ou et al.
(2024))).

5.2 RESULTS AND DISCUSSIONS

We employ three widely adopted metrics to evaluate clustering results: Accuracy (ACC), Normal-
ized Mutual Information (NMI), and Purity (PUR). To mitigate randomness, each experiment is
repeated 20 times, with the mean and variance reported. Specifically, Tables [2] and [3] present the
clustering results for all multi-view clustering methods under ACC, NMI, and PUR metrics at miss-
ing rates of 30%, 50%, and 70%. Methods unable to compute on a dataset due to insufficient
memory are denoted as N/A. Based on the clustering results obtained from Tables [2]and [3] we draw
the following conclusions:

* MCAHC outperformed most comparison algorithms under various missing rates and eval-
uation metrics. For instance, it consistently achieved the best performance on the NGs and
BDGP datasets, while yielding second-best results on Caltech101-20 and Animal datasets.
Even with a missing rate as high as 70%, MCAHC demonstrated satisfactory performance
across three metrics. This demonstrates that MCAHC effectively addresses the IMVC task.
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Table 2: Clustering Results on Datasets

NMoathad NGs
30% 50% 70%
ACC NMI PUR ACC NMI PUR ACC NMI PUR
BSV 39.0741.58 19.434+0.87  39.684+1.60  33.1541.42 13.80+1.39  34.03+1.14  25.7440.83 6.71£0.75 26.284+0.85
HCP-IMSC 93.40+0.00  80.31+0.00  93.404+0.00  89.00+0.00  71.464+0.00  89.004+0.00  85.104+0.00  60.4940.00 85.1040.00
SCSL 60.77+£0.73  42.52+0.10  64.60+0.22  38.724+0.65 39.92+0.22  36.86+0.19  29.114+0.16  38.3140.11 30.18+0.14
UOMVSC 73.17+0.01 67.024+0.00  73.93+0.00  73.0440.01 65.81+£0.00  72.884+0.00  71.11+0.00  60.8440.00 70.74+0.00
EMKMC 45.1340.00  38.01£0.00  45.15+0.00  44.7840.00  37.62+0.00  44.76+0.00  42.534+0.00  34.57+£0.00  41.30+0.00
FastMICE 40424003 18.23+£0.09 41374008  39.2340.05  16.34+0.07  40.41+0.07  37.23+0.03  14.25+0.17  38.23+0.07
FDAGF 53334000  34.75+£0.00 54994000  52.9340.00  33.82:£0.00  54.10+£0.00  52.8240.00  33.21:£0.00  54.32+0.00
MVSC-HFD 4676646 24014577  47.88+624  4240+2.78  17.87+2.62 42924321  37.804+2.62  12.38+127  38.124+2.80
Ours 94.20£0.00  83.53+£0.00  94.20+£0.00  91.20+0.00  77.38+0.00  91.20+0.00  87.42+0.09  69.37+0.13  87.42+0.09
o Caltech101-20
30% 50% 70%
ACC NMI PUR ACC NMI PUR ACC NMI PUR
BSV 39.714+3.14  53.04+£1.05  68.77£1.13 36.861+3.84  49.0441.68 65.32+1.46  33.014+2.75  43.96+1.06 61.05+1.11
HCP-IMSC 46.44+2.21 50.384+0.99  66.76+0.59  42.66+1.82  50.97+0.96  67.07£0.92  41.13£1.48 50.5040.66 66.42+0.69
SCSL 43.84+1.66  57.30+0.68  75.5040.61 43.39+1.83  55.83+0.57 72.78+0.84  45.05+1.64  52.81+0.73 70.0440.77
UOMVSC 44.9810.01 60.174+0.00  75.68+0.07  41.794+0.00  57.48+0.01 72.63+0.00  38.574+0.00  53.7940.00 68.5740.02
EMKMC 30.874£0.00  32.64£0.00  56.12+£0.00  28.57£0.00  31.47+0.00  54.01+£0.00  27.504+0.00  31.0240.00 53.454-0.00
FastMICE 34.2742.02 59.32+0.86  75.24+0.57 33.50+1.42  57.234+0.31 73.25+0.52 34504122 53.3440.23 70.26+0.84
FDAGF 41.2242.46  49.23+0.07  67.254+2.61 43.124£2.56  50.15£0.00  69.36+£1.96  40.49+3.72  48.13+0.02  66..20+2.84
MVSC-HFD  51.0943.17  45.63£1.94  64.69+£1.79  48.01+£2.53  42.81+1.58 63.10+1.81 41.94+3.88 38.25+1.61 58.184+2.33
Ours 55.23+1.99  59.81+0.64  76.34+0.44  5534+2.42  57.274+0.60  73.344+0.42  51.53+1.99  55.91+0.45 73.72+0.42
Moathod BDGP
30% 50% 70%
ACC NMI PUR ACC NMI PUR ACC NMI PUR
BSV 36.2240.85 21.4040.92 38.02+0.92  32.88+0.66 16.7610.71 33.8240.69 31.42+0.69 14.77%0.75 32.6940.71
HCP-IMSC 34.28+0.36 12.7610.02 36.3840.01 32.4440.20 12.3740.04  35.3540.01 33.25+0.04 11.7240.02 34.75+0.02
SCSL 29.0840.89 9.194+2.69 30.2840.11 30.8941.96 6.72+£1.94 31.294+1.96  29.69+1.88 4.71£2.54 30.09+1.88
UOMVSC 38.9740.03 15.56+0.00  41.6940.01 36.3410.00 14.244-0.01 39.36+0.04  33.2940.00 13.97+0.00 35.1640.00
EMKMC 31.4640.00 8.34+£0.00 32.76+0.00  31.0540.00 6.77+0.00 31.344+0.00  28.5340.00 6.78£0.00 29.214+0.00
FastMICE 35.0540.00 12.784+0.00  33.274+0.00  34.0540.00 12.1840.00  32.16+0.00  33.1440.00 11.6640.00 31.374+0.00
FDAGF 48.65+3.61 25.65+5.05  49.184+2.98  46.38+2.41 25.15+4.64  48.71+2.28  43.04+3.52 22.1243.17 42.68+0.94
MVSC-HFD 39.06+1.06 13.374+0.83  39.2740.87 34.89+2.78 9.77£1.43 35.47+2.91 32.89+2.55 8.261+0.77 33.71+2.17
Ours 50.57+0.05  26.43+0.09  50.831+0.04  48.52+0.05  25.224+0.13  49.06+0.05  46.80+0.01  22.36+0.01 47.321+0.00

* Non-anchor-based clustering methods such as HCP-IMSC and SCSL, fail to operate cor-
rectly on slightly larger datasets like MNIST. In contrast, the proposed MCAHC can func-
tion reliably in large-scale missing scenarios while still achieving satisfactory results, which
demonstrates MCAHC’s relatively stronger practicality.

5.3 TiIME COMPARISON

We present the runtime results of various comparison methods and MCAHC across different
datasets, as shown in Figure 2] It should be noted that the vertical axis of the figure employs a log-
arithmic scale to represent runtime, enabling a more intuitive comparison of the efficiency among
different methods. The figure reveals that MCAHC achieves shorter runtime than most comparison
methods across the majority of multi-view datasets. For cases where results could not be obtained
due to insufficient memory, the corresponding histogram column in the figure remains blank. Thus,
MCAHC not only delivers superior clustering results on diverse datasets but also maintains high
computational efficiency.

5.4 ABLATION

To evaluate the contribution of the hypergraph (HG) module, we compared two variants: w/o HG,
which removes HG and retains only the point—anchor bipartite graph; and HG, our proposed anchor-
guided hypergraph that models higher-order sample relationships by forming hyperedges around
shared anchors. Experiments across diverse datasets and varying proportions of missing views
demonstrate that HG consistently outperforms the baseline methods on ACC/NMI/PUR metrics.
These results indicate that hyperedges, by jointly make samples connected to the same anchor point,
better preserve clustering structures while suppressing cross-view imbalance and noise, thereby
achieving more robust and generalizable clustering (see Table ).
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Figure 2: Running time on different datasets.
Table 3: Clustering Results on Datasets
Method ccv
30% 50% 0%
ACC NMI PUR ACC NMI PUR ACC NMI PUR
BSV 19.26+0.06  9.8640.05  17.40+0.08  183540.05  13.90+0.03  20.5640.04  17.38+0.04  12.8840.02  19.35+0.03
HCP-IMSC ~ 10.7840.07  10.76£0.11  10.6740.09  10.03+£0.09  9.9140.15  10.15£0.05  9.4240.07  9.13+£0.07  9.9540.15
SCSL N/A N/A N/A N/A N/A N/A N/A N/A N/A
UOMVSC 10914001  10.8940.04  10.80+0.04  1021£0.00  10.86+£0.01 9854000  9.45+0.01  9.79+0.02  9.21+0.02
EMKMC 11254000  57740.00  1546+0.00  10.8420.00  573+£0.00  152340.00 10444000  2.9840.00  14.3540.00
FastMICE 20.124023  82340.09  21.37+0.08  19.2340.15  7.34+0.07  204140.07 15234003  42540.17  18.23+0.07
FDAGF 10.50+1.03  59740.03  19.80+3.65 10.1243.41 5564005  19.1843.36  9.45+2.15  5.1640.06  18.72+2.78
MVSC-HFD ~ 20.5840.00  14.4140.00  23.40+0.00  18.7440.00  12.8940.00 21.7940.00 16.67+0.00 11.1340.04  19.43+0.00
Ours 232540.17  16.5840.04  25.96+0.05 21.63+0.05  15.48+0.04  25.09+£0.05 18.25+0.05  13.8240.07  22.02+0.08
b Animal
30% 50% 70%
ACC NMI PUR ACC NMI PUR ACC NMI PUR
BSV 15324008  10.1140.04  16.38+0.12  14.6940.07  9.2840.05  155540.03  13.5840.09  7.9540.09  14.68+0.03
HCP-IMSC N/A N/A N/A N/A N/A N/A N/A N/A N/A
SCSL N/A N/A N/A N/A N/A N/A N/A N/A N/A
UOMVSC 13454179 11.5643.64 17784136  12.1342.13 10454279  164241.63 10674231  93741.56  14.41+3.14
EMKMC 11454000  6.8840.00  11.3240.00  10.43+0.00  6.8240.00  10294£0.00  11.1440.00  5.85+0.00  11.28+0.00
FastMICE 9.0840.00  8.1840.00  11.23+0.00  9.1840.00  8.1740.00  11.3440.00  887+0.00  7.5840.00  10.930.00
FDAGF 15714014 9.1540.25  16.55+0.47  13.6740.31  7.11£0.14 15114025  12.5240.65 6444023 14514026
MVSC-HFD  17.6040.22  13.1940.18  20.5240.10  16.13£0.25  11.854+0.20  19.59+0.13  16.154045  11.09+£0.46  19.2240.57
Ours 17.3040.00  12.6540.18  20.56+0.19  16.79+0.07  11.59+0.02  19.85+£0.04  16.46+0.01 11.21+0.01  19.38+0.02
I MNIST
30% 50% 70%
ACC NMI PUR ACC NMI PUR ACC NMI PUR
BSV 75.884£0.49  74.6740.19  78.58+0.33  66.49+0.69 65394027  69.45+£049  60.6940.52 58934022  62.66+0.38
HCP-IMSC N/A N/A N/A N/A N/A N/A N/A N/A N/A
SCSL N/A N/A N/A N/A N/A N/A N/A N/A N/A
UOMVSC N/A N/A N/A N/A N/A N/A N/A N/A N/A
EMKMC 71214030  70.8840.22  72.32+043 70434023  70.82+043 71294020  70.14+0.00 70254025  71.1840.30
FastMICE 97.4540.00  96.0840.00  97.8940.00  97.53+0.01  9552+0.00  97.68+£0.00  97.2440.01  95.054+0.00  96.89+0.01
FDAGF 98.64+0.15  96.1240.47  97.08+0.95 98234021  95.89+0.11  97.100.23  98.05+0.36  95.0140.24  96.85+0.34
MVSC-HFD ~ 75.8844.86 74674192 78584334  66.50+£6.99 65394277  69.45+4.88  60.694521  5893+2.19  62.6643.76
Ours 98.70+0.00  96.2740.00  98.42+0.00  98.59+0.00  96.59+0.00  98.4240.00  98.36+0.00  95.1620.00  98.32+0.00

5.5 CONVERGENCE

During the iteration process, we plotted the variation curve of the objective function value. As
shown in Figure [3] the objective function value monotonically decreases with increasing iteration
count, typically converging after several iterations. Furthermore, we observed that the algorithm
exhibits rapid convergence properties, usually reaching a stable state within 20 iterations. These
findings undoubtedly validate the convergence of MCAHC.
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Table 4: Hypergraph Ablation Results

NGs Caltech101-20 BDGP ccv Animal MNIST

AB MR ACC NMI PUR ACC NMI PUR ACC NMI PUR ACC NMI PUR ACC NMI PUR ACC NMI PUR
w/o HG 30% 90.80 77.44 90.80 51.26 5348 7122 4826 2432 4820 21.71 1617 2414 1565 11.62 1831 9833 9543 97.89
w/ HG ° 9420 8353 9420 5523 5851 7634 50.57 2643 5083 2325 1658 2596 17.30 12.65 20.56 98.60 95.87 98.32
w/o HG 50% 89.40 7333 89.40 52.01 5038 69.21 4431 2268 4531 1835 13.82 21.90 14.83 10.80 17.61 98.21 9524 97.89
w/HG “°7 9120 77.38 9120 5534 56.07 7334 4852 2522 49.06 21.63 1548 25.09 1679 11.59 19.85 9849 9559 98.32
w/o HG 70% 83.60 6293 83.60 47.56 50.12 7023 4298 18.77 4323 18.08 13.16 2135 1535 10.61 1693 98.12 9495 97.89
w/ HG 7 8742 6937 8742 5153 5391 7372 4680 21.36 47.32 1825 13.82 22.02 1646 1121 1938 98.36 9516 98.32
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Figure 3: The objective value on on different datasets. (a) NGs (b) Caltech101-20 (c) BDGP (d)
CCV.

5.6 PARAMETER SENSITIVITY

MCAHC incorporates two hyperparameters, A\; and A2, which govern the hypergraph penalty term
and the missingness penalty term respectively. This subsection investigates the influence of these
parameters via a grid search method under a 50% missingness rate. Specifically, we set the range for
A1 to107°,1072,...,10° and the range for Ao to 107%,1072, ..., 10'. We documented the cluster-
ing performance of MCAHC under various parameter combinations, as illustrated in Figure ] The
figure indicates that the optimal values for \; and A, lie within the ranges 10~° to 10~2 and 10~°
to 10~ 1, respectively. This phenomenon demonstrates that the MCAHC we propose exhibits stable
performance across a wide range of parameters, empirically validating its efficiency and robustness.

(a) NGs (b) Caltech101-20

(d) CCV

Figure 4: ACC with different parameter combinations across different datasets (a) NGs (b)
Caltech101-20 (c) BDGP (d) CCV.

6 CONCLUSION

We propose MCAHC, a missing-aware consensus anchor-guided hypergraph framework for incom-
plete multi-view clustering. By introducing anchor-guided hypergraphs, MCAHC captures high-
order anchor-sample group interactions. Simultaneously, it incorporates reweighting mechanisms at
both sample and view levels to explicitly mitigate view imbalance and missingness while suppress-
ing the impact of missing data on anchor selection. The hypergraph Laplacian regularization term
further enhances cross-view structural consistency without sacrificing scalability driven by anchors.
Extensive experiments across multiple datasets and varying missingness rates demonstrate that MC-
AHC achieves stable performance improvements and exhibits strong robustness against noise.
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APPENDIX

A LLM USAGE

We used a large language model for language editing, including spelling and grammar checks.

B SYMBOL SUMMARY

v: the number of views;

n: the number of samples;

k: the number of clusters;

m: the number of anchors;

dp: the feature dimension on view p;

l: the dimension of the consensus subspace;

X,: the data matrix on view p, d,, X n;

‘W ,,: the projection matrix on view p to the consensus space, d,, x [;
A': the consensus anchor matrix, [ X m;

Z: the anchor graph, m x n ;

z;: the ¢-th column of Z, m x 1;

Bp: the view-weight vector;

sz(f): indicator that sample ¢ is observed in view p (1) or missing (0);
S,: the diagonal observation mask on view p, n X n;

q;: the missing rate of sample i;

Q: the diagonal matrix Diag(g;), n X n;

m;: the sample weight, e.g., m; = e77%;

M: the diagonal matrix Diag(m;), n X n;

~: the decay coefficient controlling the missingness penalty;

H: the hypergraph incidence matrix, (n+m) x m;

D,, D.: the vertex-degree and hyperedge-degree diagonal matrices;
Ly : the normalized hypergraph Laplacian, (n+m) x (n+m);

Z,: the sample embeddings in the consensus space, [ X n;

Z,,: the joint embeddings of samples and anchors, [ x (n+m);
A1, Ag: the coefficients of the two regularizers;

C DETAILED DERIVATIONS OF OPTIMIZATION

With constants A1, Ay > 0, the problem is

v

. 12 1
{Wpr}][,lgl,z,g ;Bz% || (W;XP - AZ) SPMé HF + A Tr(zaugLHz‘ng) + A2 ”ZQ; ||2F'

1. UPDATE OF W,
When fixing all other variables unrelated to W, the subproblem for updating W, is

W%}Vn_l (W, X, — AZ) S,M? Hi“
P P

For a fixed p, define the residual E, = (W;— X, — AZ)SPM%. Using the properties of trace, and
S2=8,, M:M: = M,
1B, I3 = Te((W; X, 8,M? — AZS,M})(W]X,S,M} - AZS,M})T)
=T(W, X,S,MX W,) + To(AZS,MZ AT)
— 2TH(W, X,S,MZ"AT).

12
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For fixed A, Z, the second term is constant in W, hence minimizing ||E,||%. is equivalent to

T _ TAT
WS T™(W]G,), G, = X,S,MZTA".

Let the thin SVD be G, = U,,EPV;,r . The orthogonal Procrustes solution gives

* T
Wi =U,V,.

2. UPDATE OF A

Fixing {W,}, Z, and {3, the subproblem for updating A is

min 72 [(Wy X, - AZ)S, M 7.
L 2

From the previous expansion, for each p we have
1B, % = T{(W, X,S,MXW,) + Ti(AZS,MZ'A") —2Ty(W, X,S,MZ AT).
For the second term, using the cyclic property of the trace and the orthogonality constraint AT A =
I, we obtain
To(AZS,MZ'AT) = To(ATAZS,MZ") = Ty(ZS,MZ"),

which is constant with respect to A. Therefore, discarding the terms independent of A, the opti-
mization reduces to

v v
Z ﬁ;g”EpH% == 2Tr<AT Zﬂg W;XPSPMZT> + const.
p=1 p=1

Hence, updating A is equivalent to solving

v

T _ 2 T T
Jnax T(ATP), P = I;ﬂp W, X,S,MZ".

Although the augmented representation includes A, the Laplacian quadratic form
M TH(Zaw L Z,,,) is in fact invariant with respect to A. To see this, partition the hypergraph

3 aug
Laplacian over samples and anchors:

aa

L L
L, — [Lfﬁ da}, Zue — [AZ, A].

Expanding the trace gives

T(ZawsLnZy,) = T{(AZLgZ " AT) + 2T(AZLgoAT) + Tr(ALg,AT).

aug

Because A is column-orthonormal (AT A = I), applying this to every term above yields that
Tr(ZaugLH yA ) contains no A. Consequently, a% Tr(ZaugLH yA ) = 0. By the same reasoning,

aug aug
the term \o||ZQ'/?||2 is independent of A as it does not involve A at all.

Let P = UXV T be the SVD of P. The optimal solution is then given by A* = UV T,
3. UPDATE OF Z

Fixing {W,}, A, and (3, the Z-subproblem is a convex quadratic with simplex constraints:

. k 12 1
Lo > B[(W, X, — AZ)S,M? ||, + A\ Tr(Zgy st Zawg) + A2 1 2Q7 |3
_* - p:1

13
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Collecting the Z-dependent part of the data term via the same expansion gives

> BB |7 =T(ZCZT)-2Ty(Z " ATB)+const, C=)Y BIS,M, B=> BW X,S,M,

p=1 p=1 p=1
where we used Tr(AZS,MZ'A") = Tr(ZS,MZ") (from ATA = 1) and
=23, BETr(W, X,S,MZTAT) = —2Tr(Z" ATB). For the Laplacian term, with Z,,, =

[AZ, A]Jand Ly = Ed‘; %d“} , we obtain the blockwise trace expansion

Tr(Zawg L Zy,

aug

) = To(AZLGZ " AT) + 2 Te(AZLg,A ") + Tr(ALg,AT).
so the Z-dependent contribution is A (Tr(ZLgqZ ") + 2 Tr(ZLg,)). The missing-rate regularizer
satisfies |ZQ? |2 = Tr(ZQZT). Putting pieces together and discarding constants yields
f(Z)=Tr(ZKZ") - 2Tr(Z"J), K=C+ MLy +XQ, J=A"B-\Ly,
where K = 0 since C, L;4, Q > 0. The gradient and a global Lipschitz constant are
Vf(Z)=2ZK — 27, L>2\pax (K).
A projected FISTA scheme proceeds as follows: initialize t, = 1 and Z(®) = Z(=1_ then for
k=0,1,2,...
1+ V1+46 \/21_|_4t’2€’y(k) g “;7—1(Z(m ) 7y ® %(QY(MK ),
k+1

Z") = 1A(Z.) forj=1,...,n, A={z€R™|2>0,1Tz=1},

the1 =

where the Euclidean projection LI onto the probability simplex is computed columnwise by sorting:
foru = Z. ;, let ;1 be u sorted in descending order, find p = max{k : uz + %(1 - Zle ui) > 0}
and set § = %( 1 — 1), then (Ia(u)); = max{u; — 6,0}

4. UPDATE OF 8

Fixing {W,}, A, and Z, the 3-subproblem is

min > B2RZ, R, = |[(W]X, — AZ)S,M?

polB -

p=1

Introduce the Lagrangian £(8,\, 1) = >0, BpRy = AM(Xop_y By — 1) = 3o, _; pap3p with multi-
pliers A € R and p,, > 0.

For any p with R, > 0, optimality yields 3, > 0 and hence p,, = 0, giving 26,R2 — X\ = 0 =

Bp = ﬁ- Enforcing 3 8, = 1 gives A = ﬁ, and therefore
R—2
ﬁ*:%, p=1,...,v.
T R

5. UPDATE OF Ly
Given the current Z:

1. For each sample 4, take indices of its 7" most similar anchors by the largest entries of z; ;;
create a hyperedge for each selected anchor j that connects the data vertices. Form the
incidence matrix H € R("T™)xE by H; . = 1 if vertex 7 participates in hyperedge e.

2. Optionally add an anchor self-edge for each anchor vertex to stabilize degrees.
3. Compute D,, = Diag(H1), D, = Diag(1"H), and

_1 _1
Ly=1-D,’HD_;'H'D, *.
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