

000 001 002 003 004 005 006 007 008 009 010 011 012 A CONSENSUS ANCHOR-GUIDED HYPERGRAPH FRAMEWORK FOR INCOMPLETE MULTI-VIEW CLUS- TERING

006
007 **Anonymous authors**
008 Paper under double-blind review

011 ABSTRACT

013 As a significant task within the field of unsupervised learning, Incomplete Multi-
014 View Clustering (IMVC) faces considerable challenges in scenarios involving
015 large-scale datasets, heterogeneous data, and missing views. Existing anchor-
016 based clustering approaches primarily reduce computational and storage over-
017 head by introducing anchors, yet they often focus on binary sample-anchor re-
018 lationships. These methods lack robust learning of consensus anchors under miss-
019 ing conditions and fail to effectively model high-order relationships among sam-
020 ples. Furthermore, systematic discussions regarding implementation details and
021 robustness mechanisms remain insufficient. To address this, this paper proposes
022 a Missing-aware Consensus Anchor-guided Hypergraph Clustering (MCAHC)
023 framework. This method constructs hypergraph through sample-anchor connec-
024 tions and anchor guidance to capture high-order relationships among samples,
025 effectively mitigating view-missing and noise interference. Concurrently, it de-
026 signs sample-level and view-level reweighting mechanisms to suppress inter-view
027 imbalance and promote cross-view consistency, while explicitly down-weighting
028 severely incomplete samples to prevent them from biasing anchor selection. Ex-
029 perimental results demonstrate that MCAHC provides an efficient and robust so-
030 lution for multi-view clustering in large-scale and high-missing-value scenarios.

031 1 INTRODUCTION

032 Incomplete Multi-View Clustering (IMVC) aims to partition incomplete data into semantically con-
033 sistent clusters by exploiting information from multiple heterogeneous views(Lin et al. (2021);Wen
034 et al. (2023);Xu et al. (2024)). In many applications, the complementarity among views can signif-
035 icantly improve clustering performance. However, some challenges remain insufficiently addressed
036 in practice.

037 Some samples are missing features in certain views, which invalidates the traditional assumption
038 that each sample has observations in all views. A number of works have been proposed to tackle
039 this issue. Wen et al. (2024) introduced a diffusion-based framework for missing-view generation,
040 combined with data augmentation strategies to improve clustering under high missing rates. Chao
041 et al. (2024) developed an contrastive learning framework that jointly optimizes missing-view han-
042 dling, representation learning, and clustering assignment via graph consistency transfer, instance-
043 level attention, and high-confidence guidance. Yu et al. (2025b) proposed a simple yet effective
044 method, which performs similarity-level imputation and introduces hybrid prototype groups for each
045 view, thereby enhancing multi-scale similarity modeling and clustering performance within a uni-
046 fied framework. Additionally, another clustering methods simplifies graph structure construction
047 by utilizing anchors, thereby reducing computational overhead while balancing efficiency and ef-
048 fectiveness. Such anchor-based clustering approaches offer advantages such as scalability, reduced
049 memory for graph storage, and improved stability. For instance, Zhang et al. (2024) propose a clus-
050 ter structure regularization method that simultaneously optimizes anchor and cluster assignments,
051 making anchors adaptive and more discriminative while balancing efficiency and accuracy. Liu et al.
052 (2024a) systematically review anchor generation and anchor map construction workflows, propos-
053 ing plug-and-play anchor enhancement strategies that leverage cross-view correlations to strengthen
anchor maps and improve multi-view fusion performance. Zhang et al. (2025) demonstrate that an-

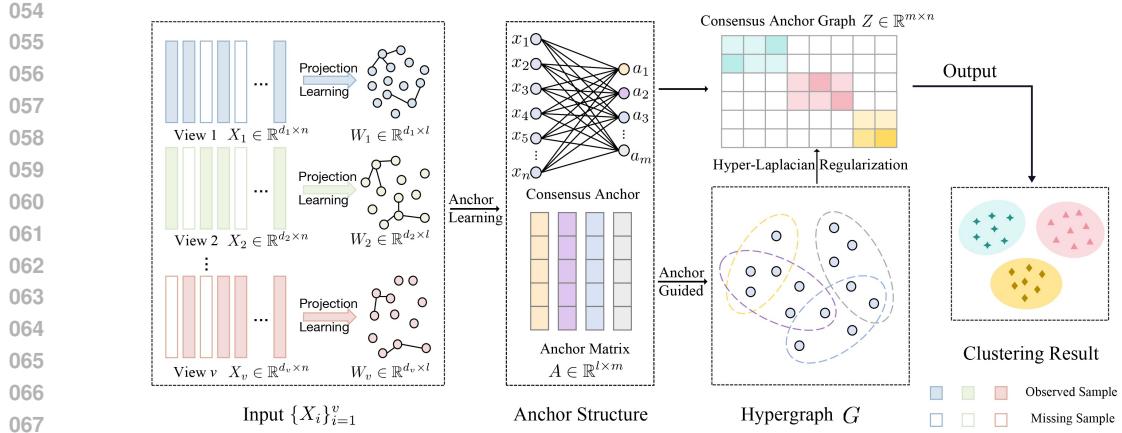


Figure 1: Overview of the proposed MCAHC framework for incomplete multi-view clustering. Incomplete multi-view input set $\{X_i\}_{i=1}^v$ is projected onto a low-dimensional representation via the projection set $\{W_i\}_{i=1}^v$. Consensus anchor learning then produces the anchor $A \in \mathbb{R}^{l \times m}$ and the anchor graph $Z \in \mathbb{R}^{m \times n}$. Each anchor induces a hyperedge, and samples are connected to their most similar anchors, forming an anchor-guided hypergraph G with connected samples. The hypergraph Laplacian regularization term captures high-order information, leading to robust clustering results.

chors significantly reduce computational complexity in large-scale scenarios and propose an anchor-aware representation learning scheme to model latent relationships between anchors while maintaining scalability.

Despite progress along these two directions, existing methods still face limitations in real-world scenarios. For incomplete multi-view clustering, many methods assume that view-missingness is random or balanced, or that observed samples are evenly distributed across views, which rarely holds in practice(Xu et al. (2024);Han et al. (2024)). Missing samples often exhibit distributional shifts compared to complete ones, leading to bias. Furthermore, methods relying on view recovery or similarity-graph construction may introduce noise during imputation or estimation, which can propagate and deteriorate clustering performance. For anchor-based approaches, anchor selection or generation is often fixed or heuristic, making them less adaptable to structural differences across views. Moreover, most methods only consider pairwise relations between anchors and samples, while neglecting high-order relations involving groups of samples and anchors(Li et al. (2022);Mei et al. (2024);Chen et al. (2025)).

To overcome these limitations, we introduce a missing-aware mechanism that adaptively adjusts the contributions of incomplete samples across views via sample-level masks and weighting matrices. In addition, we propose an anchor-guided hypergraph framework for multi-view clustering. In our design, each anchor induces a hyperedge, and samples are connected to their most similar anchors according to similarity scores, naturally forming an anchor-sample hypergraph that captures high-order relations beyond pairwise connections. We further incorporate a hypergraph Laplacian regularization term to enforce cross-view structural consistency while preserving the scalability benefits of anchors. This yields a unified model capable of handling incomplete multi-view data.

The main contributions of this paper are summarized as follows:

- Unlike anchor-based methods that only encode pairwise relations, we propose a **anchor-guided hypergraph Laplacian regularization term**, which elevates bipartite anchor graphs into high-order structures to better capture anchor-sample group interactions.
- We incorporate a **missing-aware mechanism** that performs **sample-level and view-level reweighting**, not only alleviating inter-view imbalance and enhancing cross-view consistency, but also preventing severely missing data points from dominating **anchor selection**.
- We propose an **alternating optimization algorithm** and provide detailed derivations of its update rules. Experiments demonstrate that it achieves strong performance across diverse datasets and missing-rate regimes while **significantly improving efficiency**.

108

2 RELATED WORK

110 In multi-view clustering, directly constructing similarity graphs in the original high-dimensional
 111 feature space is computationally prohibitive and difficult to scale(He et al. (2025);Liu et al.
 112 (2024b);Wang et al. (2022b);Yu et al. (2025a)). To tackle this, the basic anchor graph model in-
 113 troduces view-specific projection matrices to map original data into a shared low-dimensional la-
 114 tent space, while employing a small set of representative anchors to approximate the entire sample
 115 set(Chen et al. (2024);Sun et al. (2021);Wang et al. (2022a);Qin et al. (2025);Qin et al. (2025)).
 116 This joint modeling of projection and anchors effectively reduces computational complexity while
 117 preserving essential structural information, and has thus become the cornerstone for subsequent
 118 methodological advances.

119 Given v views $\{\mathbf{X}_p\}_{p=1}^v$ with $\mathbf{X}_p \in \mathbb{R}^{d_p \times n}$, let $\mathbf{W}_p \in \mathbb{R}^{d_p \times l}$ be view projections to a l -dimensional
 120 consensus space, $\mathbf{A} \in \mathbb{R}^{l \times m}$ the shared anchor matrix, $\mathbf{Z} \in \mathbb{R}^{m \times n}$ the anchor graph, and $\beta_p \geq 0$
 121 the view weights with $\sum_{p=1}^v \beta_p = 1$. The model can be written as

$$\begin{aligned} & \min_{\{\mathbf{W}_p\}, \mathbf{A}, \mathbf{Z}, \{\beta_p\}} \sum_{p=1}^v \beta_p^2 \|\mathbf{X}_p - \mathbf{W}_p \mathbf{A} \mathbf{Z}\|_F^2 + \|\mathbf{Z}\|_F^2 \\ & \text{s.t. } \mathbf{W}_p^\top \mathbf{W}_p = \mathbf{I}, \quad \mathbf{A}^\top \mathbf{A} = \mathbf{I}, \quad \mathbf{Z} \geq 0, \quad \mathbf{Z}^\top \mathbf{1} = \mathbf{1}, \quad \sum_{p=1}^v \beta_p = 1. \end{aligned} \quad (1)$$

129 Clustering is then performed on the consensus graph derived from \mathbf{Z} .

130 Following this paradigm, Wang et al. (2022a) first introduced the anchor graph framework into
 131 incomplete multi-view clustering, where unified anchor learning and incomplete anchor graph con-
 132 struction are combined to form a consensus anchor graph, thereby maintaining cross-view struc-
 133 tural consistency and alleviating the high complexity of large-scale IMVC. Liu et al. (2022) unified
 134 anchor learning and graph construction within a single framework, further imposing connectivity
 135 constraints to directly generate graphs with precise cluster structures, enabling one-step clustering
 136 results without additional post-processing or hyperparameter tuning. Chen et al. (2024) enhanced the
 137 classical anchor graph framework by introducing an index matrix to naturally handle both complete
 138 and incomplete data, and by stacking anchor graphs from multiple views into a tensor with low-rank
 139 constraints to explicitly capture high-order cross-view correlations. Ou et al. (2024) proposed hier-
 140 archical feature descent within the anchor model, mapping views of varying dimensionalities into a
 141 unified subspace, and then learning a shared anchor matrix and consensus bipartite graph to alleviate
 142 view discrepancy and improve scalability. Qin et al. (2025) further integrated graph construction,
 143 anchor learning, and graph partition into a unified framework where the three components reinforce
 144 each other; by learning a shared anchor graph to ensure cross-view consistency and explicitly linking
 145 it with symmetric nonnegative matrix factorization, the clustering results can be directly obtained.

146

3 METHODOLOGY

147 Building upon the baseline anchor graph formulation in model (1), we develop a novel missing-
 148 aware anchor-guided hypergraph multi-view clustering framework. Specifically, we extend the con-
 149 ventional bipartite anchor graph into a hypergraph structure to capture high-order relations (Section
 150 3.1), introduce a missing-aware weighting mechanism to adaptively handle incomplete data (Section
 151 3.2), and finally integrate these components into a unified framework (Section 3.3).

152

3.1 ANCHOR-GUIDED HYPERGRAPH

153 We build an anchor-guided hypergraph $\mathcal{H} = (\mathcal{V}, \mathcal{E})$ where vertices contain both samples and an-
 154 chors, $\mathcal{V} = \mathcal{V}_s \cup \mathcal{V}_a$ with $|\mathcal{V}_s| = n$ and $|\mathcal{V}_a| = m$. Each anchor induces exactly one hyperedge,
 155 hence $|\mathcal{E}| = m$ and $\mathcal{E} = \{e_1, \dots, e_m\}$, where e_j aggregates samples that are similar to anchor j .

156 The weighted incidence matrix $\mathbf{H} \in \mathbb{R}^{(n+m) \times m}$ represents the hypergraph over n samples and
 157 m anchors. Let $\mathbf{Z} \in \mathbb{R}^{m \times n}$ denote the anchor graph, where each entry $z_{j,i} \geq 0$ measures the
 158 similarity between sample x_i and anchor a_j . For each sample $i \in \{1, \dots, n\}$, we identify the index

162 set $\mathcal{N}_T(i) \subseteq \{1, \dots, m\}$, $(1 \leq T \leq m)$, corresponding to the T anchors with the largest similarity
 163 scores $z_{j,i}$. The sample-to-hyperedge incidences are then defined as
 164

$$165 \quad \mathbf{H}_{i,j} = \begin{cases} z_{j,i}, & j \in \mathcal{N}_T(i), \\ 166 \quad 0, & \text{otherwise.} \end{cases} \quad (2)$$

167 For the anchor rows, each anchor is associated with a dedicated hyperedge. Specifically, for $j =$
 168 $1, \dots, m$, we set $\mathbf{H}_{n+j,j} = 1$, $\mathbf{H}_{n+j,\ell} = 0$ ($\ell \neq j$). Thus, each hyperedge consists of its T most
 169 similar samples, weighted by their similarity scores $z_{j,i}$, together with the anchor a_j itself, which is
 170 included with unit weight.

171 Define vertex degrees $d(v) = \sum_e \mathbf{H}_{ve}$ and edge degrees $\delta(e) = \sum_v \mathbf{H}_{ve}$. Let $\mathbf{D}_v = \text{Diag}(d(v)) \in$
 172 $\mathbb{R}^{(n+m) \times (n+m)}$ and $\mathbf{D}_e = \text{Diag}(\delta(e)) \in \mathbb{R}^{m \times m}$. Using unit hyperedge weights, the normalized
 173 hypergraph Laplacian is
 174

$$175 \quad \mathbf{L}_H = \mathbf{I} - \mathbf{D}_v^{-1/2} \mathbf{H} \mathbf{D}_e^{-1} \mathbf{H}^\top \mathbf{D}_v^{-1/2} \in \mathbb{R}^{(n+m) \times (n+m)}. \quad (3)$$

177 We form a sample embedding $\mathbf{Z}_s = \mathbf{A} \mathbf{Z} \in \mathbb{R}^{l \times n}$ and stack it with the anchor embedding $\mathbf{A} \in \mathbb{R}^{l \times m}$
 178 to obtain $\mathbf{Z}_{\text{aug}} = [\mathbf{Z}_s \ \mathbf{A}] \in \mathbb{R}^{l \times (n+m)}$, so that samples and anchors lie in the same latent space
 179 and are jointly regularized by \mathbf{L}_H through a Laplacian regularization term $\text{Tr}(\mathbf{Z}_{\text{aug}} \mathbf{L}_H \mathbf{Z}_{\text{aug}}^\top)$.
 180

181 3.2 MISSING-AWARE FRAMEWORK

183 Let $\mathbf{S}_p = \text{Diag}(s_p^{(i)}) \in \mathbb{R}^{n \times n}$ be a per-view diagonal mask matrix with $s_p^{(i)} \in \{0, 1\}$ indicating
 184 whether sample i is observed in view p . We define the completeness weight of view p as

$$185 \quad \alpha_p = \frac{\sum_{i=1}^n s_p^{(i)}}{\sum_{u=1}^v \sum_{i=1}^n s_u^{(i)}}, \quad \sum_{p=1}^v \alpha_p = 1, \quad (4)$$

188 and the missingness of sample i by $q_i = 1 - \sum_{p=1}^v \alpha_p s_p^{(i)} \in [0, 1]$. Let $\mathbf{Q} = \text{Diag}(q_i)$ be the
 189 missing-rate regularizer. To downweight highly-missing samples during reconstruction, we use
 190 adaptive sample weights $m_i = e^{-\gamma q_i}$, $\mathbf{M} = \text{Diag}(m_i)$. Intuitively, the larger q_i , the less reliable
 191 the sample, hence the smaller m_i , meanwhile the penalty term $\|\mathbf{Z} \mathbf{Q}^{1/2}\|_F^2$ discourages anchor
 192 assignments that rely on highly-missing samples.
 193

194 3.3 OUR FRAMEWORK

196 Overall, the object function can be written as

$$198 \quad \min_{\beta, \{\mathbf{W}_p\}, \mathbf{A}, \mathbf{Z}} \sum_{p=1}^v \beta_p^2 \|(\mathbf{W}_p^\top \mathbf{X}_p - \mathbf{A} \mathbf{Z}) \mathbf{S}_p \mathbf{M}^{1/2}\|_F^2 + \lambda_1 \text{Tr}(\mathbf{Z}_{\text{aug}} \mathbf{L}_H \mathbf{Z}_{\text{aug}}^\top) + \lambda_2 \|\mathbf{Z} \mathbf{Q}^{1/2}\|_F^2 \\ 199 \quad \text{s.t. } \beta_p \geq 0, \sum_{p=1}^v \beta_p = 1; \quad \mathbf{W}_p^\top \mathbf{W}_p = \mathbf{I}; \quad \mathbf{A}^\top \mathbf{A} = \mathbf{I}; \quad \mathbf{Z} \geq 0, \mathbf{Z}^\top \mathbf{1} = \mathbf{1}. \quad (5)$$

203 The first term aligns multi-view reconstructions to the shared anchor embedding, masked by \mathbf{S}_p and
 204 reweighted by \mathbf{M} . The second term imposes hypergraph regularization on both samples \mathbf{Z}_s and
 205 anchors \mathbf{A} through \mathbf{Z}_{aug} and \mathbf{L}_H . The third penalty term primarily serves to reduce the impact of
 206 samples with high missing rates on anchor quality.
 207

208 4 OPTIMIZATION

210 We design an alternating algorithm for optimizing each variable in Eq.(5) by fixing the others.
 211

212 **Updating \mathbf{W}_p :** With other variables fixed, the p -th view subproblem reduces to

$$213 \quad \max_{\mathbf{W}_p^\top \mathbf{W}_p = \mathbf{I}} \text{Tr}(\mathbf{W}_p^\top \mathbf{G}_p), \quad \mathbf{G}_p = \mathbf{X}_p \mathbf{S}_p \mathbf{M} \mathbf{Z}^\top \mathbf{A}^\top. \quad (6)$$

215 Let the SVD be $\mathbf{G}_p = \mathbf{U}_p \mathbf{\Sigma}_p \mathbf{V}_p^\top$. The optimum is $\mathbf{W}_p^* = \mathbf{U}_p \mathbf{V}_p^\top$.

216 **Algorithm 1** Z-update Algorithm
217
218 **Input:** $\mathbf{K} \succeq 0 \in \mathbb{R}^{n \times n}$, $\mathbf{J} \in \mathbb{R}^{m \times n}$; initial $\mathbf{Z}^{(0)} = \mathbf{Z}^{(1)}$, $t_1 = 1$; stepsize $L \geq 2\lambda_{\max}(\mathbf{K})$;
219 tolerance ε .
220 1: **while** not converged **do**
221 2: $t_{t+1} \leftarrow (1 + \sqrt{1 + 4t_t^2})/2$
222 3: $\mathbf{Y}^{(t)} \leftarrow \mathbf{Z}^{(t)} + (t_t - 1/t_{t+1})(\mathbf{Z}^{(t)} - \mathbf{Z}^{(t-1)})$
223 4: $\tilde{\mathbf{Z}} \leftarrow \mathbf{Y}^{(t)} - L^{-1}(2\mathbf{Y}^{(t)}\mathbf{K} - 2\mathbf{J})$
224 5: **for** each column $j = 1, \dots, n$ **do** $\mathbf{Z}_{:,j}^{(t+1)} \leftarrow \Pi_{\Delta}(\tilde{\mathbf{Z}}_{:,j})$, where $\Delta = \{z \in \mathbb{R}^m \mid z \geq 0, \mathbf{1}^\top z = 1\}$
225 6: **if** $\frac{\|\mathbf{Z}^{(t+1)} - \mathbf{Z}^{(t)}\|_F}{\max\{1, \|\mathbf{Z}^{(t)}\|_F\}} < \varepsilon$ **then break**
226 7: **end while**
227 **Output:** Updated \mathbf{Z}

231
232 **Updating A:** With other variables fixed and discarding constants gives

233
234
235
$$\max_{\mathbf{A}^\top \mathbf{A} = \mathbf{I}} \text{Tr}(\mathbf{A}^\top \mathbf{P}), \mathbf{P} = \sum_{p=1}^v \beta_p^2 \mathbf{W}_p^\top \mathbf{X}_p \mathbf{S}_p \mathbf{M} \mathbf{Z}^\top. \quad (7)$$

236
237

238 Let $\mathbf{P} = \mathbf{U} \Sigma \mathbf{V}^\top$. Then $\mathbf{A}^* = \mathbf{U} \mathbf{V}^\top$.
239

240 **Updating Z:** Block-partitioned as $\mathbf{L}_H = [\mathbf{L}_{dd} \ \mathbf{L}_{da} \ \mathbf{L}_{aa}]$ with $\mathbf{L}_{ad} = \mathbf{L}_{da}^\top$. Using $\mathbf{Z}_{\text{aug}} = [\mathbf{Z}_s \ \mathbf{A}]$ and
241 the block form of \mathbf{L}_H , we obtain

242
243
$$\text{Tr}(\mathbf{Z}_{\text{aug}} \mathbf{L}_H \mathbf{Z}_{\text{aug}}^\top) = \text{Tr}(\mathbf{Z} \mathbf{L}_{dd} \mathbf{Z}^\top) + 2 \text{Tr}(\mathbf{Z}^\top \mathbf{L}_{ad}) + \text{Tr}(\mathbf{A} \mathbf{L}_{aa} \mathbf{A}^\top), \quad (8)$$

244

245 where the last term is constant. Collecting the quadratic and linear terms, the \mathbf{Z} -subproblem becomes

246
247
$$\min_{\mathbf{Z} \in \mathbb{R}^{m \times n}} f(\mathbf{Z}) = \text{Tr}(\mathbf{Z} \mathbf{K} \mathbf{Z}^\top) - 2 \text{Tr}(\mathbf{Z}^\top \mathbf{J}) \quad \text{s.t.} \quad \mathbf{Z} \geq 0, \mathbf{Z}^\top \mathbf{1} = \mathbf{1}, \quad (9)$$

248

249 with $\mathbf{K} = \sum_{p=1}^v \beta_p^2 \mathbf{S}_p \mathbf{M} + \lambda_1 \mathbf{L}_{da} + \lambda_2 \mathbf{Q} \succeq 0$, $\mathbf{J} = \sum_{p=1}^v \beta_p^2 \mathbf{A}^\top \mathbf{W}_p^\top \mathbf{X}_p \mathbf{S}_p \mathbf{M} - \lambda_1 \mathbf{L}_{ad}$. We
250 solve Eq.(9) by FISTA(Beck & Teboulle (2009)) with gradient $\nabla f(\mathbf{Z}) = 2\mathbf{ZK} - 2\mathbf{J}$ and stepsize
251 $L \geq 2\lambda_{\max}(\mathbf{K})$, followed by column-wise Euclidean projection onto the probability simplex $\Delta = \{z \in \mathbb{R}^m : z \geq 0, \mathbf{1}^\top z = 1\}$; see Algorithm 1.

252 **Updating β :** With other variables being fixed, the objective function for β_p is
253

254
255
$$\min_{\beta \geq 0, \sum \beta_p = 1} \sum_p \beta_p^2 R_p^2, \quad (10)$$

256

257 where $R_p = \|(\mathbf{W}_p^\top \mathbf{X}_p - \mathbf{A} \mathbf{Z}) \mathbf{S}_p \mathbf{M}^{1/2}\|_F$. We can obtain the optimal based on Cauchy-Schwarz
258 inequality as $\beta_p^* = \frac{R_p^{-1}}{\sum_{u=1}^v R_u^{-1}}$.
259

260 **Updating \mathbf{L}_H :** We rebuild the anchor-guided hypergraph from the current embeddings. For each
261 sample i , form its latent code z_i (the i -th column of \mathbf{Z}); connect i to its T most similar anchors with
262 the largest z_{ji} . Construct the incidence matrix $\mathbf{H} \in \{0, 1\}^{(n+m) \times m}$. Then update the normalized
263 Laplacian

264
265
$$\mathbf{L}_H = \mathbf{I} - \mathbf{D}_v^{-1/2} \mathbf{H} \mathbf{D}_e^{-1} \mathbf{H}^\top \mathbf{D}_v^{-1/2}, \quad (11)$$

266

267 where \mathbf{D}_v and \mathbf{D}_e are vertex and edge degree diagonals.
268

269 We summarize the overall procedure for solving the optimization problem (2) in Algorithm 2.

270 **Algorithm 2** Alternating optimization for the proposed model271 **Input:** $\{\mathbf{X}_p, \mathbf{S}_p\}_{p=1}^v$, diagonal \mathbf{M}, \mathbf{Q} , anchor number m , cluster number k ; λ_1, λ_2 ; T for hyper-
272 graph.273 1: **repeat**274 2: Update $\{\mathbf{W}_p\}_{p=1}^v$ by solving (6);
275 3: Update \mathbf{A} by solving (7);
276 4: Update \mathbf{Z} by Algorithm 1;
277 5: Update $\{\beta_p\}_{p=1}^v$ by solving (10);
278 6: Update \mathbf{L}_H by equation (11)279 7: **until** relative change $< \varepsilon$;280 **Output:** Cluster labels from k -means on \mathbf{U}_k (derived via SVD of \mathbf{Z})

283 5 EXPERIMENTS

285 In this section, we evaluate MCAHC on six multi-view datasets under three missingness levels and
286 compare it against eight representative baselines. We also report running-time comparisons, abla-
287 tion studies, convergence analysis, and parameter-sensitivity analyses to demonstrate the model’s
288 effectiveness and efficiency.

290 5.1 BASELINES AND DATASETS

292 We conduct experiments on six multi-view datasets, with specific details provided in Table 1.

294 Table 1: General Statistics of Datasets

295

Dataset	Sample	View	Class	Feature Dimension
NGs	500	3	5	2000/2000/2000
Caltech101-20	2396	6	20	48/40/254/1984/512/928
BDGP	2500	3	5	1000/500/250
CCV	6773	3	20	20/20/20
Animal	11673	4	50	2689/2000/2001/2000
MNIST	60000	3	10	342/1024/64

305 MCAHC is compared with the following multi-view clustering approaches: non-anchor-based
306 clustering methods (**BSV**(Ng et al. (2001));**HCP-IMSC**(Li et al. (2022));**UOMVSC**(Tang et al.
307 (2023));**SCSL**(Liu et al. (2024c))) and anchor-based clustering methods (**EMKMC**(Yang et al.
308 (2023));**FastMICE**(Huang et al. (2023));**FDAGF**(Zhang et al. (2023));**MVSC-HFD**(Ou et al.
309 (2024))).

310 5.2 RESULTS AND DISCUSSIONS

313 We employ three widely adopted metrics to evaluate clustering results: Accuracy (ACC), Normal-
314 ized Mutual Information (NMI), and Purity (PUR). To mitigate randomness, each experiment is
315 repeated 20 times, with the mean and variance reported. Specifically, Tables 2 and 3 present the
316 clustering results for all multi-view clustering methods under ACC, NMI, and PUR metrics at miss-
317 ing rates of 30%, 50%, and 70%. Methods unable to compute on a dataset due to insufficient
318 memory are denoted as N/A. Based on the clustering results obtained from Tables 2 and 3, we draw
319 the following conclusions:320 • MCAHC outperformed most comparison algorithms under various missing rates and eval-
321 uation metrics. For instance, it consistently achieved the best performance on the NGs and
322 BDGP datasets, while yielding second-best results on Caltech101-20 and Animal datasets.
323 Even with a missing rate as high as 70%, MCAHC demonstrated satisfactory performance
across three metrics. This demonstrates that MCAHC effectively addresses the IMVC task.

324
325
326 Table 2: Clustering Results on Datasets
327
328

Method	NGs							
	30%			50%			70%	
	ACC	NMI	PUR	ACC	NMI	PUR	ACC	NMI
BSV	39.07 \pm 1.58	19.43 \pm 0.87	39.68 \pm 1.60	33.15 \pm 1.42	13.80 \pm 1.39	34.03 \pm 1.14	25.74 \pm 0.83	6.71 \pm 0.75
HCP-IMSC	93.40 \pm 0.00	80.31 \pm 0.00	93.40 \pm 0.00	89.00 \pm 0.00	71.46 \pm 0.00	89.00 \pm 0.00	85.10 \pm 0.00	60.49 \pm 0.00
SCSL	60.77 \pm 0.73	42.52 \pm 0.10	64.60 \pm 0.22	38.72 \pm 0.65	39.92 \pm 0.22	36.86 \pm 0.19	29.11 \pm 0.16	38.31 \pm 0.11
UOMVSC	73.17 \pm 0.01	67.02 \pm 0.00	73.93 \pm 0.00	73.04 \pm 0.01	65.81 \pm 0.00	72.88 \pm 0.00	71.11 \pm 0.00	60.84 \pm 0.00
EMKMC	45.13 \pm 0.00	38.01 \pm 0.00	45.15 \pm 0.00	44.78 \pm 0.00	37.62 \pm 0.00	44.76 \pm 0.00	42.53 \pm 0.00	34.57 \pm 0.00
FastMICE	40.42 \pm 0.03	18.23 \pm 0.09	41.37 \pm 0.08	39.23 \pm 0.05	16.34 \pm 0.07	40.41 \pm 0.07	37.23 \pm 0.03	14.25 \pm 0.17
FDAGF	53.33 \pm 0.00	34.75 \pm 0.00	54.99 \pm 0.00	52.93 \pm 0.00	33.82 \pm 0.00	54.10 \pm 0.00	52.82 \pm 0.00	33.21 \pm 0.00
MVSC-HFD	46.76 \pm 6.46	24.01 \pm 5.77	47.88 \pm 6.24	42.40 \pm 2.78	17.87 \pm 2.62	42.92 \pm 3.21	37.80 \pm 2.62	12.38 \pm 1.27
Ours	94.20\pm0.00	83.53\pm0.00	94.20\pm0.00	91.20\pm0.00	77.38\pm0.00	91.20\pm0.00	87.42\pm0.09	69.37\pm0.13
<hr/>								
Method	Caltech10-20							
	30%			50%			70%	
	ACC	NMI	PUR	ACC	NMI	PUR	ACC	NMI
BSV	39.71 \pm 3.14	53.04 \pm 1.05	68.77 \pm 1.13	36.86 \pm 3.84	49.04 \pm 1.68	65.32 \pm 1.46	33.01 \pm 2.75	43.96 \pm 1.06
HCP-IMSC	46.44 \pm 2.21	50.38 \pm 0.99	66.76 \pm 0.59	42.66 \pm 1.82	50.97 \pm 0.96	67.07 \pm 0.92	41.13 \pm 1.48	50.50 \pm 0.66
SCSL	43.84 \pm 1.66	57.30 \pm 0.68	75.50 \pm 0.61	43.39 \pm 1.83	55.83 \pm 0.57	72.78 \pm 0.84	45.05 \pm 1.64	52.81 \pm 0.73
UOMVSC	44.98 \pm 0.01	60.17\pm0.00	75.68 \pm 0.07	41.79 \pm 0.00	57.48\pm0.01	72.63 \pm 0.00	38.57 \pm 0.00	53.79 \pm 0.00
EMKMC	30.87 \pm 0.00	32.64 \pm 0.00	56.12 \pm 0.00	28.57 \pm 0.00	31.47 \pm 0.00	54.01 \pm 0.00	27.50 \pm 0.00	31.02 \pm 0.00
FastMICE	34.27 \pm 2.02	59.32 \pm 0.86	75.24 \pm 0.57	33.50 \pm 1.42	57.23 \pm 0.31	73.25 \pm 0.52	34.50 \pm 1.22	53.34 \pm 0.23
FDAGF	41.22 \pm 2.46	49.23 \pm 0.07	67.25 \pm 2.61	43.12 \pm 2.56	50.15 \pm 0.00	69.36 \pm 1.96	40.49 \pm 3.72	48.13 \pm 0.02
MVSC-HFD	51.09 \pm 3.17	45.63 \pm 1.94	64.69 \pm 1.79	48.01 \pm 2.53	42.81 \pm 1.58	63.10 \pm 1.81	41.94 \pm 3.88	38.25 \pm 1.61
Ours	55.23\pm1.99	59.81 \pm 0.64	76.34\pm0.44	55.34\pm2.42	57.27 \pm 0.60	73.34\pm0.42	51.53\pm1.99	55.91\pm0.45
<hr/>								
Method	BDGP							
	30%			50%			70%	
	ACC	NMI	PUR	ACC	NMI	PUR	ACC	NMI
BSV	36.22 \pm 0.85	21.40 \pm 0.92	38.02 \pm 0.92	32.88 \pm 0.66	16.76 \pm 0.71	33.82 \pm 0.69	31.42 \pm 0.69	14.77 \pm 0.75
HCP-IMSC	34.28 \pm 0.36	12.76 \pm 0.02	36.38 \pm 0.01	32.44 \pm 0.20	12.37 \pm 0.04	35.35 \pm 0.01	33.25 \pm 0.04	11.72 \pm 0.02
SCSL	29.08 \pm 0.89	9.19 \pm 2.69	30.28 \pm 0.11	30.89 \pm 1.96	6.72 \pm 1.94	31.29 \pm 1.96	29.69 \pm 1.88	4.71 \pm 2.54
UOMVSC	38.97 \pm 0.03	15.56 \pm 0.00	41.69 \pm 0.01	36.34 \pm 0.00	14.24 \pm 0.01	39.36 \pm 0.04	33.29 \pm 0.00	13.97 \pm 0.00
EMKMC	31.46 \pm 0.00	8.34 \pm 0.00	32.76 \pm 0.00	31.05 \pm 0.00	6.77 \pm 0.00	31.34 \pm 0.00	28.53 \pm 0.00	6.78 \pm 0.00
FastMICE	35.05 \pm 0.00	12.78 \pm 0.00	33.27 \pm 0.00	34.05 \pm 0.00	12.18 \pm 0.00	32.16 \pm 0.00	33.14 \pm 0.00	11.66 \pm 0.00
FDAGF	48.65 \pm 3.61	25.65 \pm 5.05	49.18 \pm 2.98	46.38 \pm 2.41	25.15 \pm 4.64	48.71 \pm 2.28	43.04 \pm 3.52	22.12 \pm 3.17
MVSC-HFD	39.06 \pm 1.06	13.37 \pm 0.83	39.27 \pm 0.87	34.89 \pm 2.78	9.77 \pm 1.43	35.47 \pm 2.91	32.89 \pm 2.55	8.26 \pm 0.77
Ours	50.57\pm0.05	26.43\pm0.09	50.83\pm0.04	48.52\pm0.05	25.22\pm0.13	49.06\pm0.05	46.80\pm0.01	22.36\pm0.01

350
351
352 • Non-anchor-based clustering methods such as HCP-IMSC and SCSL, fail to operate correctly on slightly larger datasets like MNIST. In contrast, the proposed MCAHC can function reliably in large-scale missing scenarios while still achieving satisfactory results, which demonstrates MCAHC’s relatively stronger practicality.

353
354
355

5.3 TIME COMPARISON

356 We present the runtime results of various comparison methods and MCAHC across different
357 datasets, as shown in Figure 2. It should be noted that the vertical axis of the figure employs a logarithmic scale to represent runtime, enabling a more intuitive comparison of the efficiency among
358 different methods. The figure reveals that MCAHC achieves shorter runtime than most comparison
359 methods across the majority of multi-view datasets. For cases where results could not be obtained
360 due to insufficient memory, the corresponding histogram column in the figure remains blank. Thus,
361 MCAHC not only delivers superior clustering results on diverse datasets but also maintains high
362 computational efficiency.

363
364

5.4 ABLATION

365 To evaluate the contribution of the hypergraph (HG) module, we compared two variants: w/o HG,
366 which removes HG and retains only the point-anchor bipartite graph; and HG, our proposed anchor-
367 guided hypergraph that models higher-order sample relationships by forming hyperedges around
368 shared anchors. Experiments across diverse datasets and varying proportions of missing views
369 demonstrate that HG consistently outperforms the baseline methods on ACC/NMI/PUR metrics.
370 These results indicate that hyperedges, by jointly make samples connected to the same anchor point,
371 better preserve clustering structures while suppressing cross-view imbalance and noise, thereby
372 achieving more robust and generalizable clustering (see Table 4).

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

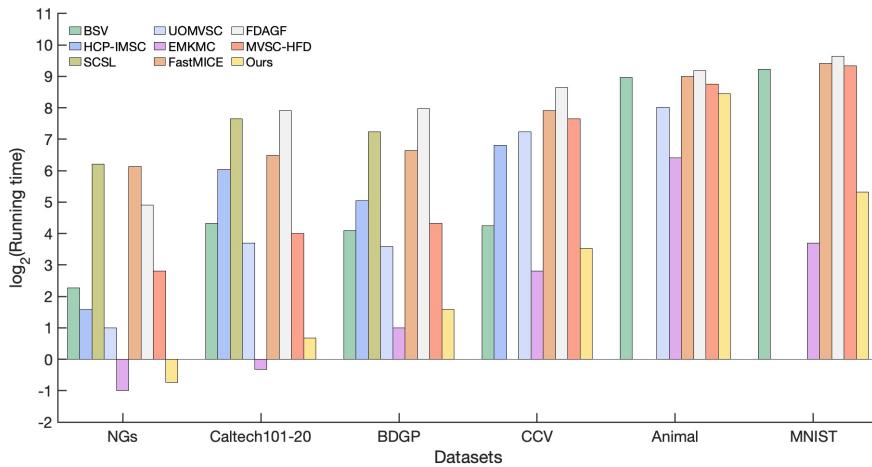


Figure 2: Running time on different datasets.

Table 3: Clustering Results on Datasets

Method	CCV							
	30%		50%		70%		NMI	PUR
	ACC	NMI	ACC	NMI	ACC	NMI		
BSV	19.26 \pm 0.06	9.86 \pm 0.05	17.40 \pm 0.08	18.35 \pm 0.05	13.90 \pm 0.03	20.56 \pm 0.04	17.38 \pm 0.04	12.88 \pm 0.02
HCP-IMSC	10.78 \pm 0.07	10.76 \pm 0.11	10.67 \pm 0.09	10.03 \pm 0.09	9.91 \pm 0.15	10.15 \pm 0.05	9.42 \pm 0.07	9.13 \pm 0.07
SCSC	N/A							
UOMVSC	10.91 \pm 0.01	10.89 \pm 0.04	10.80 \pm 0.04	10.21 \pm 0.00	10.86 \pm 0.01	9.85 \pm 0.00	9.45 \pm 0.01	9.79 \pm 0.02
EMKMC	11.25 \pm 0.00	5.77 \pm 0.00	15.46 \pm 0.00	10.84 \pm 0.00	5.73 \pm 0.00	15.23 \pm 0.00	10.44 \pm 0.00	2.98 \pm 0.00
FastMICE	20.12 \pm 0.23	8.23 \pm 0.09	21.37 \pm 0.08	19.23 \pm 0.15	7.34 \pm 0.07	20.41 \pm 0.07	15.23 \pm 0.03	4.25 \pm 0.17
FDAGF	10.50 \pm 1.03	5.97 \pm 0.03	19.80 \pm 3.65	10.12 \pm 3.41	5.56 \pm 0.05	19.18 \pm 3.36	9.45 \pm 2.15	5.16 \pm 0.06
MVSC-HFD	20.58 \pm 0.00	14.41 \pm 0.00	23.40 \pm 0.00	18.74 \pm 0.00	12.89 \pm 0.00	21.79 \pm 0.00	16.67 \pm 0.00	11.13 \pm 0.04
Ours	23.25 \pm 0.17	16.58 \pm 0.04	25.96 \pm 0.05	21.63 \pm 0.05	15.48 \pm 0.04	25.09 \pm 0.05	18.25 \pm 0.05	13.82 \pm 0.07
Method	Animal							
	30%		50%		70%		NMI	PUR
	ACC	NMI	ACC	NMI	ACC	NMI		
BSV	15.32 \pm 0.08	10.11 \pm 0.04	16.38 \pm 0.12	14.69 \pm 0.07	9.28 \pm 0.05	15.55 \pm 0.03	13.58 \pm 0.09	7.95 \pm 0.09
HCP-IMSC	N/A							
SCSC	N/A							
UOMVSC	13.45 \pm 1.79	11.56 \pm 3.64	17.78 \pm 1.36	12.13 \pm 2.13	10.45 \pm 2.79	16.42 \pm 1.63	10.67 \pm 2.31	9.37 \pm 1.56
EMKMC	11.45 \pm 0.00	6.88 \pm 0.00	11.32 \pm 0.00	10.43 \pm 0.00	6.82 \pm 0.00	10.29 \pm 0.00	11.14 \pm 0.00	5.85 \pm 0.00
FastMICE	9.08 \pm 0.00	8.18 \pm 0.00	11.23 \pm 0.00	9.18 \pm 0.00	8.17 \pm 0.00	11.34 \pm 0.00	8.87 \pm 0.00	7.58 \pm 0.00
FDAGF	15.71 \pm 0.14	9.15 \pm 0.25	16.55 \pm 0.47	13.67 \pm 0.31	7.11 \pm 0.14	15.11 \pm 0.25	12.52 \pm 0.65	6.44 \pm 0.23
MVSC-HFD	17.60 \pm 0.22	13.19 \pm 0.18	20.52 \pm 0.10	16.13 \pm 0.25	11.85 \pm 0.20	19.59 \pm 0.13	16.15 \pm 0.45	11.09 \pm 0.46
Ours	17.30 \pm 0.00	12.65 \pm 0.18	20.56 \pm 0.19	16.79 \pm 0.07	11.59 \pm 0.02	19.85 \pm 0.04	16.46 \pm 0.01	11.21 \pm 0.01
Method	MNIST							
	30%		50%		70%		NMI	PUR
	ACC	NMI	ACC	NMI	ACC	NMI		
BSV	75.88 \pm 0.49	74.67 \pm 0.19	78.58 \pm 0.33	66.49 \pm 0.69	65.39 \pm 0.27	69.45 \pm 0.49	60.69 \pm 0.52	58.93 \pm 0.22
HCP-IMSC	N/A							
SCSC	N/A							
UOMVSC	N/A							
EMKMC	71.21 \pm 0.30	70.88 \pm 0.22	72.32 \pm 0.43	70.43 \pm 0.23	70.82 \pm 0.43	71.29 \pm 0.20	70.14 \pm 0.00	70.25 \pm 0.25
FastMICE	97.45 \pm 0.00	96.08 \pm 0.00	97.89 \pm 0.00	95.52 \pm 0.00	97.68 \pm 0.00	97.24 \pm 0.01	95.05 \pm 0.00	96.89 \pm 0.01
FDAGF	98.64 \pm 0.15	96.12 \pm 0.47	97.08 \pm 0.95	98.23 \pm 0.21	95.89 \pm 0.11	97.10 \pm 0.23	98.05 \pm 0.36	95.01 \pm 0.24
MVSC-HFD	75.88 \pm 4.86	74.67 \pm 1.92	78.58 \pm 3.34	66.50 \pm 6.99	65.39 \pm 2.77	69.45 \pm 4.88	60.69 \pm 5.21	58.93 \pm 2.19
Ours	98.70 \pm 0.00	96.27 \pm 0.00	98.42 \pm 0.00	98.59 \pm 0.00	96.59 \pm 0.00	98.42 \pm 0.00	98.36 \pm 0.00	95.16 \pm 0.00

5.5 CONVERGENCE

During the iteration process, we plotted the variation curve of the objective function value. As shown in Figure 3, the objective function value monotonically decreases with increasing iteration count, typically converging after several iterations. Furthermore, we observed that the algorithm exhibits rapid convergence properties, usually reaching a stable state within 20 iterations. These findings undoubtedly validate the convergence of MCAHC.

Table 4: Hypergraph Ablation Results

AB	MR	NGs			Caltech101-20			BDGP			CCV			Animal			MNIST		
		ACC	NMI	PUR	ACC	NMI	PUR	ACC	NMI	PUR	ACC	NMI	PUR	ACC	NMI	PUR	ACC	NMI	PUR
w/o HG	30%	90.80	77.44	90.80	51.26	53.48	71.22	48.26	24.32	48.20	21.71	16.17	24.14	15.65	11.62	18.31	98.33	95.43	97.89
w/ HG	30%	94.20	83.53	94.20	55.23	58.51	76.34	50.57	26.43	50.83	23.25	16.58	25.96	17.30	12.65	20.56	98.60	95.87	98.32
w/o HG	50%	89.40	73.33	89.40	52.01	50.38	69.21	44.31	22.68	45.31	18.35	13.82	21.90	14.83	10.80	17.61	98.21	95.24	97.89
w/ HG	50%	91.20	77.38	91.20	55.34	56.07	73.34	48.52	25.22	49.06	21.63	15.48	25.09	16.79	11.59	19.85	98.49	95.59	98.32
w/o HG	70%	83.60	62.93	83.60	47.56	50.12	70.23	42.98	18.77	43.23	18.08	13.16	21.35	15.35	10.61	16.93	98.12	94.95	97.89
w/ HG	70%	87.42	69.37	87.42	51.53	53.91	73.72	46.80	21.36	47.32	18.25	13.82	22.02	16.46	11.21	19.38	98.36	95.16	98.32

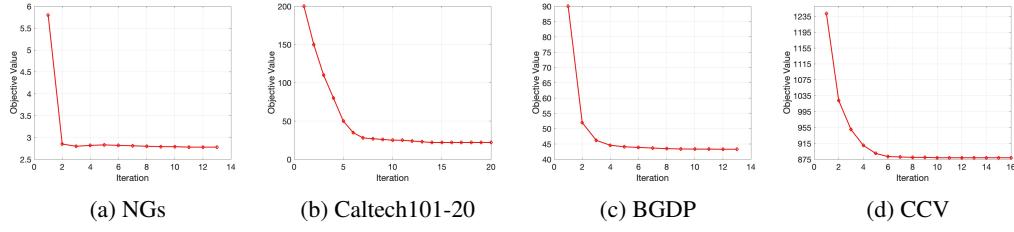


Figure 3: The objective value on on different datasets. (a) NGs (b) Caltech101-20 (c) BDGP (d) CCV.

5.6 PARAMETER SENSITIVITY

MCAHC incorporates two hyperparameters, λ_1 and λ_2 , which govern the hypergraph penalty term and the missingness penalty term respectively. This subsection investigates the influence of these parameters via a grid search method under a 50% missingness rate. Specifically, we set the range for λ_1 to $10^{-5}, 10^{-2}, \dots, 10^0$ and the range for λ_2 to $10^{-4}, 10^{-2}, \dots, 10^1$. We documented the clustering performance of MCAHC under various parameter combinations, as illustrated in Figure 4. The figure indicates that the optimal values for λ_1 and λ_2 lie within the ranges 10^{-5} to 10^{-2} and 10^{-5} to 10^{-1} , respectively. This phenomenon demonstrates that the MCAHC we propose exhibits stable performance across a wide range of parameters, empirically validating its efficiency and robustness.

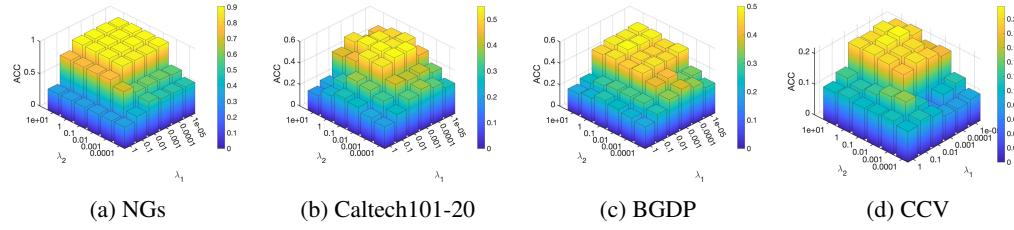


Figure 4: ACC with different parameter combinations across different datasets (a) NGs (b) Caltech101-20 (c) BDGP (d) CCV.

6 CONCLUSION

We propose MCAHC, a missing-aware consensus anchor-guided hypergraph framework for incomplete multi-view clustering. By introducing anchor-guided hypergraphs, MCAHC captures high-order anchor-sample group interactions. Simultaneously, it incorporates reweighting mechanisms at both sample and view levels to explicitly mitigate view imbalance and missingness while suppressing the impact of missing data on anchor selection. The hypergraph Laplacian regularization term further enhances cross-view structural consistency without sacrificing scalability driven by anchors. Extensive experiments across multiple datasets and varying missingness rates demonstrate that MC-AHC achieves stable performance improvements and exhibits strong robustness against noise.

486 ETHICS STATEMENT
487488 This paper does not involve any potential ethics issues.
489490 REPRODUCIBILITY STATEMENT
491492 We have submitted the code and datasets to facilitate reproduction of our results.
493494 REFERENCES
495

496 Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse
497 problems. *SIAM Journal on Imaging Sciences*, 2(1):183–202, 2009.

498 Guoqing Chao, Yi Jiang, and Dianhui Chu. Incomplete contrastive multi-view clustering with high-
500 confidence guiding. In *The AAAI Conference on Artificial Intelligence*, 2024.

501 Jin Chen, Huafu Xu, Jingjing Xue, Quanxue Gao, Cheng Deng, and Ziyu Lv. Incomplete multi-view
502 clustering based on hypergraph. *Information Fusion*, 117:102804, 2025.

503

504 Yongyong Chen, Xiaojia Zhao, Zheng Zhang, Youfa Liu, Jingyong Su, and Yicong Zhou. Tensor
505 learning meets dynamic anchor learning: From complete to incomplete multiview clustering.
506 *IEEE Transactions on Neural Networks and Learning Systems*, 35(11):15332–15345, 2024.

507

508 Xuemei Han, Fei Zhou, Zhenwen Ren, Xueyuan Wang, and Xiaojian You. View-specific anchors
509 coupled tensorial bipartite graph learning for incomplete multi-view clustering. *Information Sci-
510 ences*, 664:120335, 2024.

511

512 Wen-Jue He, Zheng Zhang, and Xiaofeng Zhu. Dual-correlation-guided anchor learning for scalable
513 incomplete multi-view clustering. *IEEE Transactions on Neural Networks and Learning Systems*,
514 36(9):17336–17349, 2025.

515

516 Dong Huang, Chang-Dong Wang, and Jian-Huang Lai. Fast multi-view clustering via ensembles:
517 Towards scalability, superiority, and simplicity. *IEEE Transactions on Knowledge and Data En-
518 gineering*, 35(11):11388–11402, 2023.

519

520 Zhenglai Li, Chang Tang, Xiao Zheng, Xinwang Liu, Wei Zhang, and En Zhu. High-order corre-
521 lation preserved incomplete multi-view subspace clustering. *IEEE Transactions on Image Pro-
522 cessing*, 31:2067–2080, 2022.

523

524 Yijie Lin, Yuanbiao Gou, Zitao Liu, Boyun Li, Jiancheng Lv, and Xi Peng. Completer: Incomplete
525 multi-view clustering via contrastive prediction. In *Proceedings of the IEEE/CVF Conference on
526 Computer Vision and Pattern Recognition*, pp. 11169–11178, 2021.

527

528 Suyuan Liu, Siwei Wang, Pei Zhang, Kai Xu, Xinwang Liu, Changwang Zhang, and Feng Gao.
529 Efficient one-pass multi-view subspace clustering with consensus anchors. *Proceedings of the
530 AAAI Conference on Artificial Intelligence*, 36(7):7576–7584, 2022.

531

532 Suyuan Liu, Ke Liang, Zhibin Dong, Siwei Wang, Xihong Yang, Sihang Zhou, En Zhu, and Xin-
533 wang Liu. Learn from view correlation: An anchor enhancement strategy for multi-view cluster-
534 ing. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*,
535 pp. 26151–26161, 2024a.

536

537 Suyuan Liu, Qing Liao, Siwei Wang, Xinwang Liu, and En Zhu. Robust and consistent anchor graph
538 learning for multi-view clustering. *IEEE Transactions on Knowledge and Data Engineering*, 36
539 (8):4207–4219, 2024b.

540

541 Suyuan Liu, Junpu Zhang, Yi Wen, Xihong Yang, Siwei Wang, Yi Zhang, En Zhu, Chang Tang,
542 Long Zhao, and Xinwang Liu. Sample-level cross-view similarity learning for incomplete multi-
543 view clustering. In *Proceedings of the AAAI Conference on Artificial Intelligence*, 2024c.

544

545 Jianping Mei, Xiangli Li, and Yuanjian Mo. Dual semi-supervised hypergraph regular multi-view
546 nmf with anchor graph embedding. *Knowledge-Based Systems*, 305:112662, 2024.

540 Andrew Y. Ng, Michael I. Jordan, and Yair Weiss. On spectral clustering: analysis and an algo-
 541 rithm. In *Proceedings of the Neural Information Processing Systems: Natural and Synthetic*, pp.
 542 849–856, 2001.

543

544 Qiyuan Ou, Siwei Wang, Pei Zhang, Sihang Zhou, and En Zhu. Anchor-based multi-view subspace
 545 clustering with hierarchical feature descent. *Information Fusion*, 106:102225, 2024.

546 Yalan Qin, Guorui Feng, and Xinpeng Zhang. Fast incomplete multi-view clustering by flexible
 547 anchor learning. In *International Conference on Machine Learning*, 2025.

548

549 Mengjing Sun, Pei Zhang, Siwei Wang, Sihang Zhou, Wenxuan Tu, Xinwang Liu, En Zhu, and
 550 Changjian Wang. Scalable multi-view subspace clustering with unified anchors. In *Proceedings
 551 of ACM International Conference on Multimedia*, pp. 3528–3536, 2021.

552 Chang Tang, Zhenglai Li, Jun Wang, Xinwang Liu, Wei Zhang, and En Zhu. Unified one-step
 553 multi-view spectral clustering. *IEEE Transactions on Knowledge and Data Engineering*, 35(6):
 554 6449–6460, 2023.

555

556 Siwei Wang, Xinwang Liu, Li Liu, Wenxuan Tu, Xinzong Zhu, Jiyuan Liu, Sihang Zhou, and
 557 En Zhu. Highly-efficient incomplete largescale multiview clustering with consensus bipartite
 558 graph. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*,
 559 pp. 9766–9775, 2022a.

560

561 Siwei Wang, Xinwang Liu, Xinzong Zhu, Pei Zhang, Yi Zhang, Feng Gao, and En Zhu. Fast
 562 parameter-free multi-view subspace clustering with consensus anchor guidance. *IEEE Transac-
 563 tions on Image Processing*, 31:556–568, 2022b.

564

565 Jie Wen, Zheng Zhang, Lunke Fei, Bob Zhang, Yong Xu, Zhao Zhang, and Jinxing Li. A survey on
 566 incomplete multiview clustering. *IEEE Transactions on Systems, Man, and Cybernetics: Systems*,
 567 53(2):1136–1149, 2023.

568

569 Jie Wen, Shijie Deng, Waikeung Wong, Guoqing Chao, Chao Huang, Lunke Fei, and Yong Xu.
 570 Diffusion-based missing-view generation with the application on incomplete multi-view cluster-
 571 ing. In *International Conference on Machine Learning*, 2024.

572

573 Gehui Xu, Jie Wen, Chengliang Liu, Bing Hu, Yicheng Liu, Lunke Fei, and Wei Wang. Deep
 574 variational incomplete multi-view clustering: Exploring shared clustering structures. In *The AAAI
 575 Conference on Artificial Intelligence*, pp. 16147–16155, 2024.

576

577 Ben Yang, Xuetao Zhang, Zhongheng Li, Feiping Nie, and Fei Wang. Efficient multi-view k-means
 578 clustering with multiple anchor graphs. *IEEE Transactions on Knowledge and Data Engineering*,
 579 35(7):6887–6900, 2023.

580

581 Shengju Yu, Zhibin Dong, Siwei Wang, Suyuan Liu, KE LIANG, Xinwang Liu, Yue Liu, and
 582 Yi Zhang. From spectrum-free towards baseline-view-free: Double-track proximity driven multi-
 583 view clustering. In *Forty-second International Conference on Machine Learning*, 2025a.

584

585 Shengju Yu, Zhibin Dong, Siwei Wang, Pei Zhang, Yi Zhang, Xinwang Liu, Naiyang Guan, Tiejun
 586 Li, and Yiu ming Cheung. Simple yet effective incomplete multi-view clustering: Similarity-level
 587 imputation and intra-view hybrid-group prototype construction. In *The Thirteenth International
 588 Conference on Learning Representations*, 2025b.

589

590 Chao Zhang, Xiuyi Jia, Zechao Li, Chunlin Chen, and Huaxiong Li. Learning cluster-wise anchors
 591 for multi-view clustering. *Proceedings of the AAAI Conference on Artificial Intelligence*, 38(15):
 592 16696–16704, 2024.

593

594 Haotian Zhang, Wei Guo, Ruiyin Liu, Qiang Yang, Xuefei Xiao, Jilin Li, Gang Lei, and Gang Chen.
 595 Anchor-aware representation learning for multi-view clustering. *Neurocomputing*, 656:131441,
 596 2025.

597

598 Pei Zhang, Siwei Wang, Liang Li, Changwang Zhang, Xinwang Liu, En Zhu, Zhe Liu, Lu Zhou,
 599 and Lei Luo. Let the data choose: flexible and diverse anchor graph fusion for scalable multi-view
 600 clustering. In *The AAAI Conference on Artificial Intelligence*, 2023.

594 APPENDIX
595596 A LLM USAGE
597598 We used a large language model for language editing, including spelling and grammar checks.
599600 B SYMBOL SUMMARY
601602 v : the number of views;
603604 n : the number of samples;
605606 k : the number of clusters;
607608 m : the number of anchors;
609610 d_p : the feature dimension on view p ;
611612 l : the dimension of the consensus subspace;
613614 \mathbf{X}_p : the data matrix on view p , $d_p \times n$;
615616 \mathbf{W}_p : the projection matrix on view p to the consensus space, $d_p \times l$;
617618 \mathbf{A} : the consensus anchor matrix, $l \times m$;
619620 \mathbf{Z} : the anchor graph, $m \times n$;
621622 \mathbf{z}_i : the i -th column of \mathbf{Z} , $m \times 1$;
623624 β_p : the view-weight vector;
625626 $s_p^{(i)}$: indicator that sample i is observed in view p (1) or missing (0);
627628 \mathbf{S}_p : the diagonal observation mask on view p , $n \times n$;
629630 q_i : the missing rate of sample i ;
631632 \mathbf{Q} : the diagonal matrix $\text{Diag}(q_i)$, $n \times n$;
633634 m_i : the sample weight, e.g., $m_i = e^{-\gamma q_i}$;
635636 \mathbf{M} : the diagonal matrix $\text{Diag}(m_i)$, $n \times n$;
637638 γ : the decay coefficient controlling the missingness penalty;
639640 \mathbf{H} : the hypergraph incidence matrix, $(n+m) \times m$;
641642 $\mathbf{D}_v, \mathbf{D}_e$: the vertex-degree and hyperedge-degree diagonal matrices;
643644 \mathbf{L}_H : the normalized hypergraph Laplacian, $(n+m) \times (n+m)$;
645646 \mathbf{Z}_s : the sample embeddings in the consensus space, $l \times n$;
647648 \mathbf{Z}_{aug} : the joint embeddings of samples and anchors, $l \times (n+m)$;
649650 λ_1, λ_2 : the coefficients of the two regularizers;
651652 C DETAILED DERIVATIONS OF OPTIMIZATION
653654 With constants $\lambda_1, \lambda_2 \geq 0$, the problem is
655

656
$$\min_{\{\mathbf{W}_p\}, \mathbf{A}, \mathbf{Z}, \beta} \sum_{p=1}^v \beta_p^2 \|(\mathbf{W}_p^\top \mathbf{X}_p - \mathbf{A}\mathbf{Z}) \mathbf{S}_p \mathbf{M}^{\frac{1}{2}}\|_F^2 + \lambda_1 \text{Tr}(\mathbf{Z}_{\text{aug}} \mathbf{L}_H \mathbf{Z}_{\text{aug}}^\top) + \lambda_2 \|\mathbf{Z} \mathbf{Q}^{\frac{1}{2}}\|_F^2.$$

657 1. UPDATE OF \mathbf{W}_p
658659 When fixing all other variables unrelated to \mathbf{W}_p , the subproblem for updating \mathbf{W}_p is
660

661
$$\min_{\mathbf{W}_p^\top \mathbf{W}_p = \mathbf{I}} \|(\mathbf{W}_p^\top \mathbf{X}_p - \mathbf{A}\mathbf{Z}) \mathbf{S}_p \mathbf{M}^{\frac{1}{2}}\|_F^2.$$

662 For a fixed p , define the residual $\mathbf{E}_p = (\mathbf{W}_p^\top \mathbf{X}_p - \mathbf{A}\mathbf{Z}) \mathbf{S}_p \mathbf{M}^{\frac{1}{2}}$. Using the properties of trace, and
663 $\mathbf{S}_p^2 = \mathbf{S}_p$, $\mathbf{M}^{\frac{1}{2}} \mathbf{M}^{\frac{1}{2}} = \mathbf{M}$,

664
$$\begin{aligned} 665 \|\mathbf{E}_p\|_F^2 &= \text{Tr}\left((\mathbf{W}_p^\top \mathbf{X}_p \mathbf{S}_p \mathbf{M}^{\frac{1}{2}} - \mathbf{A}\mathbf{Z} \mathbf{S}_p \mathbf{M}^{\frac{1}{2}})(\mathbf{W}_p^\top \mathbf{X}_p \mathbf{S}_p \mathbf{M}^{\frac{1}{2}} - \mathbf{A}\mathbf{Z} \mathbf{S}_p \mathbf{M}^{\frac{1}{2}})^\top\right) \\ 666 &= \text{Tr}(\mathbf{W}_p^\top \mathbf{X}_p \mathbf{S}_p \mathbf{M} \mathbf{X}_p^\top \mathbf{W}_p) + \text{Tr}(\mathbf{A}\mathbf{Z} \mathbf{S}_p \mathbf{M} \mathbf{Z}^\top \mathbf{A}^\top) \\ 667 &\quad - 2 \text{Tr}(\mathbf{W}_p^\top \mathbf{X}_p \mathbf{S}_p \mathbf{M} \mathbf{Z}^\top \mathbf{A}^\top). \end{aligned}$$

648 For fixed \mathbf{A}, \mathbf{Z} , the second term is constant in \mathbf{W}_p , hence minimizing $\|\mathbf{E}_p\|_F^2$ is equivalent to
 649

$$650 \max_{\mathbf{W}_p^\top \mathbf{W}_p = \mathbf{I}} \text{Tr}(\mathbf{W}_p^\top \mathbf{G}_p), \quad \mathbf{G}_p = \mathbf{X}_p \mathbf{S}_p \mathbf{M} \mathbf{Z}^\top \mathbf{A}^\top.$$

652 Let the thin SVD be $\mathbf{G}_p = \mathbf{U}_p \mathbf{\Sigma}_p \mathbf{V}_p^\top$. The orthogonal Procrustes solution gives
 653

$$654 \mathbf{W}_p^* = \mathbf{U}_p \mathbf{V}_p^\top.$$

656 2. UPDATE OF \mathbf{A}

658 Fixing $\{\mathbf{W}_p\}, \mathbf{Z}$, and β , the subproblem for updating \mathbf{A} is
 659

$$660 \min_{\mathbf{A}^\top \mathbf{A} = \mathbf{I}} \sum_{p=1}^v \beta_p^2 \|(\mathbf{W}_p^\top \mathbf{X}_p - \mathbf{A} \mathbf{Z}) \mathbf{S}_p \mathbf{M}^{\frac{1}{2}}\|_F^2.$$

663 From the previous expansion, for each p we have
 664

$$665 \|\mathbf{E}_p\|_F^2 = \text{Tr}(\mathbf{W}_p^\top \mathbf{X}_p \mathbf{S}_p \mathbf{M} \mathbf{X}_p^\top \mathbf{W}_p) + \text{Tr}(\mathbf{A} \mathbf{Z} \mathbf{S}_p \mathbf{M} \mathbf{Z}^\top \mathbf{A}^\top) - 2 \text{Tr}(\mathbf{W}_p^\top \mathbf{X}_p \mathbf{S}_p \mathbf{M} \mathbf{Z}^\top \mathbf{A}^\top).$$

666 For the second term, using the cyclic property of the trace and the orthogonality constraint $\mathbf{A}^\top \mathbf{A} = \mathbf{I}$, we obtain
 667

$$668 \text{Tr}(\mathbf{A} \mathbf{Z} \mathbf{S}_p \mathbf{M} \mathbf{Z}^\top \mathbf{A}^\top) = \text{Tr}(\mathbf{A}^\top \mathbf{A} \mathbf{Z} \mathbf{S}_p \mathbf{M} \mathbf{Z}^\top) = \text{Tr}(\mathbf{Z} \mathbf{S}_p \mathbf{M} \mathbf{Z}^\top),$$

669 which is constant with respect to \mathbf{A} . Therefore, discarding the terms independent of \mathbf{A} , the optimization reduces to
 670

$$671 \sum_{p=1}^v \beta_p^2 \|\mathbf{E}_p\|_F^2 = -2 \text{Tr}\left(\mathbf{A}^\top \sum_{p=1}^v \beta_p^2 \mathbf{W}_p^\top \mathbf{X}_p \mathbf{S}_p \mathbf{M} \mathbf{Z}^\top\right) + \text{const.}$$

672 Hence, updating \mathbf{A} is equivalent to solving
 673

$$674 \max_{\mathbf{A}^\top \mathbf{A} = \mathbf{I}} \text{Tr}(\mathbf{A}^\top \mathbf{P}), \quad \mathbf{P} = \sum_{p=1}^v \beta_p^2 \mathbf{W}_p^\top \mathbf{X}_p \mathbf{S}_p \mathbf{M} \mathbf{Z}^\top.$$

675 Although the augmented representation includes \mathbf{A} , the Laplacian quadratic form
 676 $\lambda_1 \text{Tr}(\mathbf{Z}_{\text{aug}}^\top \mathbf{L}_H \mathbf{Z}_{\text{aug}})$ is in fact invariant with respect to \mathbf{A} . To see this, partition the hypergraph
 677 Laplacian over samples and anchors:
 678

$$679 \mathbf{L}_H = \begin{bmatrix} \mathbf{L}_{dd} & \mathbf{L}_{da} \\ \mathbf{L}_{ad} & \mathbf{L}_{aa} \end{bmatrix}, \quad \mathbf{Z}_{\text{aug}} = [\mathbf{A} \mathbf{Z}, \mathbf{A}].$$

680 Expanding the trace gives
 681

$$682 \text{Tr}(\mathbf{Z}_{\text{aug}}^\top \mathbf{L}_H \mathbf{Z}_{\text{aug}}) = \text{Tr}(\mathbf{A} \mathbf{Z} \mathbf{L}_{dd} \mathbf{Z}^\top \mathbf{A}^\top) + 2 \text{Tr}(\mathbf{A} \mathbf{Z} \mathbf{L}_{da} \mathbf{A}^\top) + \text{Tr}(\mathbf{A} \mathbf{L}_{aa} \mathbf{A}^\top).$$

683 Because \mathbf{A} is column-orthonormal ($\mathbf{A}^\top \mathbf{A} = \mathbf{I}$), applying this to every term above yields that
 684 $\text{Tr}(\mathbf{Z}_{\text{aug}}^\top \mathbf{L}_H \mathbf{Z}_{\text{aug}})$ contains no \mathbf{A} . Consequently, $\frac{\partial}{\partial \mathbf{A}} \text{Tr}(\mathbf{Z}_{\text{aug}}^\top \mathbf{L}_H \mathbf{Z}_{\text{aug}}) = \mathbf{0}$. By the same reasoning,
 685 the term $\lambda_2 \|\mathbf{Z} \mathbf{Q}^{1/2}\|_F^2$ is independent of \mathbf{A} as it does not involve \mathbf{A} at all.
 686

687 Let $\mathbf{P} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^\top$ be the SVD of \mathbf{P} . The optimal solution is then given by $\mathbf{A}^* = \mathbf{U} \mathbf{V}^\top$.
 688

690 3. UPDATE OF \mathbf{Z}

691 Fixing $\{\mathbf{W}_p\}, \mathbf{A}$, and β_p , the \mathbf{Z} -subproblem is a convex quadratic with simplex constraints:
 692

$$693 \min_{\mathbf{Z} \geq 0, \mathbf{Z}^\top \mathbf{1} = \mathbf{1}} \sum_{p=1}^v \beta_p^2 \|(\mathbf{W}_p^\top \mathbf{X}_p - \mathbf{A} \mathbf{Z}) \mathbf{S}_p \mathbf{M}^{\frac{1}{2}}\|_F^2 + \lambda_1 \text{Tr}(\mathbf{Z}_{\text{aug}}^\top \mathbf{L}_H \mathbf{Z}_{\text{aug}}) + \lambda_2 \|\mathbf{Z} \mathbf{Q}^{1/2}\|_F^2.$$

702 Collecting the \mathbf{Z} -dependent part of the data term via the same expansion gives
 703

$$704 \sum_{p=1}^v \beta_p^2 \|\mathbf{E}_p\|_F^2 = \text{Tr}(\mathbf{Z} \mathbf{C} \mathbf{Z}^\top) - 2 \text{Tr}(\mathbf{Z}^\top \mathbf{A}^\top \mathbf{B}) + \text{const}, \quad \mathbf{C} = \sum_{p=1}^v \beta_p^2 \mathbf{S}_p \mathbf{M}, \quad \mathbf{B} = \sum_{p=1}^v \beta_p^2 \mathbf{W}_p^\top \mathbf{X}_p \mathbf{S}_p \mathbf{M},$$

705 where we used $\text{Tr}(\mathbf{A} \mathbf{Z} \mathbf{S}_p \mathbf{M} \mathbf{Z}^\top \mathbf{A}^\top) = \text{Tr}(\mathbf{Z} \mathbf{S}_p \mathbf{M} \mathbf{Z}^\top)$ (from $\mathbf{A}^\top \mathbf{A} = \mathbf{I}$) and
 706 $-2 \sum_p \beta_p^2 \text{Tr}(\mathbf{W}_p^\top \mathbf{X}_p \mathbf{S}_p \mathbf{M} \mathbf{Z}^\top \mathbf{A}^\top) = -2 \text{Tr}(\mathbf{Z}^\top \mathbf{A}^\top \mathbf{B})$. For the Laplacian term, with $\mathbf{Z}_{\text{aug}} =$
 707 $[\mathbf{A} \mathbf{Z}, \mathbf{A}]$ and $\mathbf{L}_H = \begin{bmatrix} \mathbf{L}_{dd} & \mathbf{L}_{da} \\ \mathbf{L}_{ad} & \mathbf{L}_{aa} \end{bmatrix}$, we obtain the blockwise trace expansion
 708

$$709 \text{Tr}(\mathbf{Z}_{\text{aug}} \mathbf{L}_H \mathbf{Z}_{\text{aug}}^\top) = \text{Tr}(\mathbf{A} \mathbf{Z} \mathbf{L}_{dd} \mathbf{Z}^\top \mathbf{A}^\top) + 2 \text{Tr}(\mathbf{A} \mathbf{Z} \mathbf{L}_{da} \mathbf{A}^\top) + \text{Tr}(\mathbf{A} \mathbf{L}_{aa} \mathbf{A}^\top).$$

710 so the \mathbf{Z} -dependent contribution is $\lambda_1(\text{Tr}(\mathbf{Z} \mathbf{L}_{dd} \mathbf{Z}^\top) + 2 \text{Tr}(\mathbf{Z} \mathbf{L}_{da}))$. The missing-rate regularizer
 711 satisfies $\|\mathbf{Z} \mathbf{Q}^{\frac{1}{2}}\|_F^2 = \text{Tr}(\mathbf{Z} \mathbf{Q} \mathbf{Z}^\top)$. Putting pieces together and discarding constants yields
 712

$$713 f(\mathbf{Z}) = \text{Tr}(\mathbf{Z} \mathbf{K} \mathbf{Z}^\top) - 2 \text{Tr}(\mathbf{Z}^\top \mathbf{J}), \quad \mathbf{K} = \mathbf{C} + \lambda_1 \mathbf{L}_{dd} + \lambda_2 \mathbf{Q}, \quad \mathbf{J} = \mathbf{A}^\top \mathbf{B} - \lambda_1 \mathbf{L}_{ad},$$

714 where $\mathbf{K} \succeq \mathbf{0}$ since $\mathbf{C}, \mathbf{L}_{dd}, \mathbf{Q} \succeq \mathbf{0}$. The gradient and a global Lipschitz constant are
 715

$$716 \nabla f(\mathbf{Z}) = 2\mathbf{Z}\mathbf{K} - 2\mathbf{J}, \quad L \geq 2\lambda_{\max}(\mathbf{K}).$$

717 A projected FISTA scheme proceeds as follows: initialize $t_0 = 1$ and $\mathbf{Z}^{(0)} = \mathbf{Z}^{(-1)}$, then for
 718 $k = 0, 1, 2, \dots$

$$719 t_{k+1} = \frac{1 + \sqrt{1 + 4t_k^2}}{2}, \quad \mathbf{Y}^{(k)} = \mathbf{Z}^{(k)} + \frac{t_k - 1}{t_{k+1}} (\mathbf{Z}^{(k)} - \mathbf{Z}^{(k-1)}), \quad \tilde{\mathbf{Z}} = \mathbf{Y}^{(k)} - \frac{1}{L} (2\mathbf{Y}^{(k)} \mathbf{K} - 2\mathbf{J}),$$

$$720 \mathbf{Z}_{:,j}^{(k+1)} = \Pi_{\Delta}(\tilde{\mathbf{Z}}_{:,j}) \text{ for } j = 1, \dots, n, \quad \Delta = \{z \in \mathbb{R}^m \mid z \geq 0, \mathbf{1}^\top z = 1\},$$

721 where the Euclidean projection Π_{Δ} onto the probability simplex is computed columnwise by sorting:
 722 for $u = \tilde{\mathbf{Z}}_{:,j}$, let μ be u sorted in descending order, find $\rho = \max\{k : \mu_k + \frac{1}{k}(1 - \sum_{i=1}^k \mu_i) > 0\}$
 723 and set $\theta = \frac{1}{\rho}(\sum_{i=1}^{\rho} \mu_i - 1)$, then $(\Pi_{\Delta}(u))_i = \max\{u_i - \theta, 0\}$.
 724

725 4. UPDATE OF β

726 Fixing $\{\mathbf{W}_p\}$, \mathbf{A} , and \mathbf{Z} , the β -subproblem is
 727

$$728 \min_{\beta \geq 0, \mathbf{1}^\top \beta = 1} \sum_{p=1}^v \beta_p^2 R_p^2, \quad R_p = \|(\mathbf{W}_p^\top \mathbf{X}_p - \mathbf{A} \mathbf{Z}) \mathbf{S}_p \mathbf{M}^{\frac{1}{2}}\|_F.$$

729 Introduce the Lagrangian $\mathcal{L}(\beta, \lambda, \mu) = \sum_{p=1}^v \beta_p^2 R_p^2 - \lambda(\sum_{p=1}^v \beta_p - 1) - \sum_{p=1}^v \mu_p \beta_p$ with multi-
 730 pliers $\lambda \in \mathbb{R}$ and $\mu_p \geq 0$.
 731

732 For any p with $R_p > 0$, optimality yields $\beta_p > 0$ and hence $\mu_p = 0$, giving $2\beta_p R_p^2 - \lambda = 0 \Rightarrow$
 733 $\beta_p = \frac{\lambda}{2R_p^2}$. Enforcing $\sum_p \beta_p = 1$ gives $\lambda = \frac{2}{\sum_{u=1}^v R_u^{-2}}$, and therefore
 734

$$735 \beta_p^* = \frac{R_p^{-2}}{\sum_{u=1}^v R_u^{-2}}, \quad p = 1, \dots, v.$$

736 5. UPDATE OF \mathbf{L}_H

737 Given the current \mathbf{Z} :

- 738 1. For each sample i , take indices of its T most similar anchors by the largest entries of $z_{j,i}$;
 739 create a hyperedge for each selected anchor j that connects the data vertices. Form the
 740 incidence matrix $\mathbf{H} \in \mathbb{R}^{(n+m) \times E}$ by $\mathbf{H}_{i,e} = 1$ if vertex i participates in hyperedge e .
 741
- 742 2. Optionally add an anchor self-edge for each anchor vertex to stabilize degrees.
 743
- 744 3. Compute $\mathbf{D}_v = \text{Diag}(\mathbf{H} \mathbf{1})$, $\mathbf{D}_e = \text{Diag}(\mathbf{1}^\top \mathbf{H})$, and
 745

$$746 \mathbf{L}_H = \mathbf{I} - \mathbf{D}_v^{-\frac{1}{2}} \mathbf{H} \mathbf{D}_e^{-1} \mathbf{H}^\top \mathbf{D}_v^{-\frac{1}{2}}.$$