
Open access to the Proceedings of the
2018 USENIX Annual Technical Conference

is sponsored by USENIX.

Cavs: An Efficient Runtime System
for Dynamic Neural Networks

Shizhen Xu, Carnegie Mellon University, Tsinghua University; Hao Zhang,
Graham Neubig, and Wei Dai, Carnegie Mellon University, Petuum Inc.;

Jin Kyu Kim, Carnegie Mellon University; Zhijie Deng, Tsinghua University;
Qirong Ho, Petuum Inc.; Guangwen Yang, Tsinghua University; Eric P. Xing, Petuum Inc.

https://www.usenix.org/conference/atc18/presentation/xu-shizen

This paper is included in the Proceedings of the
2018 USENIX Annual Technical Conference (USENIX ATC ’18).

July 11–13, 2018 • Boston, MA, USA

ISBN 978-1-939133-02-1

Cavs: An Efficient Runtime System for Dynamic Neural Networks

1,2Shizhen Xu†, 1,3Hao Zhang†, 1,3Graham Neubig, 3Wei Dai, 1Jin Kyu Kim, 2Zhijie Deng,
3Qirong Ho, 2Guangwen Yang, 3Eric P. Xing

Carnegie Mellon University1, Tsinghua University2, Petuum Inc.3 (†equal contributions)

Abstract
Recent deep learning (DL) models are moving more
and more to dynamic neural network (NN) architectures,
where the NN structure changes for every data sample.
However, existing DL programming models are ineffi-
cient in handling dynamic network architectures because
of: (1) substantial overhead caused by repeating dataflow
graph construction and processing every example; (2)
difficulties in batched execution of multiple samples; (3)
inability to incorporate graph optimization techniques
such as those used in static graphs. In this paper, we
present “Cavs”, a runtime system that overcomes these
bottlenecks and achieves efficient training and inference
of dynamic NNs. Cavs represents a dynamic NN as a
static vertex function F and a dynamic instance-specific
graph G. It avoids the overhead of repeated graph con-
struction by only declaring and constructing F once, and
allows for the use of static graph optimization techniques
on pre-defined operations in F . Cavs performs train-
ing and inference by scheduling the execution of F fol-
lowing the dependencies in G, hence naturally exposing
batched execution opportunities over different samples.
Experiments comparing Cavs to state-of-the-art frame-
works for dynamic NNs (TensorFlow Fold, PyTorch and
DyNet) demonstrate the efficacy of our approach: Cavs
achieves a near one order of magnitude speedup on train-
ing of dynamic NN architectures, and ablations verify the
effectiveness of our proposed design and optimizations.

1 Introduction
Deep learning (DL), which refers to a class of neural net-
works (NNs) with deep architectures, is now a workhorse
powering state-of-the-art results on a wide spectrum
of tasks [53, 54, 30]. One reason for its widespread
adoption is the variety and quality of software toolkits,
such as Caffe [23], TensorFlow [1], PyTorch [36] and
DyNet [33, 34], which ease programming of DL models,
and speed computation by harnessing modern computing
hardware (e.g. GPUs), software libraries (e.g. CUDA,

cuDNN [6]), and compute clusters [56, 57, 7].
One dominant programming paradigm, adopted by DL

toolkits such as Caffe and TensorFlow, is to represent a
neural network as a static dataflow graph [32, 1], where
computation functions in the NN are associated with
nodes in the graph, and input and output of the computa-
tion map to edges. It requires DL programmers to define
the network architecture (i.e. the dataflow graph) using
symbolic expressions, once before beginning execution.
Then, for a given graph and data samples, the software
toolkits can automatically derive the correct algorithm
for training or inference, following backpropagation [21]
and auto-differentiation rules. With proper optimiza-
tion, the execution of these static dataflow graphs can be
highly efficient; as the dataflow graph is fixed for all data,
the evaluation of multiple samples through one graph
can be naturally batched, leveraging the improved par-
allelization capability of modern hardware (e.g. GPUs).
Moreover, by separating model declaration and execu-
tion, it makes it possible for the graph to be optimized
once at declaration time [1], with these optimizations
benefiting the efficiency of processing arbitrary input
data batches at execution time.

While the dataflow graph has major efficiency advan-
tages, its applicability highly relies on a key assump-
tion – the graph (i.e. NN architecture) is fixed through-
out the runtime. This assumption however breaks for
dynamic NNs, where the network architectures condi-
tionally change with every input sample, such as NNs
that compute over sequences of variable lengths [22, 43],
trees [45], and graphs [26].

Due to the growing interest in these sorts of dy-
namic models, recent years have seen an increase in
the popularity of frameworks based on dynamic declara-
tion [49, 33, 11], which declare a different dataflow graph
per sample. While dynamic declaration is convenient to
developers as it removes the restriction that computation
be completely specified before training begins, it exhibits
a few limitations. First, constructing a graph for every

USENIX Association 2018 USENIX Annual Technical Conference 937

sample results in substantial overhead, which grows lin-
early with the number of input instances. In fact, we
find graph construction takes longer time than the com-
putation in some frameworks (see §5.2). It also pre-
vents the application of complex static graph optimiza-
tion techniques (see §3.4). Moreover, since each sample
owns a dataflow graph specifying its unique computa-
tional pattern, batching together similarly shaped compu-
tations across instances is non-trivial. Without batching,
the computation is inefficient due to its lack of ability
to exploit modern computational hardware. While some
progress has been made in recent research [34, 27], how
to automatically batch the computational operations from
different graphs remains a difficult problem.

To address these challenges, we present Cavs, an ef-
ficient runtime system for dynamic NNs that exploits
the recurrent and recursive nature of dynamic NNs. In-
stead of declaring a dataflow graph per sample, it decom-
poses a dynamic NN into two components: a static ver-
tex function F that is only declared (by the user) and
optimized once before execution, and an input-specific
graph G obtained via I/O at runtime. Cavs inherits the
flexibility of symbolic programming [1, 12, 33] for DL;
it requires users to define F by writing symbolic expres-
sions in the same way as in static declaration. With F
and G, the workflow of training or testing a dynamic NN
is cast as scheduling the execution of F following the
structure of the input graph G. Cavs will perform auto-
differentiation, schedule the execution following depen-
dencies in G, and guarantee efficiency and correctness.

Cavs’ design allows for highly efficient computation
in dynamic graphs for a number of reasons. First, it
allows the vertex function only to be defined and con-
structed once for any type of structured data, hence
avoiding the overhead of repeated dataflow graph con-
struction. Second, as the dataflow graph encoded by the
vertex function is static throughout the runtime, it can
benefit from various static graph optimizations [1, 5, 12,
18](§3.4), which is not the case in the scenario of dy-
namic declaration (§2.2). Moreover, it naturally exposes
opportunities for batched computation, i.e. we are able
to parallelize the execution of F over multiple vertices
from different input graphs (§3.2) with the support of our
proposed memory management strategy (§3.3).

To evaluate Cavs’ performance, we compare it to sev-
eral state-of-the-art systems supporting dynamic NNs.
We focus our experiments on GPU training, and verify
that both Fold and DyNet suffer from substantial over-
head caused by repeated graph preprocessing or con-
struction, which is bypassed by Cavs (§5.2). In a com-
parison with unbatched dynamic graphs in PyTorch and
DyNet, two widely-used dynamic NN libraries, we ver-
ify that batching is essential for efficient processing. In
a comparison with TensorFlow Fold and DyNet Auto-

batching, two libraries that allow for the use of dynamic
NNs with automatic operation batching, we find that
Cavs’ has significant performance advantages; on static
graphs it performs equivalently or slightly better, and
on dynamic NNs with difficult-to-batch workloads (e.g.
Tree-LSTM [45] and Tree-FC [27]), Cavs demonstrates
near one order of magnitude speedups across multiple
dataset and hyper-parameter settings (§5.1). We further
investigate the effectiveness of our design choices: Cavs
benefits from not only our proposed memory manage-
ment strategy, but also various optimizations on graph
execution, which were originally for static dataflow
graphs and not applicable in dynamic declaration.

To summarize, we make three primary contributions in
this paper: (1) We propose a novel representation for dy-
namic NNs, based on which we design four APIs and im-
plement the Cavs runtime system (§3.1); (2) We propose
several novel strategies in Cavs for efficient training and
inference of dynamic NNs: the batching policy (§3.2), a
memory management mechanism to guarantee the mem-
ory coalescing (§3.3), and multiple graph execution op-
timizations (§3.4); (3) We compare Cavs to state-of-the-
art systems for dynamic NNs (§5). We reveal the prob-
lems of existing systems, and report near 10x speedup
for Cavs on various experimental settings. We also ver-
ify the effectiveness of our proposed design strategies,
and quantize their contributions to the final performance.

2 Background
2.1 Dynamic Neural Networks
Successful NN models generally exhibit suitable archi-
tectures that capture the structures of the input data.
For example, convolutional neural networks [24, 53],
which apply fixed-structured operations to fixed-sized
images, are highly effective precisely because they cap-
ture the spatial invariance common in computer vision
domains [39, 44]. However, apart from images, many
forms of data are structurally complex and can not be
readily captured by fixed-structured NNs. Appropriately
reflecting these structures in the NN design has shown ef-
fective in sentiment analysis [45], semantic similarity be-
tween sentence pairs [40], and image segmentation [26].

To see this, we will take the constituency parsing prob-
lem as an example. Sentences in natural languages are
often represented by their constituency parse tree [45,
31], whose structure varies depending on the content of
the sentence itself (Fig. 1(a)). Constituency parsing is an
important problem in natural language processing that
aims to determine the corresponding grammar type of
all internal nodes given the parsing tree of a sentence.
Fig. 1(b) shows an example of a network that takes into
account this syntactic structure, generating representa-
tions for the sentence by traversing the parse tree bottom-
up and combining the representations for each sub-tree

938 2018 USENIX Annual Technical Conference USENIX Association

John hit the ball
D N

NPV

VPN

S

John hit the ball

LSTM LSTM

LSTM LSTM

LSTM LSTM

LSTM
(a) (b)

Figure 1: An example of a dynamic NN: (a) a constituency
parsing tree, (b) the corresponding Tree-LSTM network. We
use the following abbreviations in (a): S for sentence, N for
noun, VP for verb phrase, NP for noun phrase, D for deter-
miner, and V for verb.
using a dynamic NN called Tree Structured Long Short-
term Memory (Tree-LSTM) [45]. In particular, each
node of the tree maps to a LSTM function [22]. The
internal computations and parameters of the LSTM func-
tion is defined in Fig. 4. At each node, it takes a variable
number of inputs and returns to the parent node a vector
representing the parsing semantics up to that point, un-
til the root LSTM node returns a vector representing the
semantics of the entire sentence.

The important observation is that the NN structure
varies with the underlying parsing tree over each input
sample, but the same LSTM cell is constant in shape and
repeated at each internal node. Similar examples can be
found for graph input [25, 26] and sequences of variable
lengths [43, 2]. We refer to these NNs that exhibit dif-
ferent structures for different input samples as dynamic
neural networks, in contrast to the static networks that
have fixed network architecture for all samples.

2.2 Programming Dynamic NNs
There is a natural connection between NNs and directed
graphs: we can map the graph nodes to the computa-
tional operations or parameters in NNs, and let the edges
indicate the direction of the data being passed between
the nodes. In this case, we can represent the process of
training NNs as batches of data flowing through compu-
tational graphs, i.e. dataflow graphs [3, 1, 33].
Static declaration. As mentioned previously, static dec-
laration is one dominant programming paradigm for pro-
gramming NNs [3, 1, 5]. Fig 2(a) summarizes its work-
flow, which assumes all data samples share a fixed NN
structure declared symbolically in a dataflow graph D.
Static declaration, using a single dataflow graph D, can-
not express dynamic NNs with structures changing with
data samples. A primary remedy to this problem is to
forgo the efficiency gains of static dataflow graphs and
instead use a dynamic declaration framework.
Dynamic declaration. Fig 2(b) illustrates the workflow
of dynamic declaration. By creating a unique dataflow
graph Dp

k for each sample xp
k according to its associated

structure, dynamic declaration is able to express sample-
dependent dataflow graphs. It however causes extra over-
head on graph construction and puts constraints on run-
time optimization, which usually lead to inefficient ex-

ecution. Particularly, since a dataflow graph Dp
k needs

to be constructed per sample, the overhead is linearly
increasing with the number of samples, and sometimes
yields downgraded performance [27] (§5.2), even for
frameworks with optimized graph construction imple-
mentations [33]. Moreover, we can hardly benefit from
any well-established dataflow graph optimization (§3.4).
We will have to perform graph processing/optimization
for each dataflow graph and every single sample; but in-
corporating this optimization itself has a non-negligible
overhead. More importantly, as we are unable to batch
the computation of different structured graphs, we note
in Fig 2(b) single-instance computationDp

k (x
p
k) would be

very inefficient in the absence of batched computation.
Dynamic batching. To address the batching problem,
some recent effort, notably TensorFlow Fold [27] and
DyNet [34], propose dynamic batching that dynami-
cally groups similarly shaped operations from different
graphs, and batch their execution whenever possible.

Fold turns dynamic dataflow graphs into a static con-
trol flow graph to enable batched execution, but intro-
duces a complicated functional programming-like inter-
face and a large graph preprocessing overhead. As we
will show in §5.2, the graph construction sometimes
slows down the computation by 4x. DyNet proposes an
auto-batching strategy that searches for batching oppor-
tunities by profiling every fine-grained operator, while
this step itself has non-negligible overhead (§5.2). It is
also not open to dataflow graph level optimizations.

In summary, there are three major challenges that pre-
vent the efficient execution of dynamic neural networks:
(1) non-negligible graph construction overhead; (2) dif-
ficulties in parallel execution; (3) unavailability to graph
execution optimization.

2.3 Motivation
Our motivation for Cavs comes from a key property of
dynamic NNs: most dynamic NNs are designed to ex-
hibit a recursive structure; Within the recursive structure,
a static computational function is being applied follow-
ing the topological order over instance-specific graphs.
For instance, if we denote the constituency parsing tree
in §2.1 as a graph G, where each node of the tree maps
to a vertex in G, we note the Tree-LSTM can be inter-
preted as follows: a computational cell function, speci-
fied in advance, is applied from leaves to the root, fol-
lowing the dependencies in G. G might change with in-
put samples, but the cell function itself is always static:
It is parametrized by a fixed set of learnable parameters
and interacts in the same way with its neighbors when
applied at different vertices of G.

These observations motivate us to decompose a dy-
namic NN into two parts: (1) a static computational ver-
tex function F that needs to be declared by the program-

USENIX Association 2018 USENIX Annual Technical Conference 939

/* (a) static declaration */
// all samples must share one graph
declare a static dataflow graph D.
for p = 1→ P:
read the pth data batch {xp

k }
K
k=1.

batched computation: D({xp
k }

K
k=1).

/* (b) dynamic declaration */
for p = 1→ P:

read the pth data batch {xp
k }

K
k=1.

for k = 1→ K:
declare a dataflow graph Dp

k for xp
k .

single-instance computation: Dp
k (x

p
k).

/* (c) our proposed vertex-centric model */
declare a symbolic vertex function F .
for p = 1→ P:
read the pth data batch {xp

k }
K
k=1.

read their associated graphs {G p
k }

K
k=1.

compute F over {G p
k }

K
k=1 with inputs {xp

k }
K
k=1.

Figure 2: The workflows of (a) static declaration, (b) dynamic declaration, (c) Cavs. Notations: D notates both the dataflow graph
itself and the computational function implied by it; p is the index of a batch while k is the index of a sample in the batch.

gather scatter

p
u

sh
p

u
ll

Internal
Data Path

External
Data Path

Input

Output
Childsum

LSTM

h0 c0

h1 c1

x c

f1

f0

Chain

Tree

u|i O

LSTM
ht-1 ct-1

xt ct

f

u|i O

GRU
ht-1 ct-1

xt ct

f

u ht
O

ht

h

f

On Both
Data Path

Figure 3: Cavs represents a dynamic structure as a dynamic
input graph G (left) and a static vertex function F (right).

mer once before runtime; (2) a dynamic input graph G
that changes with every input sample1. With this repre-
sentation, the workflow of training a dynamic NN can
be cast as scheduling the evaluation of the symbolic con-
struct encoded by F , following the graph dependencies
of G, as illustrated in Fig 2(c). This representation ex-
ploits the property of dynamic NNs to address the afore-
mentioned issues in the following ways:
Minimize graph construction overhead. Cavs only re-
quires users to declare F using symbolic expressions,
and construct it once before execution. This bypasses re-
peated construction of multiple dataflow graphs, avoid-
ing overhead. While it is still necessary to create an
I/O function to read input graphs G for each sample, this
must be done by any method, and only once before train-
ing commences, and it can be shared across samples.
Batched execution. With the proposed representation,
Cavs transforms the problem of evaluating data samples
{xp

k}
K
k=1 (at the pth batch) on different dataflow graphs

{Dp
k }k=1 [27, 34] into a simpler form – scheduling the

execution of the vertex function F following the depen-
dencies in input graphs {Gp

k}k=1. For the latter problem,
we can easily batch the execution of F on multiple ver-
tices at runtime (§3.2), leveraging the batched computa-
tional capability of modern hardware and libraries.
Open to graph optimizations. Since the vertex function
F encodes a dataflow graph which is static throughout
runtime, it can benefit from various graph optimizations
originally developed for static declaration, such as kernel
fusion, streaming, and our proposed lazy batching, which
are not effective in dynamic declaration.

Based on this motivation, we next describe the Cavs
system. Cavs faces the following challenges in system

1In the following text, we will distinguish the term vertex from
node. We use vertex to denote a vertex in the input graph while node
to denote an operator/variable in a dataflow graph. Hence, a vertex
function can have many nodes as itself represents a dataflow graph.

design: (1) how to design minimal APIs in addition to the
symbolic programming interface to minimize user code;
(2) how to schedule the execution of F over multiple in-
put graphs to enable batched computation; (3) how to
manage memory to support the dynamic batching; (4)
how to incorporate static graph optimization in Cavs’s
execution engine to exploit more parallelism.

3 Cavs Design and Optimization
3.1 Programming Interface
Conventional dataflow graph-based programming mod-
els usually entangle the computational workflow in F
with the structure in G, and require users to express them
as a whole in a single dataflow graph. Instead, Cavs sep-
arates the static vertex function F from the input graph
G (see Fig 3). While users use the same set of symbolic
operators [1, 11] to assemble the computational work-
flow in F , Cavs proposes four additional APIs, gather,
scatter, pull, push, to specify how the messages shall
be passed between connected vertices in G:

• gather(child idx): gather accepts an index of
a child vertex, gets its output, and returns a list of
symbols that represent the output of the child.

• scatter(op): scatter reverses gather. It sets
the output of the current vertex as op. If this vertex
is gathered, the content of op will be returned.

gather and scatter are motivated by the GAS model
in graph computing [14] – both are vertex-centric APIs
that help users express the overall computational patterns
by thinking locally like a vertex: gather receives mes-
sages from dependent vertices, while scatter updates
information to parent vertices (see discussion in §6).

However, in dynamic NNs, the vertex function F usu-
ally takes input from not only the internal vertices of G
(internal data path in Fig 3), but also the external envi-
ronment, e.g. an RNN can take inputs from a CNN fea-
ture extractor or some external I/O (external data path
in Fig 3). Cavs therefore provides another two APIs to
express such semantics:

• pull(): pull grabs inputs from the external of the
current dynamic structure, e.g. another NN, or I/O.

• push(op): push reverses pull. It sets the output
of the current vertex as op. If this vertex is pulled
by others, the content of op will be returned.

940 2018 USENIX Annual Technical Conference USENIX Association

1 def F():
2 for k in range(N):
3 S = gather(k) # gather states of child vertices
4 ck, hk = split(S, 2) # get hidden states c and h
5 x = pull() # pull the first external input x
6

7 # specify the computation

8 h = ∑
N−1
k=0 hk

9 i = sigmoid(W(i)× x + U(i)× h + b(i))
10 for k in range(N):

11 fk = sigmoid(W(f)× x + U(f)× hk + b(f))

12 o = sigmoid(W(o)× x + U(o)× h + b(o))

13 u = tanh(W(u)× x + U(u)× h + b(u))

14 c = i ⊗ u + ∑
N−1
k=0 fk ⊗ ck

15 h = o ⊗ tanh(c)
16

17 scatter(concat([c, h], 1)) # scatter c, h to parents
18 push(h) # push to external connectors

Figure 4: The vertex function of an N-ary child-sum TreeL-
STM [45] in Cavs. Within F , users declare a computational
dataflow graph using symbolic operators. The defined F will
be evaluated on each vertex of G following graph dependencies.

Once F declared, together with an input graph G,
they encode a recursive dataflow graph structure, which
maps to a subgraph of the implicit full dataflow graph
of the model that may needs to be explicitly declared in
traditional programming models. Via push and pull,
Cavs allows users to connect any external static dataflow
graph to a dynamic structure encoded by (F ,G), to ex-
press more complex model architectures, such as the
LRCN [9] (i.e. connecting a CNN to an RNN), or an
encoder-decoder LSTM network [43] (i.e. connecting
two different recursive structures). With these four APIs,
we present in Fig 4 an example user program how the N-
ary child-sum Tree-LSTM [45] can be simply expressed
by using them and other mathematical operators.
Auto-differentiation. Given a vertex function F Cavs
derives ∂F following the auto-differentiation rules: for
each math expression such as sl = op(sr) in F , Cavs
generates a corresponded backward expression ∇sr =
grad op(∇sl ,sl ,sr) in ∂F . For the four proposed opera-
tors, we note scatter is the gradient operator of gather
in the sense that if gather collects inputs from child ver-
tex written by scatter at the forward pass, a scatter

needs to be performed to write the gradients for its de-
pendent vertices to gather at the backward pass. Hence,
for an expression like sl = gather(child idx) in F ,
Cavs will generate a backward expression scatter(∇sl)
in ∂F . Similarly, the gradient operator of scatter is
gather. The same rules apply for push and pull.
Expressiveness. With these four APIs, Cavs can be seen
as a middle ground between static and dynamic decla-
ration. In the best case that the NN is fully recursive
(e.g. most recurrent or recursive NNs), it can be repre-
sented by a single vertex function and an input graph.
While in the worst case, that every sample has a unique
input graph while every vertex in the graph has a unique
way to interact with its neighboring vertices (i.e. the NN
is dynamic but non-recursive), Cavs reduces to dynamic

declaration that one has to define a vertex function for
each vertex of each input graph. Fortunately, dynamic
NNs in this scenario are usually avoided because of the
difficulties in design, programming and learning.

3.2 Scheduling
Once F is defined and G is obtained from I/O, Cavs will
perform computation by scheduling the evaluation of F
over data samples {xi}N

i=1 and their input graphs {Gi}N
i=1.

Forward pass. For a sample xi with its input graph Gi,
the scheduler starts the forward pass from the input ver-
tices of Gi, and proceeds following the direction indi-
cated by the edges in Gi: at each sub-step, the sched-
uler figures out the next activated vertex in Gi, and eval-
uates all expressions in F at this vertex. It then marks
this vertex as evaluated, and proceeds with the next ac-
tivated vertex until reaching a terminal vertex (e.g. the
loss function). A vertex of G is activated if and only if all
its dependent vertices have been evaluated.
Backward pass. The backward pass is continued right
after the forward. The scheduler first resets the status of
all vertices as not evaluated, then scans the graph in a
reverse direction, starting from the ending point of the
forward pass. It evaluates ∂F at each vertex until all
vertices have been evaluated in the backward pass.

To train a NN to convergence, the above process has to
be iterated on all samples {xi}N

i=1 and their input graphs
{Gi}N

i=1, for many epochs. We next describe our batched
execution policy to speed the computation.
Batching policy. Given a data batch {xk}K

k=1 ⊆ {xi}N
i=1

and associated graphs {Gk}K
k=1, this policy groups mul-

tiple vertices and performs batched evaluation of F in
order to reduce kernel launches and exploit parallelism.
Specifically, a forward pass over a batch {xk}K

k=1 are per-
formed in multiple steps. At each step t, Cavs analyzes
{Gk}K

k=1 at runtime and determines a set Vt that contains
all activated vertices in graphs {Gk}K

k=1. It then evalu-
ates F over these vertices by creating a batched execu-
tion task, with the task ID set to t2. The task is exe-
cuted by the Cavs execution engine (§3.4). Meanwhile,
the scheduler records this task by pushing Vt into a stack
S. To perform backward pass, the scheduler pops out an
element Vt from S at each step – the execution engine
will evaluate the derivative function ∂F over vertices in
Vt , until all vertices of {Gk}K

k=1 are evaluated.
We note the batching policy is similar to the dynamic

batching in Fold [27] and DyNet [33]. However, Cavs
determines how to batch fully dynamically during run-
time using simple breadth-first search with negligible
cost (instead of analyzing full dataflow graphs before ev-
ery iteration of the execution). Since batched computa-
tion requires the inputs to an expression over multiple

2Whenever the context is clear, we use Vt to denote both the set of
vertices to be batched together, and the batched execution task itself.

USENIX Association 2018 USENIX Annual Technical Conference 941

def ():
 = pull()

 = gather(0)
 = gather(1)
 = matmul(, u)
 +matmul(, v)
 +matmul(, w)
 scatter(0,)
 push()

0

0 1

3 2

4

5 6

11 12

13

7 10

8 9

1 2 5 6 7 8 9 11103 124 13

98765210 11103 124 13

691 102 12

580 73 11

131211109876543210

131211109876543210

0 1 2 5
6 7 8 9

0 1 2 5
6 7 8 9
3 1011

0 1 2 5
6 7 8 9
3 1011 4
12

0 1 2 5
6 7 8 9
3 1011 4
12

pull

push

gather

scatter

batching task

gather/scatter buffer

push buffer

pull buffer

0

1

2

3 0

1

2

3

3

0

1

2

3

Figure 5: The memory management at the forward pass of F (top-left) over two input trees (bottom-left). Cavs first analyzes F and
inputs – it creates four dynamic tensors {αn}3

n=0, and figures out there will be four batch tasks (dash-lined boxes). Starting from
the first task (orange vertices {0,1,2,5,6,7,8,9}), Cavs performs batched evaluation of each expression in F . For example, for the
pull expression α0 = pull(), it indexes the content of α0 on all vertices from the pull buffer using their IDs, and copies them to
α0 continuously; for scatter and push expressions, it scatters a copy of the output (α3) to the gather buffer, and pushes them to the
push buffer, respectively. Cavs then proceeds to the next batching task (blue vertices). At this task, Cavs evaluates each expression
of F once again for vertices {3,10,11}. (e.g. for a pull expression α0 = pull(), it pulls the content of α0 from pull buffer again;
for a gather expression α2 = gather(1) at vertex 3, it gathers the output of the second child of 3, which is 1); it writes results
continuously at the end of each dynamic tensor. It proceeds until all batching tasks are finished.

vertices to be placed on a continuous memory buffer, we
develop a new memory management support for it.

3.3 Memory Management
In static declaration [1, 33], a symbol in the user program
usually corresponds to a fixed-sized tensor object with a
batch size dimension. While in Cavs, each batching task
Vt is determined at runtime. For the batched computation
to be efficient, Cavs must guarantee for each batching
task, the inputs to each expression of F over a group of
runtime-determined vertices coalescing in memory.

struct DynamicTensor {
vector<int> shape;
int bs;
int offset;
void* p; };

Figure 6: Dynamic ten-
sor.

Cavs proposes a novel data
structure dynamic tensor to ad-
dress this challenge (Fig 6). A
dynamic tensor is a wrapper
of a multi-dimensional array [1,
52]. It contains four attributes:
shape, bs, a pointer p to a chunk of memory, and
offset. shape is an array of integers representing the
specific shape of the tensor excluding the batch dimen-
sion. It can be inferred from the user program and set be-
fore execution. The batch size bs is dynamically set by
the scheduler at runtime at the beginning of a batching
task. To access a dynamic tensor, one moves p forward
with the value of offset, and reads/writes number of el-
ements equal to bs ·∏i shape[i]. Therefore, bs together
with offset provide a view of the tensor, and the state of
the tensor will vary based on their values. Given a vertex
function F , Cavs creates dynamic tensors {αn}N

n=1 for
each non-parameter symbol sn(n = 1, . . . ,N) in F , and
also {∇αn}N

n=1 as their gradients, while it creates static
tensors for model parameters.

Fig 5 illustrates how the memory is assigned during
the forward pass by manipulating dynamic tensors. In
particular, in a training iteration, for a batching task
Vt , the scheduler sets bs of all {αn}N

n=1 to Mt = |Vt |
(the number of vertices in Vt). The execution engine

then performs batched evaluation of each expression
in F . For an expression sl = op(sr)

3, Cavs first ac-
cesses αr (the dynamic tensor of the RHS symbol sr)
– it offsets αr.p by αr.offset, and reads a block of
Mt ∏i αr.shape[i] elements, and presents it as a tensor
with batch size Mt and other dimensions as αr.shape. It
then applies batched computational kernels of the oper-
ator op over this memory block, and writes the results
to αl (the dynamic tensor of the LHS symbol sl) on the
continuous block in between [αl .p+αl .offset,αl .p+
αl .offset+ Mt ∏i αl .shape[i]]. Upon the completion
of Vt , the scheduler increases offset of all {αn}N

n=1 by
Mt ∏i αn.shape[i], respectively. It then starts the next
task Vt+1. Hence, intermediate results generated in each
batching task at forward pass are stored continuously in
the dynamic tensors, and their offsets are recorded.

At the entrance of F , the vertices {vm}Mt
m=1 in Vt need

to interact with its dependent vertices in previous Vt−1 to
gather their outputs as inputs (L3 of Figure 4), or pull
inputs from the external (L5 of Figure 4). Cavs main-
tains memory buffers to enable this (Figure 5). It records
the offsets of the dynamic tensors for each vm ∈ Vt , and
therefore during the execution of gather operator, the
memory slices of specific children can be indexed. As
shown in Figure 5, gather and scatter share the same
temporary buffer for memory re-organization, but push
and pull operate on external memory buffers.

Algorithm 1 summarizes the memory management
during forward pass. The backward execution follows an
exactly reverse order of the forward pass (§3.2), which
we skip in the text. With this strategy, Cavs guaran-
tees memory continuity for any batched computation of
F and ∂F . Compared to dynamic batching in DyNet,
Cavs performs memory movement only at the entrance

3Note that the user-defined expressions can be arbitrary, e.g. with
more than one argument or return values

942 2018 USENIX Annual Technical Conference USENIX Association

embedding
lookup

pull

gather

slice

push

scatter
matmul slice

sig

tan

linear
transformation

Fused Kernel

slice
concat

matmul

sig

sigadd

add

add

add

mul

mul

mul

mul

add

SYN
C

parameter eager operator lazy operator lazy batching stream1 stream2

Figure 7: The dataflow graph encoded by F of Tree-LSTM.

and exit of F , instead of for each expression (operator).
We empirically find this significantly reduces overhead
of memory operations (§5.3).

Algorithm 1 Memory management at forward pass.
1: function FORWARD({Vt}T

t=1,{αn}N
n=1,F)

2: for t = 1→ T do
3: for n = 1→ N do αn.bs←Mt end for
4: for each expression like sl = op(sr) in F do
5: if op ∈ {gather,pull} then
6: C←∏i αl .shape[i],q← αl .p+αl .offset.
7: for vm ∈Vt(m = 1→Mt) do
8: src← IndexBuffer(op,m),dest← q+(m−1)C.
9: memcpy(dest,src,C).

10: end for
11: else if op ∈ {scatter,push} then
12: C←∏i αr.shape[i],q← αr.p+αr.offset.
13: for vm ∈Vt(m = 1→Mt) do
14: dest← IndexBuffer(op,m),src← q+(m−1)C.
15: memcpy(dest,src,C).
16: end for
17: else
18: perform batched computation: αl = op kernel(αr).
19: end if
20: end for
21: for n = 1→ N do αn.offset+= Mt ∏i αn.shape[i] end for
22: end for
23: end function

3.4 Optimizing Execution Engine
Since Cavs separates out a static dataflow graph encoded
by F , we can replace the original F with an optimized
one that runs more efficiently, as long as maintaining cor-
rectness. We next described our optimization strategies.
Lazy batching and streaming4. In addition to batched
execution of F , the lazy batching and streaming explore
potential parallelism for a certain group of finer-grained
operators in F or ∂F called lazy and eager operators.
Definition. An operator inF (∂F) is a lazy operator if at
the forward (backward) pass, for ∀v ∈ G,∀G ∈ {Gk}K

k=1,
the evaluation of F (∂F) at any parent (dependent) ver-
tex of v does not rely on the evaluation of F at v. It is an
eager operator if the evaluation at v does not rely on the
evaluation of F (∂F) at any dependents (parents) of v.
Proposition. Denote DF (D∂F) as the dataflow graph
encoded by F (∂F), and g,s ∈ DF (D∂F) as nodes of

4Streaming is a borrowed terminology from CUDA programming
which means executing different commands concurrently with respect
to each other on different GPU streams. As Cavs’ optimizations are
agnostic to the low-level hardware, we use streaming interchangeably
with multi-threading if the underlying computing hardware is CPU.

gather and scatter operator, respectively. A node that
has g as its dependent and is not on any path from g to s
is a lazy operator. A node that has s as its ancestor and is
not on any path from g to s is an eager operator.

Fig 7 illustrates a forward dataflow graph of the vertex
function of Tree-LSTM, with eager and lazy operators
colored. A property of them is that their evaluation is
not fully subject to the dependency reflected by the in-
put graph G. For instance, the pull operator in Fig 7 is
eager and can be executed in prior – even before F has
been evaluated at the vertices that gather tries to inter-
act with; the push operator is lazy, so we can defer its
execution without impacting the evaluation of F at par-
ent vertices. Similarly, in ∂F , the gradient derivation
for model parameters are mostly lazy – their execution
can be deferred as long as the gradients of hidden states
are derived and propagated in time. Cavs leverages this
property and proposes the lazy batching strategy. It de-
fers the execution of all lazy operators in F and ∂F until
all batching tasks {Vt}T

t=1 has finished. It then performs
a batched execution of these lazy operators over all ver-
tices of {Gk}K

k=1. These operators includes, but is not
limited to, the push operator that is doing memory copy,
and operators for computing gradients of model param-
eters. Lazy batching helps exploit more parallelism and
significantly reduces kernel launches. Empirically lazy
batching brings 20% overall improvement (§5.3).

To leverage the exhibited parallelization opportunity
between eager operators and the operators on the path
from gather to scatter (Figure 7), Cavs proposes a
streaming strategy that pipelines the execution of these
two groups of operators. It allocates two streams, and
puts the eager operators on one stream, and the rest (ex-
cluding lazy operators) on the other. Hence, independent
operators in two streams run in parallel, while for those
operators that depend on an eager operator, this depen-
dency is respected by synchronization barriers (Fig 7).
Automatic kernel fusion. Given F , before execution,
Cavs will run a fusion detector [20] to scan its cor-
responded dataflow graph and report all fuse-able sub-
graphs therein, i.e. all nodes in a fuse-able subgraph
can be fused as a single operator that behaves equiva-
lently but takes less execution time (e.g. with fewer ker-
nel launches and I/O, or faster computation). Currently,
we only detect groups of directly linked elementwise op-
erators, such as +,sigmoid, as shown in Fig 7, and we
use a simple union-find algorithm to detect the largest
possible fuse-able subgraphs. Given a fuse-able sub-
graph, Cavs adopts de facto automatic code generation
techniques [37, 8, 38, 35] to generate lower-level kernel
implementations. Replacing the original fuse-able sub-
graphs with fused operators during execution is benefi-
cial in many aspects: (1) it reduces the number of kernel
launches; (2) on some devices such as GPUs, kernel fu-

USENIX Association 2018 USENIX Annual Technical Conference 943

sion transform device memory access into faster device
registers access. We empirically report another 20% im-
provement with automatic kernel fusion (§5.3).

4 Implementation
Cavs is implemented as a C++ library and integrable with
existing DL frameworks to enhance their support for dy-
namic NNs. It is composed of three major layers (which
is the case for most popular frameworks [3, 1, 33]): (1)
a frontend that provides device-agnostic symbolic pro-
gramming interface; (2) an intermediate layer that im-
plements the core execution logic; (3) a backend with
device-specific kernels for all symbolic operators.
Frontend. In addition to the four APIs, Cavs pro-
vides a macro operator VertexFunction. Users in-
stantiate it by writing symbolic expressions and speci-
fying methods to read input graphs. It encapsulates scat-
ter/gather semantics, so users can continue using higher
level APIs. To construct more complex NN architectures
(e.g. encoder-decoder LSTM [43], LRCN [9])), users
employ push and pull to connect multiple vertex func-
tions, or to external structures.
Intermediate Layer. Cavs has its core runtime logic at
this layer, i.e. the batching scheduler, the memory man-
agement, and the execution engine, etc.
Backend. Following practice [1, 33, 12], we imple-
ment device-specific operator kernels at this layer. Cavs
has optimized implementations for the four proposed op-
erators (gather, scatter, pull, push). Specifically,
gather and pull index different slices of a tensor and
puts them together continuously on memory; scatter
and push by contrast splits a tensor along its batch di-
mension, and copy different slices to different places.
Cavs implements customized memcpy kernels for there
four operators, so that copying multiple slices from (or
to) different places is performed within one kernel.
Distributed Execution. While Cavs’s implementations
are focused on improving the efficiency on a single node,
they are compatible with most data-parallel distributed
systems for deep learning [56, 7, 1], and can also benefit
distributed execution on multiple nodes.

5 Evaluation
In this section, we evaluate Cavs on multiple NNs and
datasets, obtaining the following major findings: (1)
Cavs has little overhead: on static NNs, Cavs demon-
strates equal performance on training and inference with
other systems; On several NNs with notably difficult-to-
batch structures, Cavs outperforms all existing frame-
works by a large margin. (2) We confirm the graph
construction overhead is substantial in both Fold [27]
and dynamic declaration [33], while Cavs bypasses it by
loading input graphs through I/O. (3) We verify the ef-
fectiveness of our proposed design and optimization via

ablation studies, and discuss Cavs’ advantages over other
DL systems for dynamic dataflow graphs.
Environment. We perform all experiments in this paper
on a single machine with an NVIDIA Titan X (GM200)
GPU, a 16-core CPU, and CUDA v8.0 and cuDNN v6
installed. As modern DL models are mostly trained us-
ing GPUs, we focus our evaluation on GPUs, but note
Cavs’ design and implementation do not rely on a spe-
cific type of device. We mainly compare Cavs to Tensor-
Flow v1.2 [1] with XLA [18] and its variant Fold [27],
PyTorch v0.3.0 [11], and DyNet v2.0 [33] with auto-
batching [34], as they have reported better performance
than other frameworks [5, 50] on dynamic NNs. We fo-
cus on metrics for system performance, e.g. time to scan
one epoch of data. Cavs produces exactly the same nu-
merical results with other frameworks, hence the same
per-epoch convergence
Models and dataset. We experiment on the follow-
ing models with increasing difficulty to batch: (a)
Fixed-LSTM language model (LM): a static sequence
LSTM with fixed steps for language modeling [42, 43,
55]. We train it using the PTB dataset [48] that contains
over 10K different words. We set the number of steps as
64, i.e. at each iteration of training, the model takes a 64-
word sentence from the training corpus, and predicts the
next word of each word therein. Obviously, the compu-
tation can be by nature batched easily, as each sentence
has exactly the same size. (b) Var-LSTM LM: that ac-
cepts variable-length inputs. At each iteration the model
takes a batch of natural sentences with different length
from PTB, and predicts the next words; (c) Tree-FC:
the benchmarking model used in [27] with a single fully-
connected layer as its cell function. Following the same
setting in [27], we train it over synthetic samples gener-
ated by their code [47] – each sample is associated with a
complete binary tree with 256 leaves (therefore 511 ver-
tices per graph); (d) Tree-LSTM: a family of dynamic
NNs widely adopted for text analysis [26, 51]. We im-
plement the binary child-sum Tree-LSTM in [45], and
train it as a sentiment classifier using Stanford sentiment
treebank (SST) dataset [40]. The dataset contains 8544
training sentences, each associated with a human anno-
tated grammar tree, and the longest one has 54 words.

5.1 Overall Performance
We first verify the viability of our design on the easiest-
to-batch case: Fixed-LSTM language model. We com-
pare Cavs to the following three strong baselines: (1)
CuDNN [6]: a CuDNN-based fixed-step sequence LSTM,
which is highly optimized by NVIDIA using handcrafted
kernels and stands as the best performed implementation
on NVIDIA GPUs; (2) TF: the official implementation
of Fixed-LSTM LM in TensorFlow repository [46] based
on static declaration; (3) DyNet: we implement a 64-step

944 2018 USENIX Annual Technical Conference USENIX Association

1 16 32 64 128 256

0.
03

0.
06

0.
09

0.
12

Ti
m

e
(x

1e
3

s)

0.
13

0.
27

0.
55

0.
75 (a) Fixed-LSTM (h = 512)

CuDNN
Cavs
TF
DyNet

1 16 32 64 128 256

0.
05

0.
10

0.
15

0.
20

0.
39

1.
37

0.
82 (b) Var-LSTM (h = 512)

Cavs
TF
DyNet

1 16 32 64 128 256

0.
02

0.
04

0.
06

0.
08

0.
3 (c) Tree-FC (h = 512)

Cavs
Fold
DyNet

1 16 32 64 128 256

0.
02

0.
04

0.
06

0.
08

0.
55 (d) Tree-LSTM (h = 512)

Cavs
Fold
DyNet

64 128 256 512 1024 2048

0.
03

0.
06

0.
09

0.
12

Ti
m

e
(x

1e
3

s)

0.
16(e) Fixed-LSTM (b = 64)

CuDNN
Cavs
TF
DyNet

64 128 256 512 1024 2048

0.
05

0.
10

0.
15

0.
20

0.
29(f) Var-LSTM (b = 64)

Cavs
TF
DyNet

64 128 256 512 1024 2048

0.
02

0.
04

0.
06

0.
08

0.
12(g) Tree-FC (b = 64)

Cavs
Fold
DyNet

64 128 256 512 1024 2048

0.
02

0.
04

0.
06

0.
08

(h) Tree-LSTM (b = 64)

Cavs
Fold
DyNet

Figure 8: Comparing five systems on the averaged time to finish one epoch of training on four models: Fixed-LSTM, Var-LSTM,
Tree-FC and Tree-LSTM. In (a)-(d) we fix the hidden size h and vary the batch size bs, while in (e)-(h) we fix bs and vary h.

LSTM in DyNet based on dynamic declaration – we de-
clare a dataflow graph per sample, and train with the au-
tobatching [34] enabled; (4) Cavs with batching policy,
and all input samples have a same input graph – a 64-
node chain. We train the model to converge, and report
the average time per epoch in Fig 8(a)(e), where in (a) we
fix the hidden size h of the LSTM unit as 512 and vary
the batch size bs, and in (e) we fix bs = 64 and vary h.
Empirically, CuDNN performs best in all cases, but note
it is highly inflexible. Cavs performs slightly better than
TF in various settings, verifying that our system has little
overhead handling fully static graphs, though it is spe-
cialized for dynamic ones. We also conclude from Fig 8
that batching is essential for GPU-based DL: bs = 128 is
nearly one order of magnitude faster than bs = 1 regard-
less of used frameworks. For Cavs, the batching policy
is 1.7x, 3.8x, 7.0x, 12x, 15x, 25x, 36x faster than non-
batched at bs = 2,4,8,16,32,64,128, respectively.

Next, we experiment with Var-LSTM, the most com-
monly used RNN for variable-length sequences. We
compare the following three implementations (CuDNN-
based LSTM cannot handle variable-length inputs): (1)
TF: an official TensorFlow implementation based on the
dynamic unroll approach described in §6; (2) DyNet: an
official implementation from DyNet benchmark reposi-
tory based on dynamic declaration [10]; (3) Cavs: where
each input sentence is associated with a chain graph that
has number of vertices equal to the number of words. We
vary h and bs, and report the results in Figure 8(b)(f), re-
spectively. Although all three systems perform batched
computation in different ways, Cavs is consistently 2-3
times faster than TF, and outperforms DyNet by a large
margin. Compared to TF, Cavs saves computational re-
sources. TF dynamically unrolls the LSTM unit accord-
ing to the longest sentence in the current batch, but it
cannot prevent unnecessary computation for those sen-
tences that are shorter than the longest one.

We then turn to Tree-FC, a dynamic model for bench-
marking. Since vanilla TensorFlow is unable to batch
its computation, we compare Cavs to (1) DyNet and (2)
Fold, a specialized library built upon TensorFlow for dy-

namic NNs, with a depth-based dynamic batching strat-
egy. To enable the batching, it however needs to prepro-
cess the input graphs, translate them into intermediate
representations and pass them to lower-level TensorFlow
control flow engine for execution. We report the results
in Figure 8(c)(g) with varying bs and h, respectively. For
all systems, we allocate a single CPU thread for graph
preprocessing or construction. Cavs shows at least an
order of magnitude speedups than Fold and DyNet at
h≤ 512. Because the size of the synthetic trees is large,
one major advantage of Cavs over them is the allevia-
tion of graph preprocessing/construction overhead. With
a single CPU thread, Fold takes even more time on graph
preprocessing than computation (§5.3).

Finally, we compare three frameworks on Tree-LSTM

in Figure 8(d)(h): Cavs is 8-10x faster than Fold, and
consistently outperforms DyNet. One difference in this
experiment is that we allocate as many CPU threads as
possible (32 on our machine) to accelerate graph pre-
processing for Fold, otherwise it will take much longer
time. Further, we note DyNet performs much better here
than on Tree-FC, as the size of the input graphs in SST
(maximally 54 leaves) is much smaller than the synthetic
ones (256 leaves each) in Tree-FC experiments. We
observe DyNet needs more time on graph construction
for large input graphs, and DyNet’s dynamic batching is
less effective on larger input graphs, as it has to perform
frequent memory checks to support its dynamic batch-
ing, which we will discuss in §5.3. We also compare
Cavs with PyTorch – its per-epoch time on Tree-LSTM
is 542s, 290x slower than Cavs when the batch size is
256. Compared to other systems, PyTorch cannot batch
the execution of dynamic NNs.

5.2 Graph Construction and Computation
In this section, we investigate the graph construction
overhead in Fold and DyNet. To batch computation of
different graphs, Fold analyzes the input graphs to recog-
nize batch-able dynamic operations, then translates them
into intermediate instructions, with which, TensorFlow
generates appropriate control flow graphs for evaluation
– we will treat the overhead caused in both steps as

USENIX Association 2018 USENIX Annual Technical Conference 945

20
40

60
80

20
40

60
80

Pe
rc

en
ta

ge
(%

)

Percentage
Cavs
Fold-1
Fold-32
DyNet

32 64 128 256 512 1024
Num of Leaves

4
8

12
16

Ti
m

e
(s

)
(a) Tree-FC (bs = 64, h = 512)

1 16 32 64 128 256
Batch Size (bs)

0.
6

1.
2

1.
8

2.
4 (b) Tree-LSTM (h = 512)

Time
Cavs
Fold-32
DyNet

Figure 9: The averaged graph construction overhead per epoch
when training (a) Tree-FC with different size of input graphs
(b) Tree-LSTM with different batch size. The curves show ab-
solute time in second (left y-axis), and the bar graphs show its
percentage of the overall time (right y-axis).

Fold’s graph construction overhead. DyNet, as a typ-
ical dynamic declaration framework, has to construct as
many dataflow graphs as the number of samples. Though
DyNet has optimized its graph construction to make it
lightweight, the overhead still grows with the training set
and the size of input graphs. By contrast, Cavs takes con-
stant time to construct a small dataflow graph encoded
by F , then reads input graphs through I/O. To quantify
the overhead, we separate the graph construction from
computation, and visualize in Figure 9(a) how it changes
with the average number of leaves (graph size) of input
graphs on training Tree-FC, with fixed bs = 64,h = 512.
We compare (1) Cavs (2) Fold-1 which is Fold with one
graph processing thread and (3) DyNet. We plot for one
epoch, both the (averaged) absolute time for graph con-
struction and it percentage of the overall time. Clearly
we find that all three systems take increasingly more time
when the size of the input graphs grows, but Cavs, which
loads graphs through I/O, causes the least overhead at
all settings. In terms of the relative time, Fold unfortu-
nately wastes 50% at 32 leaves, and 80% when the tree
has 1024 leaves, while DyNet and Cavs take only 10%
and 20%, respectively.

We also wonder how the overhead is related with batch
size when there is fixed computational workload. We
report in Figure 9(b) the same metrics when training
Tree-LSTM with varying bs. We add another baseline
Fold-32 with 32 threads for Fold’s graph preprocess-
ing. As Fold-1 takes much longer time than others,
we report its time at bs = 1,16,32,64,128,256 here (in-
stead of showing in Figure 9): 1.1, 7.14, 31.35, 40.1,
46.13, 48.77. Except bs = 1, all three systems (except
Fold-1) take almost constant time for graph construc-
tion in one epoch, regardless of bs, while Fold-32 and
DyNet take similar time, but Cavs takes 20x less. Nev-
ertheless, at the percentage scale, increasing bs makes
this overhead more prominent, because larger batch size
yields improved computational efficiency, therefore less
time to finish one epoch. This, from one perspective, re-
flects that the graph construction is a main obstacle that
grows with the number of training samples and prevents
the efficient training of dynamic NNs in existing frame-

#
leaves time (s) Speedup bs time (s) Speedup

32 0.6 / 3.1 / 4.1 5.4 / 7.1 1 76 / 550 / 62 7.2 / 0.8
64 1.1 / 3.9 / 8.0 3.7 / 7.5 16 9.8 / 69 / 12 7.0 / 1.2

128 2 / 6.2 / 16 3.0 / 7.9 32 6.2 / 43 / 9.9 7.0 / 1.6
256 4 / 10.6 / 33.7 2.7 / 8.7 64 4.1 / 29 / 7.4 7.2 / 1.8
512 8 / 18.5 / 70.6 2.3 / 8.9 128 2.9 / 20.5 / 5.9 7.1 / 2.0
1024 16 / 32 / 153 2.1 / 9.7 256 2.3 / 15.8 / 5.4 7.0 / 2.4

Table 1: The averaged computation time (Cavs/Fold/DyNet)
and the speedup (Cavs vs Fold/DyNet) for training one epoch
on Tree-FC with varying size of the input trees (left part), and
on Tree-LSTM with varying batch size (right part).

works, while Cavs successfully overcomes this barrier.
Apart from the graph construction we report in Ta-

ble 1 the computation-only time. Cavs shows maximally
5.4x/9.7x and 7.2x/2.4x speedups over Fold/DyNet on
Tree-FC and Tree-LSTM, respectively. The advantages
stem from two main sources: an optimized graph exe-
cution engine, and a better-suited memory management
strategy, which we investigate next.
5.3 Optimizations
Graph Execution Engine. To reveal how much each
optimization in §3.4 contributes to the final performance,
we disable lazy batching, fusion and streaming in Cavs
and set this configuration as a baseline (speedup = 1).
We then turn on one optimization at a time and record
how much speedup it brings. We train Fixed-LSTM

and Tree-LSTM, and report the averaged speedups one
computation-only time in one epoch over the baseline
configuration in Fig 10, with bs = 64 but varying h.
Lazy batching and fusion consistently deliver nontrivial
improvement – lazy batching is more beneficial with a
larger h while fusion is more effective at smaller h, which
are expected: lazy batching mainly parallelizes matrix-
wise operations (e.g. matmul) commonly with O(h2)
or higher complexity, while fusion mostly works on ele-
mentwise operations with O(h) complexity [19].

Streaming, compared to the other strategies, is less ef-
fective on Tree-LSTM than on Fixed-LSTM, as we have
found the depth of the input trees in SST exhibit high
variance, i.e. some trees are much deeper than others. In
this case, many batching tasks only have one vertex to be
evaluated. The computation is highly fragmented and the
efficiency is bounded by kernel launching latency. Lazy
batching and fusion still help as they both reduce kernel
launches (§3.4). Streaming, which tries to pipeline mul-
tiple kernels, can hardly yield obvious improvement.
Memory Management. Cavs’ performance advantage
also credits to its memory management that reduces
memory movements while guarantees continuity. Quan-
titatively, it is difficult to compare Cavs to Fold, as
Fold relies on TensorFlow where memory management
is highly coupled with other system aspects. Qualita-
tively, we find Cavs requires less memory movement
(e.g. memcpy) during dynamic batching. Built upon
the tf while operator, whenever Fold performs depth-

946 2018 USENIX Annual Technical Conference USENIX Association

Programming
Model Frameworks Expressiveness Batching Graph Construction

Overhead
Graph

Optimization
static declaration Caffe, TensorFlow ×

√
low beneficial

dynamic declaration
(eager evaluation) PyTorch, Chainer

√
× N/A unavailable

dynamic declaration
(lazy evaluation) DyNet

√ √
high limited benefits

Fold TensorFlow-Fold
√ √

high unknown
Vertex-centric Cavs

√ √
low beneficial

Table 2: A side-by-side comparison of existing programming models for dynamic NNs, and their advantages and disadvantages.

64 128 256 512 1024 2048
Hidden Size (h)

1.0

1.1

1.2

1.3

1.4

1.5

Sp
ee

du
p

(x
)

(a) Fixed-LSTM (bs = 64)
Lazy-batching
Fusion
Streaming

64 128 256 512 1024 2048
Hidden Size (h)

1.0

1.1

1.2

1.3

1.4

1.5
(b) Tree-LSTM (bs = 64)

Lazy-batching
Fusion
Streaming

Figure 10: Improvement of each optimization strategy on exe-
cution engine over a baseline configuration (speedup = 1).

bs
Memory operations
(s) (Cavs / DyNet)

Computation (s)
(Cavs / DyNet)

Train Inference Train Inference

16 1.14 / 1.33 0.6 / 1.33 9.8 / 12 2.9 / 8.53
32 0.67 / 0.87 0.35 / 0.87 6.1 / 9.8 1.9 / 5.35
64 0.39 / 0.6 0.21 / 0.6 4.0 / 7.4 1.3 / 3.48
128 0.25 / 0.44 0.13 / 0.44 2.9 / 5.9 0.97 / 2.52
256 0.17 / 0.44 0.09 / 0.44 2.3 / 5.4 0.77 / 2.58

Table 3: Breakdowns of average time per epoch on memory-
related operations and computation, comparing Cavs to DyNet
on training and inference of Tree-LSTM with varying bs.

based batching at depth d, it has to move all the contents
of nodes in the dataflow graphs at depth d−1 to a desired
location, as the control flow does not support cross-depth
memory indexing. This results in redundant memcpy, es-
pecially when the graphs are highly skewed. By contrast,
Cavs only copies contents that are necessary to the batch-
ing task. DyNet has a specialized memory management
strategy for dynamic NNs. Compared to Cavs, it however
suffers substantial overhead caused by repeated checks
of the memory continuity – whenever DyNet wants to
batch operators with same signatures, it checks whether
their inputs are continuous on memory [34]. The check-
ing overhead increases with bs and is more prominent on
GPUs. Thanks to the simplicity of both systems, we are
able to profile the memory-related overhead during both
training and inference, and separate it from computation.
We compare them on TreeLSTM, and report the break-
down time per epoch in Table 3 under different bs. We
observe the improvement is significant (2x - 3x) at larger
bs, especially during inference where DyNet has its con-
tinuity checks concentrated.

6 Related Work
DL programming models. In addition to §2.2, we sum-
marize in Table 2 the major programming models and
frameworks for dynamic NNs, and their pros and cons, in
contrast to Cavs. Within static frameworks, there are also
efforts on adapting static declaration to support sequence

RNNs, such as static unrolling [17], bucketing [15] and
dynamic unrolling [16]. The ideas are to pad zero at the
end of samples so that they have the same structure (i.e.
same length) for batched computation. However, they all
result in unnecessary computation and can not express
more complex structures than sequences. Asynchronous
model-parallelism [13] enables the concurrent execution
of different graphs similar to batched execution in Cavs,
it however may suffer from insufficient cache re-usage
and overhead by multiple kernel launches (on GPUs).
Execution optimization. A variety of developed tech-
niques from other areas (e.g. kernel fusion, constant
folding) have been adapted to speed the computation of
DL dataflow graphs [1, 5, 12, 18]. Cavs separates the
static vertex function from the dynamic-varying input
graph, so it benefits from most of the aforementioned
optimizations. We learn from these strategies and reflect
them in Cavs’ execution engine. We further propose lazy
batching and concurrent execution to exploit more paral-
lelism exposed by our APIs.
Graph-based systems. The vertex-centric programming
model has been extensively developed in graph comput-
ing [29, 14, 4, 41]. Cavs draws insights from the GAS
model [14], but is fundamentally different: gather and
scatter in Cavs are fully symbolic – they allow back-
propagation through them; graph computing systems
compute on large natural graphs, while Cavs addresses
problems that each sample has a unique graph and the
training is iterative on batches of samples. In terms of
system design, Cavs also faces different challenges, such
as scheduling for batched execution of different graphs,
guaranteeing the memory continuity. There are also
some graph-based ML systems, such as GraphLab [28],
but they do not handle instance-based graphs, and do not
offer batching advantages for dynamic DL workloads.

7 Conclusion
We present Cavs, an efficient system for dynamic neu-
ral networks. With a novel representation, designed
scheduling policy, memory management strategy, and
graph execution optimizations, Cavs avoids substantial
graph construction overhead, allows for batched com-
putation over different structured graphs, and can bene-
fit from well-established graph optimization techniques.
We compare Cavs to state-of-the-art systems for dynamic
NNs and report a near one order of magnitude speedup
across various dynamic NN architectures and settings.

USENIX Association 2018 USENIX Annual Technical Conference 947

References

[1] ABADI, M., BARHAM, P., CHEN, J., CHEN, Z.,
DAVIS, A., DEAN, J., DEVIN, M., GHEMAWAT,
S., IRVING, G., ISARD, M., ET AL. Tensorflow:
A system for large-scale machine learning. arXiv
preprint arXiv:1605.08695 (2016).

[2] BAHDANAU, D., CHO, K., AND BENGIO, Y.
Neural machine translation by jointly learning to
align and translate. arXiv preprint arXiv:1409.0473
(2014).

[3] BERGSTRA, J., BASTIEN, F., BREULEUX, O.,
LAMBLIN, P., PASCANU, R., DELALLEAU, O.,
DESJARDINS, G., WARDE-FARLEY, D., GOOD-
FELLOW, I. J., BERGERON, A., AND BENGIO, Y.
Theano: Deep Learning on GPUs with Python. In
NIPSW (2011).

[4] CHEN, R., SHI, J., CHEN, Y., AND CHEN, H.
Powerlyra: Differentiated graph computation and
partitioning on skewed graphs. In Proceedings of
the Tenth European Conference on Computer Sys-
tems (2015), ACM, p. 1.

[5] CHEN, T., LI, M., LI, Y., LIN, M., WANG, N.,
WANG, M., XIAO, T., XU, B., ZHANG, C., AND
ZHANG, Z. Mxnet: A flexible and efficient ma-
chine learning library for heterogeneous distributed
systems. arXiv preprint arXiv:1512.01274 (2015).

[6] CHETLUR, S., WOOLLEY, C., VANDERMERSCH,
P., COHEN, J., TRAN, J., CATANZARO, B., AND
SHELHAMER, E. cudnn: Efficient primitives for
deep learning. arXiv preprint arXiv:1410.0759
(2014).

[7] CUI, H., ZHANG, H., GANGER, G. R., GIB-
BONS, P. B., AND XING, E. P. Geeps: Scal-
able deep learning on distributed gpus with a gpu-
specialized parameter server. In Proceedings of the
Eleventh European Conference on Computer Sys-
tems (2016), ACM, p. 4.

[8] DAVE, C., BAE, H., MIN, S.-J., LEE, S., EIGEN-
MANN, R., AND MIDKIFF, S. Cetus: A source-to-
source compiler infrastructure for multicores. Com-
puter 42, 12 (2009).

[9] DONAHUE, J., ANNE HENDRICKS, L., GUADAR-
RAMA, S., ROHRBACH, M., VENUGOPALAN, S.,
SAENKO, K., AND DARRELL, T. Long-term recur-
rent convolutional networks for visual recognition
and description. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition
(2015), pp. 2625–2634.

[10] DYNET VARIABLE LENGTH LSTM. https://

github.com/neulab/dynet-benchmark.

[11] FACEBOOK. http://pytorch.org/.

[12] FACEBOOK OPEN SOURCE. Caffe2 is a
lightweight, modular, and scalable deep learn-
ing framework. https://github.com/caffe2/

caffe2, 2017.

[13] GAUNT, A., JOHNSON, M., RIECHERT, M., TAR-
LOW, D., TOMIOKA, R., VYTINIOTIS, D., AND
WEBSTER, S. Ampnet: Asynchronous model-
parallel training for dynamic neural networks.
arXiv preprint arXiv:1705.09786 (2017).

[14] GONZALEZ, J. E., LOW, Y., GU, H., BICKSON,
D., AND GUESTRIN, C. Powergraph: Distributed
graph-parallel computation on natural graphs.

[15] GOOGLE. Tensorflow bucketing. https://

www.tensorflow.org/versions/r0.12/api_

docs/python/contrib.training/bucketing.

[16] GOOGLE. Tensorflow dynamic rnn.
https://www.tensorflow.org/api_docs/

python/tf/nn/dynamic_rnn.

[17] GOOGLE. Tensorflow static rnn. https:

//www.tensorflow.org/api_docs/python/

tf/nn/static_rnn.

[18] GOOGLE TENSORFLOW XLA. https://www.

tensorflow.org/performance/xla/.

[19] GUSTAFSON, J. L. Reevaluating amdahl’s law.
Communications of the ACM 31, 5 (1988), 532–
533.

[20] GYSI, T., OSUNA, C., FUHRER, O., BIANCO,
M., AND SCHULTHESS, T. C. Stella: A domain-
specific tool for structured grid methods in weather
and climate models. In High Performance Comput-
ing, Networking, Storage and Analysis, 2015 SC-
International Conference for (2015), IEEE, pp. 1–
12.

[21] HINTON, G., DENG, L., YU, D., DAHL, G. E.,
MOHAMED, A.-R., JAITLY, N., SENIOR, A.,
VANHOUCKE, V., NGUYEN, P., SAINATH, T. N.,
ET AL. Deep neural networks for acoustic model-
ing in speech recognition: The shared views of four
research groups. IEEE Signal Processing Magazine
29, 6 (2012), 82–97.

[22] HOCHREITER, S., AND SCHMIDHUBER, J. Long
short-term memory. Neural computation 9, 8
(1997), 1735–1780.

948 2018 USENIX Annual Technical Conference USENIX Association

https://github.com/neulab/dynet-benchmark
https://github.com/neulab/dynet-benchmark
http://pytorch.org/
https://github.com/caffe2/caffe2
https://github.com/caffe2/caffe2
https://www.tensorflow.org/versions/r0.12/api_docs/python/contrib.training/bucketing
https://www.tensorflow.org/versions/r0.12/api_docs/python/contrib.training/bucketing
https://www.tensorflow.org/versions/r0.12/api_docs/python/contrib.training/bucketing
https://www.tensorflow.org/api_docs/python/tf/nn/dynamic_rnn
https://www.tensorflow.org/api_docs/python/tf/nn/dynamic_rnn
https://www.tensorflow.org/api_docs/python/tf/nn/static_rnn
https://www.tensorflow.org/api_docs/python/tf/nn/static_rnn
https://www.tensorflow.org/api_docs/python/tf/nn/static_rnn
https://www.tensorflow.org/performance/xla/
https://www.tensorflow.org/performance/xla/

[23] JIA, Y., SHELHAMER, E., DONAHUE, J.,
KARAYEV, S., LONG, J., GIRSHICK, R.,
GUADARRAMA, S., AND DARRELL, T. Caffe:
Convolutional architecture for fast feature embed-
ding. arXiv preprint arXiv:1408.5093 (2014).

[24] KRIZHEVSKY, A., SUTSKEVER, I., AND HIN-
TON, G. E. ImageNet Classification with Deep
Convolutional Neural Networks. In NIPS (2012).

[25] LIANG, X., HU, Z., ZHANG, H., GAN, C.,
AND XING, E. P. Recurrent topic-transition gan
for visual paragraph generation. arXiv preprint
arXiv:1703.07022 (2017).

[26] LIANG, X., SHEN, X., FENG, J., LIN, L., AND
YAN, S. Semantic object parsing with graph
lstm. In European Conference on Computer Vision
(2016), Springer, pp. 125–143.

[27] LOOKS, M., HERRESHOFF, M., HUTCHINS,
D., AND NORVIG, P. Deep learning with
dynamic computation graphs. arXiv preprint
arXiv:1702.02181 (2017).

[28] LOW, Y., GONZALEZ, J. E., KYROLA, A., BICK-
SON, D., GUESTRIN, C. E., AND HELLERSTEIN,
J. Graphlab: A new framework for parallel ma-
chine learning. arXiv preprint arXiv:1408.2041
(2014).

[29] MALEWICZ, G., AUSTERN, M. H., BIK, A. J.,
DEHNERT, J. C., HORN, I., LEISER, N., AND
CZAJKOWSKI, G. Pregel: a system for large-
scale graph processing. In Proceedings of the 2010
ACM SIGMOD International Conference on Man-
agement of data (2010), ACM, pp. 135–146.

[30] MIKOLOV, T., CHEN, K., CORRADO, G., AND
DEAN, J. Efficient estimation of word rep-
resentations in vector space. arXiv preprint
arXiv:1301.3781 (2013).

[31] MITCHELL, D. C. Sentence parsing. Handbook of
psycholinguistics (1994), 375–409.

[32] MURRAY, D. G., MCSHERRY, F., ISAACS, R., IS-
ARD, M., BARHAM, P., AND ABADI, M. Naiad:
a timely dataflow system. In Proceedings of the
Twenty-Fourth ACM Symposium on Operating Sys-
tems Principles (2013), ACM, pp. 439–455.

[33] NEUBIG, G., DYER, C., GOLDBERG, Y.,
MATTHEWS, A., AMMAR, W., ANASTASOPOU-
LOS, A., BALLESTEROS, M., CHIANG, D.,
CLOTHIAUX, D., COHN, T., ET AL. Dynet: The
dynamic neural network toolkit. arXiv preprint
arXiv:1701.03980 (2017).

[34] NEUBIG, G., GOLDBERG, Y., AND DYER, C. On-
the-fly operation batching in dynamic computation
graphs. arXiv preprint arXiv:1705.07860 (2017).

[35] NVIDIA. http://docs.nvidia.com/cuda/

nvrtc/index.html.

[36] PASZKE, A., GROSS, S., CHINTALA, S.,
CHANAN, G., YANG, E., DEVITO, Z., LIN, Z.,
DESMAISON, A., ANTIGA, L., AND LERER, A.
Automatic differentiation in pytorch.

[37] QUINLAN, D. Rose: Compiler support for object-
oriented frameworks. Parallel Processing Letters
10, 02n03, 215–226.

[38] RAGAN-KELLEY, J., BARNES, C., ADAMS, A.,
PARIS, S., DURAND, F., AND AMARASINGHE,
S. Halide: a language and compiler for optimiz-
ing parallelism, locality, and recomputation in im-
age processing pipelines. ACM SIGPLAN Notices
48, 6 (2013), 519–530.

[39] SIMONYAN, K., AND ZISSERMAN, A. Very
Deep Convolutional Networks for Large-Scale Im-
age Recognition. In ICLR (2015).

[40] SOCHER, R., PERELYGIN, A., WU, J., CHUANG,
J., MANNING, C. D., NG, A., AND POTTS, C.
Recursive deep models for semantic composition-
ality over a sentiment treebank. In Proceedings of
the 2013 conference on empirical methods in natu-
ral language processing (2013), pp. 1631–1642.

[41] SUNDARAM, N., SATISH, N., PATWARY, M.
M. A., DULLOOR, S. R., ANDERSON, M. J.,
VADLAMUDI, S. G., DAS, D., AND DUBEY, P.
Graphmat: High performance graph analytics made
productive. Proceedings of the VLDB Endowment
8, 11 (2015), 1214–1225.

[42] SUNDERMEYER, M., SCHLÜTER, R., AND NEY,
H. Lstm neural networks for language modeling. In
Thirteenth Annual Conference of the International
Speech Communication Association (2012).

[43] SUTSKEVER, I., VINYALS, O., AND LE, Q. V. Se-
quence to sequence learning with neural networks.
In Advances in neural information processing sys-
tems (2014), pp. 3104–3112.

[44] SZEGEDY, C., LIU, W., JIA, Y., SERMANET, P.,
REED, S., ANGUELOV, D., ERHAN, D., VAN-
HOUCKE, V., RABINOVICH, A., ET AL. Going
deeper with convolutions.

[45] TAI, K. S., SOCHER, R., AND MANNING,
C. D. Improved semantic representations from

USENIX Association 2018 USENIX Annual Technical Conference 949

http://docs.nvidia.com/cuda/nvrtc/index.html
http://docs.nvidia.com/cuda/nvrtc/index.html

tree-structured long short-term memory networks.
arXiv preprint arXiv:1503.00075 (2015).

[46] TENSORFLOW FIXED-SIZED LSTM LANGUAGE
MODEL. https://github.com/tensorflow/

models/blob/master/tutorials/rnn/ptb/

ptb_word_lm.py.

[47] TENSORFLOW FOLD BENCHMARK CODE.
https://github.com/tensorflow/fold/

tree/master/tensorflow_fold/loom/

benchmarks.

[48] THE PENN TREE BANK (PTB) DATASET.
http://www.fit.vutbr.cz/~imikolov/

rnnlm/simple-examples.tgz.

[49] TOKUI, S., OONO, K., HIDO, S., AND CLAYTON,
J. Chainer: a next-generation open source frame-
work for deep learning. In Proceedings of work-
shop on machine learning systems (LearningSys) in
the twenty-ninth annual conference on neural infor-
mation processing systems (NIPS) (2015), vol. 5.

[50] TOKUI, S., OONO, K., HIDO, S., AND CLAYTON,
J. Chainer: a next-generation open source frame-
work for deep learning. In Proceedings of Work-
shop on Machine Learning Systems (LearningSys)
in The Twenty-ninth Annual Conference on Neural
Information Processing Systems (NIPS) (2015).

[51] VINYALS, O., KAISER, Ł., KOO, T., PETROV, S.,
SUTSKEVER, I., AND HINTON, G. Grammar as a
foreign language. In Advances in Neural Informa-
tion Processing Systems (2015), pp. 2773–2781.

[52] WALT, S. V. D., COLBERT, S. C., AND VARO-
QUAUX, G. The numpy array: a structure for ef-
ficient numerical computation. Computing in Sci-
ence & Engineering 13, 2 (2011), 22–30.

[53] YAN, Z., ZHANG, H., JAGADEESH, V., DE-
COSTE, D., DI, W., AND PIRAMUTHU, R. Hd-
cnn: Hierarchical deep convolutional neural net-
work for image classification. ICCV (2015).

[54] YAN, Z., ZHANG, H., WANG, B., PARIS, S., AND
YU, Y. Automatic photo adjustment using deep
neural networks. ACM Transactions on Graphics
(TOG) 35, 2 (2016), 11.

[55] ZAREMBA, W., SUTSKEVER, I., AND VINYALS,
O. Recurrent neural network regularization. arXiv
preprint arXiv:1409.2329 (2014).

[56] ZHANG, H., HU, Z., WEI, J., XIE, P., KIM,
G., HO, Q., AND XING, E. Poseidon: A
system architecture for efficient gpu-based deep

learning on multiple machines. arXiv preprint
arXiv:1512.06216 (2015).

[57] ZHANG, H., ZHENG, Z., XU, S., DAI, W., HO,
Q., LIANG, X., HU, Z., WEI, J., XIE, P., AND
XING, E. P. Poseidon: An efficient communication
architecture for distributed deep learning on GPU
clusters. In 2017 USENIX Annual Technical Con-
ference (USENIX ATC 17) (Santa Clara, CA, 2017),
USENIX Association, pp. 181–193.

950 2018 USENIX Annual Technical Conference USENIX Association

https://github.com/tensorflow/models/blob/master/tutorials/rnn/ptb/ptb_word_lm.py
https://github.com/tensorflow/models/blob/master/tutorials/rnn/ptb/ptb_word_lm.py
https://github.com/tensorflow/models/blob/master/tutorials/rnn/ptb/ptb_word_lm.py
https://github.com/tensorflow/fold/tree/master/tensorflow_fold/loom/benchmarks
https://github.com/tensorflow/fold/tree/master/tensorflow_fold/loom/benchmarks
https://github.com/tensorflow/fold/tree/master/tensorflow_fold/loom/benchmarks
http://www.fit.vutbr.cz/~imikolov/rnnlm/simple-examples.tgz
http://www.fit.vutbr.cz/~imikolov/rnnlm/simple-examples.tgz

	Introduction
	Background
	Dynamic Neural Networks
	Programming Dynamic NNs
	Motivation

	Cavs Design and Optimization
	Programming Interface
	Scheduling
	Memory Management
	Optimizing Execution Engine

	Implementation
	Evaluation
	Overall Performance
	Graph Construction and Computation
	Optimizations

	Related Work
	Conclusion

