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Abstract

Despite the widespread use of unsupervised Graph Neural Networks (GNNs), their post-hoc
explainability remains underexplored. Current graph explanation methods typically focus on
explaining a single dimension of the final output. However, unsupervised and self-supervised
GNNs produce d-dimensional representation vectors whose individual elements lack clear,
disentangled semantic meaning. To tackle this issue, we draw inspiration from the success of
score-based graph explainers in supervised GNNs and propose a novel framework, grXAI, for
graph representation explainability. grXAI generalizes existing score-based graph explainers to
identify the subgraph most responsible for constructing the latent representation of the input
graph. This framework can be easily and efficiently implemented as a wrapper around existing
methods, enabling the explanation of graph representations through connected subgraphs,
which are more human-intelligible. Extensive qualitative and quantitative experiments
demonstrate grXAI’s strong ability to identify subgraphs that effectively explain learned
graph representations across various unsupervised tasks and learning algorithms.

1 Introduction

Graph neural networks (GNNs) have become increasingly useful in a wide range of applications, such as
drug discovery (Lu et al., 2024; Hajiramezanali et al., 2020), large-scale social networks (Hajiramezanali
et al., 2019), and recommender systems (Hasanzadeh et al., 2019). However, due to their complexity and
opacity, understanding GNNs can be challenging for human users. To tackle this issue, several tools have
been developed to explain supervised GNNs in terms of their predictions. In the supervised setting, a GNN
model learns to map input graphs to labels (f(·) : G −→ Y), and explanations shed light on the model’s
prediction of a specific label. The interpretability of model-agnostic GNN explanation methods stems from
the fact that the particular label1 of interest, such as a chemical property, is meaningful to humans (Figure 1,
left).

1The term label used in the context of explainability refers to the predicted label for the test input graph by the GNN model
being explained, which is distinct from the ground truth label used in the context of supervised ML (Ying et al., 2019).
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Figure 1: (Left) Post-hoc graph explainability methods typically provide explanations based on a specific
label of interest. (Right) Our framework for explaining graph representations provides explanations based
on a d-dimensional representation vector. The Score refers to a range of post-hoc explanation functions
proposed in the literature, including Shapley and Saliency.

On the other hand, unsupervised GNNs map input graphs to representations (f(·) : G −→ H) that cannot be
easily interpreted using existing supervised explanation methods. Although these methods can be used to
understand individual elements in the representation space (hi ∈ H), such explanations are not meaningful to
humans unless the elements have a natural semantic meaning (Lin et al., 2023). Unfortunately, the meaning
of individual elements in the representation space is generally unknown. Two possible solutions have been
proposed: the first approach enforces semantic meaning in the representations, but it requires concept labels
for every training sample, which is often impractical (Koh et al., 2020). The second approach enforces
disentangled representations and manually identifies semantically meaningful elements (Paige et al., 2017),
but this approach is not model-agnostic and requires potentially unwanted changes to the modeling and
training process (Lin et al., 2023).

Another possible approach to solve the aforementioned issue may involve utilizing the existing methods
to explain each element of the representation vector independently and then averaging over them (Crabbé
& van der Schaar, 2022). However, this solution is not sufficient to provide a global understanding of the
latent representation as a whole and does not necessarily generate connected subgraphs as explanations,
which are important for human understanding and to improve consistency (Hajiramezanali et al., 2023).
Additionally, many existing post-hoc explanation methods, such as gradient- or perturbation-based methods,
rely on multiple perturbations or backpropagations of the GNN model to generate explanations for each
input graph, making them time-consuming and impractical when applied to each element of high-dimensional
representations (Chuang et al., 2023). For instance, Shapley-based graph explainers that utilize the GNN
architecture to approximate Shapley values are computationally expensive (Xie et al., 2022). This cost
escalates linearly with the dimension of the representation vector, rendering them impractical for explaining
unsupervised GNNs. Addressing this issue would require non-trivial extensions.

Our main contributions are: (i) We introduce a general framework, grXAI, that adapts model-agnostic
score-based graph explainability methods to explain (representation) vectors. We do this by defining an
auxiliary cosine similarity function as a wrapper around the unsupervised GNN to interpret. (ii) We apply
our framework to different types of graph explainability approaches, including SubgraphX, and introduce
the first graph explainability method for unsupervised settings that can explain the model using connected
subgraphs. (iii) While motivated by the explanation of purely unsupervised graph representation vectors,
the proposed approach is beneficial even for supervised multi-class classifications, generating more robust
and accurate explanations for high-uncertainty cases. (iv) Our experiments show that our methods achieve
state-of-the-art results, both qualitatively and quantitatively, on various self-supervised tasks, including graph
representation and node embedding.

Motivation. Learning meaningful representations of graph-structured data with GNNs is important in many
fields, particularly when labeled data are scarce due to costly and time-consuming experiments(Hasanzadeh
et al., 2021). To this end, applications of GNNs in a wide range of domains, such as drug discovery and
molecular biology (Hasanzadeh et al., 2022), have inspired recent unsupervised and self-supervised strategies
to learn from massive corpora of unlabeled structured data (Sun et al., 2019; You et al., 2020; Hu et al., 2019).
The ability to explain unsupervised GNNs can provide valuable insights into the learned representation,
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Table 1: Comparison of different graph explainers.
Explainer Supervised

GNNs
Unsupervised

GNNs
d-dimensional

vector
Connected
subgraphs

GNNExplainer (Ying et al., 2019) ✓
MI-based PGExplainer (Luo et al., 2020) ✓ ✓†

TAGE (Xie et al., 2022) ✓ ✓ ✓
IG & Saliency (Simonyan et al., 2013; Sundararajan et al., 2017) ✓

Score-based SubgraphX (Yuan et al., 2021) ✓ ✓
grXAI (ours) ✓ ✓ ✓ ✓

† This method is designed to handle probability vectors, such as the outputs of a softmax layer, and is not capable of handling
embedding vectors learned through unsupervised settings.

help researchers understand and compare graph representation learning methods, as well as assist users in
effectively monitoring and debugging these models during deployment. Our proposed framework enables
score-based explainability in unsupervised settings in a scalable way, making it feasible and effective for
real-world applications. Furthermore, our framework offers benefits even in supervised settings, proving
particularly helpful when the model’s predictions are uncertain.

2 Related work

With many recent advances in GNNs and their numerous applications across different fields, explainability
methods have become critical for providing insight into their predictions. To this end, many approaches have
been proposed to explain the predictions of supervised GNN models (Baldassarre & Azizpour, 2019; Ying
et al., 2019; Luo et al., 2020; Xie et al., 2022; Yuan et al., 2021; Zhang et al., 2022; Ye et al., 2024; Huang
et al., 2024; Hasanzadeh et al., 2020).

These methods can be divided into four main categories (Yuan et al., 2020): gradient-, perturbation-,
decomposition-, and surrogate-based methods. In this paper, we mainly focus on gradient-based and
perturbation-based methods. The gradient-based methods are generally fast and easy to implement, but
they may not be able to capture more complex relationships in the data (Yuan et al., 2021; 2020). On the
other hand, perturbation-based methods can be more computationally expensive, but they generally achieve
state-of-the-art performance in terms of explanation quality (Xie et al., 2022). The common characteristic of
most of these methods is that they require labels to specify which element of the GNN’s output to explain.

Instead of explaining individual elements in the representation, recent approaches have focused on explaining
multi-dimensional representation vectors as a whole, which is critical to explaining unsupervised models.
These include TAGE (Xie et al., 2022) in the context of GNNs, and methods such as COCOA (Lin et al.,
2023), RELAX (Wickstrøm et al., 2023), Label-Free XAI (Crabbé & van der Schaar, 2022), and CoRTX
(Chuang et al., 2023) for other domains.

TAGE (Xie et al., 2022) successfully addresses unsupervised GNN settings using a contrastive loss approach.
However, it has two main limitations (see Table 1). First, TAGE is a mutual information-based (MI-based)
explainability method; however, it has been shown that score-based explainability methods outperform
MI-based ones in supervised GNN settings (Yuan et al., 2020). Hence, an open problem is how to leverage
existing score-based methods to explain GNNs in unsupervised settings. Second, TAGE focuses on explaining
the importance of graph edges, but ignores the substructures of graphs. However, explanations consisting of
connected subgraphs have not only been deemed more intuitive to humans in practice (Yuan et al., 2021;
2020), but they are also more consistent in supervised GNN settings (Hajiramezanali et al., 2023).

While the explainability of graph representations remains largely unexplored, several methods have been
proposed to explain unsupervised models for unstructured data. The RELAX and LFXAI approaches share
the goal of identifying features in the sample being explained (i.e., the explicand) that, if removed, would
cause the altered representation to diverge from the original representation of the explicand (Lin et al.,
2023). Chuang et al. (2023) introduce the contrastive real-time explanation (CoRTX) framework, which
utilizes contrastive learning techniques. Unlike previous feature-based methods, Lin et al. (2023) introduce
contrastive corpus attribution (COCOA), which allows users to choose corpus and foil samples in order to
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identify features that make the explicand’s representation similar to the selected corpus, but dissimilar to the
foil samples. These methods do not directly generalize explainability methods designed for GNNs, which often
take into account the non-Euclidean nature of the data, arbitrary size, and complex topological structure.
Furthermore, the large number of possible subgraphs makes it more difficult to explain GNNs than their
counterparts in Convolutional Neural Networks (CNNs). In contrast to these works and in line with Crabbé
& van der Schaar (2022), our framework focuses on extending and generalizing existing graph explainability
methods (which account for GNN-specific features) to the unsupervised representation learning case.

3 Preliminary

Our framework can generalize most of the existing score-based explainability methods to an unsupervised
setting. Therefore, we first outline supervised score-based graph explainability and then overview two types
as proof-of-concept examples. We will show how our framework can generalize them to explain (unsupervised)
graph representations in Section 4. Specifically, we will discuss SubgraphX, which is currently the state-of-the-
art perturbation-based model (Yuan et al., 2020; Hajiramezanali et al., 2023), followed by two computationally
efficient gradient-based methods (Integrated Gradients and Saliency). Additional preliminaries less related to
the proposed method, including graph self-supervised learning and TAGE, can be found in Appendix B.

Notation. Let G = (V, E) denote a graph on nodes V and edges E with the adjacency matrix A and
M -dimensional node attributes X ∈ RN×M , where N = |V|. We are given a trained GNN model f(·),
which is optimized on all graphs (or nodes) in the training set and is then used for predictions. For graph
classification, f(·) : G −→ Y maps each input graph G ∈ G to an output yG = f(G) ∈ Y. For node
classification, f(·) : G −→ Y maps each input node v ∈ G to an output yv = f(v) ∈ Y. Please note that
Y ⊂ Rdy and dy > 1.

3.1 Score-based graph explainability in supervised settings

Given a pre-trained GNN model f(·) : G −→ Y, and assuming {G(i)}ni=1 is the set of subgraphs of the input
graph G ∈ G, where n is the total number of subgraphs, these methods assign a score to each subgraph
G(i) ∈ G based on its importance to the GNN prediction fj(G). Here, fj(G) denotes the j-th element of the
GNN output. Intuitively, the score functions aim to identify the most important subgraphs (G∗) that, when
removed, decrease the predicted probability of a class of interest the most. Therefore, the main component of
such models is the scoring function Score(fj(·), G,G(i)), which calculates the importance of each possible
subgraph with respect to a specific label of interest (Figure 1, left).

A straightforward way to obtain G∗ is to enumerate all possible subgraphs in G (i.e. {G(i)}ni=1), calculate
their scores using the scoring function, and select the most important one as the explanation. However, this
brute-force approach is an intractable combinatorial problem, as the number of potential candidates increases
exponentially. Different approaches address this issue in various ways. Some methods incorporate search
algorithms to efficiently explore the (connected) subgraphs, as seen in SubgraphX, while others calculate the
importance of each node separately, similar to the gradient-based methods. The latter approach leads to
disconnected subgraphs.

3.2 SubgraphX

Key properties of graphs can often be attributed to important and localized structural information. The
goal of SubgraphX (Yuan et al., 2021) is to identify the most important connected subgraph within the input
graph that contributes to the GNN’s predictions. To achieve this, SubgraphX uses a scoring function to
evaluate the importance of different subgraphs based on their interactions with the trained GNN.

Consider the set of connected subgraphs of G as {G(i)}ni=1, where n is the total number of connected subgraphs.
SubgraphX explains the GNN prediction yj for the input graph G as:

G∗ = arg max
|G(i)|≤Nmin

Score Shapley(fj(·), G,G(i)), (1)
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where fj(.) denotes the j-th element of the GNN output, Nmin is an upper bound on the size of a subgraph,
and the Shapley value (Kuhn & Tucker, 1953) has been used as the scoring function. To efficiently explore
the space of possible connected subgraphs, SubgraphX employs Monte Carlo Tree Search (MCTS) (Jin et al.,
2020; Silver et al., 2017) to guide the search process. Specifically, it builds a search tree in which the root is
associated with the input graph and each of the other nodes corresponds to a connected subgraph. Each
edge in the search tree denotes that the graph associated with a child node can be obtained by performing
node-pruning from the graph associated with its parent node (Yuan et al., 2021). Please note that Nmin in
equation 1 is a hyperparameter of MCTS, which controls the size of the important subgraphs.

3.3 Gradient-based methods

Gradient-based methods, including Integrated Gradients (Sundararajan et al., 2017) and Saliency (Simonyan
et al., 2013), address the problem of attributing the prediction of a black-box, here a GNN, to its input
features. Saliency is a simple approach for computing input attribution, returning the gradient of the output
with respect to the input features. This approach can be understood as taking a first-order Taylor expansion
of the network at the input, and the gradients are simply the coefficients of each feature in the linear
representation of the model (Simonyan et al., 2013). The value of these coefficients can be interpreted as
the importance of the features (nodes/edges) in explaining the output of the black-box model. Integrated
Gradients (IG) (Sundararajan et al., 2017) computes the integral of the gradients with respect to the inputs
along the path from a given vector. Similar to Saliency, an attribution at input x relative to a baseline vector
xb represents the contribution of each individual input feature (nodes/edges) to the model prediction.

Formally, given an input graph G and a GNN classifier f(·), these methods rank the nodes vi ∈ G based
on their influence on the predicted label fj(G). Specifically, the importance of each node vi to the GNN
output can be written as Score(fj(·), G, vi), where {vi}|V|

i=1 are the nodes of G. We can then explain a GNN
prediction based on a disconnected subgraph using the top-ranked nodes as G∗ = {vs}V∗

s=1. Here, V∗ is the
total number of important nodes.

4 Method

The grXAI framework is designed to provide explainability for unsupervised GNN models by identifying
important subgraphs that can explain the d-dimensional representation vector generated by these models.
However, current graph explainability methods have limited capability in handling d-dimensional embeddings,
as their score functions are only applicable to a single dimension of the output (Xie et al., 2022). This
limitation makes it challenging to determine which models’ output(s) to interpret in unsupervised settings,
as representation dimensions do not generally correspond to any meaningful quantity. To overcome this
limitation, we first outline score-based graph explanations for d-dimensional outputs of GNNs in a supervised
setting, gaining insights that will enable us to extend the framework to unsupervised GNN settings.

4.1 Explaining d-dimensional GNNs with score-based methods

Score-based graph explainability methods aim to explain the predictions of GNN models by computing
an importance score Score(f(·), G,G(i)) for each subgraph G(i) of G. However, as mentioned in Section 3,
existing importance score functions are designed to be applied to individual elements of the softmax output,
represented by fj(.) ∈ R for some j ∈ 1, . . . , dy, and cannot handle high-dimensional probability vectors. As
a result, they approximate Score(f(·), G,G(i)) as Score(fj(·), G,G(i)), where j = arg maxk∈1,...,dy

fk(·). That
is, the importance score is solely based on the predicted class with the highest probability.

This approach limits the comprehensiveness of the graph explanation. Indeed, it does not account for the
inherent uncertainty in the model’s predictions, particularly in multi-class problems. Thus, it hinders a
complete understanding of the model’s behavior. One possible solution to address this issue is to compute
the importance scores for each output component separately and then combine them into a weighted sum
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across all components, using the associated class probabilities as weights, as follows:

ScoreNaive(f(·), G,G(i)) =
dy∑
k=1

fk(G) · Score(fk(·), G,G(i)). (2)

This formulation considers the contribution of each class and is therefore accurate when class probabilities
are more balanced, unlike the standard definition, which is only accurate for low-uncertainty predictions (i.e.,
when fj(G) ≈ 1). However, using equation 2 has important limitations. Primarily, searching for (connected)
important subgraphs can be computationally expensive given the high number of output dimensions. Specifi-
cally, this approach requires calculating the score function for each input graph dy times (one for each output
dimension), resulting in a total of dy · n importance scores per input graph.

Additionally, while using equation 2 to find connected subgraphs is theoretically possible—by plugging the
naive score function from equation 2 into equation 1 to examine all subgraphs and select the one with the
highest score—this approach is intractable due to the additional computational complexity of searching
for connected subgraphs. In the case of SubgraphX, to manage this additional complexity, we identify
important subgraphs for each output dimension separately using the standard implementation and then merge
them. That is, instead of directly computing G∗ = arg max|G(i)|≤Nmin

[∑dy

k=1 fk(G) · Score(fk(·), G,G(i))
]
,

we identify the important connected subgraphs for each output dimension k individually using G∗
k =

arg max|G(i)|≤N̂min
Score Shapley(fk(·), G,G(i)), and then construct G∗ =

⋃dy

k=1 G
∗
k, where G∗

k is the important
subgraph of k-th element of GNN output.

While this approach can reduce the computational load (given that N̂min, can be smaller than Nmin to achieve
the same level of sparsity), it may result in a disconnected subgraph even when a connected subgraph is
desired, which could limit the effectiveness and comprehensiveness of the graph explanation.

To address the aforementioned issues, we propose to leverage the linearity property of importance scores with
respect to the GNN. This property is common among score functions used for graph explainability, including
Shapley, Saliency, and IG (Crabbé & van der Schaar, 2022). Therefore, we propose to rewrite the weighted
importance score in equation 2 as follows:

Scoresup(f(·), G,G(i)) = Score(
dy∑
k=1

{fk(G) · fk(·)}, G,G(i)), (3)

where Scoresup refers to the scoring function for d-dimensional GNNs output in the supervised settings. The
importance score can be computed efficiently through the auxiliary function ψ(G(i)) =

∑dy

k=1 fk(G) · fk(G(i))
for all subgraphs G(i) ∈ G. This approach avoids the need to compute the importance scores for each output
component individually, thus significantly reducing the computational complexity. Furthermore, it guarantees
explanations consisting of connected subgraphs when applied to a score-based method that returns connected
subgraphs.

Remark 1. The approximation in equation 3 is applicable to most supervised score-based graph explanation
methods that compute linear importance scores, including SubgraphX (Yuan et al., 2021). Rather than
interpreting individual elements of the argmax output, as normally done in SubgraphX, one can use equation 3
to explain supervised GNNs based on all dimensions of their softmax output. Therefore, we can incorporate
this approximation into equation 1 by modifying it as follows:

G∗ = arg max
|G(i)|≤Nmin

Score Shapley(ψ(G(i)), G,G(i)). (4)

Remark 2. It is noteworthy that equation 3 can also be easily extended to gradient-based models such as
Saliency (and IG). In particular, we can calculate the node importance with respect to the GNN output as
Score Sal(f(·), G, vi) = Score Sal(

∑dy

k=1{fk(G) · fk(·)}, G, vi), where Score Sal is the Saliency value.
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4.2 Explanation for graph representations

Notation. In an unsupervised setting, the trained GNN encoder f(·) maps graphs (or nodes) to a latent space.
For graph representation learning, f(·) : G −→ H maps each input graph G ∈ G to the latent representation
hG = f(G) ∈ H ⊂ Rdh , where 1 ≪ dh. For node embedding, f(·) : G −→ H maps each input node v ∈ G to
a latent vector hv = f(v) ∈ H. The goal is to identify important subgraphs that explain the behavior of the
GNN and contribute to the latent representation of the graph or node. Ideally, the importance score should
reflect the contribution of subgraph G(i) to the representation hG = f(G) or hv = f(v). However, in this
setting, there is no principled way to select a particular output component fk(·) for some k ∈ 1, . . . , dh to be
utilized in the current explainability methods (Figure 1, right).

Equation 3 proposes a framework that offers the benefit of approximating the importance scores of the entire
d-dimensional output probability vector, eliminating the need to select a specific output class, which is a
common requirement in many existing score-based graph explainability methods. This enables the extension
of the same approach to explain graph representations, which is the focus of this paper. However, it is
essential to note that while fk(G) in equation 3 corresponds to the class probability and

∑
k fk(G) = 1 in the

supervised setting due to softmax output, the individual dimensions of a latent vector do not necessarily
correspond to probabilities.

To address this limitation in our unsupervised setting, we replaced the weighted sum in equation 3 with the
cosine similarity, which can be seen as a method of normalization and is invariant with respect permutations
of the latent dimensions2.

Definition 3.2. Given a trained GNN encoder f(·) that maps graphs to a latent space H, the importance
score is defined as:

Scorerep(f(·), G,G(i)) ≡ Score(ψ,G,G(i)), (5)

where Scorerep is referring to the score function for graph representation, ψ : G −→ R is an auxiliary function

defined for all subgraphs G(i) ∈ G using ψ(G(i)) =
∑dh

k=1
fk(G)fk(G(i))

|f(G)| |f(G(i))| , where dh is the dimensionality of the
latent space H. It is important to note that this importance score can also be modified for node representation
learning, where the input graph G would be replaced with a single node v ∈ G, and the subgraph G(i) would
be a subset of the nodes and edges connected to v.

Extending SubgraphX for graph representation explainability using grXAI (grSubgraphX). Our
framework is applicable to most existing score-based graph explainability methods. In the following, we focus
on the generalization of SubgraphX (Yuan et al., 2021). The main reasons for our choice are as follows: 1)
SubgraphX is currently SOTA for graph explainability (Yuan et al., 2020; Hajiramezanali et al., 2023), 2) its
explanations consist of connected subgraphs, and 3) due to its computational complexity, using it for graph
representations necessitates a non-trivial extension.

In SubgraphX, the effectiveness of both the MCTS process and the selection of explanations rely heavily on
the accuracy of the chosen scoring function. Therefore, it is crucial to precisely approximate the importance of
various subgraphs. To achieve this, we propose to modify SubgraphX using the importance score in equation 5
for explaining graph representations. Let f(·) : G −→ H represent a GNN encoder, where G = (V, E) ∈ G is a
given graph with node set V = {v1, . . . , vN}. Let G(s) = (V(s), E(s)) be the target subgraph with Ns nodes,
where V(s) = {v(s)

1 , . . . , v
(s)
Ns

} is the set of nodes in G(s), and V(o) = V \ V(s) = {v(o)
1 , . . . , v

(o)
No

} is the set of
all other nodes not in V(s), and No = N −Ns. We define the set of players P as P = {G(s), v

(o)
1 , . . . , v

(o)
No

},
where we consider the entire subgraph G(s) as a single player. In the grXAI version of SubgraphX, named

2The latent space is not tied to any fixed or predetermined labels on each axis. This means that multiple latent spaces with
permuted dimensions can be equivalent to one another. Therefore, the set of transformations that preserve the geometry of the
latent space, as determined by cosine similarity, is the set of orthogonal transformations.

7



Published in Transactions on Machine Learning Research (10/2024)

grSubgraphX, we approximate the Shapley value of the subgraph G(s) as:

φG(s)(ψ) =
∑

R⊆P\G(s)

|R|!(|P | − |R| − 1)!
|P |!

(
ψ(R ∪G(s)) − ψ(R)

)
,

with ψ : G −→ R such that for all G(s) ∈ G, ψ(G(s)) = SC

(
f(G) , f(G(s))

)
, (6)

where R is a possible coalition set of players, G(s) is a connected graph, and SC is cosine similarity. Algorithm
1 in Appendix G includes the computation steps for grSubgraphX. The proposed approximation in equation 6
is both fair and accurate, as it considers all possible coalitions and adheres to the four fundamental axioms
introduced by Lundberg & Lee (2017): efficiency, symmetry, linearity, and the dummy axiom. These desirable
axioms guarantee the validity and impartiality of the explanations for graph representations.

grSaliency. Given an input graph G (with N nodes and M -dimensional node attributes X ∈ RN×M ), and a
GNN encoder f(·) : G −→ H, we calculate the Saliency score for each node as follows. First, we calculate the
derivative wi = ∂ψ

∂vi
∈ RM by backpropagation, where ψ is cosine similarity define in equation 6. After that,

to derive a single Saliency score for each node, we take the magnitude of the average of wi across all node
features: Score Sal(ψ,G, vi) = |mean(wi)|. Finally, we sort the nodes based on their scores and select the
nodes with the highest Saliency values as the subgraph. Formally, G∗ = {vπ(s)}V∗

s=1, where π is a permutation
of nodes {vi}Ni=1 such that Score Sal(ψ,G, vπ(1)) ≥ Score Sal(ψ,G, vπ(2)) ≥ · · · ≥ Score Sal(ψ,G, vπ(N)), and V∗
is the size of desired subgraph.

grIG. Similar to grSaliency, we calculate the IG score for each node individually and select nodes with the
highest IG score for the explanation. Specifically, we first calculate wi = vi

∫ 1
α=0

∂ψ
∂vi

(α× vi) dα. Then, we
obtain the IG score for each node as Score IG(ψ,G, vi) = |mean(wi)|. Similarly, the identified subgraph is G∗ =
{vπ(s)}V∗

s=1, where π is a permutation of nodes {vi}Ni=1 such that Score IG(ψ,G, vπ(1)) ≥ Score IG(ψ,G, vπ(2)) ≥
· · · ≥ Score IG(ψ,G, vπ(N)).

5 Experiments

To evaluate the effectiveness of the proposed method, we performed experiments on various datasets, graph
learning models, and explainability methods. We evaluated our grXAI framework on seven datasets in both
unsupervised and supervised settings, covering synthetic, biological, citation network, and text data. The
details of the experimental settings are included in Appendix F.

MUTAG (Debnath et al., 1991), BBBP (Wu et al., 2018), BACE (Wu et al., 2018), and NCI1 (You
et al., 2020) are molecular datasets for graph representation learning. Each graph in these datasets represents
a molecule, with nodes representing atoms and edges representing bonds. The labels for these datasets
correspond to molecular properties and biological activities. BA-Shapes (Yuan et al., 2020; 2021) is a
synthetic node classification dataset with 4 unique node labels. Each graph includes a base Barabasi-Albert
(BA) graph with embedded five-node house-like motifs. The labels for each node are determined by whether
it belongs to the base graph or different parts of the motif. The Graph-Twitter (Yuan et al., 2020) dataset
is a sentiment graph classification dataset with 3 labels. Yuan et al. (2020) convert each tweet sequence into
a graph, where each node represents a word and edges are the relationships between words. Cora (Sen et al.,
2008) is a citation network for node embedding tasks.

5.1 Evaluation metrics

As the considered real-world datasets do not provide ground truth for explanations, we follow previous studies
(Pope et al., 2019; Xie et al., 2022; Yuan et al., 2020) and adopt Fidelity and Sparsity scores to quantitatively
evaluate the explanations.

Fidelity. This metric is the main available metric for evaluating post-hoc graph explanations. It assesses
whether the input subgraphs identified by the explanation method are important (Yuan et al., 2020). If so,
then removing these subgraphs should result in a significant change in the model’s outputs. In the supervised
setting, Fidelity is calculated as the difference in predicted probability between the original predictions and
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Figure 2: Quantitative results for various explanation techniques, with a preference for higher FidelityCS in
higher Sparsity levels.

the new predictions after masking out important subgraphs (Pope et al., 2019; Yuan et al., 2021). Formally,
given a graph G, the softmax output of the predicted class fc(·), and its explanation as the subgraph G∗, we
define Go = G \G∗ as the other graph, i.e. the graph of all possible nodes that are not in G∗. The Fidelity
score can be computed as Fidelity(G) = fc(G) − fc(Go).

Building on the original definition, we use three types of Fidelity for evaluating explanations for graph
representations: (i) FidelityCS , which measures the negative cosine similarity between the original em-
bedding and the new embedding after masking out the important subgraph. Formally, this is calculated
as −Sc(f(G), f(G(o))); (ii) Fidelityprob, which evaluates the relative importance of the subgraphs on a
downstream task. Specifically, it measures the difference between the predicted probability of the original
embedding and the new embedding after masking out the important subgraph. The predicted probability is
given by a logistic regression model trained on the original embeddings.

Sparsity. Effective explanations should be sparse, which means they should capture the most important
subgraphs and ignore the irrelevant ones (Yuan et al., 2020). Post-hoc graph explainability methods, including
grXAI, can control the size of the identified subgraph through various hyperparameters, and the Sparsity
metric measures the proportion of structures identified as important by the explanation method. It is
important to note that accounting for Sparsity promotes a fair comparison between different methods. Indeed,
larger subgraphs generally improve Fidelity, and therefore explanations with different sizes are not directly
comparable. By comparing Fidelity at the same Sparsity, we compare explanations with the same size.

5.2 Results and discussion

Quantitative studies. We evaluate the quality of graph representations in terms of Fidelity and Sparsity
scores. Specifically, we assess the Fidelity of both raw embedding vectors (FidelityCS) and their downstream
tasks (Fidelityprob) by comparing our grXAI-based methods (grSubgraphX, grIG, and grSaliency) with the
only available baseline, TAGE (Xie et al., 2022). Please refer to Appendix B.2 for a detailed overview of
TAGE. The naive approach (equation 2) is not included due to its significant time cost on real-world datasets.
We trained GNN encoders using two different algorithms for self-supervised graph representation learning,
InfoGraph (Sun et al., 2019) and GraphCL (You et al., 2020).

The performance of the grXAI framework is demonstrated in Figure 2, which shows better Fidelity (higher
FidelityCS) consistently across all levels of Sparsity. This conclusion is also supported by Table 2 (a higher
Fidelityprob corresponds to better performance). Notably, our gradient-based extensions, particularly grIG,
perform exceptionally well on multiple datasets, despite their lower computational complexity compared to
grSubgraphX.

The grSubgraphX approach, the only method that explains graph representation based on connected subgraphs,
outperforms TAGE on all datasets except Graph-Twitter. This is likely due to the nature of molecules, where
localized functional groups significantly affect global molecular properties. Hence, there is a preference for an
inductive bias toward explaining based on connected subgraphs. However, sentiment analysis requires a more
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Table 2: Fidelityprob scores with controlled Sparsity on a downstream molecular property prediction task
based on the graph-level embeddings.

SSLGraph Explainer MUTAG (↑) Twitter (↑) BBBP (↑) NCI1 (↑) BACE (↑)

grSubgraphX (ours) 0.44± 0.39 0.01± 0.17 0.68 ± 0.31 0.13 ± 0.38 0.18 ± 0.53
GraphCL grSaliency (ours) 0.39± 0.68 0.04± 0.26 0.31 ± 0.51 0.09 ± 0.41 0.07 ± 0.52

grIG (ours) 0.43± 0.73 0.04± 0.26 0.14 ± 0.49 0.10 ± 0.40 0.07 ± 0.48
TAGE (Xie et al., 2022) 0.21± 0.33 0.01± 0.15 -0.05 ± 0.24 0.07 ± 0.32 0.06 ± 0.58

grSubgraphX (ours) 0.45± 0.60 0.04± 0.23 0.01± 0.03 0.15± 0.29 0.25± 0.30
InfoGraph grSaliency (ours) 0.38± 0.55 0.11± 0.33 0.00± 0.02 0.13± 0.33 0.14± 0.11

grIG (ours) 0.45± 0.59 0.12± 0.34 0.00± 0.03 0.14± 0.34 0.10± 0.81
TAGE (Xie et al., 2022) 0.36± 0.52 0.04± 0.21 0.01± 0.21 0.10± 0.30 0.06± 0.89
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Figure 3: (Left) The explainability of graph representations for six molecules from the MUTAG dataset.
Carbon, Oxygen, and Nitrogen atoms are highlighted in yellow, red, and blue, respectively. The top row
displays the grSubgraphX explanation, which is a connected subgraph that is more easily interpretable for
molecular graphs. In particular, the grSubgraphX explanation often identifies a carbon ring for mutagenic
compounds, which is consistent with the prior knowledge of the underlying chemistry. (Right) The
explainability of graph representations for five molecules with minor structural changes from the MUTAG
dataset. The grSubgraphX method generates highly stable explanations, while TAGE is not as stable, i.e.,
small changes to the molecular graph produce substantially different explanations.

flexible approach to handling disconnected subgraphs. Our gradient-based techniques, grIG and grSaliency,
outperform grSubgraphX in such cases since they do not have any constraints on providing connected
subgraphs. This flexibility allows them to perform better in scenarios where disconnected subgraphs play a
vital role in the task.

In addition to FidelityCS , we also compare grSubgraphX to TAGE based on the InfidelityCS metric, where
InfidelityCS = −Sc

(
f(G), f(G(∗))

)
. While FidelityCS measures how much the representation changes when

important subgraphs are masked, InfidelityCS directly measures how much the important subgraphs contribute
to the representation. In contrast to FidelityCS , lower InfidelityCS is desired, meaning that the representation
of the identified important subgraph is close to the original graph representation. Figure A1 shows the results
on this metric. As shown, grXAI outperforms the baseline in terms of InfidelityCS , particularly in regions of
higher sparsity. In most cases, the performance is significantly better across a range of sparsity levels. This is
mostly because according to equations 1 and 6, our model’s optimization to find the important subgraph is
based on minimizing the Infidelity metric.

Qualitative studies. To determine the effectiveness of explaining by connected subgraphs in real-world
molecule datasets, we conducted further investigations using the MUTAG dataset, for which a deeper
understanding of the underlying mechanism connecting structural features to the property is available (Yuan
et al., 2021). Specifically, it is known that carbon rings tend to be mutagenic (Debnath et al., 1991). We study
whether the explanations provided by different methods can identify the carbon rings characterizing the positive
class. Our results, presented in Figure 3 (left), demonstrate that 1) our grSubgraphX successfully and precisely
identifies the carbon rings as important subgraphs for the mutagenic class; and 2) grSubgraphX provides
more localized and interpretable explanations for both classes. This is a critical factor in understanding
molecular properties and aiding scientific decision-making, making grSubgraphX a valuable tool for the field.
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Stability study. There have been arguments that post-hoc (graph) explainability methods may lack
stability (Adebayo et al., 2018), as even negligibly slight changes to an instance can lead to significantly
different explanations (Hajiramezanali et al., 2023). To test the stability of the grSubgraphX method, we
compare it with TAGE using the real-world MUTAG dataset. Results in Figure 3 (right) and Figure A5
indicate that grSubgraphX is able to provide consistent explanations for molecules with minor structural
changes, while TAGE produces radically different results in those cases, thus highlighting the stability of our
framework. The stability of grSubgraphX is due to its ability to evaluate the importance of subgraphs as a
set of interconnected nodes instead of considering the importance of individual edges separately, as is done in
TAGE.

Efficiency study. Our framework significantly decreases the computational complexity associated with
graph representation explainability from O(graphXAI) × dh to O(graphXAI), where O(graphXAI) is the
computational complexity of the original graph explainability method, and dh denotes the number of hidden
dimensions (e.g., 512 in the case of InfoGraph). To assess the efficiency of our proposed grSubgraphX, we
follow the methodology employed in (Yuan et al., 2021; Zhang et al., 2022) and calculate the average time
taken to generate explanations for graphs from the BBBP dataset, with each graph containing an average of
24.04 nodes.

Table 3: Average running time for explaining
graph representation of InfoGraph for BBBP.
Method Naive SubgraphX grSubgraphX (ours)

Time > 11 hours 106.32 sec

Table 3 shows that the naive calculation of SubgraphX
(equation 2) to explain the embedding of InfoGraph re-
quires approximately 11 hours per graph. In contrast, our
proposed grSubgraphX method accomplishes the same
task in less than 2 minutes per graph. Consequently, uti-
lizing the naive approach would take a minimum of 916
days to explain a small molecule dataset comprising 2k samples; however, grXAI archives it within 2 days.

Top 5 nodes Top 20 nodes
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Figure 4: Explanations for a specific node in the Cora
dataset. The plots show a part of the Cora graph, high-
lighting the target node and its 2-hops neighboring nodes.
The target node is shown as a larger green circle, with
different colors denoting node labels. The edges connect-
ing the most important nodes are bold.

Explanation for node embedding. Although
we have focused on graph-level learning tasks, our
grXAI framework also applies to node embedding
tasks. Figure 4 shows a GNN trained by the
GRACE (Zhu et al., 2020) algorithm on the Cora
dataset (Sen et al., 2008), with explanations given
by grSubgraphX (top) and TAGE (bottom). Qual-
itatively, we observe that grSubgraphX identifies
neighbor nodes that are densely connected and
have the same class as the target node (i.e., the
node we are explaining). In contrast, TAGE ex-
planations are more disconnected, scattered, and
difficult to interpret. Quantitatively, grSubgraphX
achieves better FidelityCS scores across varying
Sparsity values (Figure A2), demonstrating that
our framework also improves the performance in
node embedding tasks.

5.2.1 grXAI in supervised settings

Although grXAI has been primarily designed to improve performance and efficiency in explaining unsupervised
GNNs, a natural question is whether it maintains the same performance in supervised settings. In the
following, we show that not only grXAI versions of the explainability methods achieve identical performance
to their original counterparts with little additional computational overhead, but they also surpass them in
cases with high-uncertainty predictions. Specifically, we compare our grXAI modifications (grIG, grSaliency,
and grSubgraphX) to their original counterparts on a variety of datasets and tasks, including BBBP, MUTAG,
and Twitter datasets for graph classification and BA-shape for node classification. As expected, our grXAI
results achieve equivalent performance in this supervised setting (Figure A3, Appendix). This is mainly
because, in most cases, the GNNs generate highly confident predictions, i.e., fc(Gi) ≈ 1 (or fc(vi) ≈ 1 in
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grSubgraphX SubgraphX PGExplainer Tweet I (grIG) Tweet I (IG: Negative p=0.494)Tweet I (IG: Neutral p=0.491)

Tweet II (grIG) Tweet II (IG: Neutral p=0.47) Tweet II (IG: Positive p=0.50)

Figure 5: grXAI in supervised settings. (Left) Explanation results on the BA-Shape dataset. The target
node is shown in a larger size. Different colors denote node labels. Each graph contains a base graph (yellow)
and a house-like five-node motif. grSubgraphX (similar to SubgraphX) precisely identifies the motifs as
the explanations. (Right) Explanation of a GCN classifier for the Graph-Twitter dataset. The blue nodes
represent words. Important subgraphs (edges and nodes) are highlighted in yellow. In the first tweet, we
removed the words as the tweet was an opinion about a specific person.

node classification). Node classification results on BA-Shape dataset are shown in Figure 5 (left), with the
important substructures highlighted in bold. We observe that the grSubgraphX identifies motifs that are
consistent with the ground truth.

To investigate when grXAI outperforms the original counterparts in supervised settings, we examined specific
examples from the Twitter dataset with high uncertainty predictions, i.e., fc(Gi) ≈ 0.5. Figure 5 (right)
shows IG and grIG explanations for two such examples. grIG simultaneously explains both predictions with
two subgraphs that correspond to both labels with a similar probability. Instead, IG explainability changes
depending on whether the true class or the predicted class is used. This illustrates that traditional methods
based on a single output may not always accurately and reliably explain the GNN, particularly in cases of
high uncertainty, whereas our d-dimensional vector-based approach can provide explanations that directly
reflect a soft distribution over multiple classes.

6 Discussion

In this paper, we introduced grXAI, a novel framework to extend score-based graph explainability methods
to unsupervised GNN settings. We analyzed our framework and demonstrated its compatibility with many
score-based methods, thus highlighting its flexibility. We validated grXAI applied to different self-supervised
graph representation learning, self-supervised node embedding, and supervised models across several datasets,
both qualitatively and quantitatively. Overall, grXAI leads to accurate and stable explanations which can
be computed efficiently and outperform previously-proposed method. We also investigated the impact of
different augmentation strategies on the explainability of graph representations (Appendix D). This new
perspective can help domain experts to identify which augmentation technique is more closely related to
the main molecular property of interest, leading to semantically meaningful design choices, and ultimately
enhancing the effectiveness of self-supervised graph representation learning methods.

While our framework has demonstrated success in explaining graph representations in an efficient way,
it is important to acknowledge its limitations. The grXAI framework identifies subgraphs that increase
the similarity to the original graph in the representation space from any direction. However, in practical
applications, some of these directions may not be meaningful or equally important. Instead, the goal
may be to identify subgraphs that increase the similarity to a target graph with desired properties, while
simultaneously separating them from a set of graphs with undesirable properties in the representation space,
such as non-mutagenic molecules. This is similar to how human perception operates (Lin et al., 2023). We
believe grXAI opens the door to several exciting avenues for future research, such as developing example-based
explainability of graph representation by examining similarity to other graphs’ representations (Lin et al.,
2023), and extending grXAI to the structure-aware scoring functions, for instance, by adapting GStarX
(Zhang et al., 2022).
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A Details of datasets

We evaluated our grXAI framework on seven datasets in both unsupervised and supervised settings, covering
synthetic, biological, citation network, and text data. The datasets are summarized as follows:

Graph-Twitter (Yuan et al., 2020) dataset is a sentiment graph classification dataset with 3 labels. Yuan
et al. (2020) convert each tweet sequence into a graph, where each node represents a word and edges represent
the relationships between words. Biaffine parser (Gardner et al., 2018) has been used to extract word
dependencies, and a pre-trained 12-layer BERT (Devlin et al., 2018) model has been used to extract a
768-dimensional feature vector for each word.

BA-Shape (Yuan et al., 2020) is a synthetic node classification dataset with 4 labels. Each graph contains a
base graph (300 nodes) and a house-like five-node motif. The base graph is obtained by the Barabási-Albert
(BA) model, which can generate random scale-free networks with a preferential attachment mechanism. The
motif is attached to the base graph while random edges are added. Each node is labeled based on whether it
belongs to the base graph or to different spatial locations of the motif.

Molecule dataset. Molecular datasets such as MUTAG, BBBP, BACE, and NCI1 are widely used in
explanation and graph representation learning tasks (You et al., 2020; Yuan et al., 2021; Sun, 2022). Each
graph in such datasets corresponds to a molecule where nodes represent atoms and edges are the chemical
bonds. The labels of molecular graphs are generally determined by the chemical functionalities or properties
of the molecules. In particular, in the MUTAG dataset, molecular graphs are labeled based on their mutagenic
effects on a bacterium. It is known that carbon rings and NO2 chemical groups may lead to mutagenic effects
(Yuan et al., 2021; Zhang et al., 2022).

Cora (Sen et al., 2008) is a citation network for node embedding tasks with seven different classes.

B Additional preliminaries

B.1 Graph self-supervised learning

We applied our explainer to two self-supervised graph-level representation learning models:

GraphCL (You et al., 2020). GraphCL is a contrastive learning framework for learning unsupervised
representations of graph data. GraphCl proposes several graph data augmentations as well as a novel graph
contrastive learning framework for GNN pre-training.

InfoGraph (Sun et al., 2019). Infograph maximizes the mutual information between the graph-level
representation and the representations of different components with different scales (e.g., nodes, edges,
triangles). By doing so, the graph-level representations encode aspects of the data that are shared across
different scales of substructures.

We also used GRACE (Zhu et al., 2020) for pre-training GNN encoders in node-level self-supervised settings.
GRACE is an unsupervised graph representation learning framework that leverages a contrastive objective at
the node level. Specifically, it generates two graph views by corruption and learns node representations by
maximizing the agreement of node representations in these two views.

B.2 Task-agnostic GNN explainer

TAGE, introduced by Xie et al. (2022), decomposes a supervised GNN into an encoder model and a downstream
model, designing separate explainers for each component. The embedding explainer part, which is the only
available baseline for explaining graph representations, is trained using a self-supervised training framework.

TAGE aims to maximize the mutual information (MI) between two embeddings: one from the input graph G
and one from the corresponding important subgraph G∗ induced by the explainer. It introduces a masking
vector p to indicate specific dimensions of the embeddings to maximize the MI. During training, TAGE
samples the masking vector p from a multivariate Laplace distribution to exploit sparse gradients, ensuring
that only a few dimensions are of high importance (Xie et al., 2022). This assumes that embeddings from
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well-trained GNN encoders are informative with low dimension redundancy. Formally, the learning objective
based on the restricted MI is:

max
θ

Ep [MI (p ⊗ f(G),p ⊗ f(τθ(p, G)))] ,

where MI(·, ·) computes the mutual information between two random vectors, p denotes the random masking
vector sampled from a certain distribution, τθ(p, G) identifies the subgraph of high importance, and ⊗ denotes
the element-wise multiplication, which applies masking to the embeddings f(·). Intuitively, given an input
graph G and the desired embedding dimensions to be explained, the explainer τθ predicts the subgraph
whose embedding shares the maximum mutual information with the original embedding on the desired
dimensions (Xie et al., 2022).

To efficiently compute the mutual information, TAGE uses a contrastive loss such as InfoNCE. Additionally,
to restrict the size of the subgraphs provided by the explainer, TAGE includes a size regularization term (Xie
et al., 2022). TAGE employs a multilayer perceptron (MLP) as the base architecture of the explainer τθ,
which predicts the importance score for each edge, leading to disconnected subgraphs.

C Additional experiments

Explanation for graph representations. Figure A1 compares grSubgraphX and TAGE based on the
InfidelityCS metric, where InfidelityCS = −Sc

(
f(G), f(G(∗))

)
. InfidelityCS directly measures how much the

important subgraphs contribute to the representation; therefore, lower InfidelityCS means the representation of
the identified important subgraph is close to the original graph representation. As shown, grXAI outperforms
TAGE in terms of InfidelityCS in most cases. This is mostly because according to equations 1 and 6,
grSubgraphX optimization is based on the Infidelity metric.
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Figure A1: Quantitative results for various explanation techniques, with a preference for lower InfidelityCS in
higher Sparsity levels.

Explanation for node embedding. As we stated in the main paper, grSubgraphX has a better explanation
performance in terms of both FidelityCS and visualization. For evaluating this, we trained a GNN using
GRACE (Zhu et al., 2020) on the citation network Cora. Then, we compare the performance of grSubgraphX
to the baseline (TAGE) using test nodes that have at least 50 nodes in their 2-hop subnetworks. Figure A2
also shows that grSubgraphX outperforms TAGE in terms of FidelityCS for different Sparsity levels. Please
note that due to the higher number of classes in this dataset and the fact that the node embedding has
been calculated as the output of a two-layer GNN, the change in FidelityCS is lower here compared to other
experiments.

grXAI in supervised settings. We compare our grXAI-based methods, which employ d-dimensional
softmax outputs (grIG, grSaliency, and grSubgraphX), with their original counterparts that rely on explaining
the predicted class using the BBBP dataset (as shown in Figure A3). Our proposed grXAI framework
has identical performance to its original counterparts but is more efficient, especially for high-confidence
predictions. This is because supervised GNNs are often overconfident in their predicted class, with fc(Gi) ≈ 1,
and therefore taking into account all the outputs does not significantly affect the performance.

Effect of the wrapper function. In unsupervised settings, the individual dimensions of a latent vector
do not necessarily correspond to probability vectors. To address this, we replaced the weighted sum in
Equation 3 with a cosine similarity, which can be seen as a method of normalization that is invariant with
respect to latent symmetries. We also experimentally evaluate this selection compared to the dot-product.
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Figure A2: Quantitative performance comparisons between TAGE and grSubgraphX on Cora dataset, with a
preference for higher FidelityCS in higher Sparsity levels.

IG Saliency SubgraphX
Method

0.4

0.2

0.0

0.2

0.4

0.6

Fi
de

lit
y

BBBP (Supervised)

Score Function
grXAI
original

Figure A3: Fidelity comparisons of our proposed grXAI-based methods with their original implementation on
supervised task for BBBP dataset.

Our results show that the wrapper function has little effect on the performance of the grSubgraphX. In some
datasets, cosine similarity yields slightly better average results, as seen in Figure A4. This might be due to
the fact that the latent vector typically corresponds to the activation functions of the neurons in the GNN
(e.g. ReLU or sigmoid), which reduce the weight of inactivated components on the score function (Crabbé &
van der Schaar, 2022).

Stability study. As we stated in the main paper, there have been arguments that post-hoc (graph)
explainability methods may lack stability (Slack et al., 2021; Adebayo et al., 2018), as even slight changes to
an instance can lead to significantly different explanations. In addition to Figure 3 (right) in the main paper,
our results in Figure A5 show that grSubgraphX is able to provide very stable explanations for molecules
with minor structural differences, while TAGE generates completely different explanations.

D Augmentation design

In self-supervised settings, understanding the augmentation strategies can inform the design of novel learning
techniques that are not solely based on empirical approaches. For instance, the GraphCL (You et al.,
2020) framework introduced various types of graph augmentations, each of which incorporates specific prior
knowledge about graph data. Results such as those shown in Figure A6 and Table A1, demonstrate that

18



Published in Transactions on Machine Learning Research (10/2024)

0.4 0.5 0.6 0.7 0.8 0.9
Sparsity

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

Fi
de

lit
y C

S

NCI1 (GraphCL)
grSubgraphX (dot product)
grSubgraphX (cosine similarity)

Figure A4: Comparison of wrapper function performance on the NCI1 dataset for grSubgraphX explainability.
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Figure A5: The explainability of graph representations for two sets of molecules with minor structural changes
from the MUTAG dataset. The grSubgraphX generates highly stable explanations, while TAGE is not stable,
i.e. small changes to the sample produce substantially different explanations.

different augmentations used in GraphCL training correspond to different explanation subgraphs, and have
different Fidelity, meaning that perturbing them will affect the representation learning differently. This
insight can aid in understanding the effectiveness of self-supervised learning on graph data and provide a
basis for comparing different pre-training methods beyond their predicted performance.

E Computational complexity

We further compare the computational complexity of our grXAI-based methods to their traditional coun-
terparts on various supervised node and graph classification datasets. As seen in Table A2, our proposed
methods have close computational complexity to their traditional counterparts and are significantly faster
than averaging over all output components. We should also point out that providing a connected subgraph
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Table A1: Comparison of the FidelityCS on the explainability of GraphCL using different data augmentations
on MUTAG dataset.

Augmentation grSubgraphX (↑) grIG (↑) grSaliency (↑)

dropN -0.55± 0.83 -0.31± 0.14 -0.69± 0.13
maskN -0.42± 0.90 -0.20± 0.19 -0.46± 0.21
permE -0.52± 0.85 -0.21± 0.13 -0.70± 0.16
subgraph -0.50± 0.86 -0.16± 0.09 -0.62± 0.15
random2 -0.61± 0.15 -0.22± 0.18 -0.65± 0.14
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Figure A6: The explanation for graph representations of two different MUTAG molecules learned by
GraphCL. Each column corresponds to a different augmentation technique to train GraphCL. Using different
augmentation pushes the model to learn the representation based on different substructures of input molecules,
and some of them might be more aligned with prior knowledge.

to explain GNN encoders using grSubgraphX comes at the cost of higher computational complexity. In cases
where computational complexity is a bottleneck, we suggest applying our gradient-based extensions, i.e. grIG
and grSaliency.

Table A2: Comparison of the performance of our proposed methods to their traditional counterparts in terms
of average run time (sec) for exampling one input graph.

Explainer BBBP Twitter BA-Shape

IG 0.25 ± 0.00 0.262 ± 0.00 −
IGavg 0.51 ± 0.01 0.786 ± 0.03 −
grIG 0.27 ± 0.00 0.264 ± 0.00 −

Saliency 0.0052 ± 0.00 0.0052 ± 0.00 −
Saliencyavg 0.0103 ± 0.00 0.0156 ± 0.00 −
grSaliency 0.0057 ± 0.00 0.0052 ± 0.00 −

SubgraphX 82.41 ± 173.64 80.50± 21.09 0.26 ± 0.17
SubgraphXavg 164.82 ± 348.28 241.5± 65.39 1.05 ± 0.68
grSubgraphX 106.32 ± 224.09 84.53 ± 23.76 0.41 ± 0.24

F Experimental settings

We used PyTorch (Paszke et al., 2019) to develop our grXAIe framework and conducted experiments on an
Nvidia A100 with 80 GB of memory. For supervised experiments, we used GNN checkpoints from DIG (Liu
et al., 2021) as part of Yuan et al. (2020) and did not train any new models. We also utilized the DIG package’s
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implementation of GraphCL, InfoGraph, and GRACE for pre-training GNNs in self-supervised settings (Liu
et al., 2021), specifically using GIN (Xu et al., 2019) for GraphCL and InfoGraph, and GCN for GRACE. We
followed the hyperparameters outlined in the main papers for these methods, using 3-layer GINs with an
embedding dimension of 32 for GraphCL, 4-layer GINs with an embedding dimension of 512 for InfoGraph,
and 2-layer GCNs with a node embedding dimension of 128 for GRACE. For grSubgraphX, we modified the
original implementation of SubgraphX (Yuan et al., 2021) and followed the same hyperparameters of the
original paper. We have implemented grIG and grSaliency based on their original implementation in the
Captum (Kokhlikyan et al., 2020) package.

G grSubgraphX algorithm

Algorithm 1 shows how we calculate the Shapley score in our grXAI framework.

Algorithm 1 The algorithm of grSubgraphX to calculate Shapley score.
Input: L-layer GNN model f(·), input graph G with nodes V = {v1, . . . , vN}, subgraph G(s) = (V(s), E(s))
with nodes V(s) = {v(s)

1 , . . . , v
(s)
Ns

}, Monte-Carlo sampling steps T .
Initialization: Obtain the L-hop neighboring nodes of G(s), denoted as V(Ls) = {v(Ls)

1 , . . . , v
(Ls)
NLs

}. Then
the set of players is P ′ = {G(s), v

(Ls)
1 , . . . , v

(Ls)
NLs

}.
for t = 1 to T do

Sampling a coalition set Rt from P ′ \G(s).
Set nodes from V \

(
Rt ∪G(s)) with zero features and feed to the GNNs f(·) to obtain ψ(Rt ∪G(s)) =∑

j
fj(G)fj(Rt∪G(s))

∥f(G)∥ ∥f(Rt∪G(s))∥ .

Set nodes from V \Rt with zero features and feed to the GNNs f(·) to obtain ψ(Rt) =
∑

j
fj(G)fj(Rt)

∥f(G)∥ ∥f(Rt)∥ .
Then φt = ψ(Rt ∪G(s)) − ψ(Rt).

end for
Return: Score(f(·), G,G(s)) = 1

T

∑T
t=1 φt.
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