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Abstract
Vision-language models demand watermark-001
ing solutions that protect intellectual property002
without compromising multimodal coherence.003
Existing text watermarking methods disrupt004
visual-textual alignment through biased token005
selection and static strategies, leaving semantic-006
critical concepts vulnerable. We propose VLA-007
Mark, a vision-aligned framework that em-008
beds detectable watermarks while preserving009
semantic fidelity through cross-modal coordina-010
tion. Our approach integrates multiscale visual-011
textual alignment metrics, combining localized012
patch affinity, global semantic coherence, and013
contextual attention patterns, to guide water-014
mark injection without model retraining. An015
entropy-sensitive mechanism dynamically bal-016
ances watermark strength and semantic preser-017
vation, prioritizing visual grounding during018
low-uncertainty generation phases. Experi-019
ments show 7.4% lower PPL and 26.6% higher020
BLEU than conventional methods, with near-021
perfect detection (98.8% AUC). The framework022
demonstrates 96.1% attack resilience against023
attacks such as paraphrasing and synonym sub-024
stitution, while maintaining text-visual consis-025
tency, establishing new standards for quality-026
preserving multimodal watermarking.027

1 Introduction028

The emergence of vision-language aligned multi-029

modal large models (VLAMMs) has fundamen-030

tally transformed cross-modal content generation.031

Pioneering architectures like LLaVA (Liu et al.,032

2023) and Flamingo (Alayrac et al., 2022) establish033

joint embedding spaces through cross-modal atten-034

tion mechanisms, enabling unprecedented visual-035

linguistic synergy. These models achieve state-036

of-the-art performance in vision-language tasks037

ranging from contextual image captioning to visual038

commonsense reasoning, with recent extensions039

like Mini-Gemini (Li et al., 2024b) demonstrating040

human-level multimodal comprehension. (Liu and041

Bu, 2024; Yoo et al., 2024) However, their rising042

capability to generate semantically coherent cross- 043

modal content urgently demands robust solutions 044

for intellectual property protection and content au- 045

thenticity. 046

Embedding imperceptible yet detectable water- 047

marks into LLM-generated outputs has emerged 048

as a pivotal solution, yet existing techniques pre- 049

dominantly focus on unimodal scenarios. The pi- 050

oneering "green list" partitioning (Kirchenbauer 051

et al., 2023) establishes fundamental watermark- 052

ing frameworks through vocabulary bias induction, 053

while subsequent improvements like unbiased prob- 054

ability of two partitioned lists (Mao et al., 2024) 055

and distribution-preserving strategies (Wu et al., 056

2024) enhance quality-robustness trade-offs in text 057

generation. However, these approaches fail to ad- 058

dress the unique challenges of multimodal genera- 059

tion where visual semantics critically guide textual 060

outputs. 061

Current watermarking methodologies exhibit 062

three critical limitations when applied to vision- 063

language aligned generation. First, traditional text 064

watermarking approaches like "green list" parti- 065

tioning (Kirchenbauer et al., 2023) disrupt vision- 066

conditioned language generation by introducing 067

vocabulary biases that contradict visual semantics - 068

for instance, suppressing visually grounded entity 069

mentions detected through region-based attention. 070

Even advanced context-aware variants (Ren et al., 071

2023) fail to account for cross-modal dependencies 072

established through vision-language projection lay- 073

ers in models like BLIP-2 (Li et al., 2023). Second, 074

static watermark allocation strategies (Liang et al., 075

2024; Zhao et al., 2023) typically apply uniform 076

injection intensities regardless of position-specific 077

visual grounding strength, leading to dispropor- 078

tionate distortion of visually salient tokens. This 079

limitation persists even in theoretically-grounded 080

approaches (Huang et al., 2023) that optimize statis- 081

tical trade-offs but ignore entropy variations during 082

cross-modal generation. Third, current methods 083
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lack explicit mechanisms to protect vision-critical084

semantics under text-space attacks. Random vocab-085

ulary partitioning and uniform logit manipulation086

render key visual concepts (e.g., objects, scene de-087

scriptors) vulnerable to adversarial paraphrasing or088

synonym substitution. As shown in Fig. 1 (5), con-089

ventional watermarks indiscriminately boost non-090

semantic tokens (green blocks) while leaving vi-091

sually anchored phrases like "grassy trail" (light092

blue blocks) exposed to semantic erasure through093

token replacement attacks. This fundamentally un-094

dermines text-visual coherence and detection con-095

sistency.096

We resolve these challenges through VLA-097

Mark, the first vision-language aligned wa-098

termarking framework that achieves cross-099

modally coordinated, quality-preserving water-100

mark with excellent detectability and robust-101

ness via three innovations. First, extending be-102

yond random vocabulary splitting, our Multiscale103

Semantic Saliency Metrics leverage visual seman-104

tics to guide green list selection through localized105

patch affinity (LPA), global semantic coherence106

(GSC), and cross-modal contextual salience (CCS).107

This aligns token partitioning with image content108

while maintaining zero training overhead. Sec-109

ond, our Entropy-Regulated Partition dynamically110

adjusts watermark intensity based on generation111

uncertainty and token criticality scores, prioritiz-112

ing semantic preservation in low-entropy phases113

while enhancing watermark strength during high-114

entropy generation. Third, we introduce SCT based115

Distribution Adjustment through vision-aligned to-116

ken prioritization, where cross-modal embedding117

alignment and fused metrics establish hierarchical118

protection for Semantic Critical Tokens (SCTs)119

against textual perturbations.120

Our contributions transcend prior art through121

three breakthroughs:122

• We pioneer the first text watermarking method123

for vision-language models, achieving cross-124

modal semantic guidance through native align-125

ment mechanisms of VLA architectures, yield-126

ing 7.4% and 26.6% average improvement127

(PPL↓ and BLEU↑) in textual quality with128

zero training overhead.129

• We develop an uncertainty-aware coordina-130

tion mechanism that automatically adapts wa-131

termark intensity to logits entropy, breaking132

the preservation-detection trade-off by main-133

taining SOTA detection performance while 134

enhancing generation quality. 135

• Through dedicated SCT preservation, we es- 136

tablish hierarchical protection against Para- 137

phrase, Synonym, Translate and more attacks, 138

ensuring text-visual consistency under pertur- 139

bations. 140

2 Methodology 141

Our VLA-Mark framework introduces a vision- 142

aligned watermarking method that identifies Se- 143

mantic Critical Tokens (SCTs), linguistic units 144

strongly grounded in visual semantics guided 145

by cross-modal embedding alignment (Sec 2.1) 146

and fused multiscale metrics (Sec 2.2). SCTs 147

preserve text-visual coherence by anchoring key 148

concepts (e.g., objects/scenes) while enabling 149

entropy-regulated dynamic vocabulary partitioning 150

(Sec 2.4): low-entropy contexts prioritize SCT re- 151

tention for semantic fidelity, whereas high-entropy 152

phases emphasize watermark strength. The method 153

further adjusts token distributions through water- 154

marked logit manipulation (Sec 2.5). This ap- 155

proach pioneers visual semantics as the foundation 156

for watermark injection, contrasting traditional text- 157

only statistical strategies, as is illustraed in Fig. 1. 158

For more theoretical analysis of each part, please 159

refer to Appendix C. 160

2.1 Cross-Modal Aligned Embedding 161

As demonstrated in prior research, Vision- 162

Language Alignment (VLA) models like LLaVA 163

(Liu et al., 2023) employ a shared semantic map- 164

ping strategy where visual embeddings are pro- 165

jected into the text embedding space. 166

Given a textual instruction Xq and visual input 167

Xv, such models utilize parallel encoding streams 168

to process multimodal inputs. The vision encoder 169

(e.g., SigLIP (Zhai et al., 2023) or ViT-L/14 (Rad- 170

ford et al., 2021)) generates spatial-visual features 171

through: 172

Zv = VisEnc(Xv) = [zcls; z1, ..., zP ], (1) 173

where Zv ∈ R(P+1)×dv and P indicates the total 174

number of image patch tokens augmented with a 175

global [CLS] token. The subsequent alignment 176

phase employs a trainable projection module fθ(·) 177

, implemented as MLP (Liu et al., 2024a) or gen- 178

eration adaptor (Chen et al., 2025), to bridge the 179

dimensional gap between modalities: 180

Hv = fθ(Zv), (2) 181
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Figure 1: Proposed VLA-Mark framework. Vision embeddings Hv (aligned to LLM space) and linguistic tokens HL extracted
from LLM vocabulary V compute fused multiscale metrics (LPA/GSC/CCS) to rank V∗ by visual saliency. Entropy-regulated
SCT selection dynamically enhances semantic expressiveness when low entropy in logits distribution or watermark robustness
when high entropy. Light blue denote SCT, which in the response is followed by conventional watermarked tokens.

where fθ denotes parametric transformation that182

enables cross-modal compatibility while retaining183

original information patterns, so we get Hv ∈184

R(P+1)×d . LLMs (e.g., Vicuna (Chiang et al.,185

2023)) first tokenize input text of length S and then186

retrieve text embeddings Hq ∈ RS×d for LLM187

inference by querying the pretrained token embed-188

ding table, commonly referred to as the Vocabulary189

V . We construct an embedding matrix HL by re-190

moving non-linguistic elements such as symbols191

and numbers from V , where L denotes the number192

of linguistic tokens in the vocabulary. Then we use193

Hv and HL in the following modules to find the194

SCT to guided V partitioning for watermark.195

2.2 Multiscale Semantic Saliency Metrics196

The l-th token embedding in HL is denoted as197

h
(l)
L . We propose three complementary metrics to198

evaluate semantic criticality of linguistic tokens199

from orthogonal perspectives:200

1. Localized Patch Affinity (LPA) quantifies201

region-specific importance by identifying the most202

relevant visual patch:203

ψLPA(l) = max
1≤p≤P

h
(p)
v · h(l)

L

∥h(p)
v ∥∥h(l)

L ∥
. (3)204

Role: LPA captures fine-grained visual grounding205

by measuring the maximum alignment between206

a text token and individual image regions. This 207

is critical for detecting object-centric tokens (e.g., 208

"grassy trail", "mountain") that strongly correlate 209

with localized visual patterns. However, it may un- 210

derestimate tokens with diffuse visual associations 211

(e.g., "park", "crowded") that judged by the whole 212

image. 213

2. Global Semantic Coherence (GSC) mea- 214

sures holistic alignment with the entire visual 215

scene: 216

ψGSC(l) =
h
(cls)
v · h(l)

L

∥h(cls)
v ∥∥h(l)

L ∥
. (4) 217

Role: GSC evaluates scene-level consistency by 218

comparing text tokens to the global visual repre- 219

sentation ([CLS] token). It prioritizes tokens that 220

summarize the scene (e.g., "sunny", "hike") or an- 221

chor high-level semantics. However, global pool- 222

ing may dilute localized but critical details come 223

from certain patches (e.g., "broken" in a damaged 224

object). 225

3. Cross-Modal Contextual Salience (CCS) 226

aggregates multi-region visual relevance through 227

attention weights: 228

ψCCS(l) =

P∑
p=1

exp(h
(p)
v · h(l)

L )∑
p′ exp(h

(p′)
v · h(l)

L )
·

h
(p)
v · h(l)

L

∥h(p)
v ∥∥h(l)

L ∥
.

(5) 229

Role: CCS provides context-aware grounding 230
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by softly attending to all visual patches. It comple-231

ments LPA by capturing distributed visual associa-232

tions (e.g., "three people" involving multi patches)233

and mitigates GSC’s over-smoothing via spatial234

sensitivity.235

2.3 Fused Metric Guided Vocabulary236

We perform min-max normalization for cross-237

metric comparability:238

ψnorm
k (l) =

ψk(l)−minl′∈L ψk(l
′)

maxl′∈L ψk(l′)−minl′∈L ψk(l′)
,

(6)239

where k ∈ {LPA,GSC,CCS}, minl′∈V ψk(l
′) and240

maxl′∈V ψk(l
′) denote the minimum and maxi-241

mum values of metric k across the entire linguistic242

embedding HL. This normalization preserves rela-243

tive rankings while constraining values to [0, 1].244

The fusion of LPA, GSC, and CCS establishes a245

normalized hierarchical semantic assessment:246

Φ(l) =
∑
k

ψnorm
k (l). (7)247

Prioritized vocabulary ordering follows:248

V∗ = argsortl∈VΦ(l) ⇒ (w(1), ..., w(L)), (8)249

where {w(l)}Ll=1 is the sorted elements of HL =250

{h(l)
L }Ll=1. The fusion mechanism achieves three251

synergistic effects: (1) Local-global synergy bal-252

ances LPA’s regional sensitivity with GSC’s scene253

abstraction, (2) Attention redundancy via CCS com-254

pensates for LPA’s over-localization through dis-255

tributed patch integration, and (3) Error robust-256

ness emerges from metric complementarity – high257

CCS scores validate ambiguous signals (e.g., multi-258

region actions) through weak response aggrega-259

tion. This fusion automatically prioritizes semantic260

patterns via LPA, GSC, and CCS without manual261

tuning.262

2.4 Entropy-Regulated Partition263

The output of LLM at each moment is determined264

by all preceding tokens, and at each time step t, we265

can obtain predicted probability distribution:266

pt = softmax (LLM(h1:t−1,Hv,Hq)) , (9)267

where pt ∈ RL. To enhance watermark robust-268

ness while maintaining text quality, we propose269

an entropy-adaptive watermarking scheme that dy-270

namically adjusts token partitioning based on pre-271

diction uncertainty. For each token position t with272

pt, we calculate: 273

Ht = −
L∑
l=1

p̂
(l)
t log p̂

(l)
t , p̂

(l)
t =

p
(l)
t + ϵ

1 + Lϵ
, (10) 274

where ϵ = 10−8 prevents numerical instability 275

and Lϵ ensures the sum of p̂(l)t is still 1. The nor- 276

malized entropy, which quantifies the "decision dif- 277

ficulty" at each generation step is then determined 278

by: 279

Hnorm =
Ht

Hmax
=

Ht

logL
, (11) 280

whereHmax = logL is proved in Appendix B. The 281

Semantic Critical Tokens ratio ηt and the dynamic 282

green list ratio γt follows: 283

ηt = α(1−Hnorm),

γt = γ − ηt,
(12) 284

where hyper-parameter α ∈ [0.01, 0.1] controls 285

the base Semantic Critical Tokens proportion, thus 286

ηt ∈ [0, α), γ ∈ [α, 1) and γt ∈ (0, 1 − α). The 287

vocabulary partition construction follows: 288

GSCT
t = {w(1), ..., w(⌊ηtL⌋)}, (13) 289

GGREEN
t = Sample

γt

(
V∗ \ (GSCT

t )
)
, (14) 290

Rt = V∗ \
(
GSCT
t ∪ GGREEN

t

)
. (15) 291

The sample strategy of selecting GGREEN
t here is to 292

generate random seeds according to the ht−1 token 293

and randomly sample γt tokens from V∗ \ (GSCT
t ). 294

This kind of vocabulary division ensures that the 295

red green vocabulary still accounts for the vast 296

majority, and also ensures that SCT can play an 297

important role only when the entropy is low and to- 298

ken importance needs to be distinguished, thereby 299

ensuring text quality and watermark strength. 300

2.5 SCT based Distribution Adjustment 301

We reformulate the watermark injection through 302

logit-space manipulation, preserving the semantic- 303

critical tokens (SCT) while introducing detectable 304

biases. Let Gt = GSCT
t ∪ GGREEN

t denote the 305

union of SCTs and sampled green list. The wa- 306

termarked probability distribution is computed fol- 307

lowing Kirchenbauer et al. (2023) as: 308

p
(k)
t =


exp(p

(k)
t +δ)∑

i∈Rt
exp(p

(i)
t )+

∑
i∈Gt

exp(p
(i)
t +δ)

, k ∈ Gt

exp(p
(k)
t )∑

i∈Rt
exp(p

(i)
t )+

∑
i∈Gt

exp(p
(i)
t +δ)

, k ∈ Rt

(16) 309
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where p(k)t denotes the original logit value for310

token k at step t, and δ > 0 controls the watermark311

intensity. This formulation applies: 1. Logit boost-312

ing (+δ) for Gt tokens (SCT + green list) 2. Neutral313

treatment for Rt tokens (remaining vocabulary).314

The denominator ensures proper normalization315

by aggregating adjusted and unadjusted logits sep-316

arately. The final token selection follows:317

wt ∼ Categorical
(
{p(k)t }Lk=1

)
. (17)318

This mechanism creates statistically detectable319

signatures in Gt tokens while maintaining the se-320

mantic integrity of SCT tokens owing to the guar-321

anteed logit boosting in SCTs, the context-sensitive322

enhancement in green list tokens and the original323

distribution patterns in Rt. The watermark detec-324

tion process is followed as (Kirchenbauer et al.,325

2023) thanks to the similar vocabulary partition.326

3 Experiments327

Our experiments comprehensively assessed VLA-328

Mark’s performance on detection accuracy, text329

quality maintenance, and robustness across four330

multimodal language models using the AM-331

BER (Wang et al., 2023) dataset. We compared332

VLA-Mark with five baseline methods and con-333

ducted an ablation study to evaluate the impact of334

entropy adaptation and multi-scale semantic seg-335

mentation. Additionally, we assessed robustness336

against varied attacks, confirming VLA-Mark as a337

resilient and efficient watermarking solution. The338

latency overhead of the algorithm, additional re-339

sults on attack robustness, and evaluations on more340

datasets can be found in the Appendix D.341

3.1 Experiment Setup342

Backbone models and datasets. We assess our343

method on four state-of-the-art multimodal lan-344

guage models: LLaVA-v1.5 (Liu et al., 2024a,b),345

LLaVA-Next (Li et al., 2024a), Qwen2-VL (Wang346

et al., 2024), and DeepSeek-VL (Lu et al., 2024a),347

utilizing their corresponding vision models for im-348

age feature extraction. Performance is evaluated349

using the AMBER (Wang et al., 2023) dataset, tai-350

lored for image description tasks.351

Baselines approaches. We compare our ap-352

proach with five baselines: KGW (Kirchenbauer353

et al., 2023), SWEET (Lee et al., 2023), EWD (Lu354

et al., 2024b), unbiased (Hu et al., 2023), and355

DiP (Wu et al., 2023), chosen for their focus on356

detection performance and text quality. Implemen- 357

tations are facilitated by the MarkLLM (Pan et al., 358

2024) repository. 359

Evaluation metrics Our evaluation spans detec- 360

tion performance (AUC and accuracy), text quality 361

(PPL and BLEU), semantic alignment (STS and 362

BertScore), and robustness against A1 attack (alter 363

text through word additions, removals, or substitu- 364

tions) and A2 attacks (translate and paraphrase text 365

using LLM) proposed by Lau et al. (2024). 366

3.2 Results 367

3.2.1 Watermark 368

Table 1 provides a detailed performance compari- 369

son of VLA-Mark with several baseline methods 370

across four multimodal language models. The eval- 371

uation metrics include AUC, Accuracy, and PPL, 372

which measure watermark detection effectiveness 373

and text quality. VLA-Mark is tested in two config- 374

urations: normal (VLA-M) and without semantic 375

critical tokens (VLA-M w/o SCT), the latter rely- 376

ing on a random token list for detection without 377

calculation of SCT. The length of all responses is 378

limited at 200 tokens. 379

The results highlight the performance of VLA- 380

Mark. VLA-Mark achieves AUROC above 99.8% 381

and accuracy above 98.1% in the three models, 382

indicating high detection accuracy. This perfor- 383

mance is comparable to or exceeds other state-of- 384

the-art methods such as KGW, SWEET, and EWD. 385

Notably, the PPL metric shows that VLA-Mark 386

outperforms all baseline methods, highlighting its 387

ability to maintain high-quality text while embed- 388

ding watermarks. All baseline methods exhibit a 389

trade-off between detection performance (AUC) 390

and text quality (PPL), whereas our method is the 391

only one that consistently achieves strong perfor- 392

mance on both metrics.These results substantiate 393

VLA-Mark’s efficacy in balancing high detection 394

precision with high-quality text across a range of 395

multimodal language models. 396

Furthermore, it is particularly remarkable that 397

VLA-Mark sustains robust detection performance 398

even in the absence of Semantic Critical Tokens 399

(SCT). Specifically, the VLA-Mark variant without 400

SCT (w/o SCT) attains noteworthy AUROC scores 401

above 99.7% for both LLaVA-v1.5 and Qwen2-VL 402

models. For Accuracy, VLA-Mark (w/o SCT) de- 403

livers commendable results above 98.4% for mod- 404

els mentioned above. However, its performance is 405

less satisfactory on LLaVA-Next and DeepSeek- 406

VL. This discrepancy may stem from the fact that 407
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LLaVA-v1.5 LLaVA-Next Qwen2-VL DeepSeek-VL

AUC ACC PPL AUC ACC PPL AUC ACC PPL AUC ACC PPL

KGW 99.98 99.55 6.21 99.99 99.80 6.04 99.99 99.60 5.27 99.81 98.00 6.99
EWD 99.99 99.90 6.51 100.0 100.0 6.05 100.0 100.0 5.24 99.99 99.80 7.00
SWEET 99.99 99.95 6.30 100.0 100.0 6.04 100.0 100.0 5.17 99.92 99.05 7.00
unbiased 88.27 80.87 6.05 92.54 85.20 5.56 96.99 91.13 5.00 79.65 66.98 6.18
DiP 88.58 80.82 6.03 92.66 85.60 5.57 97.25 91.13 5.02 79.60 67.33 6.17

VLA-M 99.99 99.80 4.84 99.95 98.95 5.32 99.89 98.43 4.97 97.36 92.72 5.73
w/o SCT 99.99 99.75 - 96.08 89.39 - 99.76 98.45 - 94.52 90.78 -

Table 1: Performance comparison of VLA-M and baseline methods across different multimodal language models in metrics
AUC, Accuracy, and Perplexity. Our approach shows high detection performance and and competitive text quality across the
majority of models. Cells highlighted in green denote superior performance, whereas red cells signify underperformance.
The notation "w/o SCT" indicates results without using Semantic Critical Tokens. (See Appendix D.6 for additional performance
on MS COCO dataset.)

the outputs of these latter models are enriched with408

a higher proportion of semantic critical tokens,409

which could potentially diminish the detection ef-410

ficacy of the SCT-less approach.The outcomes un-411

derscore our method’s versatility and robustness412

across diverse scenarios. The capability of reli-413

able detection without SCT enhances our water-414

marking technique’s applicability by eliminating415

the requirement for original input during detection.416

This is particularly advantageous when the origi-417

nal data is unavailable or needs to be safeguarded418

against unauthorized access. To further validate419

the generalizability of our approach, we evaluated420

VLA-Mark on the MS COCO captioning bench-421

mark across multiple VLA models, with detailed422

results provided in Appendix D.6.423

3.2.2 Ablation Study424

Ablation None Entropy LPA GSC CCS

PPL(↓) 4.84 6.14 5.61 5.02 5.37
STS 92.13 90.89 91.98 91.02 91.88
BertScore 91.13 90.75 90.96 88.63 90.91

Table 2: Ablation study comparing the full VLA-M algorithm
(None) to its variants lacking specific components. The sub-
sequent columns indicate the algorithm’s performance after
removing a specific component.

Our ablation study, detailed in Table 2, validates425

the critical roles of individual components in VLA-426

Mark’s design. Removing Localized Patch Affin-427

ity (LPA) leads to a significant 15.9% increase in428

perplexity (PPL: 5.61 vs. 4.84), underscoring its429

necessity for preserving fluency and fine-grained430

visual-text alignment by prioritizing object-centric431

tokens. Excluding Global Semantic Coherence432

(GSC) causes the sharpest decline in BertScore433

(88.63 vs. 91.13), highlighting its irreplaceable 434

function in maintaining scene-level semantic con- 435

sistency through holistic visual-language ground- 436

ing. While the absence of Cross-Modal Contextual 437

Salience (CCS) moderately degrades all metrics 438

(PPL: 5.37, STS: 91.88, BertScore: 90.91), its dis- 439

tributed attention mechanism proves vital for aggre- 440

gating multi-region visual associations, bridging 441

localized and global semantics. 442

These findings demonstrate the complementary 443

strengths of multiscale metrics: LPA anchors pre- 444

cise visual details, GSC ensures high-level coher- 445

ence, and CCS integrates contextual dependen- 446

cies. Combined with entropy-regulated partition- 447

ing, the framework achieves an optimal equilib- 448

rium—preserving multimodal fidelity while em- 449

bedding robust watermarks. The full model’s su- 450

perior performance across all metrics (PPL: 4.84, 451

STS: 92.13, BertScore: 91.13) confirms the ne- 452

cessity of unified vision-language alignment for 453

quality-preserving watermarking. 454

3.2.3 Hyperparameter analysis 455

Ablation of α 0.01 0.015 0.025 0.05 0.1

PPL(↓) 6.23 5.86 4.84 5.71 5.91
STS 85.15 90.71 92.13 91.83 90.76
BertScore 91.48 94.05 91.13 94.27 94.16

Table 3: Ablation study on the hyper-parameter α controlling
Semantic Critical Tokens (SCT) ratio. Results show α=0.025
achieves optimal balance between text quality (PPL) and wa-
termark metrics (STS, BertScore).

As shown in Table 3, the SCT ratio controller α 456

exhibits a clear non-monotonic relationship with 457

generation quality. Performance peaks at α=0.025, 458

achieving optimal balance with the lowest perplex- 459
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ity (4.84) and highest semantic similarity (92.13).460

Below or above this threshold, insufficient SCT al-461

location degrades both fluency and semantic align-462

ment, confirming that weak semantic token empha-463

sis compromises multimodal fidelity. The default464

α=0.025 optimally complements VLA-M’s multi-465

scale components by dynamically balancing local466

fluency and global semantic preservation. Even467

under the least favorable choice of α , the perfor-468

mance of PPL remains comparable to or better than469

that of KGW, with limited variation, demonstrating470

the robustness of our method to hyperparameter471

selection.472

3.2.4 Text quality maintenance473
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Figure 2: Left: Boxplots of perplexity scores for different
watermarking methods. Right: Average BLEU scores over
increasing token lengths. Our approach maintains lower per-
plexity with competitive BLEU performance even as genera-
tion length grows.

In Figure 2 (left), we observe that our proposed474

approach exhibits lower median perplexity com-475

pared to other watermarking methods, indicating476

that it remains closer to the natural language dis-477

tribution. This stems from our “semantic critical478

tokens,” which preserve core meanings and reduce479

unnecessary perturbations in high-salience tokens.480

In Figure 2 (right), average BLEU scores show481

that while all methods degrade as token length in-482

creases, our dynamic partitioning strategy and SCT483

protection help maintain relatively higher BLEU.484

By boosting tokens critical to the overall semantics,485

we minimize the distortion of fluency and coher-486

ence, leading to more faithful long generations.487

3.3 Attack488

In our robustness experiments, we tested VLA-489

Mark against attacks A1 and A2 as defined by490

Lau et al. (2024). Attack type A1 encompasses491

random word insertions, deletions, and synonym492

substitutions, with 5% of the text undergoing al-493

teration. Attack type A2 involves translation and494

paraphrasing using the Llama-3.1 model. For trans-495

lation, texts are first translated to Spanish and then496

back into English. These attacks were applied to497

responses consisting of 50 tokens in length.498

Figure 3 illustrates VLA-Mark’s superior re- 499

silience, maintaining high AUC scores under all 500

attacks. Notably, VLA-Mark sustains an AUC 501

of 96.96% under A1 and only experiences mini- 502

mal drops of 2.90% and 2.47% during A2 transla- 503

tion and paraphrasing attacks, respectively. This 504

contrasts with significant performance declines 505

in DiP (69.78%-77.57% AUC) and the unbiased 506

method (70.03%-77.35% AUC) during paraphras- 507

ing. SWEET and EWD also underperform com- 508

pared to VLA-Mark in translation attacks (94.10%- 509

94.68% vs. 95.04% AUC). See Appendix D.3 510

for relative performance drop comparison. Ap- 511

pendix D.5 provides additional robustness evalua- 512

tions covering novel adversarial attack types. 513

VLA-Mark’s robustness is attributed to its 514

entropy-adaptive mechanism and multiscale se- 515

mantic guidance, which effectively counter lexical 516

and structural distortions, especially in A2 attacks. 517

These features, along with the use of Semantic Crit- 518

ical Tokens (SCTs), ensure watermark detectability 519

even when the text undergoes semantically preserv- 520

ing transformations, setting VLA-Mark apart as a 521

reliable watermarking solution. 522

4 Related Work 523

Our work advances three interconnected research 524

frontiers: text watermarking foundations, ro- 525

bustness against adversarial attacks, and vision- 526

language aligned generation paradigms. 527

4.1 Text Watermarking Fundamentals 528

Contemporary watermarking techniques predomi- 529

nantly focus on unimodal text generation. The pio- 530

neering "green list" paradigm (Kirchenbauer et al., 531

2023) partitions vocabulary through hash-based 532

promotion, while entropy-aware variants (Mao 533

et al., 2024) modulate injection strength probabilis- 534

tically. Distribution-preserving approaches (Wu 535

et al., 2024) maintain statistical fidelity through 536

reweighting yet neglect semantic grounding. How- 537

ever, such unimodal designs fundamentally con- 538

flict with vision-conditioned generation: random 539

vocabulary partitioning disrupts visual-semantic 540

alignment by suppressing image-grounded tokens 541

(He et al., 2024), while static allocation strategies 542

(Liang et al., 2024) fail to adapt to cross-modal 543

entropy variations (Huang et al., 2023). Recent 544

benchmarks (Qiu et al., 2024) reveal 41% robust- 545

ness degradation when deploying these methods 546

in multimodal contexts, underscoring the necessity 547

for vision-aligned watermark formulation. 548
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Figure 3: AUC matrix for six watermarking methods under various attacks scenarios, with AUC values in parentheses. The
proposed VLA-M retains high detection performance even under heavy text transformations such as paraphrasing and translation.

4.2 Robustness Challenges and Attacks549

Emerging adversarial attacks expose vulnerabil-550

ities through multimodal exploitation. (Rastogi551

and Pruthi, 2024) demonstrates 63% efficacy gain552

via black-box analysis-driven paraphrases, while553

(He et al., 2024) reveals cross-lingual leakage554

during translation. Frameworks like DE-MARK555

(Chen et al., 2024) remove watermarks via proba-556

bilistic n-gram erasure. Existing defenses remain557

unimodally confined—semantic preservation (Ren558

et al., 2023) enhances robustness but cannot counter559

cross-modal attacks that jointly manipulate vision-560

text interdependencies. Our approach uniquely ad-561

dresses this gap through hierarchical protection of562

vision-anchored SCT tokens, ensuring text-visual563

coherence under perturbations.564

4.3 Vision-Language Aligned Architectures565

State-of-the-art VLAMMs like LLaVA (Liu et al.,566

2023) and BLIP-2 (Li et al., 2023) establish567

cross-modal fusion through architectural innova-568

tions—gated cross-attention in Flamingo (Alayrac569

et al., 2022) enables visual reasoning, while570

CogVLM2 (Hong et al., 2024) leverages tempo-571

ral grounding for scene understanding. Yet these572

models lack native authentication mechanisms, ren-573

dering generated content susceptible to adversarial574

attacks (Rastogi and Pruthi, 2024). Recent efforts575

(Yoo et al., 2024) incorporate entropy adaptation576

but neglect alignment layers critical for coordinated577

embedding. Our framework bridges this gap by ex-578

plicitly integrating watermarking with cross-modal579

projection mechanisms and semantic fusion met-580

rics—securing generation authenticity without ar- 581

chitectural modification. 582

Our methodology synthesizes these advances 583

through: (1) Visual-semantic vocabulary align- 584

ment supplanting random partitioning, (2) Entropy- 585

regulated intensity modulation synchronized with 586

cross-modal saliency, and (3) Architectural 587

synergy with vision-language fusion mecha- 588

nisms—resolving inherent limitations across these 589

research streams. 590

5 Conclusion 591

We present VLA-Mark, a vision-language aligned 592

watermarking framework that harmonizes intellec- 593

tual property protection with cross-modal semantic 594

fidelity. By integrating multiscale visual-textual 595

alignment metrics and entropy-regulated token par- 596

titioning, our method dynamically balances water- 597

mark detectability and semantic preservation. Ex- 598

periments across four multimodal models demon- 599

strate VLA-Mark’s superiority: near-perfect de- 600

tection (98.8% AUC), 7.4% lower perplexity, and 601

96.1% robustness against paraphrasing and trans- 602

lation attacks. Unlike prior unimodal approaches, 603

VLA-Mark anchors watermark injection to vision- 604

critical semantics through SCT prioritization, en- 605

suring text-visual coherence under perturbations. 606

This work establishes a new paradigm for quality- 607

preserving watermarking in multimodal generation, 608

bridging a critical gap in content authenticity for 609

evolving VLAMMs. Future work will extend this 610

framework to video-language and low-resource set- 611

tings. 612
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Limitation613

While VLA-Mark demonstrates robust watermark-614

ing capabilities, several limitations remain. First,615

the framework assumes that the visual-text align-616

ment remains stable across diverse multimodal617

models, which may not hold in cases of highly dy-618

namic or domain-specific models. Additionally, de-619

spite the strong resistance to attacks like paraphras-620

ing and synonym substitution, VLA-Mark may still621

be susceptible to adversarial methods specifically622

designed to target cross-modal dependencies. Fur-623

thermore, although the method does not require624

model retraining, its reliance on entropy-sensitive625

watermark injection might introduce computational626

overhead in environments with limited resources627

(see Appendix D.1 and Appendix D.2). Finally, the628

approach primarily focuses on static visual content629

and may not perform as effectively with real-time,630

highly dynamic visual inputs.631
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A Implementation Details787

A.1 Hyperparameters setting788

For fair comparison, the hyperparameters of each789

method are standardized:790

1. Hyperparameter γ is set to 0.5 to keep the791

green vocabulary size consistent across differ-792

ent watermarking methods;793

2. Hyperparameter δ is set to 2.0 to keep the per-794

turbation level consistent and avoid imbalance795

in watermark intensity;796

3. Hyperparameter α , which controls the base797

Semantic Critical Tokens proportion of VLA-798

Mark method, is set to 0.025 to ensure that799

only the most semantically relevant tokens are800

selected to maintain text quality and detection801

performance; and802

4. For other hyperparameters, we follow the de-803

fault settings of the MarkLLM (Pan et al.,804

2024) repository.805

B Proof of Maximum Entropy806

Consider the entropy function Ht defined over a807

discrete probability distribution {p̂(l)t }Ll=1:808

Ht = −
L∑
l=1

p̂
(l)
t log p̂

(l)
t (18)809

We aim to find the probability distribution that max-810

imizes Ht subject to the constraint:811

L∑
l=1

p̂
(l)
t = 1 (19)812

To solve this constrained optimization problem, we813

employ the method of Lagrange multipliers. Intro-814

ducing a Lagrange multiplier λ for the constraint,815

we construct the Lagrangian function:816

L = −
L∑
l=1

p̂
(l)
t log p̂

(l)
t + λ

(
L∑
l=1

p̂
(l)
t − 1

)
(20)817

Taking the partial derivative of L with respect to818

each p̂(l)t and setting it to zero yields:819

∂L
∂p̂

(l)
t

= − log p̂
(l)
t − 1 + λ = 0 (21)820

Solving for p̂(l)t gives:821

log p̂
(l)
t = λ− 1 ⇒ p̂

(l)
t = eλ−1 (22)822

This implies that all p̂(l)t are equal. Let p̂(l)t = 1
L for 823

all l. Substituting into the constraint
∑L

l=1 p̂
(l)
t = 1 824

confirms that this distribution is valid: 825

L∑
l=1

1

L
= 1 (23) 826

Substituting p̂(l)t = 1
L into the entropy function Ht: 827

Hmax
t = −

L∑
l=1

1

L
log

1

L

= −L ·
(
1

L
log

1

L

)
= logL

(24) 828

Since the entropy function Ht is concave in {p̂(l)t }, 829

the critical point corresponds to the global maxi- 830

mum. Therefore, the maximum entropy is logL, 831

achieved when the distribution is uniform. 832

C Theoretical Analysis and Proof 833

We present formal analysis of VLA-Mark’s design 834

principles and theoretical guarantees with proofs. 835

Our theoretical analysis establishes a rigorous foun- 836

dation for VLA-Mark’s design principles through 837

four interconnected components formalized in The- 838

orems 1-4 and Lemmas 1-2: 839

• Cross-Modal Alignment: Theorem 3 val- 840

idates the geometric consistency of vision- 841

language embeddings through orthogonal pro- 842

jection invariance. 843

• Entropy-Regulated Watermarking: The- 844

orem 1 quantifies the entropy preservation 845

bound, while Theorem 2 establishes linear 846

detection advantage scaling. 847

• Semantic Metric Fusion: Lemma 1 guaran- 848

tees fused metric fidelity through Lipschitz- 849

constrained error propagation. 850

• Adversarial Robustness: Lemma 2 proves 851

exponential attack resistance against textual 852

edits, complemented by Theorem 4’s visual 853

perturbation stability. 854

C.1 Entropy-Adaptive Partitioning 855

Theorem 1 (Partition Entropy Bound) The dy- 856

namic green list ratio γt maintains bounded en- 857

tropy: 858
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H(pwm
t ) ≥ H(pt)− δ(α, γ), (25)859

where δ(α, γ) = log
(
1 + αL

γ

)
quantifies maxi-860

mum entropy loss from watermarking.861

Implication: This formalizes the trade-off be-862

tween watermark strength (controlled by α, γ) and863

text quality preservation. The adaptive ηt automati-864

cally minimizes δ in high-entropy scenarios where865

semantic preservation is critical.866

Proof C.1 Let pt and pwm
t denote the original and867

watermarked distributions respectively. The en-868

tropy difference can be bounded as:869

H(pt)−H(pwm
t ) = Ept [logpt]− Epwm

t
[logpwm

t ]

= DKL(p
wm
t ∥pt) + logD

(26)870

where D =
∑

k∈Gt
eδpt(k) +

∑
k∈Rt

pt(k) is871

the partition function. Using the log-sum inequal-872

ity:873

logD ≤ log
(
1 + γ(eδ − 1)

)
≤ γ(eδ − 1) (27)874

The KL divergence term satisfies:875

DKL(p
wm
t ∥pt) ≤ δγ(eδ − 1) (28)876

Combining these with the dynamic partition ratio877

γ = α(1 − Hnorm) + γt, we obtain the entropy878

bound:879

H(pwm
t ) ≥ H(pt)−

[
γ(eδ − 1)(1 + δ)

]
︸ ︷︷ ︸

δ(α,γ)

(29)880

Substituting γ ≤ α+ γt completes the proof.881

C.2 Watermark Detectability882

Theorem 2 (Detection Advantage) Let null hy-883

pothesis H0: no watermark (δ = 0), H1: wa-884

termark present (δ > 0). The detection Z-score885

satisfies:886

E[Z|H1]− E[Z|H0] ≥
δ
√
Nγ(1− γ)

2
, (30)887

where N is token count. The advantage grows888

linearly with δ and
√
N .889

Role: This quantifies how our logit boosting 890

strategy (δ > 0) enables statistical detection while 891

guiding parameter selection (watermark intensity 892

vs. stealthiness). 893

Proof C.2 LetX =
∑N

t=1 I(wt ∈ Gt) be the green 894

list hit count. Under H0 (no watermark): 895

E[X|H0] = Nγ, Var[X|H0] = Nγ(1− γ)
(31) 896

Under H1 (watermark present), the logit boost δ 897

increases hit probabilities: 898

E[X|H1] = N

(
γ +

γδ

1 + γ(eδ − 1)

)
≥ Nγ(1 + δ/2)

(32) 899

The detection Z-score becomes: 900

Z =
X −Nγ√
Nγ(1− γ)

(33) 901

The expected detection advantage is: 902

E[Z|H1]− E[Z|H0] ≥
Nγδ/2√
Nγ(1− γ)

=
δ
√
Nγ(1− γ)

2

(34) 903

This linear advantage in δ and square-root de- 904

pendence on N establishes reliable detection. 905

C.3 Semantic Consistency of Cross-Modal 906

Alignment 907

Theorem 3 (Projection Invariance) Let 908

fθ : Rdv → Rd be the vision-text projection 909

with rank(fθ) = d. For aligned embeddings 910

Hv = fθ(Zv), there exists an orthogonal matrix 911

Q ∈ Rd×d such that: 912

∀zv ∈ Zv,∃hL ∈ HL : ∥Qfθ(zv)− hL∥2 ≤ ϵ
(35) 913

where ϵ bounds the alignment error from VLA 914

training. 915

This establishes that vision embeddings reside in 916

a rotated version of the LLM’s semantic space, en- 917

abling cross-modal similarity computation. The or- 918

thogonality preservation ensures angle-based met- 919

rics (LPA/GSC/CCS) remain valid. 920

12



Proof C.3 Let fθ : Rdv → Rd be the vision-text921

projection matrix with rank(fθ) = d. Through sin-922

gular value decomposition (SVD), we can express:923

fθ = UΣV⊤ (36)924

where U ∈ Rd×d and V ∈ Rdv×dv are orthog-925

onal matrices, and Σ ∈ Rd×dv contains singular926

values. The rank condition ensures Σ has exactly927

d non-zero singular values.928

Define the orthogonal matrix Q = U⊤. For929

any visual embedding zv ∈ Zv, the transformed930

embedding becomes:931

Qfθ(zv) = ΣV⊤zv (37)932

From Vision-Language Alignment (VLA) train-933

ing objectives (Liu et al., 2023), we know the pro-934

jected visual embeddings are optimized to align935

with linguistic embeddings HL through contrastive936

learning. Formally, the training ensures:937

min
Q

Ezv

[
min

hL∈HL

∥Qfθ(zv)− hL∥2
]
≤ ϵ (38)938

where ϵ represents the alignment error bound939

from imperfect training. The orthogonality of Q940

preserves angular relationships:941

cos∠(Qfθ(zv),hL) = cos∠(fθ(zv),Q
⊤hL)

(39)942

Thus, the angle-based metrics (LPA/GSC/CCS)943

remain valid under this orthogonal transformation.944

C.4 Metric Fusion Optimality945

Lemma 1 (Metric Completeness) The fused met-946

ric Φ(l) achieves ϵ-approximation of the ideal se-947

mantic relevance function Φ∗(l):948

|Φ(l)− Φ∗(l)| ≤ ϵ

3

3∑
k=1

∥ψnorm
k − ψ∗

k∥ (40)949

where ψ∗
k are optimal unimodal metrics under950

Lipschitz continuity.951

Significance: The triangular error bound guar-952

antees that our multi-scale fusion approach never953

deviates catastrophically from ideal semantic as-954

sessment, even with imperfect individual metrics.955

Proof C.4 Let Φ∗(l) =
∑3

k=1 ψ
∗
k(l) be the ideal 956

semantic relevance function with optimal unimodal 957

metrics ψ∗
k. Under the Lipschitz continuity assump- 958

tion, each normalized metric satisfies: 959

∥ψnorm
k (l)− ψ∗

k(l)∥ ≤ ϵ

3
Lk (41) 960

where Lk is the Lipschitz constant for metric 961

k. The fusion error can be bounded via triangle 962

inequality: 963

|Φ(l)− Φ∗(l)| ≤
3∑

k=1

|ψnorm
k (l)− ψ∗

k(l)| (42) 964

≤
3∑

k=1

ϵ

3
Lk (43) 965

=
ϵ

3

3∑
k=1

Lk (44) 966

Substituting Lk = ∥ψnorm
k − ψ∗

k∥ completes the 967

proof. This bound ensures that even if one met- 968

ric deviates significantly, the others provide error 969

compensation through summation. The worst-case 970

error grows linearly with metric deviations rather 971

than exponentially, guaranteeing robustness. 972

Interpretation: 1. The projection proof estab- 973

lishes that cross-modal similarity computations are 974

geometrically valid through VLA’s inherent orthog- 975

onality. 2. The metric fusion proof demonstrates 976

that our multi-scale approach provides formal error 977

guarantees compared to an ideal semantic assessor. 978

3. Both proofs justify the theoretical soundness of 979

using vision-aligned embeddings and fused metrics 980

for vocabulary partitioning. 981

C.5 Robustness to Token Editing 982

Lemma 2 (Edit Resistance) After K token ed- 983

its, watermark detection power remains lower- 984

bounded by: 985

Power ≥ 1− exp

(
−N(γ −K/N)2

2γ(1− γ)

)
(45) 986

requiring K > N(1 − −1
√
(1− γ)) to defeat 987

detection. 988

Significance: Formalizes robustness against 989

content-preserving edits - attackers must alter a 990

linear fraction of tokens (∝ N ) to remove the wa- 991

termark, inevitably damaging content integrity. 992
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Proof C.5 Let N be the total tokens and T be the993

observed green list count. The watermark detector994

uses the hypothesis test:995

H0 : T ∼ Bin(N, γ) vs H1 : T > γN (46)996

AfterK edits replacing green list tokens with red997

list ones, the distribution becomes:998

T ∼ Bin(N −K, γ) + Bin(K, 0) (47)999

The expectation and variance are:1000

E[T ] = γ(N −K) (48)1001

Var(T ) = γ(1− γ)(N −K) (49)1002

Using the Chernoff bound for binomial distribu-1003

tions:1004

P(T ≤ γN − δ) ≤ exp

(
− δ2

2γ(1− γ)N

)
(50)1005

Set δ = γN − E[T ] = γK. Substitution gives:1006

Power = 1− P(T ≤ γN − γK)

≥ 1− exp

(
− (γK)2

2γ(1− γ)N

) (51)1007

Simplify to obtain the stated bound:1008

≥ 1− exp

(
−N(γ −K/N)2

2γ(1− γ)

)
(52)1009

For successful attack, require:1010

exp

(
−N(γ −K/N)2

2γ(1− γ)

)
≥ α

⇒ K > N
(
1− −1

√
(1− γ)

)
(53)1011

where α is the significance level. This shows linear1012

dependence on N .1013

C.6 Visual-Semantic Coupling1014

Theorem 4 (SCT Invariance) Semantic Critical1015

Tokens maintain relative rankings under visual per-1016

turbations ∆Xv:1017

P(rank(Φ(l)|Xv+∆Xv) = rank(Φ(l)|Xv))

≥ 1− C∥∆Xv∥F
(54)1018

where C depends on VLA model Lipschitz con-1019

stants.1020

Demonstrates that our visual grounding mecha-1021

nism resists moderate adversarial image perturba-1022

tions, as SCT rankings remain stable under con-1023

trolled visual changes.1024

Proof C.6 Let Zv = VisEnc(Xv) and Z′
v = 1025

VisEnc(Xv + ∆Xv). The visual encoder’s Lips- 1026

chitz continuity gives: 1027

∥Z′
v − Zv∥F ≤ Lv∥∆Xv∥F (55) 1028

Projection layer fθ with Lipschitz constant Lp 1029

preserves: 1030

∥H′
v −Hv∥F ≤ LpLv∥∆Xv∥F (56) 1031

For any token l, the metric difference is bounded 1032

by: 1033

|Φ(l|∆Xv)− Φ(l)| ≤
3∑

k=1

|ψnorm
k (l|∆Xv)− ψnorm

k (l)|

≤ 3LΦLpLv∥∆Xv∥F
(57) 1034

where LΦ is the Lipschitz constant of metric fu- 1035

sion. 1036

Rank preservation occurs when: 1037

|Φ(l)−Φ(l′)| > 6LΦLpLv∥∆Xv∥F ∀l, l′ (58) 1038

The probability of rank change is bounded by: 1039

P(rank change) ≤ C∥∆Xv∥F (59) 1040

where C = 6LΦLpLv/minl ̸=l′ |Φ(l) − Φ(l′)|. 1041

Thus: 1042

P(rank preserved) ≥ 1− C∥∆Xv∥F (60) 1043

Interpretation: 1. The edit resistance proof 1044

shows watermark robustness grows exponentially 1045

with document length N , forcing attackers to com- 1046

promise content quality through extensive edits. 1047

2. The SCT invariance proof reveals visual pertur- 1048

bations must exceed threshold ∥∆Xv∥F > 1/C 1049

to disrupt rankings - typically requiring perceptu- 1050

ally significant image alterations. 3. Combined, 1051

these proofs formalize VLA-Mark’s dual robust- 1052

ness against both textual and visual attacks while 1053

maintaining semantic fidelity. 1054

The theoretical framework demonstrates how 1055

VLA-Mark’s components interact synergistically: 1056

Theorem 1’s entropy regulation explains the em- 1057

pirical 7.4% perplexity reduction (Table 1), while 1058

Theorem 2’s
√
N -scaling advantage manifests in 1059

the 98.8% AUC detection rate. The 96.1% attack 1060

resilience (Fig. 3) directly reflects Lemma 2’s edit 1061

resistance bound, and Theorem 4’s ranking sta- 1062

bility underpins the preserved text-visual consis- 1063

tency under perturbations. Crucially, Theorem 3 1064
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Time(seconds) VLA-Mark KGW SWEET EWD DiP Unbiased w/o watermark

Llava-1.5 10.6907 10.6392 10.6556 10.5249 10.6989 10.7005 10.5230
Llava-next 6.8845 6.8160 6.8475 6.7109 6.8999 6.8864 6.7009
Qwen2VL 10.3430 10.1872 10.2062 10.0791 10.2485 10.2410 10.0758
Deepseek-VL 6.0687 6.0092 6.0261 5.9101 6.0563 6.0793 5.8691

Table 4: End-to-end latency (seconds) for different watermarking methods across VLAMs.

Time
(seconds)

VLA-
Mark

Cross
Modal

Aligned
Embedding

Multiscale
Semantic
Saliency
Metrics

Entropy
Regulated
Partition

Fused
Metric
Guided

Vocabulary

SCT
Distribution
Adjustment

All
Components

w/o
watermark

Llava-1.5 10.6907 0.0282 0.0019 0.0539 0.0185 0.0179 0.1204 10.5230
Llava-next 6.8845 0.0527 0.0034 0.0604 0.0174 0.0181 0.1520 6.7009
Qwen2VL 10.3430 0.0988 0.0020 0.0668 0.0185 0.0198 0.2059 10.0758
Deepseek-VL 6.0687 0.0755 0.0004 0.0569 0.0173 0.0180 0.1681 5.8691

Table 5: Per-component inference overhead (seconds) for LLaVA-1.5 under a 200-token setting.

and Lemma 1 jointly validate the framework’s core1065

innovation - using vision-language alignment as1066

both semantic anchor and watermark carrier. These1067

formal guarantees address the reproducibility crisis1068

in neural watermarking by establishing mathemati-1069

cally grounded performance boundaries, while the1070

tight integration with empirical results sets a new1071

standard for accountable multimedia authentication1072

systems.1073

D Additional Experimental Results1074

D.1 Inference Latency1075

Table 4 shows the end-to-end generation latency for1076

50 images and 200 tokens on four VLAMs. VLA-1077

Mark adds only a small overhead over existing1078

text-only watermarking methods.1079

Table 4 quantifies the end-to-end generation la-1080

tency across four vision-language models under1081

standardized conditions. The results reveal that1082

VLA-Mark introduces only a 1–2.5% latency in-1083

crease compared to text-only watermarking base-1084

lines, with absolute overheads ranging from 0.121085

to 0.21 seconds depending on the model architec-1086

ture. This minimal cost stems from the frame-1087

work’s lightweight design: entropy-regulated to-1088

ken partitioning operates on pre-computed logits1089

without iterative optimization, while cross-modal1090

alignment leverages existing projection layers in1091

VLAMs rather than introducing new computations.1092

For instance, the DeepSeek-VL model exhibits a1093

total overhead of 0.168 seconds, which constitutes1094

just 2.8% of its baseline inference time (5.87 sec-1095

onds). 1096

These findings confirm that the added mod- 1097

ules impose negligible runtime penalties even for 1098

large-scale deployments. The consistency of over- 1099

heads across architectures—from LLaVA’s linear 1100

projection-based alignment to Qwen2-VL’s hy- 1101

brid attention mechanisms—further validates VLA- 1102

Mark’s architectural neutrality. Crucially, the over- 1103

head remains orders of magnitude smaller than 1104

the inherent latency of VLAM inference pipelines, 1105

which typically involve computationally intensive 1106

vision encoders (e.g., ViT-L/14) and autoregressive 1107

text generation. This efficiency is achieved without 1108

sacrificing detection performance or text quality, 1109

as evidenced by the framework’s 98.8% AUC and 1110

7.4% PPL reduction relative to baselines. 1111

D.2 Inference Latency Breakdown 1112

Table 5 details the runtime contribution of each 1113

VLA-Mark component under a 200-token genera- 1114

tion setting on LLaVa-1.5. 1115

Cross-Modal Aligned Embedding, which 1116

projects visual features into the LLM’s se- 1117

mantic space, accounts for 23–47% of total 1118

overhead depending on the model. This variation 1119

stems from architectural differences: LLaVA- 1120

Next’s lightweight adaptors reduce projection 1121

costs (0.0527s) compared to Qwen2-VL’s 1122

higher-dimensional alignment (0.0988s). Entropy- 1123

Regulated Partitioning contributes 32–40% of 1124

overhead through its dynamic token selection 1125

mechanism. Despite this, its per-step computa- 1126

tional cost remains minimal (0.0569–0.0668s) 1127
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Performance drop Unattacked Insert Attack Delete Attack Synonym Attack Translate Attack Paraphrase Attack

KGW 0.00(98.75) 1.21(97.54) 0.65(98.1) 0.83(97.92) 5.12(93.63) 8.22(90.53)
EWD 0.00(99.57) 0.94(98.63) 0.64(98.93) 0.65(98.92) 5.47(94.1) 4.67(94.9)
SWEET 0.00(99.06) 1.72(97.34) 1.08(97.98) 0.91(98.15) 4.38(94.68) 4.98(94.08)
unbiased 0.00(82.52) 8.01(74.51) 4.95(77.57) 5.17(77.35) 5.36(77.16) 12.49(70.03)
DiP 0.00(82.76) 7.72(75.04) 5.83(76.93) 5.19(77.57) 5.61(77.15) 12.98(69.78)
VLA-M 0.00(97.51) 0.87(96.64) 0.22(97.29) 0.55(96.96) 2.47(95.04) 2.90(94.61)

Table 6: Relative performance drop (%) from unattacked baseline under adversarial attacks.

due to optimized entropy calculations using1128

pre-softmax logits. Notably, the Multiscale1129

Semantic Saliency Metrics (LPA/GSC/CCS)1130

impose near-negligible costs (0.0004–0.0034s),1131

as they operate on cached embeddings rather1132

than recomputing cross-modal similarities. The1133

SCT Distribution Adjustment, which applies logit1134

boosting via parallelizable matrix operations,1135

adds just 0.0179–0.0198s. Collectively, these1136

components add less than 0.2 seconds overhead1137

per generation, reinforcing VLA-Mark’s design1138

goal of runtime efficiency with negligible impact1139

on user experience.1140

D.3 Relative Performance Drop Under1141

Attacks1142

We reorganized the data from Figure 3 into Ta-1143

ble 6, showing relative performance drops from the1144

unattacked baseline under various adversarial sce-1145

narios. Smaller drops indicate stronger robustness.1146

Table 6 quantifies VLA-Mark’s resilience1147

through relative AUC drops under six attack sce-1148

narios. The framework’s maximum degradation1149

of 2.90% under paraphrasing attacks contrasts1150

sharply with baselines like DiP (12.98% drop),1151

highlighting the effectiveness of Semantic Crit-1152

ical Tokens (SCTs) in anchoring watermarks to1153

vision-grounded semantics. For instance, during1154

synonym substitution attacks, VLA-Mark’s SCT1155

protection ensures that visually anchored phrases1156

(e.g., "grassy trail") resist replacement with non-1157

salient synonyms, preserving both watermark sig-1158

nals and text-visual coherence.1159

The entropy-adaptive mechanism further en-1160

hances robustness by concentrating watermark1161

strength on high-uncertainty tokens less critical to1162

core semantics—a strategy validated by the mere1163

0.55% drop under synonym attacks versus KGW’s1164

0.83%. The framework’s superior performance1165

against structural perturbations (e.g., 0.22% drop1166

under deletions vs. SWEET’s 1.08%) stems from1167

its multiscale metrics, which ensure distributed1168

watermark signatures across local and global se- 1169

mantics. Even under aggressive translation attacks, 1170

where baseline methods lose 5.12–5.47% AUC, 1171

VLA-Mark retains 95.04% detection accuracy by 1172

preserving SCTs’ cross-lingual visual grounding. 1173

D.4 Average Performance Comparison 1174

Table 9 complements Table 1 by comparing the 1175

average detection performance of VLA-Mark and 1176

baseline methods across multiple backbone mod- 1177

els. 1178

Method AUC ACC PPL

KGW 99.94 99.24 6.13
EWD 100.00 99.93 6.20
SWEET 99.98 99.75 6.13
unbiased 89.36 81.05 5.70
DiP 89.27 81.22 5.70
VLA-M 98.77 96.64 5.27

Table 9: Average detection performance metrics across
VLAMs for different watermarking methods.

The averaged metrics reveal VLA-Mark’s bal- 1179

anced performance profile. VLA-Mark achieves 1180

a strong balance between detection performance 1181

and text quality, attaining the best perplexity (PPL) 1182

while maintaining high AUC and accuracy (ACC) 1183

scores. While EWD achieves marginally higher 1184

AUC (100.00% vs. 98.77%), this comes at the cost 1185

of 17.6% higher perplexity (6.20 vs. 5.27), under- 1186

scoring VLA-Mark’s unique ability to harmonize 1187

detection and quality. The slight AUC reduction 1188

for DeepSeek-VL (96.32% vs. 99.93% on LLaVA) 1189

stems from its non-linear alignment mechanism, 1190

which compresses visual features through dynamic 1191

routing rather than linear projection. Nonetheless, 1192

these model-specific variations are limited, and 1193

overall, VLA-Mark delivers consistently competi- 1194

tive and robust performance. Crucially, VLA-Mark 1195

maintains superior PPL across all models, includ- 1196

ing a 15.3% reduction compared to KGW (5.27 1197
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Attack Type KGW EWD SWEET unbiased DiP VLA-M

Word Vector Substitution 0.88 (97.87) 0.73 (98.84) 1.02 (98.04) 4.79 (77.73) 4.98 (77.78) 0.41 (97.10)
Noise Injection 0.60 (98.15) 0.55 (99.02) 0.72 (98.34) 3.90 (78.62) 4.22 (78.54) 0.20 (97.31)
Text Style Transfer 7.90 (90.85) 4.43 (95.14) 5.05 (94.01) 12.70 (69.82) 13.45 (69.31) 2.67 (94.84)
Entity Replacement 2.13 (96.62) 2.35 (97.22) 3.14 (95.92) 5.75 (76.77) 6.20 (76.56) 1.08 (96.43)
Frequency Perturbation 4.95 (93.80) 5.22 (94.35) 4.40 (94.66) 6.45 (76.07) 6.70 (76.06) 2.38 (95.13)

Table 7: Robustness of VLA-M and baseline methods across additional adversarial attacks.

LLaVA LLaVA-Next Qwen2-VL DeepSeek-VL

AUC PPL AUC PPL AUC PPL AUC PPL

KGW 99.65 7.15 99.80 6.95 99.70 6.15 98.55 8.20
EWD 99.78 7.55 99.75 7.00 99.95 6.10 99.15 8.30
SWEET 99.81 7.48 99.85 7.10 99.90 6.20 98.80 8.15
Unbiased 86.70 7.25 91.10 6.70 95.90 6.20 78.36 7.65
DiP 87.10 7.22 91.50 6.75 96.20 6.18 78.52 7.60
VLA-M 99.93 5.92 99.85 6.02 99.70 5.35 96.32 5.84

Table 8: Performance of VLA-M and baseline watermarking methods on the MS COCO dataset across multiple model
architectures. The metrics include Area Under Curve (AUC) and Perplexity (PPL) measured on LLaVA, LLaVA-Next, Qwen2-
VL, and DeepSeek-VL models. VLA-M demonstrates consistently superior perplexity and competitive AUC across diverse
architectures.

vs. 6.13). This fluency preservation arises from1198

the framework’s explicit avoidance of low-salience1199

token manipulation, which in baselines often intro-1200

duces grammatical artifacts (e.g., KGW’s biased1201

"green list" sampling).1202

D.5 Additional Robustness Evaluations1203

Beyond the initial robustness tests, we conducted1204

five additional novel adversarial attack evaluations1205

summarized in Table 7.1206

VLA-Mark demonstrates superior robustness1207

across all attacks, maintaining both high detec-1208

tion accuracy and low perturbation. Under style1209

transfer attacks, which alter lexical patterns while1210

preserving meaning, VLA-Mark’s AUC drops by1211

just 2.67% versus SWEET’s 5.05%, as SCTs like1212

"broken bench" remain anchored to visual patches1213

regardless of syntactic variations. The framework’s1214

resilience to frequency perturbation—a worst-case1215

scenario where attackers systematically replace1216

common words—is particularly notable (2.38%1217

drop vs. KGW’s 4.95%). Even under adversarial1218

entity replacement, which directly targets SCTs,1219

VLA-Mark retains 96.43% AUC by leveraging1220

CCS metrics to maintain contextual coherence.1221

VLA-Mark’s resilience to complex transforma-1222

tions such as style transfer and semantic rewriting1223

underscores the effectiveness of its cross-modal1224

semantic anchoring and entropy-aware watermark1225

embedding, which dynamically adapt watermark 1226

strength according to token saliency and generation 1227

uncertainty. These results validate the method’s ap- 1228

plicability to real-world scenarios with diverse and 1229

unpredictable text modifications. 1230

D.6 Evaluation on Additional Dataset: MS 1231

COCO 1232

To demonstrate dataset-agnostic performance, we 1233

evaluate watermarking methods on the MS COCO 1234

captioning benchmark across four VLAMs. Table 8 1235

reports AUC and PPL across four VLAMs. 1236

Table 8 presents the performance of VLA-Mark 1237

and baseline watermarking methods evaluated on 1238

the MS COCO dataset across four state-of-the- 1239

art vision-language architectures. The metrics re- 1240

ported include Area Under the Curve (AUC) for 1241

detection accuracy and Perplexity (PPL) for text 1242

generation quality. 1243

VLA-M consistently achieves the lowest per- 1244

plexity scores across all tested models, indicating 1245

superior preservation of natural language fluency 1246

compared to competing methods. Its AUC values 1247

remain near the highest observed levels, demon- 1248

strating robust and reliable watermark detectability 1249

without compromising semantic quality. 1250

The slightly lower AUC for DeepSeek-VL aligns 1251

with its known behavioral patterns on AMBER 1252

and similar datasets, reflecting model-specific nu- 1253
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ances rather than limitations of the watermarking1254

approach itself.1255

These results confirm VLA-M’s scalability and1256

generalizability beyond the originally used dataset,1257

supporting its retraining-free applicability across1258

diverse multimodal language models and datasets.1259

The strong balance between detection robustness1260

and text quality underscores the effectiveness of1261

the entropy-regulated watermark injection and the1262

semantic-critical-token preservation mechanisms1263

detailed in Sections 2.1 and 2.4.1264

This evaluation further reinforces VLA-M’s suit-1265

ability for real-world deployments where models1266

and data distributions vary, addressing reviewer1267

concerns about extending watermarking strategies1268

to new domains without extensive retraining or loss1269

of performance.1270
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