
Adaptive Hypernetworks for Multi-Agent RL

HyperMARL: Adaptive Hypernetworks for Multi-
Agent RL

Anonymous authors
Paper under double-blind review

Abstract
Adaptability to specialised or homogeneous behaviours is critical in cooperative multi-1
agent reinforcement learning (MARL). Parameter sharing (PS) techniques, common for2
efficient adaptation, often limit behavioural diversity due to cross-agent gradient inter-3
ference, which we show can be exacerbated by the coupling of observations and agent4
IDs. Current remedies typically add complexity through altered objectives, manual5
preset diversity levels, or sequential updates. We ask: can shared policies adapt with-6
out these complexities? We propose HyperMARL, a PS approach using hypernetworks7
for dynamic agent-specific parameters, without altering the RL objective or requiring8
preset diversity levels. HyperMARL’s explicit decoupling of observation- and agent-9
conditioned gradients empirically reduces policy gradient variance, facilitates shared-10
policy adaptation (including specialisation), and helps mitigate cross-agent interference.11
Across diverse MARL benchmarks (up to 20 agents), requiring homogeneous, hetero-12
geneous, or mixed behaviours, HyperMARL achieves competitive performance against13
key baselines – fully shared, non-parameter sharing, and three diversity-promoting14
methods – while preserving behavioural diversity comparable to non-parameter shar-15
ing. These findings establish HyperMARL as a versatile approach for adaptive MARL.16

1 Introduction17

Specialist and generalist behaviours are critical to collective intelligence, enhancing performance18
and adaptability in both natural and artificial systems (Woolley et al., 2015; Smith et al., 2008;19
Surowiecki, 2004; Kassen, 2002; Williams & O’Reilly III, 1998). In Multi-Agent Reinforcement20
Learning (MARL), this translates to a critical need for policies that can flexibly adapt to meet diverse21
task demands (Li et al., 2021; Bettini et al., 2024; Albrecht et al., 2024).22

Optimal MARL performance thus hinges on being able to represent the required behaviours. While23
No Parameter Sharing (NoPS) (Lowe et al., 2017) enables specialisation by using distinct per-agent24
networks, it suffers from significant computational overhead and sample inefficiency (Christianos25
et al., 2021). Conversely, Full Parameter Sharing (FuPS) (Tan, 1993; Gupta et al., 2017; Foerster26
et al., 2016), which trains a single shared network, improves efficiency but typically struggles to27
foster the behavioural diversity necessary for many complex tasks (Kim & Sung, 2023; Fu et al.,28
2022; Li et al., 2021).29

Balancing FuPS efficiency with the capacity for diverse behaviours therefore remains a central open30
problem in MARL. Prior works have explored intrinsic-rewards (Li et al., 2021; Jiang & Lu, 2021),31
role-based allocations (Wang et al., 2020a;b), specialised architectures (Kim & Sung, 2023; Li et al.,32
2024; Bettini et al., 2024), or sequential updates (Zhong et al., 2024). However, these methods often33
alter the learning objective, require prior knowledge of optimal diversity levels, involve delicate34
hyperparameter tuning, or necessitate maintaining agent-specific parameters and sequential updates.35

We ask: Can we design a shared MARL architecture that flexibly supports both specialised and36
homogeneous behaviours—without altered learning objectives, manual preset diversity levels, or37
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Figure 1: HyperMARL Policy Architecture. Common Agent-ID conditioned shared MARL policy
(left) vs HyperMARL (right), which uses a hypernetwork to generate agent-specific policies and
decouples observation- and agent-conditioned gradients.

sequential updates? A key difficulty with FuPS, particularly for diverse behaviours, was hypothe-38
sised to be gradient interference among agents, whereby their updates negatively impact each other’s39
learning (Christianos et al., 2021; Zhong et al., 2024). We not only empirically validate this hypoth-40
esis but also demonstrate a critical insight: this conflict is significantly exacerbated by the common41
practice of coupling observations with agent IDs within a shared network (Fig. 1, Sec. 3).42

To counteract this coupling, we propose HyperMARL, a method using agent-conditioned hypernet-43
works to generate agent’s parameters on the fly and explicitly decouples observation- and agent-44
conditioned gradients (Fig. 1, Section 4.2). While hypernetworks are effective for resolving gradi-45
ent conflicts in multi-task RL (Navon et al., 2020) and continual learning (von Oswald et al., 2020),46
we establish their effectiveness in MARL. We also show that HyperMARL empirically attains lower47
policy gradient variance than FuPS and that this decoupling is critical for specialisation (Sec. 5.1, H),48
suggesting it helps mitigate cross-agent gradient interference in shared architectures.49

We validate HyperMARL on diverse MARL benchmarks—including Dispersion and Navigation50
(VMAS) (Bettini et al., 2022), Multi-Agent MuJoCo (MAMuJoCo) (Peng et al., 2021), and51
SMAX (Rutherford et al., 2024)—across environments with two to twenty agents that require homo-52
geneous, heterogeneous, or mixed behaviours. HyperMARL consistently matches or outperforms53
NoPS, FuPS, and diversity-promoting methods such as DiCo (Bettini et al., 2024),HAPPO (Zhong54
et al., 2024) and Kaleidoscope (Li et al., 2024), while achieving NoPS-level behavioural diversity55
while using a shared architecture.56

Our contributions are as follows: I) We propose HyperMARL (Sec. 4), a novel method that uses57
agent-conditioned hypernetworks to decouple observation- and agent-conditioned gradients, en-58
abling the adaptive learning of diverse or homogeneous behaviours without altering the RL objective59
or requiring preset diversity levels. II) We demonstrate through extensive evaluation (Sec. 5) across60
diverse MARL environments (up to 20 agents) that HyperMARL consistently achieves competitive61
performance against strong baselines (including NoPS, FuPS, DiCo, HAPPO, and Kaleidoscope)62
while matching NoPS-level behavioural diversity. III) We further demonstrate that HyperMARL63
empirically reduces policy gradient variance compared to FuPS and facilitates specialisation, sug-64
gesting the importance of gradient decoupling for mitigating cross-agent interference (Sec. 5.1, H).65

2 Background66

We model the cooperative task as a Dec-POMDP (Oliehoek & Amato, 2016), using tuple67
⟨I,S, {Ai}i∈I, T,R, {Oi}i∈I, O, ρ0, γ⟩, where S is the set of states with an initial distribution ρ0,68
Ai and Oi are the action and observation spaces for each agent i ∈ I, T and O are the state transi-69
tion and observation functions, R is the shared reward function and γ is the discount factor. At each70
timestep t, each agent selects an action ait ∼ πi(·|hit) conditioned on its local action-observation71
history. The goal is to find an optimal joint policy π∗ = argmaxπ Es0∼ρ0,π

[∑∞
t=0 γ

tR(st,at)
]
.72
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Figure 2: Average evaluation reward (mean ± 95% CI) for temporal Specialisation vs. Synchroni-
sation using REINFORCE (10 seeds). Bold: highest mean, no CI overlap. Neither fully shared nor
independent policies consistently achieve the highest mean reward.

Specialisation Synchronisation

#Ag NoPS FuPS FuPS+ID NoPS FuPS FuPS+ID

2 0.88±0.09 0.50±0.00 0.64±0.10 0.83±0.12 1.00±0.00 0.91±0.09
4 0.74±0.08 0.25±0.00 0.40±0.07 0.32±0.03 1.00±0.00 0.67±0.15
8 0.68±0.02 0.12±0.00 0.25±0.03 0.14±0.00 1.00±0.00 0.54±0.10

16 0.64±0.01 0.06±0.00 0.13±0.02 0.07±0.00 1.00±0.00 0.55±0.14

Specialised Policies and Environments. We say an environment is specialised if its optimal joint73
policy contains at least two distinct, non-interchangeable agent policies ( Def. 1 in App. C). Under74
this mild condition, tasks such as Dispersion (5.1) or our Specialisation Game (E.1) require agents75
to learn complementary roles rather than identical behaviours.76

3 Are Independent or Fully Shared Policies Enough?77

Standard independent (NoPS) and fully parameter-shared (FuPS) policies face inherent trade-offs78
in MARL. NoPS allows for uninhibited agent specialisation but can be sample inefficient and com-79
putationally expensive. FuPS, often conditioned with an agent ID (FuPS+ID), is more efficient but80
can struggle when agents must learn diverse behaviours. This section investigates the limitations of81
these common policy architectures. To probe these limitations, we introduce two illustrative envi-82
ronments: the Specialisation Game, rewarding distinct actions, and the Synchronisation Game,83
rewarding identical actions. Both are inspired by prior work (Fu et al., 2022; Bettini et al., 2022;84
Osborne & Rubinstein, 1994) and extended here to N -agent and temporal settings where agents85
observe prior joint actions (see Appendix E for full definitions).86

3.1 Limitations of Fully Shared and Independent Policies FuPS without agent IDs provably87
cannot recover optimal pure Nash equilibria in the non-temporal 2-player Specialisation Game88
(Proof F.2, App. E). In practice, however, FuPS is often conditioned with agent IDs, and MARL poli-89
cies must handle complexities beyond static, two-player interactions. We therefore evaluate standard90
architectures in the temporal n-player versions of these games1 We compare three standard architec-91
tures trained with REINFORCE (Williams, 1992): 1) NoPS: independent policies (πθi(ai|oi)); 2)92
FuPS: a single shared policy (πθ(ai|oi)); and 3) FuPS+ID: a shared policy incorporating a one-hot93
agent ID (πθ(ai|oi, idi)). All use single-layer networks, 10-step episodes, and 10, 000 training steps94
(further details in App. 6).95

Empirical Performance. Table 2 shows that neither NoPS nor FuPS consistently achieves the96
highest mean evaluation rewards. NoPS excels in the Specialisation Game but is outperformed by97
FuPS (optimal) and FuPS+ID in the Synchronisation Game. Furthermore, the performance gaps98
widen as the number of agents increases (notably at n = 8 and n = 16), highlighting the scalability99
challenges of both fully independent and fully shared policies.100

3.2 Why FuPS+ID Fails to Specialise: The Problem of Gradient Conflict Despite being a univer-101
sal approximator (Hornik et al., 1989), FuPS+ID often struggles to learn diverse policies in practice102
(Table 2, (Christianos et al., 2021; Zhong et al., 2024)). A key reason is gradient conflict: when a103
single network processes both observation o and agent ID idi, updates intended to specialise agent i104
(based on idi) can conflict with updates for agent j (based on idj), particularly if they share similar105
observations but require different actions. This obstructs the emergence of specialised behaviours106
(conflict measured via inter-agent gradient cosine similarity, App. F.3).107

Importance of Observation and ID Decoupling To investigate the effect of entangled observation108
and ID inputs, we introduce an ablation: FuPS+ID (No State), where the policy πθ(ai | idi) con-109

1Results for non-temporal (normal-form) variants are in App. F.4.
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Figure 3: Multi-agent policy gradient methods in the Specialisation environment. The FuPS+ID (No
State) ablation outperforms FuPS+ID, showing near-orthogonal gradients (b), indicating that obser-
vation–ID decoupling is important. HyperMARL (MLP) enables this decoupling while leveraging
state information, and achieves better performance and reduced gradient conflict than FuPS+ID.

ditions only on the agent ID, ignoring observations. Surprisingly, FuPS+ID (No State) outperforms110
standard FuPS+ID in the Specialisation Game for all tested N (Figure 3a), even when N ≤ 4111
(where observation spaces are small, suggesting the issue is not merely observation size). Figure 3b112
reveals why: FuPS+ID (No State) shows near-zero gradient conflict (nearly orthogonal gradients),113
whereas standard FuPS+ID exhibits negative cosine similarities (conflicting gradients).114

These results show that naively coupling observation and ID inputs in shared networks can lead to115
destructive interference, hindering specialisation. While discarding observations is not a general116
solution (most tasks require state information), this finding motivates designing architectures that117
can leverage both state and agent IDs, while minimising interference. Section 4 introduces Hyper-118
MARL (Figure 1), which explicitly decouples observation- and agent-conditioned gradients through119
agent-conditioned hypernetworks, leading to improved performance over FuPS variants and reduced120
gradient conflict compared to standard FuPS+ID (Figure 3).121

4 HyperMARL122

We introduce HyperMARL, an approach that uses agent-conditioned hypernetworks to learn diverse123
or homogeneous policies end-to-end, without modifying the RL objective or requiring preset diver-124
sities. By operating within a fully shared paradigm, HyperMARL leverages shared gradient infor-125
mation while enabling specialisation through the decoupling of observation- and agent-conditioned126
gradients. Pseudocode, scaling, and runtime details are available in App. G.1, G.3, and G.4.127

Hypernetworks for MARL As illustrated in Figure 1, for any agent i with context ei (i.e., ei-128
ther a one-hot encoded ID or a learned embedding), the hypernetworks generate the agent-specific129
parameters:130

θi = hπψ(e
i), ϕi = hVφ (e

i), (1)

where hπψ and hVφ are the hypernetworks for the policy and critic, respectively. The parameters131
θi and ϕi define each agent’s policy πθi and critic Vϕi , dynamically enabling either specialised or132
homogeneous behaviours as required by the task.133

Linear Hypernetworks Given a one-hot agent ID, 1i ∈ R1×n, a linear hypernetwork hπψ generates134
agent-specific parameters θi as :135

θi = hπψ(1
i) = 1i ·W + b (2)

where W ∈ Rn×m is the weight matrix (with m the per-agent parameter dimensionality and n is136
the number of agents), and b ∈ R1×m is the bias vector. Since 1i is one-hot encoded, each θi137
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corresponds to a specific row of W plus the shared bias b. If there is no shared bias term, this138
effectively replicates training of separate policies for each task (in our case, for each agent) (Beck139
et al., 2023), since there are no shared parameters and gradient updates are independent.140

MLP Hypernetworks for Expressiveness To enhance expressiveness, MLP Hypernetworks incor-141
porate hidden layers and non-linearities:142

θi = hπψ(e
i) = fπψ1

(
gπψ2

(ei)
)

(3)

where gπψ2
is an MLP processing the agent context ei, and fπψ1

is a final linear output layer. Unlike143
linear hypernetworks, MLP hypernetworks increase parameter count and do not guarantee distinct144
per-agent weights, creating a trade-off between expressiveness and computational overhead.145

4.1 Agent Embeddings and Initialisation146

The agent embedding ei is a one-hot encoded ID for Linear Hypernetworks. For MLP Hypernet-147
works, we use learned agent embeddings, orthogonally initialised and optimised end-to-end with148
the hypernetwork. HyperMARL’s hypernetworks are themselves initialised such that the gener-149
ated agent-specific parameters (θi, ϕi) initially match the distribution of standard direct initialisation150
schemes (e.g., orthogonal for PPO, preserving fan in/out), promoting stable learning.151

4.2 Gradient Decoupling in HyperMARL152

A core difficulty in FuPS is cross-agent gradient interference (Christianos et al., 2021; Zhong et al.,153
2024). HyperMARL mitigates this by generating each agent’s parameters through a shared hyper-154
network, thereby decoupling agent-conditioned and observation-conditioned gradients.155

Hypernetwork gradients. Consider a fully cooperative MARL setting with a centralised critic, we
can formulate the policy gradient for agent i as follows (Albrecht et al., 2024; Kuba et al., 2021):

∇θiJ(θi) = Eht,at∼π

[
A(ht,at)∇θi log πθi(ait | hit)

]
,

where ht and at are the joint histories and joint actions for all agents, θi denotes the parameters of156
agent i, and A(ht,at) = Q(ht,at)− V (ht) is the advantage function.157

Decoupling. In HyperMARL each agent’s policy weights are produced by the hypernetwork hπψ:158
θi = hπψ(e

i), so we optimise a single parameter vector ψ. Applying the chain rule:159

∇ψJ(ψ) =
I∑
i=1

∇ψhπψ(ei)︸ ︷︷ ︸
Ji (agent-conditioned)

Eht,at∼π

[
A(ht,at)∇θi log πθi(ait | hit)

]︸ ︷︷ ︸
Zi (observation-conditioned)

. (4)

• Agent-conditioned factor Ji. This Jacobian depends only on the fixed embedding ei and the160
hypernetwork weights ψ, therefore, it is deterministic with respect to mini-batch samples (as ei161
and ψ are fixed per gradient step), separating agent identity from trajectory noise.162

• Observation-conditioned factor Zi. The expectation averages trajectory noise per agent i for its163
policy component πθi , prior to transformation by Ji and aggregation.164

The crucial structural decoupling in Equation (4) ensures HyperMARL first averages noise per agent165
(via factorZi) before applying the deterministic agent-conditioned transformation Ji. This mitigates166
gradient interference common in FuPS+ID (Christianos et al., 2021; Zhong et al., 2024), where167
observation noise and agent identity become entangled (see Equation (12) in App. G.2). This is168
the MARL analogue of the task/state decomposition studied by (Sarafian et al., 2021, Eq. 18) in169
Meta-RL. Section 5.1 empirically verifies the predicted variance drop, and ablations in Section H170
demonstrate that disabling decoupling degrades performance, underscoring its critical role.171
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Figure 4: Performance and gradient analysis. (a,b) IPPO and MAPPO on Dispersion (20M
timesteps) - IQM of Mean Episode Return with 95% bootstrap CIs: Hypernetworks match NoPS
performance while FuPS struggle with specialisation. Interval estimates in App. J.2.1. (c) Actor
gradient variance: Hypernetworks achieve lower gradient variance than FuPS+ID. (d) Policy di-
versity (SND with Jensen–Shannon distance): Hypernetworks achieve NoPS-level diversity while
sharing parameters.

5 Experiments172

We structure our experiments to directly answer two key research questions: Q1: Specialised Policy173
Learning: Can HyperMARL effectively learn specialised policies via a shared hypernetwork? Q2:174
Effectiveness in Homogeneous Tasks: Is HyperMARL competitive in environments that necessitate175
homogeneous behaviours?176

Experimental Setup. We evaluate HyperMARL in 18 scenarios across four environments (Disper-177
sion (Bettini et al., 2022), Navigation (Bettini et al., 2022), MAMuJoCo (Peng et al., 2021), and178
SMAX (Rutherford et al., 2024)) and test varying agent counts (2–20) and behaviours. We compare179
against standard (FuPS+ID, NoPS) and diversity-promoting baselines (DiCo (Bettini et al., 2024),180
HAPPO (Zhong et al., 2024), Kaleidoscope (Li et al., 2024)) using an IPPO/MAPPO (De Witt et al.,181
2020; Yu et al., 2022) backbone. Following best practices (Patterson et al., 2024), we use original182
baseline codebases and settings for all comparisons. Full experimental details are in Appendices I.1,183
I.2.1, and K.184

Measuring Policy Diversity. To measure the diversity of the policies we System Neural Diversity185
(SND) (Bettini et al., 2023) (Equation 5) with Jensen-Shannon distance (details in App. I.2.2).186

5.1 Q1: Specialised Policy Learning187

Learning Diverse Behaviour (Dispersion) Figures 4a and 4b show that FuPS variants (IPPO-FuPS,188
MAPPO-FuPS – (•)) can struggle to learn the diverse policies required by Dispersion (even when189
running for longer - Fig. 19), while their NoPS counterparts (IPPO-NoPS, MAPPO-NoPS–(•)) con-190
verge to the optimal policy, corroborating standard FuPS limitations to learn diverse behaviour. In191
contrast, HyperMARL (both linear and MLP variants) (•, •) match NoPS performance, suggesting192
that a shared hypernetwork can effectively enable agent specialisation. SND policy diversity mea-193
surements (Fig. 4d) confirm FuPS variants achieve lower behavioural diversity than NoPS, while194
HyperMARL notably matches NoPS-level diversity.195

Gradient Variance. HyperMARL (IPPO and MAPPO variants) also exhibits lower mean policy196
gradient variance than FuPS+ID across actor parameters (Fig. 4c). This aligns with their ability197
to learn diverse behaviours and supports the hypothesis that its gradient decoupling mechanism198
(Sec. 4.2) enhances training stability.199

Diversity at Complexity and Scale (MAMuJoCo). In the challenging MAMuJoCo heterogeneous200
control tasks (Table 1), HyperMARL (MLP variant) is broadly competitive. Notably, unlike HAPPO201
and MAPPO (independent actors), HyperMARL uses a shared actor and parallel updates, and yet202
manages strong performance, even in the 17-agent Humanoid-v2 notoriously difficult heterogeneous203
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Table 1: Mean episode return in MAMuJoCo for MAPPO variants(IQM, 95% CI). HyperMARL
achieves the highest IQM in 3/4 scenarios (bold), and is the only method with shared actors to
demonstrate stable learning in the notoriously difficult 17-agent Humanoid environment (see Fig-
ure 5 for learning dynamics). * indicates CI overlap with the top score.

Scenario HAPPO FuPS+ID Ind. Actors HyperMARL (Ours)

Humanoid-v2 17x1 6501.15* (3015.88, 7229.79) 566.12 (536.36, 603.01) 6188.46* (5006.13, 6851.74) 6544.10 (3868.00, 6664.89)
Walker2d-v2 2x3 4748.06* (4366.94, 6230.81) 4574.39* (4254.21, 5068.32) 4747.05* (3974.76, 6249.58) 5064.86 (4635.10, 5423.42)
HalfCheetah-v2 2x3 6752.40* (6130.42, 7172.98) 6771.21* (6424.94, 7228.65) 6650.31* (5714.68, 7229.61) 7063.72 (6696.30, 7325.36)
Ant-v2 4x2 6031.92* (5924.32, 6149.22) 6148.58 (5988.63, 6223.88) 6046.23* (5924.62, 6216.57) 5940.16* (5485.77, 6280.59)
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Figure 6: Average Reward (IQM, 95% CI) in Navigation for IPPO Variants. HyperMARL adapts robustly
across goal configurations—(a) shared, (b) unique, and (c) mixed. Both linear and MLP versions consistently
match or outperform IPPO baselines and DiCo, with the margin widening as the number of agents grows.
Sample-efficiency curves appear in App. J.4.

task(Zhong et al., 2024) (Fig. 5), matching methods that employ independent actors and sequential204
updates.205
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Figure 5: 17-agent Humanoid
learning dynamics (IQM, 95% CI).
HyperMARL, using shared actors,
outperforms MAPPO-FuPS (non-
overlapping CIs) and matches the
performance of methods employing
non-shared or sequential actors. This
challenging environment is known for
its high variance (Zhong et al., 2024).

Adaptability (Navigation). Navigation tasks (Bettini et al.,206
2022) assess adaptability to homogeneous, heterogeneous, and207
mixed goals (some agents have the same goals, others dif-208
ferent). We compare HyperMARL with baselines including209
DiCo Bettini et al. (2024). While using DiCo’s optimal preset210
diversity for n=2 agents, we note that identifying appropriate211
diversity levels for DiCo with larger teams (n > 2) via hyper-212
parameter sweeps proved challenging (see Tables 12 and 13).213

Across all tested goal configurations (shared, unique, and214
mixed), HyperMARL consistently achieves strong perfor-215
mance (Figure 6). It generally matches or outperforms NoPS216
and FuPS, and outperforming DiCo. Interestingly, unlike in217
sparse-reward tasks like Dispersion, FuPS remains competitive218
with NoPS and HyperMARL in Navigation scenarios requir-219
ing diverse behaviours for smaller teams (n ∈ {2, 4}), likely220
due to Navigation’s dense rewards. However, HyperMARL221
distinguishes itself as the strongest method for n=8 agents,222
highlighting its effectiveness in handling more complex coor-223
dination challenges.224

5.2 Q2: Effectiveness in Homogeneous Tasks225

SMAX. Finally, we evaluate HyperMARL (MLP) on SMAX, where recurrent FuPS is the estab-226
lished baseline (Rutherford et al., 2024; Yu et al., 2022; Fu et al., 2022). Figure 7 shows while some227
FuPS variants might exhibit marginally faster initial convergence on simpler maps, HyperMARL228
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Figure 7: IQM and 95% CI of mean win rate in SMAX. Performance of FuPS Recurrent IPPO and
MAPPO and HyperMARL (MLP) on SMAX. HyperMARL performs comparably to FuPS baselines
across all environments, demonstrating its effectiveness in tasks requiring homogeneous behaviours
and using recurrency. Inverval estimates in App. 22.

achieves comparable final performance on all maps, using the same GRU backbone for partial ob-229
servability. These results highlights two points: (i) HyperMARL is fully compatible with recurrent230
architectures essential under partial observability, and (ii) it has no intrinsic bias toward specialisa-231
tion and can converge homogenous behaviour when it is optimal (also shown with strong same-goal232
Navigation performance (Fig. 6a)), even with large observation spaces and many agents.233

Summary. Our empirical results confirm HyperMARL effectively addresses both research ques-234
tions. For Q1 (Specialisation), across Dispersion, MAMuJoCo, and Navigation, HyperMARL235
learned specialised policies, matched NoPS-level diversity and performance where FuPS+ID strug-236
gled, and scaled to complex, high-agent-count heterogeneous tasks. For Q2 (Homogeneity), Hyper-237
MARL demonstrated competitive performance against strong FuPS baselines in SMAX and shared-238
goal Navigation, confirming its versatility. Additionally in App. H, we show the importance of239
HyperMARL’s gradient decoupling (Sec. 4.2) and initialisation scaling (Sec. 4.1).240

6 Related Work241

Learning diverse policies with FuPS is a known challenge in MARL. Prior approaches address this242
by altering the learning objective with intrinsic rewards (Li et al., 2021), enforcing sequential up-243
dates (Zhong et al., 2024), or using architectural constraints (Kim & Sung, 2023; Bettini et al., 2024;244
Li et al., 2024). In contrast, HyperMARL uses agent-conditioned hypernetworks to generate agent-245
specific parameters, enabling specialisation without modifying the RL objective or requiring preset246
diversity levels. While hypernetworks have been used in MARL for value-function mixing (Rashid247
et al., 2020) or parallel work in zero-shot generalization (Fu et al., 2025), our work is the first to248
leverage them for adaptive specialisation via gradient decoupling, a mechanism we find critical for249
learning specialised behaviours. A more detailed literature review is available in Appendix F.250

7 Conclusion251

We introduced HyperMARL, an approach that uses agent-conditioned hypernetworks to generate252
per-agent parameters without modifying the standard RL objective or requiring preset diversity253
levels. Our results show HyperMARL can adaptively learn specialised, homogeneous, or mixed254
behaviours in settings with up to 20 agents. We also observe a link between HyperMARL’s255
performance and reduced policy gradient variance, underscoring the importance of decoupling256
observation- and agent-conditioned gradients. Overall, these findings establish HyperMARL as a257
promising architecture for diverse MARL tasks. We discuss limitations in App. A, most notably258
parameter count, which can be remedied by parameter-efficient hypernetworks (e.g., chunked vari-259
ants (von Oswald et al., 2020; Chauhan et al., 2024)).260
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Appendix261

A Limitations262

Hypernetworks generate weights for target networks, which can lead to high-dimensional outputs263
and many parameters for deep target networks, particularly when using MLP-based hypernetworks.264
While HyperMARL uses more parameters than NoPS and FuPS for few agents, it scales almost con-265
stantly with agent count, an attractive property for large-scale MARL. Parameter efficiency could be266
improved through chunking techniques (von Oswald et al., 2020; Chauhan et al., 2024), or low-rank267
weight approximations. This parameter overhead is often acceptable in RL/MARL given typically268
smaller actor-critic networks, and HyperMARL’s favorable agent scaling (see App. G.3).269

B Broader Impact270

This paper presents work whose goal is to advance the field of Multi-Agent Reinforcement Learning.271
There are many potential societal consequences of our work, none which we feel must be specifically272
highlighted here.273

C Specialised Policies and Environments274

Specialisation plays a key role in MARL, yet remains under-defined, so we define specialised envi-275
ronments and specialised policies.276

Definition 1. An environment is specialised if the following both hold:277

1. Distinct Agent Policies. The optimal joint policy π∗ consists of at least two distinct agent278
policies, i.e., ∃i, j ∈ I such that πi ̸= πj .279

2. Non-Interchangeability. Any permutation σ of the policies in π∗, denoted as πσ , results in a
weakly lower expected return:

Eh∼πσ [G(h)] ≤ Eh∼π∗ [G(h)],

with strict inequality if the joint policies are non-symmetric (i.e., swapping any individual280
policy degrades performance).281

For example, consider a specialised environment such as a football game, optimal team performance282
typically requires players in distinct roles (e.g., "attackers," "defenders"). Permuting these roles283
(i.e., exchanging their policies) would typically lead to suboptimal results. Here, agents develop284
specialised policies by learning distinct, complementary behaviours essential for an optimal joint285
policy. While agents with heterogeneous capabilities (e.g., different action spaces) are inherently286
specialised, homogeneous agents can also learn distinct policies. Such environments are analysed in287
Sections E.1 and 5.1.288

D Measuring Behavioural Diversity289

D.1 Quantifying Team Diversity290

We quantify policy diversity using System Neural Diversity (SND) (Bettini et al., 2023), which291
measures behavioural diversity based on differences in policy outputs:292

SND
({
πi
}
i∈I

)
=

2

n(n− 1)|O|

n∑
i=1

n∑
j=i+1

∑
o∈O

D
(
πi(o), πj(o)

)
. (5)

where n is the number of agents, O is a set of observations typically collected via policy rollouts,293
πi(ot) and πj(ot) are the outputs of policies i and j for observation ot, andD is our distance function294
between two probability distributions.295
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In contrast to Bettini et al. (2023), we use Jensen-Shannon Distance (JSD) (Endres & Schindelin,296
2003; Lin, 1991) asD, rather than the Wasserstein metric (Vaserstein, 1969). As shown in Appendix297
D.2, JSD is a robust metric for both continuous and discrete cases, and provides a more reliable298
measure of policy distance.299

D.2 Finding a Suitable Distance Function for Policy Diversity300

The choice of distance function D in Equation 5 is crucial for accurately measuring policy diversity.301
In MARL, policies are often represented as probability distributions over actions, making the choice302
of distance function non-trivial.303

Bettini et al. (2024) use the Wasserstein metric for continuous policies (Vaserstein, 1969) as dis-304
tance function D, while McKee et al. (2022) use the total variation distance for discrete policies.305
For discrete policies, Wasserstein distance would require a cost function representing the cost of306
changing from one action to another, which might not be trivial to come up with. On the other307
hand, although well-suited for discrete policies, TVD might miss changes in action probabilities308
because it measures the largest difference assigned to an event (i.e. action) between two probability309
distributions.310

We consider a simple example to illustrate this point. Suppose we have two policies π1 and π2311
with action probabilities as shown in Figure 8. π1 stays constant, while π2 changes gradually over312
timesteps. We see that even as π2 changes over time, the TV D(π1, π2) between π1 and π2 remains313
constant. This is because TVD only measures the largest difference between the two distributions,314
and does not consider the overall difference between them. On the other hand, the Jensen-Shannon315
distance (JSD) (Endres & Schindelin, 2003), which is the square root of the Jensen-Shannon diver-316
gence, does not have this problem as it is a smooth distance function. Furthermore, it satisfies the317
conditions for being a metric – it is non-negative, symmetry, and it satisfies the triangle inequality.318

For continuous policies, as shown in Figure 9, JSD exhibits similar trends to the Wasserstein dis-319
tance. Since JSD is a reasonable metric for both continuous and discrete probability distributions,320
we will use it as the distance metric for all experiments and propose it as a suitable distance function321
for measuring policy diversity in MARL.322

We also summarise the properties of the various distance metrics in Table 2.323
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Figure 8: Gradual changes in π2, result in gradual changes in the Jensen-Shannon distance (JSD),
while the Total Variation Distance (TVD) can miss changes in action probabilities.
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Figure 9: Jensen-Shannon distance (JSD) trends similarly to Wasserstein distance when we have
continuous policies.
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Method Kinds of Actions Metric Smooth Formula

Wasserstein Distance (Vaserstein, 1969) Continuous* Metric Yes W (p, q) =
(
infγ∈Γ(p,q)

∫
R×R |x− y| dγ(x, y)

)1/p

Total Variation Distance Discrete Metric No TV (p, q) = 1
2

∑
x |p(x)− q(x)|

Jensen-Shannon Divergence (Lin, 1991) Both Divergence Yes JSD(p ∥ q) = 1
2DKL(p ∥ m) + 1

2DKL(q ∥ m), m = 1
2 (p+ q)

Jensen-Shannon Distance (Endres & Schindelin, 2003) Both Metric Yes
√
JSD(p ∥ q)

Table 2: Measure Policy Diversity
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P2

A B
P1

A (0.5,0.5) (1,1)

B (1,1) (0.5,0.5)

Two-Player Payoff
matrix

+1 +1 +1

...

...

N -player Interaction

(a) Specialisation Game

P2

A B

P1

A (1,1) (0.5,0.5)

B (0.5,0.5) (1,1)

Two-Player Payoff
matrix

+1 +1 +1

...

...

N -player Interaction

(b) Synchronisation Game

Figure 10: Specialisation and Synchronisation Games. The Specialisation game (left), which en-
courages distinct actions, and the Synchronisation game (right), where rewards encourage identical
actions. Depicted are their two-player payoff matrices (pure Nash equilibria in blue) and N -player
interaction schematics. While simple in form, these games are challenging MARL benchmarks due
to non-stationarity and exponentially scaling observation spaces (temporal version).

E Specialisation and Synchronisation Games324

To study the challenges of specialisation and coordination in an isolated setting, we introduce the325
Specialisation and Synchronisation Games, drawing inspiration from a version of the XOR game Fu326
et al. (2022), VMAS’s Dispersion Bettini et al. (2022) and coordination and anti-coordination games327
in game theory (Osborne & Rubinstein, 1994). These environments encourage agents to take distinct328
actions (Specialisation) or take identical actions (Synchronisation). Despite their deceptively simple329
payoff structure, these games present substantial learning challenges – non-stationary reward distri-330
butions driven by others’ adapting behaviours and in their temporal extension, the joint observation331
spaces grows exponentially with the number of agents.332

E.1 Specialisation and Synchronisation Games Description333

Specialisation Game. Agents are encouraged to choose distinct actions. In the simplest setting,334
it is a two-player matrix game where each agent selects between two actions (A or B). As shown335
in Figure 10a, agents receive a payoff of 1.0 when their actions differ (creating two pure Nash336
equilibria on the anti-diagonal) and 0.5 when they match. This structure satisfies Definition 1, since337
optimal joint policies require complementary, non-identical strategies. There is also a symmetric338
mixed-strategy equilibrium in which each agent plays A and B with probability 0.5.339

F More detailed Related Work340

Hypernetworks in RL and MARL. Hypernetworks are effective in single-agent RL for meta-341
learning, multi-task learning, and continual learning (Beck et al., 2023; 2024; Sarafian et al., 2021;342
Huang et al., 2021). In MARL, QMIX (Rashid et al., 2020) used hypernetworks (conditioned on343
a global state) to mix per-agent Q-values; however, each agent’s own network remained a stan-344
dard GRU. Parallel work, CASH (Fu et al., 2025), conditions hypernetworks on local observations345
and team capabilities for zero-shot generalization with heterogeneous action spaces. In contrast,346
we focus on agent-conditioned hypernetworks for adaptive specialisation within a fixed state-action347
setting, leveraging gradient decoupling (absent in CASH) that we find critical for specialised be-348
haviours.349

Variants of Parameter Sharing. Selective Parameter Sharing (SePS) (Christianos et al., 2021)350
shares weights between similar groups of agents, identified via trajectory clustering. Pruning meth-351
ods (Kim & Sung, 2023; Li et al., 2024) split a single network into agent-specific subnetworks.352

Learning Diverse Policies. Shared parameters often limit policy diversity (Christianos et al., 2021;353
Kim & Sung, 2023; Fu et al., 2022; Li et al., 2021). Proposed solutions include: (1) maximizing mu-354
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tual information between agent IDs and trajectories (Li et al., 2021), (2) role-based methods (Wang355
et al., 2020a;b), or (3) methods that use structural modifications or constraints to induce diversity356
in agent policies (Kim & Sung, 2023; Bettini et al., 2024; Li et al., 2024). Outside FuPS/NoPS,357
HAPPO (Zhong et al., 2024) uses a non-shared centralised critic with individual actors updated358
sequentially to learn heterogeneous behaviours.359

Synchronisation Game. Conversely, agents are encouraged to coordinate and choose identical360
actions. The payoff matrix inverts the Specialisation game’s structure, agents receive 1 for matching361
actions and 0.5 for differing ones. This creates two pure Nash equilibria along the diagonal of the362
payoff matrix (Figure 10b), and incentivises uniform behaviour across agents.363

N -Agent Extension. Both games naturally scale to n agents and n possible actions. In Specialisa-364
tion, unique actions receive a payoff of 1.0, while selecting the same action receives payoffs of 1

k ,365
where k is the number of agents choosing that action. In contrast, in Synchronisation, agents receive366
maximum payoffs (1.0) only when all actions match. For partial coordination, rewards follow a367
hyperbolic scale, 1

n−k+1 , encouraging agents to align their choices. Visualisations in Figure 10 and368
detailed reward profiles appear in Figure 11.369

F.1 General-n Payoff Definitions370

Both games generalise naturally to n agents and n possible actions. We show the reward profiles for371
n = 5 agents in Figure 11.372

Let a = (a1, . . . , an) ∈ {1, . . . , n}n and ka =
∣∣{ j : aj = a}

∣∣ be the joint action profile and the373
count of agents choosing action a, respectively.374

Temporal Extension. To model sequential decision-making, we extend each normal-form game375
into a repeated Markov game, where the state at time t is the joint action at time t − 1. At each376
step t all agents observe at−1, choose ati, and receive the original Specialisation or Synchronisation377
payoff. This repeated setup isolates how agents adapt based on past joint actions, exposing temporal378
patterns of specialisation and coordination.379

F.1.1 Specialisation Game380

The reward is formulated as follows:381

r ispec(a) =


1.0, if ka i = 1

(
unique action

)
;

1

ka i

, if ka i > 1
(
shared action

)
.

F.1.2 Synchronisation Game382

The reward is formulated as follows:383

r isync(a) =
1

n− ka i + 1
,

so that r isync = 1.0 when ka i = n (all agents select the same action), and otherwise follows a384
hyperbolic scale encouraging consensus.385

F.2 Proof that FuPS cannot represent the optimal policy in the two-player Specialisation386
Game387

Theorem 1. A stochastic, shared policy without agent IDs cannot learn the optimal behaviour for388
the two-player Specialisation Game.389

Proof. Let π be a shared policy for both agents, and let α = P(ai = 0) represent the probability of390
any agent choosing action 0. The expected return of π for each agent is:391
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Figure 11: Reward profiles for the Specialisation (blue) and Synchronisation (orange) games with
n = 5 agents. In the Specialisation game, an agent’s payoff peaks when it selects a unique action,
and then decays as when actions are shared. In the Synchronisation game, payoffs follow a hy-
perbolic scale 1/(n − k + 1), reaching maximum only under full consensus, thereby incentivising
alignment.

E[R(π)] = P(a0 = 0, a1 = 0) · 0.5 + P(a0 = 0, a1 = 1) · 1 (6)
+ P(a0 = 1, a1 = 0) · 1 + P(a0 = 1, a1 = 1) · 0.5 (7)

= 0.5α2 + 2α(1− α) + 0.5(1− α)2 (8)

= −α2 + α+ 0.5 (9)

= −(α− 0.5)2 + 0.75 (10)

Thus, E[R(π)] ≤ 0.75 < 1 for all α ∈ [0, 1], with the maximum at α = 0.5. Therefore, a392
shared policy cannot achieve the optimal return of 1, confirming the need for specialised behaviour393
to optimise rewards.394

F.3 Measuring Agent Gradient Conflict395

We measure gradient conflicts, via the cosine similarity between agents’ gradients cos
(
g
(i)
t , g

(j)
t

)
=396

⟨g(i)t ,g
(j)
t ⟩

∥g(i)t ∥∥g(j)t ∥
, where g(i)t = ∇θL(i)(θt).397

F.4 Empirical Results in N-player Specialisation and Synchronisation Normal-Form Game398

To assess this limitations of FuPS and NoPS in practice, we compare three REINFORCE Williams399
(1992) variants in both games with n = 2, 4, 8, 16, 32 agents: NoPS (No Parameter Sharing), FuPS400
(Fully Parameter Sharing), and FuPS+ID (FuPS with one-hot agent IDs). All policies use single-401
layer neural networks with controlled parameter counts (see Appendix K for details).402
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Figure 12: Mean evaluation reward (mean ± standard error) as a function of the number of
agents/actions in the Specialisation (left) and Synchronisation (right) games. In the Specialisa-
tion game, vanilla policy gradients (PG, i.e. REINFORCE) with FuPS collapse as the team grows,
whereas our identity-aware variant (PG-FuPS+ID) retains near-optimal performance. In the Syn-
chronisation game, PG-NoPS performs well at small scales but degrades with more agents, while
both PG-FuPS and PG-FuPS+ID remain at optimal reward across all scales.
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Algorithm 1 HyperMARL

1: Input: Number of agents n, number of training iterationsK, MARL algorithm parameters (e.g.,
MAPPO-specific hyperparameters)

2: Initialise:
3: Hypernetwork parameters ψ,φ {Ensure θi and ϕi follow standard initialization schemes, e.g.,

orthogonal}
4: Agent embeddings {ei}ni=1 {One-hot or orthogonally initialised learnable parameters}
5: Output: Optimized joint policy π
6: for each training iteration k = 0, 1, . . . ,K − 1 do
7: for each agent i = 1, . . . , n do
8: θi ← hπψ(e

i) {Policy parameters}
9: ϕi ← hVφ (e

i) {Critic parameters}
10: end for
11: Interact with environment using {πθi}ni=1 to collect trajectories D
12: Compute shared loss L from D, using {Vϕi}ni=1 {Standard RL loss function}
13: Update ψ, φ, and e by minimizing L {Optimise parameters.}
14: end for
15: Return π = (π1, . . . , πn)

G HyperMARL Details403

G.1 HyperMARL Pseudocode404

In Algorithm 1, we present the pseudocode for HyperMARL, with HyperMARL-specific steps high-405
lighted in blue. HyperMARL leverages hypernetworks to dynamically generate the parameters of406
both actor and critic networks. The weights of the hypernetworks and the agent embeddings are407
automatically updated through automatic differentiation (autograd) based on the computed loss.408
Additionally, Figure 1 provides a visual representation of the HyperMARL architecture.409

G.2 Variance of the HyperMARL Gradient Estimator410

Unbiased estimator. Following from Equation 4, we can write the unbiased estimator for Hyper-411
MARLs gradient as follows:412

ĝHM =

I∑
i=1

∇ψhπψ(ei)︸ ︷︷ ︸
Ji

·
( 1

B

B∑
b=1

T−1∑
t=0

A(h
(b)
t ,a

(b)
t )∇θi log πθi(a

i,(b)
t | hi,(b)t )

)
︸ ︷︷ ︸

Ẑi

=

I∑
i=1

Ji Ẑi,

(HM’)
whereB trajectories {τ (b)}Bb=1 are sampled i.i.d. and Ẑi is the empirical analogue of the observation-413
conditioned factor.414

Assumptions. (A1) trajectories are i.i.d.; (A2) all second moments are finite; (A3) ψ, θ, ei are415
fixed during the backward pass.416

Variance expansion. Since each Ji is deterministic under (A3), we may factor them outside the417
covariance:418
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Var
(
ĝHM

)
= Cov

(∑
i

JiẐi,
∑
j

JjẐj

)
(by def. Var(X) = Cov(X,X))

=
∑
i,j

Cov
(
JiẐi, JjẐj

)
(bilinearity of Cov)

=
∑
i,j

Ji Cov(Ẑi, Ẑj) J
⊤
j (pull deterministic matrices out of Cov)

(11)

Equation (11) makes explicit that all trajectory-induced covariance is captured Cov(Ẑi, Ẑj), while419
the agent-conditioned Jacobians Ji remain trajectory noise-free.420

Mini-batch update and covariance. Let Ẑi be the unbiased mini-batch estimate of Zi and ĝHM =421 ∑
i JiẐi the stochastic update. Because every Ji is deterministic (wrt. to mini-batch),422

Var
(
ĝHM

)
=

∑
i,j

Ji Cov(Ẑi, Ẑj) J
⊤
j , (12)

(derivation in Appendix G.2). Equation (12) shows that HyperMARL first averages noise within423
each agent (Ẑi) and only then applies Ji. FuPS+ID, by contrast, updates the shared weights θ with424
every raw sample A∇θ log πθ[h, id], leaving observation noise and agent ID entangled and making425
it susceptible to gradient interference (Christianos et al., 2021; Zhong et al., 2024).426

G.3 Scalability and Parameter Efficiency427

Hypernetworks generate weights for the target network, which can lead to high-dimensional outputs428
and many parameters for deep target networks. This challenge is amplified in MLP-based hypernet-429
works, which include additional hidden layers. Figure 13 shows scaling trends:430

• NoPS and linear hypernetworks: Parameter count grows linearly with the number of agents.431

• FuPS: More efficient, as growth depends on one-hot vector size.432

• MLP hypernetworks: Scale better with larger populations, since they only require embeddings433
of fixed size for each new agent.434

To reduce parameter count, techniques like shared hypernetworks, chunked hypernetworks (von Os-435
wald et al., 2020; Chauhan et al., 2024), or producing low-rank weight approximations, can be used.436
While naive implementations are parameter-intensive, this might be less critical in RL and MARL437
which commonly have smaller actor-critic networks. Moreover, HyperMARL’s near-constant scal-438
ing with agents suggests strong potential for large-scale MARL applications.439

To isolate the effects of parameter count, we scaled the FuPS networks (Figure 14) to match the440
number of trainable parameters in HyperMARL. Despite generating 10x smaller networks, Hyper-441
MARL consistently outperforms FuPS variants, showing its advantages extend beyond parameter442
count.443

G.4 Speed and Memory Usage444

We examine the computational efficiency of HyperMARL compared to NoPS and FuPS by measur-445
ing inference speed (Figure 15a) and GPU memory usage (Figure 15b) as we scale the number of446
agents. The benchmarks were conducted using JAX on a single NVIDIA GPU (T4) with a recurrent447
(GRU-based) policy architecture. All experiments used fixed network sizes (64-dimensional em-448
beddings and hidden layers) with a batch size of 128 and 64 parallel environments, allowing us to449
isolate the effects of varying agent count. Each measurement represents the average of 100 forward450
passes per configuration, with operations repeated across 10 independent trials.451
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Figure 13: Parameter scaling for IPPO variants with increasing agents (4 to 1024). MLP Hyper-
networks scale nearly constantly, while NoPS, Linear Hypernetworks, and FuPS+One-Hot grow
linearly. Log scale on both axes.
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Figure 14: Dispersion performance with four agents. FuPS variants match HyperMARL in parame-
ter count but still underperform.

The results demonstrate that HyperMARL offers a balance between the extremes represented by452
NoPS and FuPS. In practice, NoPS incurs additional data transfer and update costs, widening the453
efficiency gap.454
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Figure 15: Computational efficiency scaling with number of agents. HyperMARL offers a balance
between NoPS and FuPS. Notably, in real-world deployments, NoPS incurs additional data transfer
and synchronisation costs not reflected here, further widening the efficiency gap.
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Figure 16: Ablation results comparing HyperMARL to variants without gradient decoupling (w/o
GD) and without reset fan in/out initialisation (w/o RF) across environments. Gradient decoupling
(a,b) is consistently critical across both environments, while initialisation scaling (c,d) shows greater
importance in the complex Humanoid task but less impact in the simpler Dispersion environment.

H Ablations455

We ablate two critical components of HyperMARL, gradient decoupling(Sec. 4.2) and initialisation456
scaling (Sec. 4.1) on the complex Humanoid-v2 and simpler Dispersion tasks. Removing gradi-457
ent decoupling (HyperMARL w/o GD), forcing joint observation/embedding processing, universally458
degrades performance (Figure 16). Omitting initialisation scaling (HyperMARL w/o RF (reset fan459
in/out), which aligns initial generated weights with conventional networks, reveals task-dependent460
effects: it is crucial for the 17-agent Humanoid, echoing prior findings on hypernetwork initialisa-461
tion (Chang et al., 2020), but has minor impact in Dispersion. Thus, while principled initialisation462
becomes vital with increasing complexity, gradient decoupling is fundamentally essential across463
tested scenarios.464
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Table 3: MARL environments for evaluating HyperMARL.

Env. Agents Action Behaviour

Dispersion 4 Discrete Hetero.
Navigation 2, 4, 8 Continuous Homo., Hetero., Mixed
MAMuJoCo 2–17 Continuous Hetero.
SMAX 2–20 Discrete Homo.

I Experiment Details465

I.1 Environments466

(a) Dispersion. (b) Navigation. (c) MAMuJoCo. (d) SMAX.

Figure 17: Multi-Agent environments used in our experiments.

Dispersion (VMAS) (Bettini et al., 2022): A 2D environment where four agents collect unique food467
particles. This task requires specialised heterogeneous behaviours and resembles the Specialisation468
Game from Section E.1.469

Navigation (VMAS) (Bettini et al., 2022): Agents navigate in a 2D space to assigned goals, receiv-470
ing dense rewards based on proximity. Configurations include shared goals (homogeneous), unique471
goals (heterogeneous), and mixed goals, where some agents share goals while others have unique472
ones.473

Multi-Agent MuJoCo (MAMuJoCo) (Peng et al., 2021): A multi-agent extension of MuJoCo,474
where robot body parts (e.g., a cheetah’s legs) are modelled as different agents. Agents coordinate475
to perform efficient motion, requiring heterogeneous policies (Zhong et al., 2024).476

SMAX (JaxMARL) (Rutherford et al., 2024): Discrete action tasks with 2 to 20 agents on477
SMACv1- and SMACv2-style maps. FuPS baselines have been shown optimal for these settings Yu478
et al. (2022); Fu et al. (2022) indicating homogeneous behaviour is preferred here.479

I.2 HyperMARL Architecture Details480

For the Dispersion and Navigations results (Sec. 5.1) we use feedforward architectures, where we481
use HyperMARL to generate both the actor and critic networks. For the MAPPO experiments in482
Section 5.1, for fairness in comparisons with HAPPO and MAPPO, we maintain the centralised483
critic conditioned on the global state and only use HyperMARL to generate the weights of the484
actors. For the recurrent IPPO experiments in Section 5.2, HyperMARL only generates the actor485
and critic feedforward weights, not the GRU weights.486

I.2.1 Training and Evaluation487

• Training:488

– For Dispersion (5.1), we run 10 seeds and train for 20 million timesteps.489
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– For Navigation (5.1), SMAX (5.2), and MaMuJoCo (5.1), we run 5 seeds and train for 10490
million timesteps, consistent with the baselines.491

• Evaluation:492

– For Dispersion (5.1), evaluation is performed every 100k timesteps across 32 episodes.493

– For Navigation (5.1), following the baselines, evaluation is performed every 120k timesteps494
across 200 episodes.495

– For SMAX (5.2), evaluation is performed every 500k timesteps across 32 episodes.496

– For MaMuJoCo (5.1), following the baselines, evaluation is performed every 25 training497
episodes over 40 episodes.498

I.2.2 Measuring Policy Diversity Details499

We measure team diversity using the System Neural Diversity (SND) metric (Equation 5 Bettini et al.500
(2023), details Section D) with Jensen-Shannon distance. SND ranges from 0 (identical policies501
across all agents) to 1 (maximum diversity). We collect a dataset of observations from IPPO-NoPS502
and IPPO-FuPS policies checkpointed at 5 and 20 million training steps. Each policy is rolled out503
for 10,000 episodes, generating 16 million observations. We then sample 1 million observations504
from this dataset to calculate the SND for each method tested.505
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Table 4: Baseline Methods Selection and Justification. Selected methods (✓) were chosen based
on their relevance to parameter sharing and specialisation/generalisation in MARL, while excluded
methods (✗) did not align with our research objectives or had implementation constraints. Our
experimental design systematically addresses key questions on agent specialisation and homo-
geneity, therefore we selected baselines with demonstrated strong performance in their respec-
tive settings, ensuring fair and rigorous comparison.

Method Category Selected Justification & Experimental Settings

IPPO (De Witt
et al., 2020)
(NoPS, FuPS+ID) NoPS/FuPS ✓ Established MARL baseline implementing both independent

(NoPS) and fully shared (FuPS+ID) policy configurations.
Tested in: Dispersion, Navigation, SMAX (two SMACv1 maps
and two SMACv2 maps, with 10 and 20 agents).

MAPPO (Yu et al.,
2022)
(NoPS, FuPS+ID) NoPS/FuPS ✓ Strong baseline with centralized critics for both NoPS and

FuPS+ID architectures. Tested in: Dispersion, MAMuJoCo,
SMAX (two SMACv1 maps and two SMACv2 maps, with 10
and 20 agents).

DiCo (Bettini et al.,
2024)

Architectural
Diversity

✓ Provides comparison with a method employing preset diversity
levels that balances shared and non-shared parameters. Tested
in: Dispersion and Navigation (as per original paper). Original
hyperparameters used for n = 2 agents; parameter sweeps con-
ducted for n > 2 to identify optimal diversity levels.

HAPPO (Zhong
et al., 2024)

Sequential
Updates

✓ Enables comparison with a method designed for heterogeneous
behaviours using sequential policy updates with agent-specific
parameters. Tested in: MAMuJoCo, selecting 4/6 scenarios
from the original paper, including the challenging 17-agent hu-
manoid task. Walker and Hopper variants were excluded as
MAPPO and HAPPO performed similarly in these environ-
ments.

Kaleidoscope (Li
et al., 2024)

Architectural
Pruning

✓ Implemented for off-policy evaluation using its MATD3 imple-
mentation with tuned MaMuJoCo hyperparameters. Tested in:
MAMuJoCo environments Ant-v2, HalfCheetah-v2, Walker2d-
v2 (overlapping with our IPPO experiments), and Swimmer-v2-
10x2 (highest agent count variant). Included to evaluate Hyper-
MARL’s competitiveness against a method with ensemble crit-
ics and diversity loss, in an off-policy setting.

SEAC (Christianos
et al., 2020)

Shared
Experi-
ence

✗ Focuses primarily on experience sharing rather than parameter
sharing architecture, falling outside our research scope.

SePS (Christianos
et al., 2021)

Selective
Param-
eter
Sharing

✗ Requires pretraining phase, which extends beyond the scope of
our current study focused on end-to-end learning approaches.

CDAS (Li et al.,
2021)

Intrinsic
Reward

✗ Only implemented for off-policy methods and has been demon-
strated to underperform FuPS/NoPS architectures (Fu et al.,
2022), making it less suitable for our primary on-policy com-
parisons.

ROMA/RODE (Wang
et al., 2020a;b)

Role-
based

✗ Shows limited practical performance advantages in compara-
tive studies (Christianos et al., 2020), suggesting other baselines
provide more rigorous comparison points.

SNP-PS (Kim &
Sung, 2023)

Architectural
Pruning

✗ No publicly available implementation, preventing direct, repro-
ducible comparison.
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Table 5: Mean episode return in MAMuJoCo for off-policy MATD3 variants. IQM of the mean
episode returns with 95% stratified bootstrap CI. Bold indicates the highest IQM score; * indicates
scores whose confidence intervals overlap with the highest. Although Kaleidoscope employs an
ensemble of five critics and an explicit diversity loss, HyperMARL (using a standard MATD3 setup
with two critics) achieved competitive results without these additional mechanisms.

Environment Ind. Actors (MATD3) HyperMARL (MATD3) Kaleidoscope (MATD3)

Ant-v2 5270.38 (4329.73, 5719.78) *5886.58 (5840.00, 5920.66) 6160.70 (5798.02, 6463.83)
HalfCheetah-v2 *6777.04 (3169.11, 8233.94) 7057.44 (3508.70, 8818.11) *6901.00 (3609.73, 8192.38)
Walker2d-v2 *5771.87 (5144.84, 8103.34) 7057.68 (5976.50, 8166.09) *6664.32 (5408.95, 8828.11)
Swimmer-v2-10x2 *453.74 (427.24, 487.86) 465.91 (410.82, 475.77) *462.48 (444.22, 475.64)

J Detailed Results506

J.1 Kaleidoscope Off-Policy Comparison Details507

Our comparison with Kaleidoscope (Li et al., 2024), mentioned in Section 5, is conducted us-508
ing off-policy methods due to its original design. Kaleidoscope incorporates intricate mecha-509
nisms (e.g., learnable masks, an ensemble of five critics, a specific diversity loss) and numer-510
ous specialised hyperparameters (e.g., for critic ensembling: ‘critic_deque_len‘, ‘critic_div_coef‘,511
‘reset_interval‘; for mask and threshold parameters: ‘n_masks‘, ‘threshold_init_scale‘, ‘thresh-512
old_init_bias‘, ‘weighted_masks‘, ‘sparsity_layer_weights‘, etc.). Porting this full complexity to513
an on-policy PPO backbone would constitute a significant research deviation rather than a direct514
benchmark of the established method.515

Therefore, we utilised Kaleidoscope’s original off-policy implementation to ensure a meaningful516
comparison. We adopted MATD3 as the algorithmic backbone for this evaluation, as it was the517
only publicly available Kaleidoscope variant with tuned hyperparameters for Multi-Agent MuJoCo518
(MaMuJoCo). The MaMuJoCo tasks were chosen for alignment with our primary on-policy (IPPO)519
results and Kaleidoscope’s original evaluation, specifically: Ant-v2, HalfCheetah-v2, Walker2d-v2520
(overlapping with our IPPO experiments), and Swimmer-v2-10x2 ( which represents the MaMuJoCo521
variant with the highest number of agents). Comparative results in Table 5 show that HyperMARL522
achieves competitive results with Kaleidoscope, while only using two critics (standard MATD3) and523
without additional diversity objectives.524

J.2 Dispersion Detailed Results525

J.2.1 Interval Esimates Dispersion526
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Figure 18: Performance of IPPO and MAPPO on Dispersion after 20 million timesteps. We show the
Interquartile Mean (IQM) of the Mean Episode Return and the 95% Stratified Bootstrap Confidence
Intervals (CI) using Agarwal et al. (2021). Hypernetworks achieve comparable performance to
NoPS, while FuPS struggle with specialisation.

J.3 Detailed MAMujoco Plots527
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Figure 19: We see that even if we run MAPPO-FuPS on Dispersion for 40 million timesteps (double
the timesteps of MLP Hypernetwork), it converges to suboptimal performance.

MAPPO-FuPS MAPPO (Independent Actors) HyperMARL (MAPPO) HAPPO

0 2 4 6 8 10
Training Steps (M)

0

1000

2000

3000

4000

5000

6000

7000

IQ
M

 M
ea

n 
Ep

is
od

e 
Re

tu
rn

(a) Humanoid-v2 17x1

0 2 4 6 8 10
Training Steps (M)

0

1000

2000

3000

4000

5000

6000

IQ
M

 M
ea

n 
Ep

is
od

e 
Re

tu
rn

(b) Walker2d-v2 2x3
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(c) HalfCheetah-v2 2x3
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Figure 20: Performance of Recurrent IPPO and MAPPO on MaMoJoCo. HyperMARL performs
comparably to these baselines, and is the only method with shared actors to demonstrate stable
learning in the notoriously difficult 17-agent Humanoid environment.
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J.4 Detailed Navigation Plots528
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(c) 8 Agents, Four Goals
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(d) 4 Agents, Same Goal
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(e) 4 Agents, Different Goals
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(f) 4 Agents, Two Goals
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(g) 2 Agents, Same Goal
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Figure 21: Sample efficiency of IPPO variants in the VMAS Navigation environment. Plots show
IQM and 95% CI (shaded regions) of mean episode return against training steps for different agent
counts (rows: 8, 4, 2 agents) and goal configurations (columns, where applicable: Same, Different,
Specific Goal Counts). Legend shown at bottom applies to all subplots.

J.5 Interval Esimates - SMAX529

J.6 Additional Ablations530
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Figure 22: Performance comparison in SMAX environments after 10 million timesteps. We show the
Interquartile Mean (IQM) of the Mean Win Rate and the 95% Stratified Bootstrap Confidence In-
tervals (CI). HyperMARL performs comparably to FuPS baselines across all environments, demon-
strating its effectiveness in tasks requiring homogeneous behaviours and using recurrency.
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Figure 23: Ablation results comparing HyperMARL with its variants in Dispersion. The results
highlight that gradient decoupling is essential for maintaining HyperMARL’s performance.
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K Hyperparameters531

Table 6: Hyperparameters, Training and Evaluation for Specialisation and Synchronisation Game

Hyperparameter Value

Environment Configuration
Number of agents 2, 4, 8, 16
Maximum steps per episode 10

Training Protocol
Number of seeds 10
Training steps 10,000
Evaluation episodes 100
Evaluation interval 1,000 steps
Batch size 32

Model Architecture
Hidden layer size 8, 16, 32, 64
Activation function ReLU
Output activation Softmax

Optimization
Learning rate 0.01
Optimizer SGD

Model Parameter Count

2 Agents NoPS: 60
FuPS: 58
FuPS+ID: 74
FuPS+ID (No State): 42

4 Agents NoPS: 352
FuPS: 240
FuPS+ID: 404
FuPS+ID (No State): 148

8 Agents NoPS: 2400
FuPS: 2344
FuPS+ID: 2600
FuPS+ID (No State): 552

16 Agents NoPS: 17728
FuPS: 17488
FuPS+ID: 18512
FuPS+ID (No State): 2128
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Table 7: IPPO and MAPPO Hyperparameters in Dispersion

Hyperparameter Value
LR 0.0005
GAMMA 0.99
VF_COEF 0.5
CLIP_EPS 0.2
ENT_COEF 0.01
NUM_ENVS 16
NUM_STEPS 128
GAE_LAMBDA 0.95
NUM_UPDATES 9765
EVAL_EPISODES 32
EVAL_INTERVAL 100000
MAX_GRAD_NORM 0.5
UPDATE_EPOCHS 4
NUM_MINIBATCHES 2
TOTAL_TIMESTEPS 20000000
ANNEAL_LR false
ACTOR_LAYERS [64, 64]
CRITIC_LAYERS [64, 64]
ACTIVATION relu
SEEDS 30,1,42,72858,2300658
ACTION_SPACE_TYPE discrete

Table 8: MLP Hypernet Hyperparameters in Dispersion

Parameter IPPO MAPPO
HYPERNET_EMBEDDING_DIM 4 8
EMBEDDING_DIM Sweep [4, 16, 64] [4, 8, 16, 64]
HYPERNET_HIDDEN_DIMS 64 64

Table 9: Dispersion Settings

Setting Value
n_food 4
n_agents 4
max_steps 100
food_radius 0.08
share_reward false
penalise_by_time true
continuous_actions false
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Table 10: IPPO Hyperparameters for Navigation

Hyperparameters Value
LR 0.00005
NUM_ENVS 600
NUM_STEPS 100
TOTAL_TIMESTEPS 106

UPDATE_EPOCHS 45
NUM_MINIBATCHES 30
GAMMA 0.9
GAE_LAMBDA 0.9
CLIP_EPS 0.2
ENT_COEF 0.0
VF_COEF 1.0
MAX_GRAD_NORM 5
ACTIVATION tanh
ANNEAL_LR False
ACTOR_LAYERS [256, 256]
CRITIC_LAYERS [256, 256]
ACTION_SPACE_TYPE continuous

Table 11: MLP Hypernet Hyperparameters in Navigation

Parameter IPPO MAPPO
HYPERNET_EMBEDDING_DIM 4 8
EMBEDDING_DIM Sweep [4, 16, 64] [4, 8, 16, 64]
HYPERNET_HIDDEN_DIMS 64 64

Table 12: DiCo Algorithm SND_des Hyperparameter

Goal Configuration Number of Agents SND_des

All agents same goal
2 0
4 0
8 0

All agents different goals
2 1.2 (From DiCo paper)
4 [-1,1.2,2.4] ⇒ -1 (Best)
8 [-1,1.2,4.8] ⇒ -1 (Best)

Some agents share goals
4 [-1,1.2] ⇒ -1 (Best)
8 [-1,2.4,1.2] ⇒ -1 (Best)
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Table 13: Parameter Sweeps for IPPO Variants in Navigation Tasks with Four and Eight Agents

Parameter Sweeps

CLIP_EPS 0.2, 0.1
LR 5e-5, 5e-4, 2.5e-4

Algorithm Setting Selected Values

IPPO-FuPS 8 Agents (Same Goals) 0.2, 5e-5
8 Agents (Different Goals) 0.1, 5e-5
8 Agents (Four Goals) 0.1, 5e-5
4 Agents (Same Goals) 0.2, 5e-5
4 Agents (Different Goals) 0.2, 5e-5
4 Agents (Two Goals) 0.2, 5e-5

IPPO-Linear Hypernetwork 8 Agents (Same Goals) 0.2, 5e-5
8 Agents (Different Goals) 0.1, 5e-5
8 Agents (Four Goals) 0.1, 5e-5
4 Agents (Same Goals) 0.2, 5e-5
4 Agents (Different Goals) 0.1, 5e-5
4 Agents (Two Goals) 0.1, 5e-5

IPPO-MLP Hypernetwork 8 Agents (Same Goals) 0.2, 5e-5
8 Agents (Different Goals) 0.1, 5e-5
8 Agents (Four Goals) 0.1, 5e-5
4 Agents (Same Goals) 0.1, 5e-5
4 Agents (Different Goals) 0.1, 5e-5
4 Agents (Two Goals) 0.1, 5e-5

IPPO-NoPS 8 Agents (Same Goals) 0.1, 5e-5
8 Agents (Different Goals) 0.2, 5e-5
8 Agents (Four Goals) 0.1, 5e-5
4 Agents (Same Goals) 0.1, 5e-5
4 Agents (Different Goals) 0.2, 5e-5
4 Agents (Two Goals) 0.1, 5e-5

IPPO-Dico 8 Agents (Same Goals) 0.2, 5e-5
8 Agents (Different Goals) 0.1, 2.5e-4
8 Agents (Four Goals) 0.1, 2.5e-4
4 Agents (Same Goals) 0.2, 5e-5
4 Agents (Different Goals) 0.1, 2.5e-4
4 Agents (Two Goals) 0.1, 5e-4

Table 14: Environment Settings for Navigation Task

Parameter Value
n_agents 2,4,8
agents_with_same_goal 1, n_agents/2, n_agents
max_steps 100
collisions False
split_goals False
observe_all_goals True
shared_rew False
lidar_range 0.35
agent_radius 0.1
continuous_actions True
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Table 15: Default algorithm and model hyperparameters for the Ant-v2-4x2 environment (from
(Zhong et al., 2024)).

Parameter Value

— Algorithm Parameters —
action_aggregation prod
actor_num_mini_batch 1
clip_param 0.1
critic_epoch 5
critic_num_mini_batch 1
entropy_coef 0
fixed_order true
gae_lambda 0.95
gamma 0.99
huber_delta 10.0
max_grad_norm 10.0
ppo_epoch 5
share_param false
use_clipped_value_loss true
use_gae true
use_huber_loss true
use_max_grad_norm true
use_policy_active_masks true
value_loss_coef 1

— Model Parameters —
activation_func relu
critic_lr 0.0005
data_chunk_length 10
gain 0.01
hidden_sizes [128, 128, 128]
initialization_method orthogonal_
lr 0.0005
opti_eps 1e-05
recurrent_n 1
std_x_coef 1
std_y_coef 0.5
use_feature_normalization true
use_naive_recurrent_policy false
use_recurrent_policy false
weight_decay 0

33



Under review for RLC 2025, to be published in RLJ 2025

Table 16: Default algorithm and model hyperparameters for the Humanoid-v2-17x1 environment
(from (Zhong et al., 2024)).

Parameter Value

— Algorithm Parameters —
action_aggregation prod
actor_num_mini_batch 1
clip_param 0.1
critic_epoch 5
critic_num_mini_batch 1
entropy_coef 0
fixed_order false
gae_lambda 0.95
gamma 0.99
huber_delta 10.0
max_grad_norm 10.0
ppo_epoch 5
share_param false
use_clipped_value_loss true
use_gae true
use_huber_loss true
use_max_grad_norm true
use_policy_active_masks true
value_loss_coef 1

— Model Parameters —
activation_func relu
critic_lr 0.0005
data_chunk_length 10
gain 0.01
hidden_sizes [128, 128, 128]
initialization_method orthogonal_
lr 0.0005
opti_eps 1e-05
recurrent_n 1
std_x_coef 1
std_y_coef 0.5
use_feature_normalization true
use_naive_recurrent_policy false
use_recurrent_policy false
weight_decay 0
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Table 17: Default algorithm and model hyperparameters for the Walker2d-v2-2x3 environment
(from (Zhong et al., 2024)).

Parameter Value

— Algorithm Parameters —
action_aggregation prod
actor_num_mini_batch 2
clip_param 0.05
critic_epoch 5
critic_num_mini_batch 2
entropy_coef 0
fixed_order false
gae_lambda 0.95
gamma 0.99
huber_delta 10.0
max_grad_norm 10.0
ppo_epoch 5
share_param false
use_clipped_value_loss true
use_gae true
use_huber_loss true
use_max_grad_norm true
use_policy_active_masks true
value_loss_coef 1

— Model Parameters —
activation_func relu
critic_lr 0.001
data_chunk_length 10
gain 0.01
hidden_sizes 128, 128, 128
initialization_method orthogonal_
lr 0.001
opti_eps 1e-05
recurrent_n 1
std_x_coef 1
std_y_coef 0.5
use_feature_normalization true
use_naive_recurrent_policy false
use_recurrent_policy false
weight_decay 0

35



Under review for RLC 2025, to be published in RLJ 2025

Table 18: Default algorithm and model hyperparameters for the HalfCheetah-v2-2x3 environment
(from (Zhong et al., 2024)).

Parameter Value

— Algorithm Parameters —
action_aggregation prod
actor_num_mini_batch 1
clip_param 0.05
critic_epoch 15
critic_num_mini_batch 1
entropy_coef 0.01
fixed_order false
gae_lambda 0.95
gamma 0.99
huber_delta 10.0
max_grad_norm 10.0
ppo_epoch 15
share_param false
use_clipped_value_loss true
use_gae true
use_huber_loss true
use_max_grad_norm true
use_policy_active_masks true
value_loss_coef 1

— Model Parameters —
activation_func relu
critic_lr 0.0005
data_chunk_length 10
gain 0.01
hidden_sizes 128, 128, 128
initialization_method orthogonal_
lr 0.0005
opti_eps 1e-05
recurrent_n 1
std_x_coef 1
std_y_coef 0.5
use_feature_normalization true
use_naive_recurrent_policy false
use_recurrent_policy false
weight_decay 0

Table 19: HyperMARL Hyperparameters Across MaMuJoCo Environments

Parameter Humanoid Walker2d HalfCheetah Ant Sweeps
v2-17x1 v2-2x3 v2-2x3 v2-4x2

AGENT_ID_DIM 64 64 64 64 None
HNET_HIDDEN_DIMS 64 64 64 64 None
clip_param 0.075 0.0375 0.0375 0.075 [0.1,0.075,0.05,0.0375]
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Table 20: Recurrent IPPO and MAPPO Hyperparameters in SMAX (from JaxMARL paper)

Hyperparameter IPPO Value MAPPO Value
LR 0.004 0.002
NUM_ENVS 128 128
NUM_STEPS 128 128
GRU_HIDDEN_DIM 128 128
FC_DIM_SIZE 128 128
TOTAL_TIMESTEPS 1e7 1e7
UPDATE_EPOCHS 4 4
NUM_MINIBATCHES 4 4
GAMMA 0.99 0.99
GAE_LAMBDA 0.95 0.95
CLIP_EPS 0.05 0.2
SCALE_CLIP_EPS False False
ENT_COEF 0.01 0.0
VF_COEF 0.5 0.5
MAX_GRAD_NORM 0.25 0.25
ACTIVATION relu relu
SEED 30,1,42,72858,2300658 30,1,42,72858,2300658
ANNEAL_LR True True
OBS_WITH_AGENT_ID - True
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Table 21: Hyperparameter Sweeps and Final Values for Different Maps in SMAX. H- refers to
HyperMARL MLP Hypernetworks.

Map Algorithm LR Range Chosen LR HNET Embedding Dim HNET Hidden Dims

2s3z

IPPO 0.004 0.004 –
MAPPO 0.002 0.002 –
H-IPPO 0.004 0.004 4 32

H-MAPPO 0.002 0.002 64 16

3s5z

IPPO 0.004 0.004 –
MAPPO 0.002, 0.005, 0.0003 0.002 –
H-IPPO 0.004 0.004 64 16

H-MAPPO 0.002, 0.005, 0.0003 0.0003 64 16

smacv2_10_units

IPPO 0.005, 0.001, 0.0003, 0.004 0.001 –
MAPPO 0.002, 0.005, 0.0003 0.0003 –
H-IPPO 0.005, 0.001, 0.0003, 0.004 0.005 4 64

H-MAPPO 0.002, 0.005, 0.0003 0.0003 64 16

smacv2_20_units

IPPO 0.002, 0.005, 0.0003 0.005 –
MAPPO 0.002, 0.005, 0.0003 0.0003 –
H-IPPO 0.002, 0.005, 0.0003 0.005 64 64

H-MAPPO 0.002, 0.005, 0.0003 0.0003 4 64

Note: HNET Embedding Dim refers to the hypernetwork embedding dimension, chosen from the range {4, 16, 64}. HNET

Hidden Dims refers to the hidden layer dimensions of the hypernetwork, chosen from the range {16, 32, 64}.

L Computational Resources532

Table 22: Computational Resources by Experiment Type

Experiment Category Hardware Configuration Execution Time Total Hours

Specialisation, 8 cores on AMD EPYC 7H12 2-6 hours per run 250Synchronisation & Dispersion 64-Core Processor (agent-count dependent)

Navigation 8 cores on AMD EPYC 7H12 4-10 hours per run 320Experiments 64-Core Processor + NVIDIA RTX A4500

MaMuJoCo 8 cores on AMD EPYC 7H12 8-24 hours per run 1,680Experiments 64-Core Processor + NVIDIA RTX A4500 (scenario & algorithm dependent)

SMAX 8 cores on AMD EPYC 7H12 2-5 hours per run 160Experiments 64-Core Processor + NVIDIA RTX A4500
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