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Abstract

Generative models trained on natural sequences are increasingly used to predict
the effects of genetic variation, enabling progress in therapeutic design, disease
risk prediction, and synthetic biology. In the zero-shot setting, variant impact
is estimated by comparing the likelihoods of sequences, under the assumption
that likelihood serves as a proxy for fitness. However, this assumption often
breaks down in practice: sequence likelihood reflects not only evolutionary fitness
constraints, but also phylogenetic structure and sampling biases, especially as
model capacity increases. We introduce Likelihood-Fitness Bridging (LFB), a
simple and general strategy that improves variant effect prediction by averaging
model scores across sequences subject to similar selective pressures. Assuming an
Ornstein-Uhlenbeck model of evolution, LFB can be viewed as a way to marginalize
the effects of genetic drift, although its benefits appear to extend more broadly.
LFB applies to existing protein and genomic language models without requiring
retraining, and incurs only modest computational overhead. Evaluated on large-
scale deep mutational scans and clinical benchmarks, LFB consistently improves
predictive performance across model families and sizes. Notably, it reverses the
performance plateau observed in larger protein language models, making the largest
models the most accurate when combined with LFB. These results suggest that
accounting for phylogenetic and sampling biases is essential to realizing the full
potential of large sequence models in variant effect prediction.

1 Introduction

What do we learn when we fit a model to a distribution of natural protein or DNA sequences? A
particularly important finding has been that the likelihood assigned to a sequence by such a model
can serve as a zero-shot, nucleotide-resolution, measure of fitness. This insight is at the heart of
methods which are transforming fields as diverse as therapeutic design, agriculture, materials science,
pathogen forecasting and genetic diagnosis. And yet, at the same time, this finding is flawed.

A model trained on sequences from diverse organisms, whether whole genomes or protein sequences,
learns patterns of nucleotide conservation shaped by natural selection. The likelihood thus provides a
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means of testing if a given sequence conforms to these patterns, and hence, whether or not it is likely
to be functional. However, evolutionary forces alone do not fully determine the composition of the
training distribution. It also reflects phylogenetic structure, historical contingency, and human biases
in sequencing efforts. Given the success of using the likelihood as a measure of fitness, these issues
have largely been treated as minor concerns, however recent advances in large-scale protein language
models (pLMs) have brought them to the forefront. As pLMs have scaled to billions of parameters,
they have achieved remarkable success in structure prediction and some generation tasks. Yet this
scaling has not translated to improved performance in variant effect prediction. In fact, larger models
appear to plateau or even regress in this task [Nijkamp et al., 2023} |Gordon et al., {2024, |Hou et al.}
2025], revealing a widening gap between model likelihood and biological fitness (Fig. [F1)).

There are at least three strategies to address the gap between likelihood and biological fitness: (1)
modify the training data, (2) modify the model, and (3) modify the inference approach. In this work,
we pursue the third strategy. We introduce the concept of likelihood-fitness bridging (LFB) and,
using a simple model of selection and drift, propose a suite of fitness estimators that can be applied
post hoc to any pre-trained protein or DNA language model. This approach offers a key practical
advantage: it enables rapid exploration of new inference strategies without requiring the retraining of
large models, making it highly efficient from a development standpoint. It is also computationally
efficient at inference time — even simple LFB estimators, costing only ~10x the runtime of a single
forward pass, consistently outperform standard likelihood-based scoring. We assess how performance
changes with scale for the ProGen2 and ESM-2 families of pLMs and find that LFB alleviates the
previously reported performance plateaus, making the largest models the best-performing in both
families. We also apply LFB to the Evo 2 whole-genome language models and observe consistent
performance improvements, although without evidence of the same scaling trend.

In sum, we propose LFB as a general and computationally lightweight approach for improving
zero-shot variant effect prediction.

2 Background

2.1 Protein and Genomic language models

Protein language models (pLMs) adapt methods originally developed for natural language processing
to the domain of protein sequences. Proteins, represented as strings over a ~20-letter alphabet
corresponding to standard amino acids, provide a natural substrate for language modeling techniques.
When trained on large databases of protein sequences sampled from across the tree of life, these
models can uncover patterns of amino acid conservation shaped by millions of years of evolution
[Meier et al.,[2021, [Brandes et al., 2023} [Lin et al.,[2023| |[Nijkamp et al.,|2023]]. This ability to model
sequence constraints has enabled a broad range of downstream tasks: predicting 3D structure with
high accuracy [Jumper et al., 2021}, Baek et al.,|2021]], evaluating the effects of mutations [Meier et al.}
2021]], identifying functionally related proteins [Rives et al.l 2021]], and generating novel sequences
with functional potential [Ferruz et al.|[2022} |Madani et al., 2023} Winnifrith et al.|[2024]]. As a result,
pLMs (and other sequence models) are increasingly contributing to applied problems in disease risk
prediction [Frazer et al., [2021] |Gao et al.| [2023] |Cheng et al., 2023|], drug discovery, and vaccine
design [Youssef et al.,|2025].

More recently, similar techniques have been extended to the modeling of entire genomes [Nguyen
et al.| 2023|2024, Benegas et al.,[2024] |Dalla-Torre et al.,|2025| Brixi et al.,|2025]]. Genomic language
models (gL.Ms) aim to capture conserved patterns in DNA sequences, including non-coding regions.
While still in the early stages of development, these models show great potential for tasks such as
functional annotation, the design of regulatory elements, and whole-genome engineering [Consens
et al.,[2025} Benegas et al., 2025]].

2.2 Likelihood based fitness estimation

To estimate the impact of a variant on protein function with a pLM or a gL M, it is standard to assume
a monotonic relation between the probability of observing said variant and what is usually referred
to as fitness. Concretely, take pg to be a model fit to a database of protein or DNA sequences. For
predicting the effect of variants, it is usually assumed that the change in fitness, A f, can be estimated



as,
Af = (f(@™) = f(x)) = logpe(z™"*) — log po(z), e))
is the variant sequence and z is the wild-type, reference, sequence [Hopf et al.,2017].

With masked language models such as the ESM family of pLMs [Meier et al., 2021} Brandes et al.,
2022,2023], computing the sequence log-likelihood, log pg (), is intractable. The standard approach
is to use masked marginal predictions,

Af ~ Z [logpe(x?lt|x\i) — 10gpg(5€1|$\1)] . )

where 22!t

where 7 indexes over the positions in the sequence and x\; is the sequence x with the i-th amino acid,
x;, set to the mask token.

In auto-regressive models such as the ProGen and ProtGPT pLMs [Nijkamp et al., [2023| Ferruz
et al.| [2022] and the Evo gL.Ms [Nguyen et al., 2024} Brixi et al.l 20235], it is possible to obtain exact
sequence likelihoods. The expression (I)) can be computed by

Af = Z [10%p0($?1t|$a<1§> - 10gp9(33i|$<i)] ) 3)
i
where z; is the sequence x up to index ¢ — 1.

2.3 The gap between fitness and likelihood

Previous work has proposed a simple hypothesis for the relationship between the distribution of
sequences and fitness, by describing evolutionary processes as a statistical physics system [Sella and
Hirsh, [2005]]. Within this formalism, a distribution of biological sequences can be described by a
Boltzmann distribution p(x) o e#/(*)_ In this way log p(z) o< f(x) and fitness estimation based on
likelihood is justified.

Recently, however, it has been recognized that there is a more complex relationship between fitness
and likelihood. Biases in the composition of the training data affect predictions of fitness. |Ding and
Steinhardt| [2024]] show that pLM likelihoods are biased towards certain species due to acquisition
bias in sequence databases. |(Gordon et al.|[2024], Hou et al.| [2025]] observe that fitness predictions
from pLMs suffer when the perplexity of the wild-type sequence under the model is too high or too
low. The phylogenetic structure between extant sequences has also been shown to cause differences
between likelihood and fitness even without the influence of sampling biases [Weinstein et al.; 2022].
These have been proposed as reasons why larger protein language models, while fitting better to
sequence databases, perform similarly or worse at zero-shot protein variant effect prediction than
smaller counterparts [Weinstein et al.| 2022| Nijkamp et al.| 2023} Truong and Bepler, 2023} Bhatnagar|
et al| [2025]] (Fig.[FI).

3 Methods

3.1 An alternative likelihood based fitness estimate

We propose a simple fitness estimate to overcome this gap based on existing model predictions using
log-likelihood differences. We call this general strategy Likelihood-Fitness Bridging (LFB), Fig. [T}

alt

The standard estimate of the impact of a variant z*"* of a sequence z, is

oL = log pe(z'*) — log py(z). )

This single log-likelihood estimate oy 1, is noisy, at least affected by the phylogeny and composition
of the training data. Therefore we instead ‘carry over’ the reference and alternate alleles to related
sequences, {x; : @ € I'}, which share a similar fitness landscape. Averaging the resulting differences
in log-likelihood across these sequences reduces the effects of this noise,
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Figure 1: Overview of likelihood-fitness bridging (LFB) procedure. We propose that the log-
likelihood ratio of alternative and reference sequences is a noisy estimate of the change in fitness A f
(Left of arrow). By injecting the same substitution(s) into sequences that have resulted from similar
evolutionary pressures, we can obtain multiple noisy estimates and hence their average, assuming
independent noise, is a lower variance estimator of the true A f (Right of arrow).

ref
i

where 2} is the sequence x; with the reference allele of x inserted (see Alg. .

The primary rationale behind this estimate is that closely related sequences, under similar selective
pressures, will reflect a similar fitness landscape in their likelihoods.

If we regard the standard estimate op,1, as a noisy estimate of the true change in fitness A f then,
provided the fitness landscapes of the homologous sequences are suitably similar, the estimate
oLrp should be unbiased, and provided the noise of each estimate, log ps(z2!*) — log pg(as§6f), is
independent, then the estimate or,rp should have lower variance. This method bears resemblance
to test time augmentation approaches common in computer vision [Krizhevsky et al.| 2012 |Calvo+
Zaragoza et al.l [2020], but it differs in that it is part of an unsupervised method not attempting to get

better likelihood estimates but departing from the likelihood in order to get better fitness estimates.

A simple model of evolution We study the behavior of our estimator under a simple model of
molecular evolution including phylogenetic effects. As in|Weinstein et al.|[2022], we use the Ornstein—
Uhlenbeck tree (OUT) process to model the evolutionary history of the present day sequences x;
used for LFB. We take z; € R to be a continuous 1-d representation of these related sequences, all
descended from some common ancestor according to a branching stochastic process.

We assume that across time, for this family of sequences, the fitness landscape has been constant

and governed by f(z) = —% (1 — x)?, where 1 is an optimal value for 2 and o > 0 determines the
strength of selection, and that the sequences evolved according to
dz; = a(p — x¢) dt + sdWy, (6)

where s > 0 determines the strength of drift and W, is a Wiener process [Butler and King| [2004]. If
we assume that the common ancestral sequence follows the stationary distribution of this process, our
present day sequences z; can be expressed as

T =+ &g, @)

2 . .
fore; ~ N(0, 5). If we take ¢; ; to be the time passed since the most recent common ancestor of x;
and z;, then we have

2
Cov(z;, zj) = ;—aexp(—Qatm). 8)

We hypothesize that models fit to databases of these observed natural sequences capture the contribu-
tions of drift, &;, in their predictions, and that better fit models capture them more accurately. We
formalize this by stating that around z;, the likelihood behaves such that log pg () < —(u+¢; —x)2,
as opposed to matching the true fitness f(x) o< —(u — )2



If we then consider the effect of a mutation — a perturbation z3!* = x; + § — we can compute

E [JLFB] =E [aLL} o Af (see § meaning both o1, and o,pp are unbiased estimates of fitness

up to scale by a constant. However, we also find that Var(oprp) = (% + % p) Var(oy,1,), where p
is the average correlation among the z; (see §E).

Thus, under this model of selection and drift, our LFB fitness estimate has indeed lower variance than
the standard estimate, as anticipated. Notably, this reduction is bounded by the average correlation
among the sequences, so the reduction in variance provided by the LFB will be much greater when
more phylogenetically disperse sequences are chosen for the averaging, which suggests a tradeoff
between including close enough sequences which lie in the same fitness landscape and disperse
enough sequences such that their errors are less correlated.

We hypothesize that sufficiently expressive models capture this phylogenetic structure of the data,
represented above as noiseﬂ One prediction that follows from this hypothesis is that larger models,
with lower perplexities, should benefit more from LFB than smaller models in the same family.

3.2 Implementing our fitness estimator

For pLMs we found the sequences for the LFB procedure by making multiple sequence alignments
with UniRef50 [Suzek et al.l 2015]] using MMseqs [Hauser et al.| 2016]. By using the redundancy
reduced UniRef50 we expect to find sequences which are different enough from each other to have
less correlated predictions. We then filter these alignments in order to obtain homologous sequences
which are suitably similar for LFB. We found a simple minimum percentage identity threshold of
30% performed best (Fig. [F.2).

For the gLLM, Evo 2, to obtain sequences for LFB we used the 447-way mammalian whole genome
alignment from Zoonomia [[Zoonomia Consortium, 2020]. We scored only coding-sequence variation,
in order to compare with the pLMs. We randomly chose 9 species for each gene considered in
addition to the human reference genome.

We outline the LFB algorithm in detail in (Alg. (T))). For the masked language models, ESM-2, we
found that the unmasked-marginal scoring gave comparable performance to the standard masked-
marginal scoring (Fig. [F3)), so we used this more efficient method throughout unless specified. For
ProGen2 and Evo 2 we used the standard log likelihoods. We include further implementation details

in (§D).
4 Results

4.1 Baselines

Our goal is to assess whether augmenting a generative model with likelihood-fitness bridging (LFB)
improves the ability to predict the impact of genetic variation on fitness. We do so using two classes of
tasks — classification of variants with known "benign" and "pathogenic" clinical labels, and correlation
with deep mutational scanning (DMS) measurements from a large number of experiments designed
to measure fitness (or closely related properties). For both tasks, we use publicly available curated
data from ProteinGym [Notin et al., [2022] 2023]].

To establish families of generative models as baselines, we first consider families of pure sequence
pLMs (i.e. we don’t consider hybrids such as those which also leverage 3D structure information)
for which at least two different model sizes have been made publicly available. This gives us five
families; CARP [Yang et al., 2024], ESM-2 [Lin et al., [2023]], ProGen2 [Nijkamp et al., 2023]], RITA
[Hesslow et al.| [2022] and Tranception [Notin et al., 2022]|. Fig. [FI|compares the performance
of these models as measured by the weighted averag spearman across all DMS. Consistent with
previous reports, we find the largest models exhibit a plateau in performance. Since the ESM-2
and ProGen2 families contain both the largest models and also the best performing models, we
take these families as our baselines and also use them as case studies for exploring the benefits of
likelihood-fitness bridging. An added benefit is that these two families are complementary, differing

2Conversely, it has been hypothesized that the likelihood of smaller models can better align with fitness due
to a form of model misspecification Weinstein et al.| [2022]
*Throughout we use the same weighting as in [Notin et al., [2023]]
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Figure 2: Comparison of pLM and gLLM families with and without likelihood-fitness bridging at
clinical label prediction. a) Average AUC comparison of models in ESM-2, ProGen2 and Evo 2
(base) families, with and without LFB (see Fig. Eh for bootstrap error bars). b) Distribution of
scores of all variants in the assessment for ESM-2 15B with and without LFB (see Fig. [F.6| for all
other model sizes and families). c¢), d), e) Performance comparison of ESM-2 15B (c), ProGen2 XL
(d) and Evo 2 7B (base) (e) with and without LFB on a per-gene basis.

in design and training in a number of important ways. For instance the ESM-2 family is trained for
masked-language modeling, while ProGen2 uses an auto-regressive decoder. Analyzing the impact of
likelihood-fitness bridging in the context of both families in parallel therefore enables us to explore
the sensitivity of the approach to the underlying model.

Finally, nothing about our approach is specific to pLMs and so we explore the benefits of LFB for
gL.Ms as well. To do so we use the Evo 2 family |Brixi et al.|[2025].

4.2 Predicting Disease-Causing Variants

Our first task is to assess if a model can separate variants which have been seen in the human
population and classified as “benign”, from those thought to significantly increase the risk of disease,
“pathogenic”. As recommended in [Dias et al., 2024] we assess model performance by computing
the area under the receiver-operating characteristic curve on a gene-by-gene basis and then compute
the average across genes. We restrict our attention to genes for which there are at least 10 Benign
and 10 Pathogenic labels, giving us a total of 305 disease-associated genes. For both the ESM-2 and
ProGen?2 families, the smallest models, when combined with LFB outperform larger models using
the log-likelihood (Fig. 2h, Fig. [F.4p, Table[T)). We also see that although all models perform well
when combined with LFB the largest of the pLM models is the best performing. The Evo 2 glL.Ms
also benefit from LFB, although the performance gain is more modest and the scaling trend is not
reversed. A possible explanation for this contrast in behavior to pLMs is that the primary performance
limitations of this family do not arise from the phylogenetic structure of the training data. A full
picture of performance gains for all models is shown in Fig. [F.3]

When comparing the score distributions of all clinical variants between ESM-2 15B and its LFB-
augmented counterpart (2, see also Fig.[F.6)), we observe that the LFB fitness scores achieve a better
separation between "benign" and "pathogenic" labels with the benign variant distribution exhibiting a
reduced low-score tail. The LFB procedure also shifts the overall distribution to more positive scores,
although this appears to be a result of the unmasked-marginal scoring, under which the scores are
generally more negative than under masked-marginal scoring (Fig.[F6).



When comparing performance on a gene-by-gene basis for the largest models in the ESM-2 and
ProGen2 families, we see that almost perfect separation of "benign" and "pathogenic" labels is
achieved for many genes (Figs. 2k and 2Jd). This will impact how the model may be used in the
clinical setting. Clinical variant annotation proceeds by combining multiple sources of evidence, such
as population frequency, family incidence, or scores from variant effect prediction models [Richards
et al.l [2015]. Each source of evidence is weighted according to the quality of the evidence, and
guidelines have recently changed for variant effect predictors by accounting for their performance
[Pejaver et al., [2022]]. We can anticipate that given LFB near-perfect performance for a number of
disease-associated genes, this approach will be valuable for clinical annotation.

4.3 Assessing Concordance with Experimental Assays

Complementary to clinical variant prediction, another approach to assess fitness prediction perfor-
mance is by comparison with deep mutational scans (DMS). ProteinGym consists of manually curated
DMS assays, spanning 186 proteins and measuring the impact of ~ 2.5M variants on protein function
with a range of assay types. In many cases, however, the assay provides an incomplete picture of
whether or not the protein is functioning properly. For instance, an assay might measure protein
stability but not binding affinity. In addition, some experiments have a modest correlation between
replicates. Thus, even a perfect fitness prediction model will not exhibit a perfect correlation with
functional assays. Nevertheless, by considering a large number of assays and proteins, we expect that
the average performance across these assays should be a reasonable means of assessing if one model
is a better predictor of protein fitness than another. In practice, to compute the mean spearman values
across all models, we subsampled 200 measurements from each DMS.

A comparison of model performance of the ESM-2 and ProGen?2 families with and without LFB is
shown in Fig. 3] (Table[T} Fig.[F4p, Fig.[F7]and Fig. [F.8). We did not compare the performance with
Evo 2, as predictions are unavailable for many assays. LFB results in performance gains for ESM-2
models — the 8M parameter model with LFB outperforms the original 35M parameter, the 35M model
with LFB matches the original 150M model and the 150M model with LFB matches the original
650M model. Notably, while further scaling of the original ESM-2 models resulted in decreasing
performance, the likelihood-fitness bridged 8B and 15B parameter models continue to improve, with
the largest model now also being the best performing. Similarly the ProGen2 Medium size model
with LFB outperforms the original XL model and the XL model with LFB is the best-performing
model in the family (Table [I).

Comparing the performance with and without LFB on a per-experiment basis (Fig.[3b and c), we
see that the average performance boost observed in Fig. [3p for both the ESM-2 and ProGen2 models
comes from broad performance gains across most experiments (see also Fig. [F77). These gains
span assay type (Activity, Binding, Expression, Organismal Fitness) (Fig. [F9), alignment depths
(Fig[F10), and diverse DMS-types and proteins more generally (Fig. [F8).

Critical to understanding the potential impact of LFB on design tasks, we explore its impact at varying
edit distances, by focusing on measurements probing combinations of mutants. Although scaling
trends are less clear for multiple mutants, LFB consistently improves performance across all mutation

depths (Fig. @d).

4.4 Efficiency of the method

In order to better understand the compute-performance tradeoff of LFB we took random subsamples
of decreasing sizes of the sequences used in the averaging procedure and produced LFB estimates
with these reduced alignments (Fig. ). We found across the ESM-2 family that we retain most
of the benefit of LFB with as few as 10 sequences. Given that we only require one forward pass
per sequence with the ESM-2 model using unmasked-marginal scoring (Fig. [:3)), this provides an
extremely scalable variant effect prediction method.

4.5 Relationship to perplexity

Recent works have identified a trend between the perplexity of a sequence under a generative model
and the performance in estimating fitness [Gordon et al.| 2024, [Hou et al.| |2025]. For the top-
performing model on the DMS benchmark, we tested whether filtering the sequences used for LFB by
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Figure 3: Comparison of pLM families with and without likelihood-fitness bridging at fitness
estimation as measured by correlation with DMS. a) Comparison of all models in ESM-2 and
ProGen?2 families, with and without LFB (see Fig.[F.4p for bootstrap error bars). b) Comparison of
ESM-2 15B model with and without LFB on a per-experiment basis. ¢) Comparison of ProGen2 XL
model with and without LFB on a per-experiment basis. d) Mean Spearman correlation on variants at
different mutation depths for the ESM-2 family of models. In a), b) and c), correlations are taken
across all 217 DMS, randomly subsampling to at most 200 variants per assay, and in a) the mean is

weighted as in[Notin et al| [2023].

Table 1: Performance of different models on DMS and Clinical Labels. 1 indicates higher is better.
Model Class Size Mean Spearman on DMS 1+ Mean AUC on Clinical Labels 1

baseline LFB baseline LFB

ESM-2 SM 0.250 0.355 0.653 0.889
35M 0.325 0.388 0.751 0.904

150M 0.395 0.416 0.839 0.920

650M 0.417 0.428 0.895 0.933

3B 0.404 0.430 0.903 0.938

15B 0.398 0.436 0.895 0.938

ProGen2 151M 0.339 0.361 0.873 0.888
764M 0.379 0.404 0.894 0.923

2.7B 0.380 0.403 0.887 0.920

6.4B 0.389 0.433 0.869 0.930

Evo 2 7B - - 0.837 0.850
Evo 2 base 1B - - 0.868 0.878
7B - - 0.845 0.856

40B - - 0.839 0.853

estimates of their pseudo-perplexities could improve the resulting fitness estimate (Fig. b, Fig. [F.11).
We used the single forward pass pseudo perplexity calculation developed in |Gordon et al.| [2024]]. We

find that filtering for sequences with a perplexity of at least 2 provides further improvement to the
performance. However, filtering to even larger perplexity values results in a decline in performance,
suggesting a tradeoff between model confidence and lack of information, echoing findings by

et al.,[2024] and [Hou et al.l 2023]].
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Figure 4: Scalability and relation to perplexity. a) Mean Spearman values for LFB estimators,
using random subsamples of different sizes of the sequences used for the averaging. b) Comparison
between the standard ESM-2 15B LFB model, and an LFB estimator obtained by further filtering the
sequences used by their minimum perplexity, and with a maximum perplexity of 10. On the y axis,
the difference in mean Spearman across DMS and also the number of sequences after filtering by both
sequence identity and perplexity. Correlations are taken across all 217 DMS without subsampling
variants, and the mean is unweighted.

5 Discussion

Recent works have suggested that in order to bridge the gap between likelihood and fitness we
should place greater emphasis on the distribution of sequences provided to the model during training
[Nijkamp et al., 2023 |Ding and Steinhardt, [2024, \Gordon et al.| 2024], however this approach has
limitations. First, the relationship between model design and optimal data for training is poorly
understood, making the process of data selection challenging. Second, the optimal choice of data
selection will depend on the downstream task. Hence, models will need to be trained with downstream
tasks defined from the outset, thereby limiting their potential in both multi-task learning and domain
adaptation. Another approach is to modify the model, such as by joint modelling of fitness and
phylogeny. However as discussed in Weinstein et al.|[2022], there is a non-identifiably issue.

In this work we explore a third strategy. Rather than changing the underlying model’s training data,
or modifying the model building approach, we instead propose that models be built to extract fitness
predictions from a preexisting pLM of gLM. This is similar in spirit to Low-Rank Adaptation (LoRA)
style fine-tuning [Hu et al.,[2022] or some retrieval mechanisms (such as in Tranception [Notin et al.,
2022]]), where the language model remains unaltered (and hence its potential to perform diverse tasks
unhindered) but is instead augmented to perform a specific task.

We find that the largest pLMs benefit the most from LFB, which is consistent with the idea that they
are achieving lower perplexities but worse fitness prediction by learning both fitness constraints and
phylogenetic relationships. In contrast, while our exploration of gL.Ms is limited to a subset of the
Evo 2 family, it appears that at least for these cases, capturing phylogeny is not the primary cause of
the gap between likelihood and fitness. Instead we see comparable performance gains for both models
with LFB and the smaller model continues to be stronger. So while LFB improves performance, in
this case the relationship with phylogeny is less clear.

Limitations: The LFB estimators proposed in this work are intentionally simple and serve as a
starting point for more sophisticated inference strategies. While motivated by a model of selection
and drift, the current implementation does not explicitly incorporate the underlying phylogeny of
the sequences used for LFB. Another important limitation is the focus on single or combinatorial
substitutions; insertions and deletions (indels) are not included in the current framework. Furthermore,
while multiple details of the implementation likely reduce the impact of sampling biases, these biases
are not explicitly modelled. Finally, while LFB performs well across a wide range of benchmarks,
its performance has so far only been validated on coding regions. Extensions to non-coding regions
remains to be explored.



6 Conclusions

The surprisingly close connection between fitness and the distribution of natural sequences has enabled
powerful zero-shot variant effect prediction by simply using likelihoods from generative sequence
models to estimate fitness. However with sufficiently expressive models it seems we are reaching
the limitations of this connection, and as our ability to model the distribution of protein sequences
improves, a gap between likelihood and fitness is becoming apparent. In this work we propose a
framework for improving variant effect prediction with protein language models by bridging this
gap. We adapt the theory developed in Weinstein et al.|[2022] and use it to describe the evolutionary
history of sequences in a neighborhood of interest. Under such a model of evolution, sufficiently
expressive models will be able to capture the effects of genetic drift, hence their likelihood will be
a suboptimal fitness estimator, and according to this theory, LFB should provide a better estimate.
When LFB is applied to the ESM-2, ProGen2 and Evo 2 families, all models enjoy performance
gains. Furthermore, in both the ESM-2 and ProGen2 families, the largest model performs best once
combined with our bridging model. This is consistent with the idea that the largest models are starting
to capture non-fitness related structure in the data and suggests that further scaling of these models
will result in additional performance gains when combined with LFB.

The performance gains span the majority of tested proteins and also span assays probing different
aspects of fitness, suggesting that the benefits of bridging will apply to a broad range of downstream
applications. We found LFB to improve fitness prediction at multiple edit distances, suggesting its
potential for design tasks. And from a clinical impact perspective, we observe broad and often large
improvements in performance. We are therefore optimistic that the use of likelihood-fitness bridging
will result in better understanding of the genetics of disease, improve preventative care and increase
the diagnostic yield of patient sequencing.

This work supports the hypothesis that variant effect prediction can be improved by taking into
consideration the fact that natural sequence distributions are most likely the result of a combination
of fitness, phylogeny and various sampling biases. While there are many promising directions
for incorporating these factors, LFB has the advantage of applying to preexisting models without
requiring retraining, making it a practical and scalable addition to current inference workflows. The
approach proposed here is simple but also neglects a number of important considerations. Thus, we
see this work as a promising starting point for a richer class of inference strategies that reconcile
evolutionary modelling and modern sequence-based machine learning.
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A Code Availability

The code to run LFB is available at https://github.com/DiasFrazerGroup/1fbl ESM-
2 models are available from https://github.com/facebookresearch/esm, ProGen2 mod-
els at https://github. com/enijkamp/progen2 and Evo 2 models at https://github. com/
ArcInstitute/evo2, The ProteinGym code and data can be found at https://github.com/
0ATML-Markslab/ProteinGym.

B Computational resources

We ran all models in an HPC setting. We used 1 Nvidia H100 GPU for gL.M and pLM inference.
Memory requirements didn’t exceed 35GB RAM. In order to process alignments with MMseqs we
ran jobs in parallel with 10 CPU cores, and 35GB RAM.

C Impact Statement

This paper introduces a framework for enhancing the performance of large language models at
predicting the effect of variants on protein and DNA function and human health. By advancing variant
effect prediction, this work has the potential to drive progress across multiple fields, from protein
design for therapeutics and bioengineering, to clinical genetics. While the insights of this model
can guide diagnostic care and help uncover the genetic architecture of disease, its predictions should
complement — not replace — experimental validation and expert interpretation. In this sense, ethical
considerations include transparency and interpretability to ensure the responsible usage of the model
in real life applications. One of the benefits of approaches that train on the whole protein or DNA
universe, is the robustness to biases in human genetic studies, and therefore better generalization
across genetic ancestries. Nevertheless, as with any Al-driven approach, care must be taken to ensure
equitable benefits across populations and to prevent misuse in genetic profiling. Nonetheless, this
work primarily seeks to enhance computational methods for studying protein and DNA variant effects,
with no foreseeable direct societal harm.

D Implementation details of LFB

D.1 Alignments

To produce protein sequence alignments we use the MMseqs search tool [Hauser et al., 2016] against
the UniRef50 database [Suzek et al., 2015]]. We used the arguments: -s 7.5 -num-iterations 5.

To produce the DNA sequence alignments for the human clinically annotated variants, we used the
unprocessed DNA level variants provided in ProteinGym. To obtain sequences from other species
we used the Zoonomia 447-way primate and mammalian alignment. We used HAL liftover to map
the variants from the human reference genome to these genomes [[Hickey et al.l |2013]]. Then we
extracted 8,192 length segments centered around the variant at these genomes, to obtain the same
context length around variants as in |[Brixi et al.[[2025]].

D.2 Log-likelihoods from pLMs

For ESM-2, in place of (2) we use

> [log py (a5 |x) — log py (w:|)] , ©)

K2

where ¢ indexes over amino acid position in a protein sequence x. This scoring system has been
shown to perform similarly to other masked language model scoring systems in|Meier et al.|[2021],
and |Gordon et al.| [2024] outline reasons why BERT trained models still make predictions when
conditioned on a fully unmasked sequence. We found it performed similarly in practice to the
masked-marginal scoring (Fig. [F3), and it only requires one forward pass for each sequence.

For ProGen2, and for Evo 2 we use the log-likelihoods as in eq. @, but also ensemble over the
sequences in different directions. For ProGen2 we average over the prediction for the sequence and
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the reversed sequence,

7

1 a. a 1 a. a
5 2 [log (@i |o%5) — log po(ifz<i)] + 5 3 [logpa(@i*[¢2]) — logpo(aila=i)],  (10)

which is possible as the model is trained also on reversed sequences. For Evo 2 we average over
predictions for the sequence and its reverse complement ¥,

2 &

(3

1 a. 1 a. a.
5 2 [logpe(af"a2}) —logpo(wilw<i)] + 5 D [logpe(u"[y2}) — logpa(uily<)] . (1)

D.3 LFB algorithm

We describe in the below algorithm how to produce a LFB estimate given an alignment of a reference
sequence against related sequences, and generative model capable of scoring these sequences.

Algorithm 1 Scoring variants with LFB

Require: Related sequences H = {x;}¥ ; with reference 7,
Require: Alignment maps {7;}}¥ |, where ; : indices,, — indices,, U {gap}
Require: Variants V' = {v1,vs,...,vk }, where each variant v is a set of point mutations

{(refia jia altl) ) (S I}

Require: Generative sequence model pg
1: for each variant v € V do
2:  for each related sequence x € H do

3: Initialize ' + x and 2% < x

4 for each point mutation (ref, j, alt) € v do

5: if ;(j) # gap then

6: x™[m;(j)] < alt {Mapping variant to homologous sequence }

7: 27t [m;(4)] « ref

8: end if

9: end for
10: Compute 7, < log pe (™) — log pe(2*!) {Scoring variant in homologous sequence }

11:  end for

12:  Compute 0, < Wll > wen O« {Aggregating scores across homologous sequences}
13: end for

14: return {(v,7,):v eV}

Notably, we only need the alignment mapping on those positions of the reference and alternative
alleles. One consequence of this algorithm is that if no variants are mapped over (due to gappy
alignment, or the variants being in excluded domains or less important regions), the difference in
log-likelihood will vanish. We tried also averaging only over non-gap sequences for each position,
but found this had a slightly negative impact (Fig. [F.12). Another notable choice is the inclusion of
sequences in the average with wild-type alleles different to the reference sequence. We tried only
averaging over those sequences which matched the reference allele for each position, and similarly
found slightly diminished performance (Fig. [F.12).
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E Sketch proof of lower variance under OUT model.
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where

1
pi= m Zexp(fQOzti’j) (32)
i#£]
1
= nn—1) ; Corr(z;, ;) (33)

the average correlation among the x;, or equivalently the ;.

And similarly we have

252 .2
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Figure F.1: Fitness estimation scaling of candidate baseline families. Performance assessment of
five protein language model families at variant effect prediction, as measured by mean correlation with
deep mutational scanning assays, plotted against the number of parameters of each model. For smaller
models, increasing model size results in better performance but for larger models, the performance
plateaus, or decreases. Results were taken from https://proteingym.org/benchmarks.
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Figure F.2: LFB performance across different alignment filtering strategies, measured by
mean spearman correlation to DMS experiments (a) Mean Spearman correlation as a function
of minimum percentage identity threshold in MSA filtering. (b) Mean Spearman correlation as a
function of minimum coverage threshold in MSA filtering. Each line represents a different ESM-2
model: 15B (dark orange), 3B (medium orange), and 650M (light orange). Unmasked-marginal
scoring is used and mean correlations are taken across all the 217 DMS without subsampling of the
variants, and the mean is weighted as inNotin et al.|[2023]].
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Figure F.3: ESM masked-marginal scoring vs unmasked-marginal scoring a) Average Spearman
Correlation to DMS experiments of all models in the ESM-2 family, with masked-marginal scoring
versus unmasked-marginal scoring, with and without LFB. b) Average AUC comparison of models
in the ESM-2 family, with masked-marginal scoring versus unmasked-marginal scoring, with and
without LFB. ¢) Comparison of all models in the ESM-2 family with masked-marginal scoring
versus unmasked-marginal scoring, with and without LFB, on a per-experiment basis. d) AUC
performance comparison of of all models in the ESM-2 family with masked-marginal scoring versus
unmasked-marginal scoring, with and without LFB, on a per-gene basis. In a) and c), correlations are
taken across all the 217 DMS without subsampling of the variants, and the mean is weighted as in

Notin et al|[2023]].
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Figure F.4: Comparison of pLM and gLLM families with and without LFB at clinical label pre-
diction with bootstrap error bars a) Average AUC comparison of models in ESM-2, ProGen2 and
Evo 2 (base) families, with and without LFB. b) Average Spearman Correlation to DMS experiments
of all models in ESM-2 and ProGen2 families, with and without LFB, where correlations are taken
across all the 217 DMS randomly subsampling to at most 200 variants per assay, and the mean is
weighted as in [2023]. Throughout the error bars are bootstrap estimates of the standard
deviation of the mean (over roc-auc scores or Spearman correlations) computed by resampling the
DMS used or the genes used with replacement.
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Figure E.5: Distribution of performance gains at clinical label prediction using LFB in pLM and
gLLM, across model families and sizes. Each row corresponds to a model family (ESM-2, ProGen2,
Evo 2 (base)), and each column shows models of increasing size (e.g., 8M to 15B parameters).
Histograms show the distribution of AUC deltas (A AUC = LFB - Baseline) across tested proteins.
Vertical dashed lines indicate the zero baseline; bars to the right of the line indicate improved
performance with LFB.
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Figure F.6: Distributions of scores given to benign and pathogenic labelled variants. Grouping
together all (~ 26, 000) of the benign and pathogenic annotated variants across the 305 genes in the
clinical benchmark we show the distributions of scores with (solid) and without (unfilled) LFB for
the ESM family of models. The top row shows masked-marginal scoring and the bottom row shows
unmasked-marginal scoring.
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Figure F.7: Performance gains at DMS variant prediction using LFB across model sizes for
ESM-2 and ProGen2. Each panel displays the difference in Spearman correlation between LFB and
baseline predictions across protein deep mutational scanning (DMS) datasets. Boxplots summarize the
distribution of deltas for each model size; points represent individual experiments. A horizontal dashed
line marks zero difference, with positive values indicating improved agreement with experimental
fitness data after applying LFB.
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Figure F.8: Comparison of models with and without LFB across DMS experiments. Square
markers indicate the baseline Spearman correlation, while circular markers represent the LFB-
augmented model correlation. Experiments are ordered by increasing LFB correlation within each
model. Left panel: ESM-2 (15B), Right panel: ProGen2 (6.4B).
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Figure F.9: Impact of LFB across distinct DMS functional assays. (a) ESM-2 (15B) LFB, (b)
ProGen2 (6.4B) LFB. Each panel represents a different DMS functional assay, grouped by selection
type. The x-axis shows the baseline Spearman correlation, while the y-axis represents the LFB-
augmented model correlation. The dashed diagonal line indicates the identity line (LFB = Baseline),
where no improvement is observed. Points above the diagonal reflect improved correlation with LFB.
Across all functional categories, LFB enhances model performance in both ESM-2 and ProGen2
models.
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Figure F.10: Robustness of likelihood-fitness bridging (LFB) to multiple sequence alignment
depth. Relationship between the number of sequences in the multiple sequence alignment (MSA)
(log scale, x-axis) and the change in Spearman correlation (LFB - Baseline, y-axis). Each point
represents a DMS and the alignment used for LFB averaging produced by MMseqs2 before filtering.
The dotted gray line at zero denotes no change between LFB and baseline models, with positive
values indicating an improvement in correlation.
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Figure F.11: Hyperparameter scan of perplexity based filters on the sequences used for LFB.
Comparison between the standard ESM-2 15B LFB model, and LFB estimators obtained by further
filtering the sequences used by their minimum pseudo-perplexities and their maximum pseudo-
perplexities for a range of thresholds.
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Figure F.12: Selected positions for LFB averaging We show the distributions of Spearman values
across DMS assays for three candidate averaging procedures for the ESM-2 15B model: averaging
across all sequences for each variant (plain), averaging only across sequences with the same allele as
the reference in the variant position (same residue), and averaging only across those sequences which
are not a gap position in the variant position (don’t include gaps). Given the slightly higher average,
we chose plain to be the standard method for LFB.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: In the abstract and introduction we make claims which are supported by the
experiments of the paper, in particular extensive benchmarking of protein fitness estimation
with and without our method. We discuss issues with protein language models and genomic
language models, for which we have promising experimental results improving fitness effect
prediction.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We discuss limitations of the method in the discussion section. We consider
aspects of the model not experimentally tested as well as general limitations.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,

model well-specification, asymptotic approximations only holding locally). The authors

should reflect on how these assumptions might be violated in practice and what the

implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: In the methods section we consider a simplified model in order to demonstrate
how our approach might mitigate the effects of drift. The working-out required to follow
this result is provided and linked to in the appendix. No theorems or propositions are present
in the work.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: In the methods section we describe the procedure we took to obtain the
sequences used for our method. We provide an algorithm block in the appendix, linked to
the method clarify the details of the procedure, also describing the way in which we used
the language models in order to obtain scores for variants. We also provide the code ran to
produce LFB model predictions, (see below).

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Code for running LFB is available on github at https://github.com/
DiasFrazerGroup/1lfb. Links to the benchmarks, models and software tools used are
provided also in the appendix.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https !
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We describe the parameters used to produce and filter alignments. Since the
approach described avoids training new models or finetuning, many such hyperparameters
were not relevant.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
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Justification: Many of the main results are an average over spearman correlations or roc-auc
scores on different datasets. For this reason we report figures with bootstrap estimates of
the standard deviation of this mean, showing how much variability we might expect if these
datasets included in the benchmarks were chosen differently.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We describe in the Appendix, the computational resources used to run the
various models. These were mostly standard apart from the GPU setup which may be
relevant for larger models.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: As we discuss in the appendix impact statement (§C) we have considered the
implications of the work, and find it to conform to the Code of Ethics.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.
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10.

11.

12.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss the societal impacts of the work in the appendix impact statement
(§C). We consider the potential impacts of biological sequence models - both positive for
applications in many contexts, as well as possible negative impacts. These negative concerns
do not appear to be particular to this work.

Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification:
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
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14.

Answer: [Yes]

Justification: For all assets used, in this work mainly models, we explicitly gave credit citing
the relevant work and linking to the assets in the code availability section. This is true also
of the benchmark datasets, and software tools used.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The details of the asset, namely the code used for the approach will be discussed
in the code availability section in the final version. This will be an asset of the authors. The
code is currently anonymized.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification:
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.
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16.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification:
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used

only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification:
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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