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Abstract

Retrieval-Augmented Generation (RAG) en-001
hances the performance of LLMs across var-002
ious tasks by retrieving relevant information003
from external sources, particularly on text-004
based data. For structured data, such as knowl-005
edge graphs, GraphRAG has been widely used006
to retrieve relevant information. However, re-007
cent studies have revealed that structuring im-008
plicit knowledge from text into graphs can009
benefit certain tasks, extending the applica-010
tion of GraphRAG from graph data to general011
text-based data. Despite their successful ex-012
tensions, most applications of GraphRAG for013
text data have been designed for specific tasks014
and datasets, lacking a systematic evaluation015
and comparison between RAG and GraphRAG016
on widely used text-based benchmarks. In017
this paper, we systematically evaluate RAG018
and GraphRAG on well-established benchmark019
tasks, such as Question Answering and Query-020
based Summarization. Our results highlight021
the distinct strengths of RAG and GraphRAG022
across different tasks and evaluation perspec-023
tives. Inspired by these observations, we in-024
vestigate strategies to integrate their strengths025
to improve downstream tasks. Additionally,026
we provide an in-depth discussion of the short-027
comings of current GraphRAG approaches and028
outline directions for future research.029

1 Introduction030

Retrieval-Augmented Generation (RAG) has031

emerged as a powerful approach to enhance down-032

stream tasks by retrieving relevant knowledge from033

external data sources. It has achieved remarkable034

success in various real-world applications, such035

as healthcare (Xu et al., 2024), law (Wiratunga036

et al., 2024), finance (Zhang et al., 2023), and edu-037

cation (Miladi et al., 2024). This success has been038

further amplified with the advent of Large Lan-039

guage Models (LLMs), as integrating RAG with040

LLMs significantly improves their faithfulness by041

mitigating hallucinations, reducing privacy risks, 042

and enhancing robustness (Zhao et al., 2023; Huang 043

et al., 2023). In most existing RAG systems, re- 044

trieval is primarily conducted from text databases 045

using lexical and semantic search. 046

Graphs, as a fundamental data structure, encode 047

rich relational information and have been exten- 048

sively utilized across real-world domains, including 049

knowledge representation, social network analysis, 050

and biomedical research (Wu et al., 2020; Ma and 051

Tang, 2021; Wu et al., 2023). Motivated by this, 052

GraphRAG has recently gained attention for re- 053

trieving graph-structured data, such as knowledge 054

graphs (KGs) and molecular graphs (Han et al., 055

2024; Peng et al., 2024). Beyond leveraging exist- 056

ing graphs, GraphRAG has also demonstrated its 057

effectiveness for text-based tasks after structuring 058

implicit knowledge from text into graph represen- 059

tations, benefiting applications such as global sum- 060

marization (Edge et al., 2024; Zhang et al., 2024), 061

planning (Lin et al., 2024) and reasoning (Han et al., 062

2025). 063

While previous studies have demonstrated the 064

potential of GraphRAG for text-based tasks by 065

converting sequential text into graphs, most of 066

them primarily focus on specific tasks and well- 067

designed datasets. Consequently, the applicability 068

of GraphRAG to broader, real-world text-based 069

tasks remains unclear, particularly when compared 070

to RAG, which has seen widespread adoption 071

across diverse applications. This raises a critical 072

question: What are the advantages and disadvan- 073

tages of applying GraphRAG to general text-based 074

tasks compared to RAG? 075

To bridge this gap, we systematically evaluate 076

the performance of RAG and GraphRAG on gen- 077

eral text-based tasks using widely adopted datasets, 078

including Question Answering and Query-based 079

Summarization. Specifically, we assess two rep- 080

resentative GraphRAG methods: (1) Knowledge 081

Graph-based GraphRAG (Liu, 2022), which ex- 082
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tracts a Knowledge Graph (KG) from text and per-083

forms retrieval solely based on the KG and (2)084

Community-based GraphRAG (Edge et al., 2024),085

which retrieves information not only from the con-086

structed KG but also from hierarchical communi-087

ties within the graph. For the Question Answer-088

ing task, we conduct experiments on both single-089

hop and multi-hop QA under single-document and090

multi-document scenarios. Similarly, for the Query-091

based Summarization task, we evaluate both single-092

document and multi-document summarization to093

comprehensively assess the effectiveness of RAG094

and GraphRAG.095

Based on our comprehensive evaluation, we096

conduct an in-depth analysis of the strengths and097

weaknesses of RAG and GraphRAG across dif-098

ferent tasks. Our findings reveal that RAG and099

GraphRAG are complementary, each excelling in100

different aspects. For the Question Answering task,101

we observe that RAG performs better on single-102

hop questions and those requiring detailed infor-103

mation, while GraphRAG is more effective for104

multi-hop questions. In the Query-based Summa-105

rization task, RAG captures fine-grained details,106

whereas GraphRAG generates more diverse and107

multi-faceted summaries. Building on these in-108

sights, we investigate two strategies from different109

perspectives to integrate their unique strengths and110

enhance the overall performance. Our main contri-111

butions are as follows:112

• Systematical Evaluation : This is the very first113

work to systematically evaluate and compare114

RAG and GraphRAG on text-based tasks using115

widely adopted datasets and evaluations.116

• Task-Specific Insights: We provide an in-depth117

analysis of the distinct strengths of RAG and118

GraphRAG, demonstrating their complementary119

advantages across different types of queries and120

objectives.121

• Hybrid Retrieval Strategies: Based on our122

findings on the unique strengths of RAG and123

GraphRAG, we propose two strategies to im-124

prove overall performance: (1) Selection, where125

queries are dynamically assigned to either RAG126

or GraphRAG based on their characteristics, and127

(2) Integration, where both methods are inte-128

grated to leverage their complementary strengths.129

• Challenges and Future Directions: We discuss130

the limitations of current GraphRAG approaches131

and outline potential future research directions132

for broader applicability.133

2 Related Works 134

2.1 Retrieval-Augmented Generation 135

Retrieval-Augmented Generation (RAG) has been 136

widely applied to enhance the performance of 137

Large Language Models (LLMs) by retrieving rele- 138

vant information from external sources, addressing 139

the limitation of LLMs’ restricted context windows, 140

improving factual accuracy, and mitigating halluci- 141

nations (Fan et al., 2024; Gao et al., 2023). Most 142

RAG systems primarily process text data by first 143

splitting it into chunks (Finardi et al., 2024). When 144

a query is received, RAG retrieves relevant chunks 145

either through lexical search (Ram et al., 2023) 146

or by computing semantic similarity (Karpukhin 147

et al., 2020), embeddings both the query and text 148

chunks into a shared vector space. Advanced tech- 149

niques, such as pre-retrieval processing (Ma et al., 150

2023; Zheng et al., 2023a) and post-retrieval pro- 151

cessing (Dong et al., 2024; Xu et al., 2023), as 152

well as fine-tuning strategies (Li et al., 2023), have 153

further enhanced RAG’s effectiveness across var- 154

ious domains, including QA) (Yan et al., 2024), 155

dialogue generation (Izacard et al., 2023), and text 156

summarization (Jiang et al., 2023). 157

Several studies have evaluated the effectiveness 158

of RAG systems across various tasks (Yu et al., 159

2024; Chen et al., 2024; Es et al., 2023), such 160

as multi-hop question answering (Tang and Yang, 161

2024), biomedical question answering (Xiong et al., 162

2024), and text generation (Liu et al., 2023). How- 163

ever, no existing study has simultaneously and 164

systematically evaluated and compared RAG and 165

GraphRAG on these general text-based tasks. 166

2.2 Graph Retrieval-Augmented Generation 167

While RAG primarily processes text data, many 168

real-world scenarios involve graph-structured data, 169

such as knowledge graphs (KGs), social graphs, 170

and molecular graphs (Xia et al., 2021; Ma and 171

Tang, 2021). GraphRAG (Han et al., 2024; Peng 172

et al., 2024) aims to retrieve information from var- 173

ious types of graph-structured data. The inherent 174

structure of graphs enhances retrieval by captur- 175

ing relationships between connected nodes. For 176

example, hyperlinks between documents can im- 177

prove retrieval effectiveness in question answering 178

tasks(Li et al., 2022). Currently, most GraphRAG 179

studies focus on retrieving information from exist- 180

ing KGs for downstream tasks such as KG-based 181

QA (Tian et al., 2024; Yasunaga et al., 2021) and 182

Fact-Checking (Kim et al., 2023). 183
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Figure 1: The illustration of RAG, KG-based GraphRAGs and Community-based GraphRAGs.

Despite leveraging the existing graphs, recent184

studies have explored incorporating graph con-185

struction into GraphRAG to enhance text-based186

tasks. For example, Dong et al. (2024) construct187

document graphs using Abstract Meaning Repre-188

sentation (AMR) to improve document ranking.189

Edge et al. (2024) construct graphs from documents190

using LLMs, where nodes represent entities and191

edges capture relationships between them. Based192

on these graphs, they generate hierarchical com-193

munities and corresponding community summaries194

or reports. Their approach focuses on the global195

query summarization task, retrieving information196

from both the constructed graphs and their hierar-197

chical communities. Additionally, Han et al. (2025)198

propose an iterative graph construction approach199

using LLMs to improve reasoning tasks.200

These studies highlight the potential of201

GraphRAG in processing text-based tasks by con-202

structing graphs from textual data. However, their203

focus is limited to specific tasks and evaluation204

settings. It remains unclear how GraphRAG per-205

forms on general text-based tasks compared to206

RAG. More importantly, when and how should207

GraphRAG be applied to such tasks for optimal208

effectiveness? Our work aims to bridge this gap by209

systematically evaluating GraphRAG and compar-210

ing it with RAG on general text-based tasks.211

3 Evaluation Methodology212

In this section, we introduce the details of our213

evaluation framework. We primarily evaluate one214

representative RAG system and two representative215

GraphRAG systems, as illustrated in Figure 1.216

3.1 RAG 217

We adopt a representative semantic similarity- 218

based retrieval approach as our RAG 219

method (Karpukhin et al., 2020). Specifically, we 220

first split the text into chunks, each containing 221

approximately 256 tokens. For indexing, we use 222

OpenAI’s text-embedding-ada-002 model, which 223

has demonstrated effectiveness across various 224

tasks (Nussbaum et al., 2024). For each query, we 225

retrieve chunks with Top-10 similarity scores. To 226

generate responses, we employ two open-source 227

models of different sizes: Llama-3.1-8B-Instruct 228

and Llama-3.1-70B-Instruct (Dubey et al., 2024). 229

For single-document tasks, we generate a sepa- 230

rate RAG system for each document, ensuring that 231

queries corresponding to a specific document are 232

processed within its respective indexed chunk pool. 233

For multi-document tasks, we use a shared RAG 234

system by indexing all documents together. 235

3.2 GraphRAG 236

We select two representative GraphRAG meth- 237

ods for a comprehensive evaluation, as shown 238

in Figure 1, namely KG-based GraphRAG and 239

Community-based GraphRAG. 240

In the KG-based GraphRAG (KG- 241

GraphRAG) (Liu, 2022), a knowledge graph is first 242

constructed from text chunks using LLMs through 243

triplet extraction. When a query is received, its 244

entities are extracted and matched to those in 245

the constructed KG using LLMs. The retrieval 246

process then traverses the graph from the matched 247

entities and gathers triplets (head, relation, tail) 248

from their multi-hop neighbors as the retrieved 249
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content. Additionally, for each triplet, we can250

retrieve the corresponding text associated with251

it. We define two variants of KG-GraphRAG: (1)252

KG-GraphRAG (Triplets), which retrieves only the253

triplets, and (2) KG-GraphRAG (Triplets+Text),254

which retrieves both the triplets and their associated255

source text. We implement the KG-GraphRAG256

methods using LlamaIndex (Liu, 2022) 1.257

For the Community-based GraphRAG (Edge258

et al., 2024), in addition to generating KGs using259

LLMs, hierarchical communities are constructed260

using graph community detection algorithms, as261

shown in Figure 1. Each community is associ-262

ated with a corresponding text summary or report,263

where lower-level communities contain detailed264

information from the original text. The higher-265

level communities further provide summaries of266

the lower-level communities. Due to the hierar-267

chical community structure, there are two primary268

retrieval methods for retrieving relevant informa-269

tion given a query: Local Search and Global270

Search. In Local Search, entities, relations, their271

descriptions, and lower-level community reports272

are retrieved based on entity matching between the273

query’s extracted entities and the constructed graph.274

We refer to this method as Community-GraphRAG275

(Local). In Global Search, only high-level com-276

munity summaries are retrieved based on semantic277

similarity to the query. We refer to this method as278

Community-GraphRAG (Global). The Community-279

GraphRAG methods are implemented using Mi-280

crosoft GraphRAG (Edge et al., 2024)2.281

To ensure a fair comparison, we adopt the same282

settings for both RAG and GraphRAG methods.283

This includes the chunking strategy, embedding284

model, and LLMs. We select two representa-285

tive RAG tasks, i.e., Question Answering and286

Query-based Summarization, to evaluate RAG and287

GraphRAG simultaneously.288

4 Question Answering289

QA is one of the most widely used tasks for evalu-290

ating the performance of RAG systems. QA tasks291

come in various forms, such as single-hop QA,292

multi-hop QA, and open-domain QA (Wang, 2022).293

To systematically assess the effectiveness of RAG294

and GraphRAG in these tasks, we evaluate them295

on widely used QA datasets and employ standard296

evaluation metrics.297

1https://www.llamaindex.ai/
2https://microsoft.github.io/graphrag

4.1 Datasets and Evaluation Metrics 298

To comprehensively evaluate the performance of 299

GraphRAG on general QA tasks, we select four 300

widely used datasets that cover different perspec- 301

tives. For the single-hop QA task, we select 302

the Natural Questions (NQ) dataset (Kwiatkowski 303

et al., 2019). For the multi-hop QA task, we se- 304

lect HotPotQA (Yang et al., 2018) and MultiHop- 305

RAG (Tang and Yang, 2024) datasets. The 306

MultiHop-RAG dataset categorizes queries into 307

four types: Inference, Comparison, Temporal, and 308

Null queries. To further analyze the performance of 309

RAG and GraphRAG at a finer granularity, we also 310

include NovelQA (Tang and Yang, 2024), which 311

contains 21 different types of queries. For more 312

details, please refer to Appendix A.1.1. We use 313

Precision (P), Recall (R), and F1-score as evalu- 314

ation metrics for the NQ and HotPotQA datasets, 315

while accuracy is used for the MultiHop-RAG and 316

NovelQA datasets following their original papers. 317

4.2 QA Main Results 318

The performance comparison for the NQ and Hot- 319

PotQA datasets is presented in Table 1, while that 320

of MultiHop-RAG is shown in Table 2. Due to 321

space constraints, partial results of NovelQA with 322

the Llama 3.1-8B model are shown in Table 3, with 323

the full results available in Appendix A.2. Based on 324

these results, we make the following observations: 325

1. RAG excels on detailed single-hop queries. 326

RAG performs well on single-hop queries and 327

queries that require detailed information. This 328

is evident from its performance on the single- 329

hop dataset (NQ) as well as the single-hop (sh) 330

and detail-oriented (dtl) queries in the NovelQA 331

dataset, as shown in Table 1 and Table 3. 332

2. GraphRAG, particularly Community- 333

GraphRAG (Local), excels on multi-hop 334

queries. For instance, it achieved the best 335

performance on both the HotPotQA and 336

MultiHop-RAG datasets. Although its overall 337

performance on the NovelQA dataset is lower 338

than that of RAG, it still performs well on the 339

multi-hop (mh) queries in NovelQA dataset. 340

3. Community-GraphRAG (Global) often strug- 341

gles on QA tasks. This is due to the global 342

search retrieves only high-level communities, 343

leading to a loss of detailed information. This is 344

particularly evident from its lower performance 345

on detail-oriented queries in the NovelQA 346

dataset. Additionally, Community-GraphRAG 347

(Global) tends to hallucinate in QA tasks, as 348
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Table 1: Performance comparison (%) on NQ and Hotpot datasets. The best results are highlighted in bold, and the
second-best results are underlined.

Method

NQ Hotpot

Llama 3.1-8B Llama 3.1-70B Llama 3.1-8B Llama 3.1-70B

P R F1 P R F1 P R F1 P R F1

RAG 71.7 63.93 64.78 74.55 67.82 68.18 62.32 60.47 60.04 66.34 63.99 63.88
KG-GraphRAG (Triplets only) 40.09 33.56 34.28 37.84 31.22 28.50 26.88 24.81 25.02 32.59 30.63 30.73
KG-GraphRAG (Triplets+Text) 58.36 48.93 50.27 60.91 52.75 53.88 45.22 42.85 42.60 51.44 48.99 48.75
Community-GraphRAG (Local) 69.48 62.54 63.01 71.27 65.46 65.44 64.14 62.08 61.66 67.20 64.89 64.60
Community-GraphRAG (Global) 60.76 54.99 54.48 61.15 55.52 55.05 45.72 47.60 45.16 48.33 48.56 46.99

Table 2: Performance comparison (%) on the MultiHop-RAG dataset across different query types.

Method LLama 3.1-8B Llama 3.1-70B

Inference Comparison Null Temporal Overall Inference Comparison Null Temporal Overall

RAG 92.16 57.59 96.01 30.7 67.02 94.85 56.31 91.36 25.73 65.77
KG-GraphRAG (Triplets only) 55.76 22.55 98.67 18.7 41.24 76.96 32.36 94.35 19.55 50.98
KG-GraphRAG (Triplets+Text) 67.4 34.7 97.34 17.15 48.51 85.91 35.98 86.38 21.61 54.58
Community-GraphRAG (Local) 86.89 60.63 80.07 50.6 69.01 92.03 60.16 88.70 49.06 71.17
Community-GraphRAG (Global) 89.34 64.02 19.27 53.34 64.4 89.09 66.00 13.95 59.18 65.69

Table 3: Performance comparison (%) on the NovelQA dataset across different query types with LLama 3.1-8B.

RAG KG-GraphRAG (Triplets+Text)

chara mean plot relat settg span times avg chara mean plot relat settg span times avg
mh 68.75 52.94 58.33 75.28 92.31 64.00 33.96 47.34 mh 52.08 52.94 44.44 55.06 69.23 64.00 28.61 38.37
sh 69.08 62.86 66.11 75.00 78.35 - - 68.73 sh 36.84 45.71 40.17 87.50 36.08 - - 39.93
dtl 64.29 45.51 78.57 10.71 83.78 - - 55.28 dtl 38.57 30.90 42.86 21.43 32.43 - - 33.60
avg 67.78 50.57 67.37 60.80 80.95 64.00 33.96 57.12 avg 40.00 36.23 41.09 49.60 38.10 64.00 28.61 37.80

Community-GraphRAG (Local) Community-GraphRAG (Global)

chara mean plot relat settg span times avg chara mean plot relat settg span times avg
mh 68.75 64.71 55.56 67.42 92.31 52.00 35.83 47.01 mh 54.17 58.82 55.56 56.18 53.85 68.00 20.59 34.39
sh 59.87 58.57 65.69 87.50 64.95 - - 63.43 sh 45.39 50.00 55.65 87.50 38.14 - - 49.65
dtl 54.29 37.64 62.50 25.00 70.27 - - 46.88 dtl 28.57 29.78 32.14 87.50 40.54 - - 30.89
avg 60.00 44.91 64.05 59.20 68.71 52.00 35.83 53.03 avg 42.59 36.98 51.66 52.00 40.14 68.00 20.59 39.17

shown by its poor performance on Null queries349

in the MultiHop-RAG dataset, which should ide-350

ally be answered as ‘insufficient information.’351

However, this summarization approach may be352

beneficial for queries that require comparing353

different topics or understanding their tempo-354

ral ordering, such as Comparison and Temporal355

queries in the MultiHop-RAG dataset, as shown356

in Table 2.357

4. KG-based GraphRAG also generally under-358

perform on QA tasks. This is because it re-359

trieves information solely from the constructed360

knowledge graph, which contains only entities361

and their relations. However, the extracted en-362

tities and relations may be incomplete, leading363

to gaps in the retrieved information. To verify364

this, we calculated the ratio of answer entities365

present in the constructed KG. We found that366

only around 65.8% of answer entities exist in367

the constructed KG for the Hotpot dataset and368

65.5% for the NQ dataset. These findings high-369

light a key limitation in KG-based retrieval and370

suggest the need for improved KG construction371

methods to enhance graph completeness for QA.372

4.3 Comparative QA Analysis 373

In this section, we conduct a detailed analysis of 374

the behavior of RAG and GraphRAG, focusing 375

on their strengths and weaknesses. In the follow- 376

ing discussion, we refer to Community-GraphRAG 377

(Local) as GraphRAG, as it demonstrates perfor- 378

mance comparable to RAG. We categorize queries 379

into four groups: (1) Queries correctly answered 380

by both methods, (2) Queries correctly answered 381

only by RAG (RAG-only), (3) Queries correctly an- 382

swered only by GraphRAG (GraphRAG-only), and 383

(4) Queries answered incorrectly by both methods. 384

The confusion matrices representing these four 385

groups using the Llama 3.1-8B model are shown 386

in Figure 2. Notably, the proportions of queries 387

correctly answered exclusively by GraphRAG and 388

RAG are significant. For example, 13.6% of 389

queries are GraphRAG-only, while 11.6% are RAG- 390

only on MultiHop-RAG dataset. This phenomenon 391

highlights the complementary properties of RAG 392

and GraphRAG, and each method has its own 393

strengths and weaknesses. Therefore, leveraging 394

their unique advantages has the potential to im- 395

prove overall performance. 396
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Figure 2: Confusion matrices comparing GraphRAG and RAG correctness across datasets using Llama 3.1-8B.

4.4 Improving QA Performance397

Building on the complementary properties of RAG398

and GraphRAG, we investigate the following two399

strategies to enhance overall QA performance.400

Strategy 1: RAG vs. GraphRAG Selection.401

In Section 4.2, we observe that RAG generally402

performs well on single-hop queries and those403

requiring detailed information, while GraphRAG404

(Community-GraphRAG (Local)) excels in multi-405

hop queries that require reasoning. Therefore, we406

hypothesize that RAG is well-suited for fact-based407

queries, which rely on direct retrieval and detailed408

information, whereas GraphRAG is more effective409

for reasoning-based queries that involve chaining410

multiple facts together. Therefore, given a query,411

we employ a classification mechanism to determine412

whether it is fact-based or reasoning-based. Each413

query is then assigned to either RAG or GraphRAG414

based on the classification results. Specifically, we415

leverage the in-context learning ability of LLMs416

for classification (Dong et al., 2022; Wei et al.,417

2023). Further details and prompts can be found418

in Appendix A.3. In this strategy, either RAG or419

GraphRAG is selected for each query, and we refer420

to this strategy as Selection.421

Strategy 2: RAG and GraphRAG Integration.422

We also explore the Integration strategy to lever-423

age the complementary strengths of RAG and424

GraphRAG. Both RAG and GraphRAG retrieve425

information for a query simultaneously. The re-426

trieved results are then concatenated and fed into427

the generator to produce the final output.428

We conduct experiments to verify the effective-429

ness of the two proposed strategies. Specifically,430

we evaluate overall performance across all selected431

datasets. For the MultiHop-RAG and NovelQA432

datasets, we use the overall accuracy, while for the433

NQ and HotPotQA datasets, we use the F1 score434

as the evaluation metric. The results are shown435

in Figure 3. From these results, we observe that436

both strategies generally enhance overall per- 437

formance. For example, on the MultiHop-RAG 438

dataset with Llama 3.1-70B, Selection and Integra- 439

tion improve the best method by 1.1% and 6.4%, 440

respectively. When comparing the Selection and 441

Integration strategies, the Integration strategy usu- 442

ally achieves higher performance than the Selec- 443

tion strategy. However, the Selection strategy pro- 444

cesses each query using either RAG or GraphRAG, 445

making it more efficient. In contrast, the Inte- 446

gration strategy yields better performance but re- 447

quires each query to be processed by both RAG 448

and GraphRAG, increasing computational cost. 449

5 Query-Based Summarization 450

Query-based summarization tasks are widely used 451

to evaluate the performance of RAG systems (Ram 452

et al., 2023; Yu et al., 2023). GraphRAG has 453

also demonstrated its effectiveness in summariza- 454

tion tasks (Edge et al., 2024). However, Edge 455

et al. (2024) only evaluate its effectiveness on the 456

global summarization task and rely on LLM-as-a- 457

Judge (Zheng et al., 2023b) for performance as- 458

sessment. In Section 5.3, we show that the LLM- 459

as-a-Judge evaluation method for summarization 460

tasks introduces position bias, which can impact 461

the reliability of results. A systematic comparison 462

of RAG and GraphRAG on general query-based 463

summarization across widely used datasets remains 464

unexplored. To address this gap, we conduct a com- 465

prehensive evaluation in this section, leveraging 466

widely used datasets and evaluation metrics. 467

5.1 Datasets and Evaluation Metrics 468

We adopt two widely used single-document query- 469

based summarization datasets, SQuALITY (Wang 470

et al., 2022) and QMSum (Zhong et al., 2021), 471

and two multi-document query-based summa- 472

rization datasets, ODSum-story and ODSum- 473

meeting (Zhou et al., 2023), for our evaluation. 474

Unlike the LLM-generated global queries used in 475
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Figure 3: Overall QA performance comparison of different methods.

the unreleased datasets of Edge et al. (2024), most476

queries in the selected datasets focus on specific477

roles or events. Since these datasets contain one or478

more ground truth summaries for each query, we479

use ROUGE-2 (Lin, 2004) and BERTScore (Zhang480

et al., 2019) as evaluation metrics to measure lexi-481

cal and semantic similarity between the predicted482

and ground truth summaries.483

5.2 Summarization Experimental Results484

We evaluate both the KG-based and Community-485

based GraphRAG methods, along with the Inte-486

gration strategy discussed in Section 4.4. The re-487

sults of Llama3.1-8B model on Query-based single488

document summarization and multiple document489

summarization are shown in Table 4 and Table 5, re-490

spectively. The results of Llama3.1-70B are shown491

in Appendix A.4. Based on these results, we can492

make the following observations:493

1. RAG generally performs well on query-based494

summarization tasks. This is particularly495

true on multi-document summarization datasets,496

where they are often the best method.497

2. KG-based GraphRAG benefit from combin-498

ing triplets with their corresponding text.499

This improves performance by incorporating500

more details, making predictions closer to the501

ground truth summaries.502

3. Community-based GraphRAG performs bet-503

ter with the Local search method. Local504

search retrieves entities, relations, and low-505

level communities, while the Global search506

method retrieves only high-level summaries.507

This demonstrates the importance of detailed508

information in the selected datasets.509

4. The Integration strategy is often comparable510

to RAG only performance. This strategy in-511

tegrates retrieved content from both RAG and512

Community-GraphRAG (Local), resulting in513

performance similar to RAG alone.514

5.3 Position Bias in Existing Evaluation 515

From the results in Section 5.2, the Community- 516

based GraphRAG, particularly with global search, 517

generally underperforms compared to RAG on the 518

selected datasets. This contrasts with the findings 519

of Edge et al. (2024), where Community-based 520

GraphRAG with global search outperformed both 521

local search and RAG. There are two key dif- 522

ferences between our evaluation and Edge et al. 523

(2024). First, their study primarily focuses on 524

global summarization, which captures the overall 525

information of an entire corpus, whereas the se- 526

lected datasets in our evaluation contain queries re- 527

lated to specific roles or events. Second, Edge et al. 528

(2024) assess performance by comparing RAG 529

and GraphRAG outputs using LLM-as-a-Judge 530

without ground truth, whereas we evaluate results 531

against ground truth summaries using ROUGE and 532

BERTScore. These metrics emphasize similarity 533

to the reference summaries, which often contain 534

more detailed information. 535

We further conduct an evaluation following Edge 536

et al. (2024), using the LLM-as-a-Judge method to 537

compare RAG and Community-based GraphRAG 538

from two perspectives: Comprehensiveness and 539

Diversity. Comprehensiveness focuses on detail, 540

addressing the question: "How much detail does 541

the answer provide to cover all aspects and details 542

of the question?" Meanwhile, Diversity emphasizes 543

global information, evaluating "Does the answer 544

provide a broad and globally inclusive perspec- 545

tive?". The prompt and details are shown in Ap- 546

pendix A.5. Specifically, we input the summaries 547

generated by RAG and GraphRAG into the prompt 548

and ask the LLM to select the better one for each 549

metric, following Edge et al. (2024). Additionally, 550

to better account for the order in which the sum- 551

maries are presented, we consider two scenarios. 552

Order 1 (O1): We place the RAG summary appears 553

7



Table 4: The performance of query-based single document summarization task using Llama3.1-8B.

Method

SQuALITY QMSum

ROUGE-2 BERTScore ROUGE-2 BERTScore

P R F1 P R F1 P R F1 P R F1

RAG 15.09 8.74 10.08 74.54 81.00 77.62 21.50 3.80 6.32 81.03 84.45 82.69
KG-GraphRAG (Triplets only) 11.99 6.16 7.41 82.46 84.30 83.17 13.71 2.55 4.15 80.16 82.96 81.52
KG-GraphRAG (Triplets+Text) 15.00 9.48 10.52 84.37 85.88 84.92 16.83 3.32 5.38 80.92 83.64 82.25
Community-GraphRAG (Local) 15.82 8.64 10.10 83.93 85.84 84.66 20.54 3.35 5.64 80.63 84.13 82.34
Community-GraphRAG (Global) 10.23 6.21 6.99 82.68 84.26 83.30 10.54 1.97 3.23 79.79 82.47 81.10
Integration 15.69 9.32 10.67 74.56 81.22 77.73 21.97 3.80 6.34 80.89 84.47 82.63

Table 5: The performance of query-based multiple document summarization task using Llama3.1-8B.

Method

ODSum-story ODSum-meeting

ROUGE-2 BERTScore ROUGE-2 BERTScore

P R F1 P R F1 P R F1 P R F1

RAG 15.39 8.44 9.81 83.87 85.74 84.57 15.50 6.43 8.77 83.12 85.84 84.45
KG-GraphRAG (Triplets only) 11.02 5.56 6.62 82.09 83.91 82.77 11.64 4.87 6.58 81.13 84.32 82.69
KG-GraphRAG (Triplets+Text) 9.19 5.82 6.22 79.39 83.30 81.03 11.97 4.97 6.72 81.50 84.41 82.92
Community-GraphRAG (Local) 13.84 7.19 8.49 83.19 85.07 83.90 15.65 5.66 8.02 82.44 85.54 83.96
Community-GraphRAG (Global) 9.40 4.47 5.46 81.46 83.54 82.30 11.44 3.89 5.59 81.20 84.50 82.81
Integration 14.77 8.55 9.53 83.73 85.56 84.40 15.69 6.15 8.51 82.87 85.81 84.31
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Figure 4: Comparison of LLM-as-a-Judge evaluations for RAG and GraphRAG. "Local" refers to the evaluation of
RAG vs. GraphRAG-Local, while "Global" refers to RAG vs. GraphRAG-Global.

before the GraphRAG summary and Order 2 (O2):554

GraphRAG appears before RAG. We compare the555

proportion of selected best samples from RAG and556

GraphRAG, where a higher proportion indicates557

better performance as predicted by the LLM.558

The results of RAG vs. GraphRAG (Local) and559

RAG vs. GraphRAG (Global) on the QMSum and560

ODSum-story datasets are presented in Figure 4.561

More result can be found in Appendix A.6. We562

can make the following observations: (1) Posi-563

tion bias (Shi et al., 2024; Wang et al., 2024) is564

evident in the LLM-as-a-Judge evaluations for565

summarization task, as changing the order of the566

two methods significantly affects the predictions.567

This effect is particularly strong in the compari-568

son between RAG and GraphRAG (Local), where569

the LLMs make completely opposite decisions570

depending on the order, as shown in Figures 4a571

and 4c. However, (2) Comparison between RAG572

and GraphRAG (Global): While the proportions573

vary, RAG consistently outperforms GraphRAG 574

(Global) in Comprehensiveness but underperforms 575

in Diversity as shown in Figures 4b and 4d. This re- 576

sult suggests that Community-based GraphRAG 577

with Global Search focuses more on the global 578

aspects of whole corpus, whereas RAG captures 579

more detailed information. 580

6 Conclusion 581

In this paper, we systematically evaluate and com- 582

pare RAG and GraphRAG on general text-based 583

tasks. Our analysis reveals the distinct strengths 584

of RAG and GraphRAG in QA and query-based 585

summarization, as well as evaluation challenges in 586

summarization tasks, providing valuable insights 587

for future research. Building on these findings, we 588

propose two strategies to enhance QA performance. 589

Future work can explore improving GraphRAG 590

through better graph construction or developing 591

novel approaches to combine RAG and GraphRAG 592

methods for both effectiveness and efficiency. 593
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Limitations594

In this paper, we evaluate and compare RAG and595

GraphRAG on Question Answering and Query-596

based Summarization tasks. Future work can ex-597

tend this study to additional tasks to further assess598

the strengths and applicability of GraphRAG. Ad-599

ditionally, the graph construction in all GraphRAG600

methods explored in this work relies on LLM-based601

construction, where LLMs extract entities and rela-602

tions. However, other graph construction models603

designed for text processing exist and can be in-604

vestigated in future studies. Finally, we primarily605

evaluate generation performance using Llama 3.1-606

8B-Instruct and Llama 3.1-70B-Instruct. Future607

research can explore other generation models for a608

more comprehensive comparison.609
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A Appendix870

A.1 Dataset871

In this section, we introduce the used datasets in the question answering tasks and query-based summa-872

rization tasks.873

A.1.1 Question Answering874

In the QA tasks, we use the following four widely used datasets:875

• Natural Questions (NQ) (Kwiatkowski et al., 2019): The NQ dataset is a widely used benchmark876

for evaluating open-domain question answering systems. Introduced by Google, it consists of real877

user queries from Google Search with corresponding answers extracted from Wikipedia. Since it878

primarily contains single-hop questions, we use NQ as the representative dataset for single-hop879

QA. We treat NQ as a single-document QA task, where multiple questions are associated with each880

document. Accordingly, we build a separate RAG system for each document in the dataset.881

• Hotpot (Yang et al., 2018): HotpotQA is a widely used multi-hop question dataset that provides882

10 paragraphs per question. The dataset includes varying difficulty levels, with easier questions883

often solvable by LLMs. To ensure a more challenging evaluation, we randomly selected 1,000 hard884

bridging questions from the development set of HotpotQA. Additionally, we treat HotpotQA as a885

multi-document QA task and build a single RAG system to handle all questions.886

• MultiHop-RAG (Tang and Yang, 2024): MultiHop-RAG is a QA dataset designed to evaluate887

retrieval and reasoning across multiple documents with metadata in RAG pipelines. Constructed888

from English news articles, it contains 2,556 queries, with supporting evidence distributed across 2889

to 4 documents. The dataset includes four query types: Inference queries, which synthesize claims890

about a bridge entity to identify it; Comparison queries, which compare similarities or differences891

and typically yield "yes" or "no" answers; Temporal queries, which examine event ordering with892

answers like "before" or "after"; and Null queries, where no answer can be derived from the retrieved893

documents. It is also a multi-document QA task.894

• NovelQA (Tang and Yang, 2024): NovelQA is a benchmark designed to evaluate the long-text895

understanding and retrieval ability of LLMs using manually curated questions about English novels896

exceeding 50,000 words. The dataset includes queries that focus on minor details or require cross-897

chapter reasoning, making them inherently challenging for LLMs. It covers various query types898

such as details, multi-hop, single-hop, character, meaning, plot, relation, setting, span, and times.899

Key challenges highlighted by NovelQA include grasping abstract meanings (meaning questions),900

understanding nuanced relationships (relation questions), and tracking temporal sequences and spatial901

extents (span and time questions), emphasizing the difficulty of maintaining and applying contextual902

information across long narratives. We use it for single-document QA task.903

A.1.2 Query-based Summarization904

In the Query-based Summarization tasks, we adopt the following four widely used datasets:905

• SQuALITY (Wang et al., 2022): SQuALITY (Summary-format QUestion Answering with Long906

Input Texts) is a question-focused, long-document, multi-reference summarization dataset. It consists907

of short stories from Project Gutenberg, each ranging from 4,000 to 6,000 words. Each story is paired908

with five questions, and each question has four reference summaries written by Upwork writers and909

NYU undergraduates. SQuALITY is designed as a single-document summarization task, making it a910

valuable benchmark for evaluating summarization models on long-form content.911

• QMSum (Zhong et al., 2021): QMSum is a human-annotated benchmark for query-based, multi-912

domain meeting summarization, containing 1,808 query-summary pairs from 232 meetings across913

multiple domains. We use QMSum as a single-document summarization task in our evaluation.914
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• ODSum (Zhou et al., 2023): The ODSum dataset is designed to evaluate modern summarization 915

models in multi-document contexts and consists of two subsets: ODSum-story and ODSum-meeting. 916

ODSum-story is derived from the SQuALITY dataset, while ODSum-meeting is constructed from 917

QMSum. We use both ODSum-story and ODSum-meeting for the multi-document summarization 918

task in our evaluation. 919

A.2 More results on NovelQA dataset 920

In this section, we present the missing results for the NovelQA dataset from the main sections. These in- 921

clude the performance of KG-GraphRAG (Triplets) with LLaMA 3.1-8B (Table 6), RAG with LLaMA 3.1- 922

70B (Table 7), KG-GraphRAG (Triplets) with LLaMA 3.1-70B (Table 8), KG-GraphRAG (Triplets+Text) 923

with LLaMA 3.1-70B (Table 9), Community-GraphRAG (Local) with LLaMA 3.1-70B (Table 10), and 924

Community-GraphRAG (Global) with LLaMA 3.1-70B (Table 11). 925

Table 6: The performance of KG-GraphRAG (Triplets) with Llama 3.1-8B model on NovelQA dataset.

KG-GraphRAG(Triplet) character meaning plot relat settg span times avg
mh 31.25 17.65 41.67 50.56 38.46 64 26.47 32.89
sh 35.53 45.71 30.54 62.5 27.84 - - 33.75
dtl 31.43 24.72 35.71 17.86 27.03 - - 27.37
avg 33.7 29.81 32.63 44 28.57 64 26.47 31.88

Table 7: The performance of RAG with Llama 3.1-70B model on NovelQA dataset.

RAG character meaning plot relat settg span times avg
mh 64.58 82.35 77.78 69.66 84.62 36 36.63 48.5
sh 70.39 70 76.57 75 83.51 - - 75.27
dtl 60 51.12 76.79 67.86 83.78 - - 61.25
avg 66.67 58.11 76.74 69.6 83.67 36 36.63 61.42

Table 8: The performance of KG-GraphRAG (Triplets) with Llama 3.1-70B model on NovelQA dataset.

KG-GraphRAG (Triplets) character meaning plot relat settg span times avg
mh 50 76.47 75 43.82 76.92 24 22.46 33.72
sh 52.63 62.86 55.23 12.5 50.52 - - 54.06
dtl 35.71 26.97 39.29 53.57 37.84 - - 33.6
avg 47.78 39.62 54.68 44 49.66 24 22.46 41.18

Table 9: The performance of KG-GraphRAG (Triplets+Text) with Llama 3.1-70B model on NovelQA dataset.

KG-GraphRAG (Triplets+Text) character meaning plot relat settg span times avg
mh 56.25 58.82 63.89 51.69 84.62 24 21.39 33.72
sh 51.97 61.43 55.65 50 50.52 - - 54.42
dtl 34.29 25.28 41.07 50 37.84 - - 32.52
avg 48.15 36.98 54.08 51.2 50.34 24 21.39 41.05

A.3 RAG vs. GraphRAG Selection 926

We classify QA queries into Fact-based and Reasoning-based queries. Fact-based queries are processed 927

using RAG, while Reasoning-based queries are handled by GraphRAG. The Query Classification prompt 928

is shown in Figure 5. 929
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Table 10: The performance of Community-GraphRAG (Local) with Llama 3.1-70B model on NovelQA dataset.

Community-GraphRAG (Local) character meaning plot relat settg span times avg
mh 77.08 70.59 63.89 77.53 92.31 28 32.35 46.68
sh 68.42 71.43 74.9 62.5 74.23 - - 72.44
dtl 55.71 37.08 69.64 64.29 75.68 - - 51.49
avg 66.67 48.3 72.81 73.6 76.19 28 32.35 57.32

Table 11: The performance of Community-GraphRAG (Global) with Llama 3.1-70B model on NovelQA dataset.

Community-GraphRAG (Global) character meaning plot relat settg span times avg
mh 47.92 58.82 55.56 57.3 61.54 16 35.83 41.53
sh 42.76 42.86 54.39 25 40.21 - - 47
dtl 24.29 22.47 32.14 50 35.14 - - 27.64
avg 38.89 30.19 50.76 53.6 40.82 16 35.83 40.21

Prompt for Query Classification

System Prompt: Classifying Queries into Fact-Based and Reasoning-Based Categories
You are an AI model tasked with classifying queries into one of two categories based on their
complexity and reasoning requirements.
Category Definitions
1. Fact-Based Queries
- The answer can be directly retrieved from a knowledge source or requires details.
- The query does not require multi-step reasoning, inference, or cross-referencing multiple sources.
2. Reasoning-Based Queries
- The answer cannot be found in a single lookup and requires cross-referencing multiple sources,
logical inference, or multi-step reasoning.
Examples
Fact-Based Queries
{{ Fact-Based Queries Examples }}
Reasoning-Based Queries
{{ Reasoning-Based Queries Examples }}

Figure 5: Prompt for Query Classification.

A.4 Query-based Summarization Results with Llama3.1-70B model930

In this section, we present the results for Query-based Summarization tasks using the LLaMA 3.1-70B931

model. The results for single-document summarization are shown in Table 12, while the results for932

multi-document summarization are provided in Table 13.933

Table 12: The performance of query-based single document summarization task using Llama3.1-70B.

Method

SQuALITY QMSum

ROUGE-2 BERTScore ROUGE-2 BERTScore

P R F1 P R F1 P R F1 P R F1

RAG 11.85 14.24 11.00 85.96 85.76 85.67 10.42 10.00 9.53 86.14 85.92 86.02
KG-GraphRAG(Triplets only) 8.53 10.28 7.46 84.13 83.97 83.89 10.62 6.25 7.48 83.20 84.72 83.94
KG-GraphRAG(Triplets+Text) 6.57 10.14 6.00 80.52 82.23 81.07 8.64 7.85 7.29 84.10 84.55 84.31
Community-GraphRAG(Local) 12.54 10.31 9.61 84.50 85.33 84.71 13.69 7.43 9.14 84.09 85.85 84.95
Community-GraphRAG(Global) 8.99 4.78 5.60 81.64 83.64 82.44 10.97 4.40 6.01 81.93 84.67 83.26
Combine 13.59 11.32 10.55 84.88 85.76 85.12 13.16 8.67 9.93 85.18 86.21 85.69
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Table 13: The performance of query-based multiple document summarization task using Llama3.1-70B.

Method

ODSum-story ODSum-meeting

ROUGE-2 BERTScore ROUGE-2 BERTScore

P R F1 P R F1 P R F1 P R F1

RAG 15.60 9.98 11.09 74.80 81.29 77.89 18.81 6.41 8.97 83.56 85.16 84.34
KG-GraphRAG(Triplets only) 10.08 9.12 8.48 75.71 81.93 78.66 11.52 3.41 4.79 81.19 83.07 82.11
KG-GraphRAG(Triplets+Text) 10.98 16.67 11.42 76.74 81.92 79.21 13.09 6.31 7.70 84.07 84.24 84.14
Community-GraphRAG(Local) 14.20 11.34 11.25 75.44 81.81 78.46 16.17 7.87 9.23 84.17 84.85 84.49
Community-GraphRAG(Global) 10.46 6.30 7.08 74.63 81.24 77.77 10.65 1.99 3.28 79.78 82.53 81.12
Combine 14.76 12.17 11.72 75.39 81.75 78.41 17.57 8.64 10.34 84.51 85.14 84.81

A.5 The LLM-as-a-Judge Prompt 934

The LLM-as-a-Judge prompt can be found in Figure 6. 935

LLM-as-a-Judge Prompt

You are an expert evaluator assessing the quality of responses in a query-based summarization task.

Below is a query, followed by two LLM-generated summarization answers. Your task is to evaluate
the best answer based on the given criteria. For each aspect, select the model that performs better.
Query
{{query}}
Answers Section
The Answer of Model 1:
{{answer 1}}
The Answer of Model 2:
{{answer 2}}
Evaluation Criteria Assess each LLM-generated answer independently based on the following
two aspects:
1. Comprehensiveness
- Does the answer fully address the query and include all relevant information?
- A comprehensive answer should cover all key points, ensuring that no important details are
missing.
- It should present a well-rounded view, incorporating relevant context when necessary.
- The level of detail should be sufficient to fully inform the reader without unnecessary omission
or excessive brevity.

2. Global Diversity
- Does the answer provide a broad and globally inclusive perspective?
- A globally diverse response should avoid narrow or region-specific biases and instead consider
multiple viewpoints.
- The response should be accessible and relevant to a wide, international audience rather than
assuming familiarity with specific local contexts.

Figure 6: LLM-as-a-Judge Prompt.

A.6 The LLM-as-a-Judge Results on more datasets 936

In the main section, we present LLM-as-a-Judge results for the OMSum and ODSum-story datasets. Here, 937

we provide additional results on the SQuALITY and ODSum-meeting datasets, as shown in Figure 7. 938
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(b) SQuALITY Global
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(c) ODSum-meeting Local
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(d) ODSum-meeting Global

Figure 7: Comparison of LLM-as-a-Judge evaluations for RAG and GraphRAG. "Local" refers to the evaluation of
RAG vs. GraphRAG-Local, while "Global" refers to RAG vs. GraphRAG-Global. "Order 1" corresponds to the
prompt where RAG result is presented before GraphRAG, whereas "Order 2" corresponds to the reversed order.
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