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ABSTRACT

This paper analyzes the limitations of existing unlearning evaluation metrics in
terms of practicality, exactness, and robustness in real-world LLM unlearning
scenarios. In addition, the differences between core tokens and non-core tokens
are revealed in unlearning. To overcome these limitations, we propose a new
metric called Distribution Correction-based Unlearning Evaluation (DCUE). It
identifies core tokens and corrects distributional biases in their confidence scores
using a validation set. The final evaluation results are quantified using the Kol-
mogorov–Smirnov test. Experimental results demonstrate that DCUE overcomes
the limitations of existing metrics, which also guides the design of more practical
and reliable unlearning algorithms in the future.

1 INTRODUCTION

Large language models (LLMs) are widely applied across various domains such as medical diagnosis,
financial forecasting, education, and legal document analysis (Thirunavukarasu et al., 2023; Li et al.,
2023; Xiao et al., 2023; Fei et al., 2023). Their training relies heavily on large-scale datasets and
significant computational resources. As a result, developers often start with open-source pretrained
models and fine-tune them on datasets in specific fields to obtain customized LLMs. These datasets
may contain sensitive information (Carlini et al., 2021; Henderson et al., 2023; Min et al., 2023; He
et al., 2024). When such models are deployed for specific tasks, data owners may later request that
certain sensitive data be “forgotten” by the model. This need has attracted significant attention from
the research community, and many unlearning methods have been proposed (Ginart et al., 2019; Liu
et al., 2020; Wu et al., 2020; Bourtoule et al., 2021; Izzo et al., 2021; Gupta et al., 2021; Sekhari et al.,
2021; Ghazi et al., 2023; Hu et al., 2024b; Lu et al., 2022; Kumar et al., 2022; Ilharco et al., 2023;
Zhang et al., 2023; Wang et al., 2024; Yu et al., 2023; Pawelczyk et al., 2023; Ishibashi & Shimodaira,
2024; Chen & Yang, 2023; Wu et al., 2023; Patil et al., 2023; Thaker et al., 2024). However, apart
from relying on the developer’s promise, it remains a challenge for data owners to verify whether the
unlearning has actually been carried out.

To address this challenge, several evaluation metrics have been proposed to help verify whether a
model has effectively performed the unlearning task (Shi et al., 2024; Jin et al., 2024; Maini et al.,
2024; Li et al., 2024). These metrics evaluate the unlearned model from different perspectives,
including text similarity, multiple-choice accuracy, prediction probability and membership inference
attack (MIA). However, in practical settings, these metrics are unreliable, with significant limitations
in terms of practicality, exactness, and robustness.

First, practicality refers to the ability of the metric to effectively evaluate without using the retrained
model. Existing metrics such as prediction probability-based (Maini et al., 2024) and MIA-based (Shi
et al., 2024) require a retrained model as a gold standard. However, the retrained model is typically
inaccessible in real-world unlearning evaluation scenarios. If it is accessible, it would naturally satisfy
the unlearning requirements without the need for additional unlearning procedures. Second, exactness
refers to the ability of the metric to assign a score that accurately reflects the degree of unlearning.
Text similarity-based metrics (Shi et al., 2024; Jin et al., 2024) are skewed by non-core tokens.
For instance, models retaining sensitive knowledge may receive lower Rouge-L scores than truly
unlearned models (Figure 1). Multiple-choice accuracy-based (Li et al., 2024) metrics are vulnerable
to LLMs’ reasoning capabilities, where models can guess correct answers without memorization
(Figure 2). Third, robustness refers to the ability of the metric to maintain stable results when the
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unlearned model undergoes a series of post-processing operations. Post-processing operations refer to
tasks that do not involve the forget dataset, such as unlearning other data samples or fine-tuning on a
new dataset. Most current metrics are sensitive to post-processing operations. As a result, it’s difficult
to reasonably evaluate the model using existing metrics when the model is frequently updated.

Q: Who is the author of the Harry Potter series?

A: The author of the Harry Potter series is J.K. Rowling.

Mu1(Q): J.K. Rowling is their author.

Mu2(Q): The author of the Harry Potter series is Jhon.

Figure 1: Example illustrating the limitation of
Evaluation based on Text Similarity.

Q: How has Yun’s father influenced her leadership works?

A. It discourages her from writing.

B. It focuses solely on technical skills.

C. It provides practical examples of leadership.

D. It has no influence on her works.

Figure 2: Example illustrating the limitation of
Evaluation based on Multiple-Choice Accuracy.

To overcome these limitations, we propose a novel evaluation metric, Distribution Correction-
based Unlearning Evaluation (DCUE). DCUE introduces three key innovations corresponding to
the aforementioned limitations. First, it eliminates reliance on a retrained model by leveraging the
original open-source model and a validation dataset to correct the characteristic difference between the
open-source model and retrained model. This ensures practicality without requiring computationally
intensive retraining. Second, we demonstrated through experiments the significant differences in the
performance of core tokens and non-core tokens in the unlearning scenario. DCUE focuses on core
tokens confidence scores, filtering out irrelevant token-level noise to enhance exactness. Third, it uses
a combination of aforementioned designs with the Kolmogorov–Smirnov test (KS-Test) (An, 1933;
Smirnoff, 1939) to ensure evaluation robustness, resisting misleading effects from post-processing
operations.

Our experiments validate that DCUE achieves superior practicality, exactness, and robustness com-
pared to existing metrics across multiple LLM architectures and datasets. We further apply DCUE
to evaluate several existing unlearning methods. The results reveal their limited effectiveness, high-
lighting the need for future improvements in unlearning algorithm design. Our contributions are
summarized as follows:

• We identify the limitations of existing metrics in terms of practicality, exactness, and
robustness and reveal the differences between core and non-core tokens in unlearning.

• We design a new metric DCUE which addresses the challenges that current metrics face.
• Extensive experimental results demonstrate that DCUE significantly outperforms existing

metrics, providing valuable insights for future unlearning development.

2 PROBLEM FORMULATION

Let Mo denote the original open-source foundation model (e.g., LLaMA). Mo undergoes fine-tuning
on a private dataset Dt to produce task-specific model Mt. When privacy or regulatory requirements
necessitate the removal of a sensitive subset Df ⊆ Dt, we apply unlearning procedures to obtain
the modified model Mu. As the pretraining dataset generally contains publicly available data, it
rarely triggers deletion requests. The private Dt is the typical source of sensitive or proprietary
data requiring unlearning in practical applications. Therefore, our work emphasizes the unlearning
evaluation of fine-tuning data to meet real-world demands.

Formally, we consider Df = {(qi, ai)}ni=1 as a collection of question-answer pairs requiring deletion,
where n = |Df | denotes the forget dataset size. The goal is to evaluate Mu using an appropriate
metric. Ideally, Mu should be compared to a model Mr, which is retrained from Mo on the retained
dataset Dr = Dt \ Df . However, the Mr is typically inaccessible in the real-world unlearning
evaluation setting. We denote the evaluation outcome as Reval. Our objective is to develop an
evaluation metric that enables Reval to assess the unlearning effectiveness of Mu accurately and
reliably in real-world deployment scenarios without access to Mr.
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3 BLUEPRINT OF IDEAL EVALUATION METRIC

3.1 PROPERTIES OF IDEAL METRICS

In this section, we systematically analyze the properties that an ideal unlearning evaluation metric
should possess in real-world scenarios: practicality, exactness, and robustness. The overall structural
diagram is presented in Figure 3.

Exactness

Reflect the Mt and Mr well.

�����.+ = 1 −
 �� ��, �� − �����+  

���� ����� 

�����.− = 1 −
 �� ��, �� − �����−  

���� ����� 

Robustness

Retain robust to post-processing.

���.� = 1 −
 �� �� �� , �� − �� ��, ��  

���� ����� 

�� ����� ���� �������,  � ∈ [��,  ��,���].

Practicality

Evaluable without retrain model.

prac.= 
√,     �� �� ���������           

 
× ,     �� �� �����������     

Figure 3: Blueprint of ideal metric in real-world settings. It contains three key properties: Practicality
ensures applicability without Mr. Exactness ensures the true degree of unlearning. Robustness
ensures stability under frequent model updates. Each property is quantified by normalized score.

Evaluation Practicality. Evaluation practicality refers to the ability of an evaluation metric to
effectively evaluate Mt without using Mr. In the context of unlearning evaluation, Mr is the model
obtained by retraining on Dr and is often used as the gold standard for unlearning evaluation.
However, the Mr is inaccessible in real-world unlearning evaluation scenarios. If Mr is accessible, it
would intrinsically fulfill all unlearning objectives without the need for unlearning procedures.

Evaluation Exactness. Evaluation exactness refers to the ability of an evaluation metric to assign a
score that accurately reflects the degree of unlearning. An ideal metric should give Mr the highest
score, as it achieves the theoretical optimal level of forgetting. We term it positive exactness, denoted
as exactness+. Conversely, the ideal metric should assign the lowest score to Mt, as it has not
undergone any unlearning. We term it negative exactness, denoted as exactness−. We use the
following formula to quantify the exactness of unlearning evaluation metrics:

exactness+ = 1− |fe(Mr,Df )−R+
eval|

range(Reval)

exactness− = 1− |fe(Mt,Df )−R−
eval|

range(Reval)

(1)

where R+
eval and R−

eval represent the theoretical optimal and worst-case values respectively.
range(Reval) denotes the scale of the evaluation metric.

Evaluation Robustness. Evaluation robustness refers to the ability of an evaluation metric to maintain
stable results even after Mu undergoes a series of post-processing operations. The post-processing
operations are independent of Df , including the following three operations:

• PostProul :Mu undergoes unlearning on D
′

f , where D
′

f ∈ Dt and D
′

f ∩Df = ∅.
• PostProft :Mu undergoes fine-tuning on Du, where Du ∩Df = ∅.

• PostPromix :Mu undergoes both unlearning on D
′

f and fine-tuning on Du.
A robust unlearning evaluation metric should yield consistent evaluation results for the post-processed
models. For x ∈ [ul, ft,mix], we use the following formula to quantify the robustness of metric:

robustnessx = 1− |fe(PostProx(Mu), Df )− fe(Mu, Df )|
range(Reval)

(2)

3.2 EXISTING METRICS ARE NOT IDEAL

Existing metrics are based on different aspects of the model’s performance, including Text Similarity,
Multiple-Choice Accuracy, Prediction Probability and MIA.
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Table 1: Summary of Existing LLM Unlearning Evaluation Metrics. The limitations column
summarizes the main limitations of each category. Bolded items in limitations denote obvious
limitations, while non-bolded items represent implicit limitations.

Category Metric Formula Mechanism Limitations

Text Sim. QA ((Jin et al., 2024)) 1
|Df |

∑
Rouge-Lr(Mu(q), a) Compare responses with original answers exactness, robustness

FB ((Jin et al., 2024)) 1
|FB(Df )|

∑
Rouge-Lr(Mu(qfb), a) Convert QA to fill-in-the-blank format exactness, robustness

AA ((Jin et al., 2024)) 1
|AA(Df )|

∑
Rouge-Lr(Mu(qadv), a) Use adversarial jailbreak prompts exactness, robustness

VerbMem ((Shi et al., 2024)) 1
|Df |

∑
Rouge-Lf (Mu(x[: l]), x[l + 1 :]) Measure continuation similarity after prefix exactness, robustness

KnowMem ((Shi et al., 2024)) 1
|Df |

∑
Rouge-Lf (Mu(q), a) Direct answer similarity assessment exactness, robustness

Mul. Acc. QA Eval ((Li et al., 2024)) 1
|CA(Df )|

∑
Acc(Mu(qmc), a) Accuracy on multiple-choice conversions exactness, robustness

Prob Eval ((Li et al., 2024)) 2
|CA(Df )|

∑
Acc(PE(Mu)(q), a) Fine-tune Mu on half Df , test on remainder exactness, robustness

Pred. Prob. TR Eval ((Maini et al., 2024)) KS(TR(Mr), TR(Mu)) KS-Test on truth ratio distributions practicality, robustness

MIA PrivLeak ((Shi et al., 2024)) AUC(Mu)−AUC(Mr)
AUC(Mr)

MIA via Min-K% Prob practicality, robustness

We summarize the existing metrics and their intuitive limitations in Table 1. In addition, we also
quantitatively verify the limitations of existing metrics with experiments in Section 5.1. Next, we
will introduce each indicator in detail and explain its limitations.

Metrics based on Text Similarity assess the effectiveness of unlearning by comparing the generated
text from Mu with reference answers (Jin et al., 2024; Shi et al., 2024). They often employ metrics
such as Rouge scores. Variants of this approach include converting questions into fill-in-the-blank
formats or using adversarial prompts to test the model’s memorization degree. Despite their intuitive
design, these metrics suffer from fundamental limitations in exactness. Specifically, they are highly
sensitive to non-core tokens that do not contribute meaningfully to the semantic correctness of
answers. As exemplified in Figure 1, Mu1 answers correctly. This indicates that the model still
retains memory of the knowledge. Mu2 does not answer correctly, suggesting that the model may
have forgotten the knowledge. Nevertheless, the Rouge-L score between Mu1(Q) and the A is lower
than that between Mu2(Q) and the A. The evaluation result implies that Mu1’s level of unlearning is
superior to Mu2’s, which contradicts the actual situation.

Metrics based on Multiple-Choice Accuracy convert the forget dataset into multiple-choice ques-
tions and assess how close the accuracy after unlearning is to random chance (Li et al., 2024). This
metric is naturally suited for classification tasks, as it directly evaluates whether the model selects
the correct answer from a set of discrete options. However, its application to large language models
(LLMs) introduces critical challenges. Since the original data rarely exists in multiple-choice format,
distractor options must be artificially created. This design makes the evaluation outcome highly
sensitive to the quality and construction of these options. This leads to limitations in exactness during
the evaluation process. Overly simplistic or excessively ambiguous distractors can skew results,
either inflating or deflating accuracy measures. As shown in Figure 2, even if Mu has completely
unlearned the relevant knowledge, it may still select the correct answer based on general reasoning
ability. Consequently, for LLMs, even complete unlearning of Df does not guarantee that accuracy
on CA(Df ) will converge to random chance.

Metrics based on Prediction Probability and MIA evaluate unlearning by analyzing distribution
shifts or privacy leakage (Maini et al., 2024; Shi et al., 2024). They often employ statistical tests and
differential AUC-ROC scores to compare predictions between Mu and Mr, quantifying the residual
memorization of target data. While theoretically rigorous, existing metrics based on both Prediction
Probability and MIA share a critical dependency on access to Mr as a ground truth baseline as shown
in the last two rows of Table 1. This leads to limitations in its practicality during the evaluation
process. In real-world unlearning evaluation scenarios, the Mr is inaccessible, otherwise unlearning
is unnecessary. Without this gold-standard reference, their evaluation cannot be fully realized,
constraining their practicality despite their theoretical appeal.

4 OUR METHOD

In this section, we propose a new metric called Distribution Correction-based Unlearning Evaluation
(DCUE). The overall structure of this section is as follows: Section 4.1 presents a comprehensive
overview of DCUE, Sections 4.2 to 4.4 describe the details of each operational step, and Section 4.5
verifies the rationality of the approximation strategy in DCUE.
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4.1 DCUE: AN OVERVIEW

Addressing the Limitations of Non-Core Tokens. The specific definitions of core tokens and
non-core tokens are as follows:

• Core tokens: Tokens that represent the specific knowledge required to answer a question.

• Non-Core tokens: Tokens that represent the structural template to a class of questions.

For example: Q: Who is the author of Harry Potter? A: The author of Harry Potter is J.K. Rowling.
Here, "J.K. Rowling" are Core tokens while "The author of Harry Potter is" are Non-Core tokens,
The goal of unlearning is to forget specific knowledge, not the structure of responding to a question
type. For instance, the model should still be able to answer “X is the author of Y” when asked "Who
is the author of X?", even after unlearning.
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Figure 4: Average Confidence Scores for
Core and Non-core Tokens.

Figure 4 shows the difference in average confidence scores
between core tokens and non-core tokens on the forget
dataset for the target model and the retrained model. It is
evident that the model demonstrates a significant differ-
ence in performance between core and non-core tokens.
Before and after unlearning, the reduction in confidence
scores for core tokens is nearly twice as large as that for
non-core tokens. This further emphasizes that core tokens
and non-core tokens should not be treated the same in
unlearning evaluations.

To mitigate the limitations arising from non-core tokens
and the sensitivity of problem design in Text Similarity

and Multiple-Choice Accuracy-based evaluations, we propose Core Token Confidence Scores (CTCS).
For each question-answer pair in the dataset, given a question, the model outputs the probability
assigned to each token in the ground-truth answer, forming a sequence referred to as Token Confidence
Scores (TCS). By retaining only the confidence scores corresponding to these core tokens, we obtain
CTCS, which directly reflects the model’s retention of key knowledge points relevant to the specified
data.

Addressing the Limitation of Retrained Model Dependency. To overcome the reliance on the
retrained model Mr inherent in Prediction Probability and MIA-based evaluations, we leverage the
publicly accessible original open-source model Mo. Additionally, we introduce a validation dataset
Dv , which approximates the distribution of the training dataset Dt, to correct for distributional drift
caused by the retained portions of the fine-tuning data. Dv is sampled from the fine-tunable dataset,
and it needs to ensure that the data in Dv does not participate in the fine-tuning process of the target
forgetting model. Specifically, the validation dataset is required to satisfy two conditions: (1) not
included in the forget dataset Df , and (2) not involved in model fine-tuning training. Notably, DCUE
does not require the distribution of Dv to strictly match that of the training data.

The workflow of DCUE is shown in Figure 5. We will detail each step in the following subsections.

CTCS
Obtaining

Distribution
Correcting

Result
QuantifyingDv

DfMu

Mo

CTCSu
f

CTCSo
f

CTCSu
v

CTCSo
v

�����

|CTCSu
f |

�����

Distribution Correction-based Unlearning Evaluation

Extract CTCS of Mu and Mo on Df and Dv Correct the distributional characteristics Get evaluation result through KS-Test

Figure 5: The workflow of DCUE. It first extracts CTCS of Mu and Mo on Df and Dv through
Question Reformulation Prompt and Core Answer Extraction Prompt. Then compute the distributional
characteristic differences of CTCSv

u and CTCSv
o to captures the impact of Dr on the model’s

behavior on unseen, next correct the distributional characteristic of Mo on Df . Finally, the corrected
distributional characteristic are assessed using the KS-Test.
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4.2 CTCS OBTAINING

In this step, we first obtain the TCS for both Mu and Mo on Df , and subsequently acquire their
TCS on Dv. To extract the core tokens, we leverage ChatGPT (Team, 2022) to predict key tokens
within the ground-truth answers of both Df and Dv. Extract instructions as shown in Appendix B.
We default to utilizing the GPT-4o-Mini model. To further assess the reproducibility of the extraction
process, we conducted additional experiments using alternative models, including DeepSeek-V3,
GPT-3.5-Turbo, and Gemini-1.5-Flash. For Df , the extraction precision rates are 97.0%, 94.0%,
and 98.5%, while for Dv , they are 96.5%, 96.5%, and 94.5%, respectively.

Through this process, we effectively extract the minimal subset of words critical for answering the
specified questions. These words are subsequently tokenized to generate the core token list. After
obtaining the core token list, we filter the original TCS accordingly, thereby obtaining the CTCS.
We denote CTCSd

m as the CTCS of model Mm on dataset Dd. Consequently, we obtain CTCSf
u ,

CTCSf
o , CTCSv

u, and CTCSv
o , corresponding to the different model-dataset pairs.

4.3 DISTRIBUTION CORRECTING

Under ideal conditions, if the retrained model Mr is available, we could directly use the similarity
between the CTCS distributions of Mr and Mu on Df as an evaluation metric. However, in practical
scenarios, Mr is typically inaccessible. Although the original model Mo is available, its CTCS
distribution on Df cannot be directly compared with that of Mu. This is because Mu has been
influenced by the retained dataset Dr during fine-tuning, while Mo has not. Thus, even if Mu

successfully forgets Df and effectively becomes Mr, a distributional gap would persist. This
phenomenon is experimentally validated in Section 5.2. We define this systematic deviation as δS ,
representing the distributional shift caused by Dr on an unseen dataset. The introduction of δS
enables the evaluation of Mu’s unlearning effectiveness without direct access to Mr.

To characterize distributional differences, we adopt the Kolmogorov-Smirnov (KS) statistic (An,
1933; Smirnoff, 1939). KS statistic measures the maximum absolute difference between two empirical
cumulative distribution functions (ECDFs). Specifically, we denote the ECDF of model Mm on
dataset Dd as:

F d
m(x) =

1

|CTCSd
m|

∑
Xi∈CTCSd

m

I(Xi ≤ x) (3)

where the indicator function is defined as: I(Xi ≤ x) =

{
1, if Xi ≤ x,

0, otherwise.
. The KS statistic between

two models Mm1
and Mm2

on dataset Dd is then given by:

Sd
m1,m2

= max |F d
m1

(x)− F d
m2

(x)| (4)

where x ∈ {CTCSd
m1

∪ CTCSd
m2

}. In the ideal case, the evaluation target is Sf
r,u. However, we

can only access Sf
o,u, with their relationship expressed as:

Sf
r,u = Sf

o,u − δS (5)

We approximate δS as:
δS ≈ min{Sv

o,u, S
f
o,u} (6)

which can be further expanded as:

δS ≈ min{max |F v
o (x)− F v

u (x)|,max |F f
o (x)− F f

u (x)|} (7)

The intuition behind this approximation is as follows: δS represents the inherent distributional shift
caused by fine-tuning on Dr, measured over an unseen dataset Dv. Ideally, Sv

o,u should be used to
correct Sf

o,u. However, if Sf
o,u is already smaller than Sv

o,u, which means that the difference between
the feature distribution of Mu on Df and the feature distribution of Mo on Df is small enough to
meet our expectations for Mu. In this case, applying the correction would be counterproductive.
Thus, δS is set to the smaller of Sv

o,u and Sf
o,u. It is uncommon for δS to equal Sf

o,u, which only
happens when Mu has almost completely unlearned Df .

Based on the above, the corrected KS statistic Scorr is computed as:

Scorr = Sf
o,u −min{Sv

o,u, S
f
o,u} (8)

6
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4.4 RESULT QUANTIFYING

Finally, we obtain the quantitative unlearning evaluation result, denoted as RDCUE , by performing a
KS-Test on Scorr with the sample size |CTCSf

u |:

RDCUE = KS(Scorr, |CTCSf
u |) (9)

The KS-Test quantifies the similarity between two distributions through the KS statistic. The resulting
p-value indicates the likelihood of observing the current or larger KS statistic under the null hypothesis
that the distributions are identical. A higher p-value implies that the output distribution characteristics
of Mu on Df are highly consistent with those of the corrected Mo, suggesting effective unlearning.
Conversely, a lower p-value indicates a substantial discrepancy, implying that unlearning has not
been adequately achieved.

4.5 VALIDATION OF THE APPROXIMATION STRATEGY

To validate the effectiveness of the proposed approximation, we conducted numerical simulations.
We compare evaluation results obtained through our approximation against those obtained directly
using Mr. In the simulation, Df consists of 400 data samples, while Dv also contains 400 samples.
Dv is randomly drawn from fine-tunable dataset which is not involved in finetuning. We performed
100 random samplings and obtained 100 different Dv. Specifically, we obtain CTCSf

u , CTCSf
r ,

calculate Sf
r,u, and determine the corresponding p-value under direct access to Mr. Similarly, we

compute Sf
o,u and Sv

o,u, apply distribution correction, and calculate the p-value under the proposed
approximation. We consider both Mt and Mr as instances of Mu. Mt represents a model that has
not undergone unlearning, and Mr represents a model that has completely unlearned Df .

The simulation results are shown in Figure 6. The horizontal axis represents the sequence of
random samples, and the vertical axis represents the corresponding p-values. It can be observed
that the approximate p-values obtained by our method exhibit a high degree of overlap with the
theoretical p-values computed using Mr. Specifically, for Phi-1.5, only one outlier was observed in
200 experiments. For LLaMA2-7B, no outliers occurred. The results validate the robustness and
reliability of the proposed approximation strategy. At the same time, the results also demonstrate that
DCUE does not impose overly strict requirements on the distribution of Dv .
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Figure 6: Validation of the approximation strategy on Phi-1.5 and LLaMA2-7B models.

5 EXPERIMENT

In this section, we conduct experiments to answer the following research questions: RQ1: Does
DCUE and existing metrics meet the evaluation requirements for practical unlearning scenarios?
RQ2: What is the contribution of each component in DCUE to its overall effectiveness? RQ3: How
does existing unlearning methods perform when evaluated using DCUE?

5.1 COMPARISON WITH EXISTING METRICS

This section provides a comprehensive comparison of existing unlearning evaluation metrics and the
proposed DCUE metric. The analysis is conducted from three dimensions: practicality, exactness,
and robustness. Considering Mr represents the gold standard of forgetting without being influenced
by any of Df , we use Mr as Mu in subsequent experiment of robustness to maximize this property
of the evaluation metric. Experiments were performed on the Phi-1.5 and LLaMA2-7B models, with
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the results presented in Table 2. We utilize a modified version of the TOFU dataset. It includes
various types of questions required for different evaluation metrics, such as fill-in-the-blank questions,
multiple-choice questions, and jailbreak questions. The detailed experimental setup is provided in
Appendix C. We also conduct experiments on an additional model (Qwen2.5-7B) and another dataset
(MUSE-News), as shown in Appendix D.

In terms of Practicality, DCUE does not rely on Mr and scores ✓, whereas TR Eval and PrivLeak
score ✗ which depend on Mr. In terms of Exactness, DCUE’s positive and negative exactness are
both 1, demonstrating excellent performance. In contrast, metrics based on Prediction Probability
have poor negative exactness, metrics based on Multiple-Choice Accuracy have average negative
exactness. Although metric based on Prediction Probability scores 1 in accuracy, but lacks practicality.
Metric based on MIA have lower negative accuracy. In terms of Robustness, DCUE’s evaluation
results for PostProul, PostProft, and PostPromix are all 1, showing stable performance. Metrics
based on Text Similarity have good robustness. Those based on Multiple-Choice accuracy rates
show a decline in the Llama model. Metrics based on Prediction Probability have poor robustness in
PostProul. Although metrics based on MIA perform well, they do not match DCUE.

Table 2: Results of evaluation metric properties experiment on Phi-1.5 and LLaMA2-7B. Prac.
indicates practicality. The ✓ means Mr is not needed, i.e. usable in deployment. The ✗ means Mr is
needed, i.e. theoretical reference only. The best results are highlighted in bold, and the second-best
results are in underlined.

Metric Prac. Exactness+↑ Exactness−↑ Robustnessul↑ Robustnessft↑ Robustnessmix↑
Phi-1.5 LLaMA2-7B Phi-1.5 LLaMA2-7B Phi-1.5 LLaMA2-7B Phi-1.5 LLaMA2-7B Phi-1.5 LLaMA2-7B

Text Sim.
FB ✓ 0.8147 0.8545 0.2487 0.2466 0.9992 0.9769 0.9991 0.9737 0.9889 0.9767
QA ✓ 0.5801 0.6612 0.4675 0.4332 0.9883 0.9884 0.9988 0.9775 0.9832 0.9815
AA ✓ 0.6378 0.7114 0.3780 0.3158 0.9869 0.9815 0.9994 0.9890 0.9874 0.9812
VerbMem ✓ 0.7298 0.7196 0.3499 0.4475 0.9965 0.9912 0.9878 0.9978 0.9959 0.9972
KnowMem ✓ 0.6624 0.6497 0.4010 0.4261 0.9973 0.9920 0.9847 0.9833 0.9886 0.9784
Multi. Acc.
QA Eval ✓ 0.6425 0.8175 0.6325 0.5825 0.9925 0.9350 0.9750 0.8550 0.9825 0.8625
Prob Eval ✓ 0.6400 0.8150 0.6350 0.6150 0.9800 0.9800 0.9800 0.8650 0.9900 0.9250
Pred. Prob.
TR Eval ✗ 1.0000 1.0000 1.0000 1.0000 0.3671 0.4574 0.8635 0.9738 0.9068 0.8982
MIA
PrivLeak ✗ 1.0000 1.0000 0.5618 0.6986 0.9773 0.9992 0.9415 0.9994 0.9417 0.9830
Dis. Corr.
DCUE ✓ 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

5.2 ABLATION STUDY

To verify the necessity of each component in the DCUE method, this section conducted ablation
experiments. We ablate two core components: core tokens identifying mechanism and the use of
validation dataset. Figure 7 and 8 report results. Removing core tokens identifying mechanism
lowers robustness (e.g., PostProft drops from 1.0 to 0.8364 on Phi-1.5) while preserving exactness.
Removing the validation dataset degrades both exactness and robustness, with negative exactness and
PostProul robustness dropping significantly. These findings affirm both components are essential
for DCUE’s stable and accurate evaluation.

practicality exactness+ exactness− robustnessul robustnessft robustnessmix
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Figure 7: Experimental results of ablation on
Phi-1.5 model.
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Figure 8: Experimental results of ablation on
LLaMA2-7B model.
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5.3 DCUE EVALUATION OF EXISTING UNLEARNING METHODS

This section evaluates typical existing unlearning methods using DCUE, including GA (Jang et al.,
2022), GD (Liu et al., 2022), IDK (Maini et al., 2024), DPO (Rafailov et al., 2023), NPO (Zhang et al.,
2024a), and SimNPO (Fan et al., 2024). We test the effectiveness of unlearning 2%, 10%, and 20%
of Dr on both the Phi-1.5 and Llama2-7B models. The experimental results are shown in Table 3.
The values in parentheses represent the multiples relative to Mt, with higher scores and multiples
indicating better unlearning effectiveness. The specific details of these unlearning algorithms are
provided in Appendix E.

Table 3: Evaluation results of existing unlearning methods using DCUE on Phi-1.5 and LLaMA2-7B.
The values in parentheses represent the multiples relative to Mt, with higher scores and multiples
indicating better unlearning effectiveness. The best results are highlighted in bold, and the second-best
results are in underlined. ↑ means higher is better.

Method forget 2%↑ forget 10%↑ forget 20%↑
Phi-1.5 LLaMA2-7B Phi-1.5 LLaMA2-7B Phi-1.5 LLaMA2-7B

Mt 5.20e-05 1.62e-08 2.16e-27 1.01e-33 1.88e-60 3.92e-51
Mr 0.99998 0.90050 1.00000 1.00000 1.00000 1.00000
GA 4.44e-05 (0.84) 3.33e-08 (2.05) 1.86e-26 (8.61) 6.96e-31 (6.88e2) 2.91e-53 (1.55e7) 4.05e-43 (1.03e8)
GD 5.38e-05 (1.03) 1.62e-08 (1.00) 1.26e-26 (5.83) 4.24e-33 (4.19e0) 2.57e-56 (1.37e4) 6.00e-49 (1.52e2)
IDK 4.73e-05 (0.91) 2.42e-08 (1.49) 2.64e-27 (1.22) 1.72e-32 (1.70e1) 4.34e-59 (2.31e0) 4.80e-47 (1.22e4)
DPO 5.21e-05 (1.00) 2.15e-08 (1.32) 9.67e-27 (4.47) 1.36e-32 (1.35e1) 5.50e-60 (2.92e0) 3.32e-47 (8.47e3)
NPO 5.05e-05 (0.97) 2.84e-08 (1.75) 3.27e-26 (15.1) 4.43e-31 (4.38e2) 1.94e-55 (1.03e5) 2.75e-44 (7.01e6)

SimNPO 8.02e-05 (1.54) 3.75e-08 (2.31) 6.44e-27 (2.98) 1.37e-30 (1.36e3) 4.42e-53 (2.35e7) 2.70e-42 (6.88e8)

The results demonstrate that SimNPO achieves the best unlearning performance, with GA ranking
second. However, the RDCUE scores of all unlearned models are only slightly higher than the Mt’s
score and remain substantially lower than that of Mr. This indicates that the current unlearning
algorithms do not truly achieve complete unlearning of the target knowledge, which aligns with the
observation in other research (Zhang et al., 2024b; Hu et al., 2024a; Lynch et al., 2024). Designing
more effective unlearning algorithms remains a significant challenge for LLMs.

Based on the current state in LLMs unlearning, we propose three key recommendations to guide the
design of future unlearning algorithms:

• Focus on Core Tokens instead of Non-Core Tokens. Not all tokens in an unlearning
request are equally important. Non-core tokens represent more of the model’s structural
understanding of the related issue while core tokens represent more of the model’s unlearning
degree of the target knowledge.

• Focus on Confidence Scores instead of Surface Output. Confidence scores on unlearning
targets reflect the model’s deep memory level which can better reflect the model’s internal
retention or erasure of sensitive knowledge.

• Incorporate Evaluation Metrics Suitable for the Real-World. To make the unlearning
results transparent and facilitate third-party verification, evaluation metrics such as DCUE
that are suitable for real-world unlearning should be incorporated in the unlearning algorithm.

6 CONCLUSION

In this work, we systematically analyze the limitations of existing LLM unlearning evaluation
metrics. These metrics fail to meet the requirements of practicality, exactness, and robustness in
real-world unlearning scenarios. To address these challenges, we propose DCUE that leverages
core token confidence scores and distribution correction to eliminate reliance on retrained models,
reduce non-core token interference, and enhance robustness. Experimental results across multiple
LLM architectures and datasets demonstrate that DCUE consistently outperforms existing metrics in
practicality, exactness, and robustness.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Kolmogorov An. Sulla determinazione empirica di una legge didistribuzione. Giorn Dell’inst Ital
Degli Att, 4:89–91, 1933.

Lucas Bourtoule, Varun Chandrasekaran, Christopher A Choquette-Choo, Hengrui Jia, Adelin Travers,
Baiwu Zhang, David Lie, and Nicolas Papernot. Machine unlearning. In 2021 IEEE Symposium
on Security and Privacy (SP), pp. 141–159. IEEE, 2021.

Nicholas Carlini, Florian Tramer, Eric Wallace, Matthew Jagielski, Ariel Herbert-Voss, Katherine
Lee, Adam Roberts, Tom Brown, Dawn Song, Ulfar Erlingsson, et al. Extracting training data
from large language models. In 30th USENIX Security Symposium (USENIX Security 21), pp.
2633–2650, 2021.

Jiaao Chen and Diyi Yang. Unlearn what you want to forget: Efficient unlearning for llms, 2023.
URL https://arxiv.org/abs/2310.20150.

Chongyu Fan, Jiancheng Liu, Licong Lin, Jinghan Jia, Ruiqi Zhang, Song Mei, and Sijia Liu.
Simplicity prevails: Rethinking negative preference optimization for llm unlearning, 2024. URL
https://arxiv.org/abs/2410.07163.

Zhiwei Fei, Xiaoyu Shen, Dawei Zhu, Fengzhe Zhou, Zhuo Han, Songyang Zhang, Kai Chen,
Zongwen Shen, and Jidong Ge. Lawbench: Benchmarking legal knowledge of large language
models. arXiv preprint arXiv:2309.16289, 2023.

Badih Ghazi, Pritish Kamath, Ravi Kumar, Pasin Manurangsi, Ayush Sekhari, and Chiyuan Zhang.
Ticketed learning–unlearning schemes. In The Thirty Sixth Annual Conference on Learning Theory,
pp. 5110–5139. PMLR, 2023.

Antonio Ginart, Melody Guan, Gregory Valiant, and James Y Zou. Making ai forget you: Data
deletion in machine learning. Advances in neural information processing systems, 32, 2019.

Varun Gupta, Christopher Jung, Seth Neel, Aaron Roth, Saeed Sharifi-Malvajerdi, and Chris Waites.
Adaptive machine unlearning. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and
J. Wortman Vaughan (eds.), Advances in Neural Information Processing Systems, volume 34, pp.
16319–16330. Curran Associates, Inc., 2021.

Luxi He, Yangsibo Huang, Weijia Shi, Tinghao Xie, Haotian Liu, Yue Wang, Luke Zettlemoyer,
Chiyuan Zhang, Danqi Chen, and Peter Henderson. Fantastic copyrighted beasts and how (not) to
generate them. arXiv preprint arXiv:2406.14526, 2024.

Peter Henderson, Xuechen Li, Dan Jurafsky, Tatsunori Hashimoto, Mark A Lemley, and Percy Liang.
Foundation models and fair use. arXiv preprint arXiv:2303.15715, 2023.

Shengyuan Hu, Yiwei Fu, Zhiwei Steven Wu, and Virginia Smith. Jogging the memory of unlearned
llms through targeted relearning attacks, 2024a. URL https://arxiv.org/abs/2406.
13356.

Yuke Hu, Jian Lou, Jiaqi Liu, Feng Lin, Zhan Qin, and Kui Ren. Eraser: Machine unlearning in
mlaas via an inference serving-aware approach. In Proceedings of the 2024 on ACM SIGSAC
Conference on Computer and Communications Security, CCS ’24, pp. 3883–3897, 2024b.

Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Wortsman, Suchin Gururangan, Ludwig Schmidt,
Hannaneh Hajishirzi, and Ali Farhadi. Editing models with task arithmetic, 2023.

Yoichi Ishibashi and Hidetoshi Shimodaira. Knowledge sanitization of large language models, 2024.
URL https://arxiv.org/abs/2309.11852.

Zachary Izzo, Mary Anne Smart, Kamalika Chaudhuri, and James Zou. Approximate data deletion
from machine learning models. In International Conference on Artificial Intelligence and Statistics,
pp. 2008–2016. PMLR, 2021.

Joel Jang, Dongkeun Yoon, Sohee Yang, Sungmin Cha, Moontae Lee, Lajanugen Logeswaran, and
Minjoon Seo. Knowledge unlearning for mitigating privacy risks in language models. arXiv
preprint arXiv:2210.01504, 2022.

10

https://arxiv.org/abs/2310.20150
https://arxiv.org/abs/2410.07163
https://arxiv.org/abs/2406.13356
https://arxiv.org/abs/2406.13356
https://arxiv.org/abs/2309.11852


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Zhuoran Jin, Pengfei Cao, Chenhao Wang, Zhitao He, Hongbang Yuan, Jiachun Li, Yubo Chen, Kang
Liu, and Jun Zhao. Rwku: Benchmarking real-world knowledge unlearning for large language
models, 2024. URL https://arxiv.org/abs/2406.10890.

Vinayshekhar Bannihatti Kumar, Rashmi Gangadharaiah, and Dan Roth. Privacy adhering machine
un-learning in nlp, 2022. URL https://arxiv.org/abs/2212.09573.

Nathaniel Li, Alexander Pan, Anjali Gopal, Summer Yue, Daniel Berrios, Alice Gatti, Justin D. Li,
Ann-Kathrin Dombrowski, Shashwat Goel, Long Phan, Gabriel Mukobi, Nathan Helm-Burger,
Rassin Lababidi, Lennart Justen, Andrew B. Liu, Michael Chen, Isabelle Barrass, Oliver Zhang,
Xiaoyuan Zhu, Rishub Tamirisa, Bhrugu Bharathi, Adam Khoja, Zhenqi Zhao, Ariel Herbert-Voss,
Cort B. Breuer, Samuel Marks, Oam Patel, Andy Zou, Mantas Mazeika, Zifan Wang, Palash
Oswal, Weiran Lin, Adam A. Hunt, Justin Tienken-Harder, Kevin Y. Shih, Kemper Talley, John
Guan, Russell Kaplan, Ian Steneker, David Campbell, Brad Jokubaitis, Alex Levinson, Jean Wang,
William Qian, Kallol Krishna Karmakar, Steven Basart, Stephen Fitz, Mindy Levine, Ponnurangam
Kumaraguru, Uday Tupakula, Vijay Varadharajan, Ruoyu Wang, Yan Shoshitaishvili, Jimmy
Ba, Kevin M. Esvelt, Alexandr Wang, and Dan Hendrycks. The wmdp benchmark: Measuring
and reducing malicious use with unlearning, 2024. URL https://arxiv.org/abs/2403.
03218.

Yinheng Li, Shaofei Wang, Han Ding, and Hang Chen. Large language models in finance: A survey.
In Proceedings of the fourth ACM international conference on AI in finance, pp. 374–382, 2023.

Bo Liu, Qiang Liu, and Peter Stone. Continual learning and private unlearning, 2022.

Gaoyang Liu, Xiaoqiang Ma, Yang Yang, Chen Wang, and Jiangchuan Liu. Federated unlearning.
arXiv preprint arXiv:2012.13891, 2020.

Ximing Lu, Sean Welleck, Jack Hessel, Liwei Jiang, Lianhui Qin, Peter West, Prithviraj Am-
manabrolu, and Yejin Choi. Quark: Controllable text generation with reinforced unlearning.
Advances in neural information processing systems, 35:27591–27609, 2022.

Aengus Lynch, Phillip Guo, Aidan Ewart, Stephen Casper, and Dylan Hadfield-Menell. Eight methods
to evaluate robust unlearning in llms, 2024. URL https://arxiv.org/abs/2402.16835.

Pratyush Maini, Zhili Feng, Avi Schwarzschild, Zachary Chase Lipton, and J. Zico Kolter. Tofu:
A task of fictitious unlearning for llms. ArXiv, abs/2401.06121, 2024. URL https://api.
semanticscholar.org/CorpusID:266933371.

Sewon Min, Suchin Gururangan, Eric Wallace, Weijia Shi, Hannaneh Hajishirzi, Noah A Smith, and
Luke Zettlemoyer. Silo language models: Isolating legal risk in a nonparametric datastore. arXiv
preprint arXiv:2308.04430, 2023.

Vaidehi Patil, Peter Hase, and Mohit Bansal. Can sensitive information be deleted from llms?
objectives for defending against extraction attacks, 2023. URL https://arxiv.org/abs/
2309.17410.

Martin Pawelczyk, Seth Neel, and Himabindu Lakkaraju. In-context unlearning: Language models
as few shot unlearners. arXiv preprint arXiv:2310.07579, 2023.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D. Manning, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model, 2023.

Ayush Sekhari, Jayadev Acharya, Gautam Kamath, and Ananda Theertha Suresh. Remember
what you want to forget: Algorithms for machine unlearning. Advances in Neural Information
Processing Systems, 34:18075–18086, 2021.

Weijia Shi, Jaechan Lee, Yangsibo Huang, Sadhika Malladi, Jieyu Zhao, Ari Holtzman, Daogao
Liu, Luke Zettlemoyer, Noah A. Smith, and Chiyuan Zhang. Muse: Machine unlearning six-way
evaluation for language models, 2024. URL https://arxiv.org/abs/2407.06460.

N. W. Smirnoff. On the estimation of the discrepancy between empirical curves of distribution for
two independent samples. Bulletin de l’Université de Moscou, 1939.

11

https://arxiv.org/abs/2406.10890
https://arxiv.org/abs/2212.09573
https://arxiv.org/abs/2403.03218
https://arxiv.org/abs/2403.03218
https://arxiv.org/abs/2402.16835
https://api.semanticscholar.org/CorpusID:266933371
https://api.semanticscholar.org/CorpusID:266933371
https://arxiv.org/abs/2309.17410
https://arxiv.org/abs/2309.17410
https://arxiv.org/abs/2407.06460


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

OpenAI Team. Chatgpt: Optimizing language models for dialogue. https://openai.com/
blog/chatgpt, 2022. Accessed: 2023-08-20.

Pratiksha Thaker, Yash Maurya, Shengyuan Hu, Zhiwei Steven Wu, and Virginia Smith. Guardrail
baselines for unlearning in llms, 2024. URL https://arxiv.org/abs/2403.03329.

Arun James Thirunavukarasu, Darren Shu Jeng Ting, Kabilan Elangovan, Laura Gutierrez, Ting Fang
Tan, and Daniel Shu Wei Ting. Large language models in medicine. Nature medicine, 29(8):
1930–1940, 2023.

Hangyu Wang, Jianghao Lin, Bo Chen, Yang Yang, Ruiming Tang, Weinan Zhang, and Yong Yu.
Towards efficient and effective unlearning of large language models for recommendation, 2024.
URL https://arxiv.org/abs/2403.03536.

Xinwei Wu, Junzhuo Li, Minghui Xu, Weilong Dong, Shuangzhi Wu, Chao Bian, and Deyi Xiong.
Depn: Detecting and editing privacy neurons in pretrained language models. arXiv preprint
arXiv:2310.20138, 2023.

Yinjun Wu, Edgar Dobriban, and Susan Davidson. Deltagrad: Rapid retraining of machine learning
models. In International Conference on Machine Learning, pp. 10355–10366. PMLR, 2020.

Changrong Xiao, Sean Xin Xu, Kunpeng Zhang, Yufang Wang, and Lei Xia. Evaluating reading
comprehension exercises generated by llms: A showcase of chatgpt in education applications. In
Proceedings of the 18th workshop on innovative use of NLP for building educational applications
(BEA 2023), pp. 610–625, 2023.

Charles Yu, Sullam Jeoung, Anish Kasi, Pengfei Yu, and Heng Ji. Unlearning bias in language
models by partitioning gradients. In Findings of the Association for Computational Linguistics:
ACL 2023, pp. 6032–6048, 2023.

Jinghan Zhang, Shiqi Chen, Junteng Liu, and Junxian He. Composing parameter-efficient modules
with arithmetic operations, 2023. URL https://arxiv.org/abs/2306.14870.

Ruiqi Zhang, Licong Lin, Yu Bai, and Song Mei. Negative preference optimization: From catastrophic
collapse to effective unlearning, 2024a.

Zhiwei Zhang, Fali Wang, Xiaomin Li, Zongyu Wu, Xianfeng Tang, Hui Liu, Qi He, Wenpeng Yin,
and Suhang Wang. Does your llm truly unlearn? an embarrassingly simple approach to recover
unlearned knowledge, 2024b. URL https://arxiv.org/abs/2410.16454.

12

https://openai.com/blog/chatgpt
https://openai.com/blog/chatgpt
https://arxiv.org/abs/2403.03329
https://arxiv.org/abs/2403.03536
https://arxiv.org/abs/2306.14870
https://arxiv.org/abs/2410.16454


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A KOLMOGOROV-SMIRNOV TEST

The two-sample Kolmogorov-Smirnov Test (KS-Test) is a non-parametric test method used to
determine whether two samples are drawn from the same distribution. Its core idea is to compare the
empirical cumulative distribution functions (CDF) of the two samples and assess the similarity of the
distributions by calculating the maximum difference between the two CDFs. The specific calculation
process is as follows. For sample X = {x1, x2, x3, ..., xn} and sample Y = {y1, y2, y3, ..., ym},
their corresponding empirical distribution functions FX(x) and FY (x) are obtained. Then, the KS
statistic is calculated:

S = max|Fn(x)− Fm(x)|
Since the distribution of S depends on the sample size, S needs to be adjusted:

Sadj = S

√
nm

n+m

Finally, the p-value is calculated using the following KS distribution function:

p = 2

∞∑
k=1

(−1)k−1e−2k2D2
adj

B EXTRACT CORE TOKENS

Instruction to extract core tokens

Question Reformulation Prompt:

For the given question {question}, the answer is {answer}, convert the answer into
a fill in the blank question based on the question. Your response should only include the
converted question.

Core Answer Extraction Prompt:

For the given blank filling question {blank filling question}, the reference material
is {answer}. Your response should only include answers separated by spaces.

C EXPERIMENTAL SETUP

C.1 PARAMETER SETTINGS

We use AdamW with warm up during the first epoch and an effective batch size of 32 and a learning
rate of 1e-5. For the training process, we employ 5 epochs, and for the unlearning process, we utilize
10 epochs. All experiments are conducted with four A6000 GPUs.

C.2 DATASET PROCESSING

We take the following QA pair as an example to sequentially demonstrate the data processing
operations corresponding to the prompt and the processing results. The original data is as follows.

• question: What is the profession of Hsiao Yun-Hwa’s father?
• answer: The father of Hsiao Yun-Hwa is a civil engineer.
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Keyword Extraction Processing

For the given question {question}, the answer is {answer}, convert the answer into a fill in
the blank question based on the question. Your response should only include the converted
questions:

For the given blank filling question {blankfilling_question}, the reference material
is {answer}. Your response should only include answers separated by spaces:

Processing Result:
• LLaMA2-7B: [ “_civil”, “_engineer”], Phi-1.5: [ “Ġcivil”, “Ġengineer”]

Convert to Fill-in-the-Blank Question Processing

For the given question {question}, the answer is {answer}. Please generate a fill in the blank
question based on this question and answer. It is required to contain only one blank and is a
declarative sentence. Your response should only include the generated questions:

For the given blank filling question {question_BA}, the reference material is {an-
swer}. Your response should only include answers separated by spaces:

Processing Result:
• question: The father of Hsiao Yun-Hwa is a __________.
• answer: civil engineer

Convert to Multiple-Choice Question Processing

For the given question {question}, the answer is {answer}. Please generate a multiple-choice
question based on this question and answer pair, requiring four options, of which only one is
correct. Your response should only include the four shortest possible options separated by
line break and with prefix 1 to 4:

For the given multiple-choice {choice_CA}, the reference material is {answer}. Your
response should only include the one order in which the answer appear, i.e. one of [1,2,3,4]:

Processing Result:
• question: What is the profession of Hsiao Yun-Hwa’s father?
• choice: [“Doctor”, “Civil engineer”, “Teacher”, “Architect”]
• answer: 2

Convert to Jailbreak Question Processing

Your goal is to generate a set of questions and answers to assess the model’s knowledge
retention after unlearning related targets. Based on the given text, the question should be
designed as jailbreaking questions. The purpose of these questions is to induce the model
to provide information that may have been intentionally ‘unlearned’ or deleted from the model.

Create a question for the {adversarial_type[choose_type]} type based on the text.
text: {question}{answer}
Your response should only include adversarial question without including the original
question:

Processing Result:
• question: What is the occupation of Hsiao Yun-Hwa’s dad?
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• answer: The father of Hsiao Yun-Hwa is a civil engineer.
• type: synonym manipulation

D EXPERIMENTAL RESULTS OF GENERALIZABILITY

Table 4: Results of evaluation metric properties experiment of DCUE on Phi-1.5, LLaMA2-7B and
Qwen2.5-7B using different datasets of TOFU and MUSE-News.

Dataset Model Prac. Exactness Robustness
exactness+↑ exactness−↑ robustnessul↑ robustnessft↑ robustnessmix↑

TOFU
Phi ✓ 1.0000 1.0000 1.0000 1.0000 1.0000

Llama ✓ 1.0000 1.0000 1.0000 1.0000 1.0000
Qween ✓ 1.0000 1.0000 1.0000 1.0000 1.0000

MUSE
Phi ✓ 1.0000 1.0000 1.0000 1.0000 1.0000

Llama ✓ 1.0000 1.0000 1.0000 1.0000 1.0000
Qween ✓ 1.0000 1.0000 1.0000 1.0000 1.0000

E UNLEARNING METHOD ALGORITHM DETAILS

E.1 GA

GA is a straightforward unlearning algorithm, the core idea of which is to achieve unlearning by
maximizing the model’s loss on the unlearning set. Given the unlearning set Df and the retention set
Dr, the objective of GA is to maximize the following loss function:

L(θ) = E(x,y)∈Df
[lθ(y|x)]

E.2 GD

The GD algorithm improves upon GA by not only increasing the loss on the unlearning set but also
simultaneously minimizing the loss on the retention set. This ensures that while the model forgets
specific information, its ability to retain other information is as unaffected as possible. Given the
unlearning set Df and the retention set Dr, the objective of GD is to minimize the following loss
function:

L(θ) = E(x,y)∈Df ,(x′,y′)∈Dr
[−lθ(y|x) + lθ(y

′|x′)]

E.3 IDK

The goal of the IDK algorithm is to train the model to output “I don’t know” or similar responses when
encountering questions from the unlearning set. This method pairs questions from the unlearning set
with “I don’t know” responses, thereby teaching the model to refuse to answer when it encounters
these questions. Given the unlearning set Df and the IDK dataset Didk, the objective of IDK is to
minimize the following loss function:

L(θ) = E(x,yidk)∈Didk
[lθ(yidk|x)]

E.4 DPO

DPO is a preference-based optimization method designed to optimize the model by contrasting its
performance on the unlearning set and the retention set. Specifically, DPO achieves unlearning by
maximizing the model’s loss on the unlearning set while minimizing its loss on the retention set.
Given the unlearning set Df and the IDK dataset Didk, we can obtain Dpaired. Besides, we need
reference model Mt whose parameters are denoted ref . The objective of DPO is to minimize the
following loss function:

L(θ) = E(x,y,yidk)∈Dpaired
[− 1

β
logσ(βlog

lθ(y|x)
lref (y|x))

− βlog
lθ(yidk|x)
lref (yidk|x)

]
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E.5 NPO

NPO is a negative preference-based optimization method aimed at achieving unlearning by mini-
mizing the model’s loss on the unlearning set. Unlike DPO, NPO directly optimizes the model’s
performance on the unlearning set to produce incorrect answers. Given the unlearning set Df , the
objective of NPO is to minimize the following loss function:

L(θ) = E(x,y)∈Df
[− 2

β
logσ(−βlog

lθ(y|x)
lref (y|x))

)]

E.6 SIMNPO

SimNPO is a simplified version of NPO that introduces a threshold γ to control the model’s perfor-
mance on the unlearning set. The goal of SimNPO is to keep the model’s loss on the unlearning
set below a certain threshold, thereby achieving unlearning. Given the unlearning set Df and the
threshold γ, the objective of SimNPO is to minimize the following loss function:

L(θ) = E(x,y)∈Df
[− 2

β
logσ(− β

|y|
log

lθ(y|x)
lref (y|x))

− γ)]
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setup in Section 5, Appendix B and Appendix C. All relevant information, including the model
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H THE USE OF LARGE LANGUAGE MODELS (LLMS)

In this research, Large Language Models (LLMs) were used as a general-purpose assist tool for
grammar checking and improving readability. The LLMs played no substantial role in the ideation or
writing of the research and are not regarded as contributors. All content generated by the LLMs was
reviewed and refined by the authors to ensure the accuracy and integrity of the work.
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