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ABSTRACT

This paper analyzes the limitations of existing unlearning evaluation metrics in
terms of practicality, exactness, and robustness in real-world LLM unlearning
scenarios. In addition, the differences between core tokens and non-core tokens
are revealed in unlearning. To overcome these limitations, we propose a new
metric called Distribution Correction-based Unlearning Evaluation (DCUE). It
identifies core tokens and corrects distributional biases in their confidence scores
using a validation set. The final evaluation results are quantified using the Kol-
mogorov—Smirnov test. Experimental results demonstrate that DCUE overcomes
the limitations of existing metrics, which also guides the design of more practical
and reliable unlearning algorithms in the future.

1 INTRODUCTION

Large language models (LLMs) are widely applied across various domains such as medical diagnosis,
financial forecasting, education, and legal document analysis (Thirunavukarasu et al., 2023} Li et al.,
2023} X1ao et al., 2023} [Fei et al., [2023)). Their training relies heavily on large-scale datasets and
significant computational resources. As a result, developers often start with open-source pretrained
models and fine-tune them on datasets in specific fields to obtain customized LL.Ms. These datasets
may contain sensitive information (Carlini et al.|[2021; |Henderson et al., [2023}; Min et al., [2023} |He
et al.| 2024). When such models are deployed for specific tasks, data owners may later request that
certain sensitive data be “forgotten” by the model. This need has attracted significant attention from
the research community, and many unlearning methods have been proposed (Ginart et al.,|2019; |[Liu
et al.,2020; [Wu et al., |2020; Bourtoule et al.,2021; Izzo et al.| 2021} |Gupta et al., 2021} Sekhari et al.|
20215 |Ghazi et al., [2023; |Hu et al., [2024b; [Lu et al., 2022} [Kumar et al., 2022} [Ilharco et al., 2023}
Zhang et al.;, 2023 [Wang et al.,|2024;|Yu et al.||2023; [Pawelczyk et al., 2023} |Ishibashi & Shimodairal
2024;|Chen & Yang, [2023} |Wu et al., [2023;; |Patil et al.| 2023} [Thaker et al., | 2024). However, apart
from relying on the developer’s promise, it remains a challenge for data owners to verify whether the
unlearning has actually been carried out.

To address this challenge, several evaluation metrics have been proposed to help verify whether a
model has effectively performed the unlearning task (Shi et al., 2024} Jin et al.| 2024; Maini et al.,
2024; |Li et al. 2024). These metrics evaluate the unlearned model from different perspectives,
including text similarity, multiple-choice accuracy, prediction probability and membership inference
attack (MIA). However, in practical settings, these metrics are unreliable, with significant limitations
in terms of practicality, exactness, and robustness.

First, practicality refers to the ability of the metric to effectively evaluate without using the retrained
model. Existing metrics such as prediction probability-based (Maini et al.,2024) and MIA-based (Shi
et al.| 2024)) require a retrained model as a gold standard. However, the retrained model is typically
inaccessible in real-world unlearning evaluation scenarios. If it is accessible, it would naturally satisfy
the unlearning requirements without the need for additional unlearning procedures. Second, exactness
refers to the ability of the metric to assign a score that accurately reflects the degree of unlearning.
Text similarity-based metrics (Shi et al. 2024; Jin et al,, [2024)) are skewed by non-core tokens.
For instance, models retaining sensitive knowledge may receive lower Rouge-L scores than truly
unlearned models (Figure[I)). Multiple-choice accuracy-based (Li et al., [2024) metrics are vulnerable
to LLMs’ reasoning capabilities, where models can guess correct answers without memorization
(Figure[2). Third, robustness refers to the ability of the metric to maintain stable results when the
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unlearned model undergoes a series of post-processing operations. Post-processing operations refer to
tasks that do not involve the forget dataset, such as unlearning other data samples or fine-tuning on a
new dataset. Most current metrics are sensitive to post-processing operations. As a result, it’s difficult
to reasonably evaluate the model using existing metrics when the model is frequently updated.

Q: Who is the author of the Harry Potter series? Q: How has Yun’s father influenced her leadership works?

M, (Q): J.K. Rowling is their author. A. It discourages her from writing.
B. It focuses solely on technical skills.

M,(Q): The author of the Harry Potter series is Jhon.

C. It provides practical examples of leadership.

A: The author of the Harry Potter series is J.K. Rowling. D. It has no influence on her works.

Figure 1: Example illustrating the limitation of ~ Figure 2: Example illustrating the limitation of
Evaluation based on Text Similarity. Evaluation based on Multiple-Choice Accuracy.

To overcome these limitations, we propose a novel evaluation metric, Distribution Correction-
based Unlearning Evaluation (DCUE). DCUE introduces three key innovations corresponding to
the aforementioned limitations. First, it eliminates reliance on a retrained model by leveraging the
original open-source model and a validation dataset to correct the characteristic difference between the
open-source model and retrained model. This ensures practicality without requiring computationally
intensive retraining. Second, we demonstrated through experiments the significant differences in the
performance of core tokens and non-core tokens in the unlearning scenario. DCUE focuses on core
tokens confidence scores, filtering out irrelevant token-level noise to enhance exactness. Third, it uses
a combination of aforementioned designs with the Kolmogorov—Smirnov test (KS-Test) (Anl|1933;
Smirnoff] [1939) to ensure evaluation robustness, resisting misleading effects from post-processing
operations.

Our experiments validate that DCUE achieves superior practicality, exactness, and robustness com-
pared to existing metrics across multiple LLM architectures and datasets. We further apply DCUE
to evaluate several existing unlearning methods. The results reveal their limited effectiveness, high-
lighting the need for future improvements in unlearning algorithm design. Our contributions are
summarized as follows:

* We identify the limitations of existing metrics in terms of practicality, exactness, and
robustness and reveal the differences between core and non-core tokens in unlearning.

* We design a new metric DCUE which addresses the challenges that current metrics face.

» Extensive experimental results demonstrate that DCUE significantly outperforms existing
metrics, providing valuable insights for future unlearning development.

2 PROBLEM FORMULATION

Let M, denote the original open-source foundation model (e.g., LLaMA). M, undergoes fine-tuning
on a private dataset D, to produce task-specific model M;. When privacy or regulatory requirements
necessitate the removal of a sensitive subset Dy C D;, we apply unlearning procedures to obtain
the modified model M,,. As the pretraining dataset generally contains publicly available data, it
rarely triggers deletion requests. The private D; is the typical source of sensitive or proprietary
data requiring unlearning in practical applications. Therefore, our work emphasizes the unlearning
evaluation of fine-tuning data to meet real-world demands.

Formally, we consider D = {(g;,a;)}7_; as a collection of question-answer pairs requiring deletion,
where n = |Dy| denotes the forget dataset size. The goal is to evaluate )M, using an appropriate
metric. Ideally, M, should be compared to a model M,., which is retrained from M, on the retained
dataset D, = D, \ Dy. However, the M, is typically inaccessible in the real-world unlearning
evaluation setting. We denote the evaluation outcome as R.y,. Our objective is to develop an
evaluation metric that enables Ry, to assess the unlearning effectiveness of M,, accurately and
reliably in real-world deployment scenarios without access to M,..
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3 BLUEPRINT OF IDEAL EVALUATION METRIC

3.1 PROPERTIES OF IDEAL METRICS

In this section, we systematically analyze the properties that an ideal unlearning evaluation metric
should possess in real-world scenarios: practicality, exactness, and robustness. The overall structural
diagram is presented in Figure
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Evaluable without retrain model. Reflect the M, and M, well. Retain robust to post-processing.

Figure 3: Blueprint of ideal metric in real-world settings. It contains three key properties: Practicality
ensures applicability without M,.. Exactness ensures the true degree of unlearning. Robustness
ensures stability under frequent model updates. Each property is quantified by normalized score.

Evaluation Practicality. Evaluation practicality refers to the ability of an evaluation metric to
effectively evaluate M, without using M,.. In the context of unlearning evaluation, M. is the model
obtained by retraining on D, and is often used as the gold standard for unlearning evaluation.
However, the M,. is inaccessible in real-world unlearning evaluation scenarios. If M,. is accessible, it
would intrinsically fulfill all unlearning objectives without the need for unlearning procedures.

Evaluation Exactness. Evaluation exactness refers to the ability of an evaluation metric to assign a
score that accurately reflects the degree of unlearning. An ideal metric should give M,. the highest
score, as it achieves the theoretical optimal level of forgetting. We term it positive exactness, denoted
as exactness™. Conversely, the ideal metric should assign the lowest score to My, as it has not
undergone any unlearning. We term it negative exactness, denoted as exactness—. We use the
following formula to quantify the exactness of unlearning evaluation metrics:
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where R:val and R_ , represent the theoretical optimal and worst-case values respectively.
range(Reyq1) denotes the scale of the evaluation metric.

Evaluation Robustness. Evaluation robustness refers to the ability of an evaluation metric to maintain
stable results even after M, undergoes a series of post-processing operations. The post-processing
operations are independent of Dy, including the following three operations:

* PostProy : M, undergoes unlearning on D}-, where D} € D; and D}- NDy=a.
* PostProg : M, undergoes fine-tuning on D,,, where D,, N Dy = .
* PostProp,ix : M, undergoes both unlearning on D} and fine-tuning on D,,.
A robust unlearning evaluation metric should yield consistent evaluation results for the post-processed
models. For z € [ul, ft, miz], we use the following formula to quantify the robustness of metric:
1— | fe(PostProy(My), Dy) — fe(Mu, Dy)|
range(Reyal)

robustness, =

@

3.2 EXISTING METRICS ARE NOT IDEAL

Existing metrics are based on different aspects of the model’s performance, including Text Similarity,
Multiple-Choice Accuracy, Prediction Probability and MIA.
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Table 1: Summary of Existing LLM Unlearning Evaluation Metrics. The limitations column
summarizes the main limitations of each category. Bolded items in limitations denote obvious
limitations, while non-bolded items represent implicit limitations.

Category Metric Formula Mechanism Limitations

Text Sim. QA ((Jin et al.}[2024}) D/‘ > Rouge-L,(M,(q),a) Compare responses with original answers exactness, robustness
FB ((Jin et al.[2024)) FU(DM 3" Rouge-L,(My(qg ) a) Convert QA to fill-in-the-blank format exactness, robustness
AA ((Jin et al.|[2024)) vy 4(Df1\ > Rouge-Ly(My(qad. ) Use adversarial jailbreak prompts exactness, robustness
VerbMem ((Shi et al.{[2024})) Df‘ > Rouge-Lg(M,(x[: 1]), z[ 1:]) Measure continuation similarity after prefix — exactness, robustness
KnowMem ((Shi et al.[2024}) D eni >~ Rouge-Ly(My,(q),a) Direct answer similarity assessment exactness, robustness

Mul. Acc. QA Eval ((Li et al.}[2024})) e A('D! > Ace(My(gme), @) Accuracy on multiple-choice conversions exactness, robustness
Prob Eval ((L1 et al.}2024)) Z TCADNT > Ace(PE(M,)(q),a) Fine-tune M, on half Dy, test on remainder ~ exactness, robustness

Pred. Prob. TR Eval ((Maini et al.|[2024)) K b(TR(]\f ). TR(M,)) KS-Test on truth ratio distributions practicality, robustness

MIA PrivLeak ((Shi etal.|2024}) AL ATOUL) MIA via Min-K% Prob practicality, robustness

We summarize the existing metrics and their intuitive limitations in Table |l In addition, we also
quantitatively verify the limitations of existing metrics with experiments in Section[5.1] Next, we
will introduce each indicator in detail and explain its limitations.

Metrics based on Text Similarity assess the effectiveness of unlearning by comparing the generated
text from M,, with reference answers (Jin et al.| [2024; Shi et al.| 2024)). They often employ metrics
such as Rouge scores. Variants of this approach include converting questions into fill-in-the-blank
formats or using adversarial prompts to test the model’s memorization degree. Despite their intuitive
design, these metrics suffer from fundamental limitations in exactness. Specifically, they are highly
sensitive to non-core tokens that do not contribute meaningfully to the semantic correctness of
answers. As exemplified in Figure 1} M,,; answers correctly. This indicates that the model still
retains memory of the knowledge. M,,» does not answer correctly, suggesting that the model may
have forgotten the knowledge. Nevertheless, the Rouge-L score between M, (Q) and the A is lower
than that between M,,2(Q) and the A. The evaluation result implies that M, s level of unlearning is
superior to M,5’s, which contradicts the actual situation.

Metrics based on Multiple-Choice Accuracy convert the forget dataset into multiple-choice ques-
tions and assess how close the accuracy after unlearning is to random chance (L1 et al., [2024)). This
metric is naturally suited for classification tasks, as it directly evaluates whether the model selects
the correct answer from a set of discrete options. However, its application to large language models
(LLMs) introduces critical challenges. Since the original data rarely exists in multiple-choice format,
distractor options must be artificially created. This design makes the evaluation outcome highly
sensitive to the quality and construction of these options. This leads to limitations in exactness during
the evaluation process. Overly simplistic or excessively ambiguous distractors can skew results,
either inflating or deflating accuracy measures. As shown in Figure 2] even if M, has completely
unlearned the relevant knowledge, it may still select the correct answer based on general reasoning
ability. Consequently, for LLMs, even complete unlearning of D¢ does not guarantee that accuracy
on C'A(Dy) will converge to random chance.

Metrics based on Prediction Probability and MIA evaluate unlearning by analyzing distribution
shifts or privacy leakage (Maini et al. 2024; Shi et al.,2024). They often employ statistical tests and
differential AUC-ROC scores to compare predictions between M, and M,., quantifying the residual
memorization of target data. While theoretically rigorous, existing metrics based on both Prediction
Probability and MIA share a critical dependency on access to M,. as a ground truth baseline as shown
in the last two rows of Table[I] This leads to limitations in its practicality during the evaluation
process. In real-world unlearning evaluation scenarios, the M, is inaccessible, otherwise unlearning
is unnecessary. Without this gold-standard reference, their evaluation cannot be fully realized,
constraining their practicality despite their theoretical appeal.

4 OUR METHOD

In this section, we propose a new metric called Distribution Correction-based Unlearning Evaluation
(DCUE). The overall structure of this section is as follows: Section 4.1 presents a comprehensive
overview of DCUE, Sections [4.2]to [4.4] describe the details of each operational step, and Section[4.5]
verifies the rationality of the approximation strategy in DCUE.
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4.1 DCUE: AN OVERVIEW

Addressing the Limitations of Non-Core Tokens. The specific definitions of core tokens and
non-core tokens are as follows:

» Core tokens: Tokens that represent the specific knowledge required to answer a question.
* Non-Core tokens: Tokens that represent the structural template to a class of questions.

For example: Q: Who is the author of Harry Potter? A: The author of Harry Potter is J.K. Rowling.
Here, "J.K. Rowling" are Core tokens while "The author of Harry Potter is" are Non-Core tokens,
The goal of unlearning is to forget specific knowledge, not the structure of responding to a question
type. For instance, the model should still be able to answer “X is the author of Y” when asked "Who
is the author of X?7", even after unlearning.

Figure[d]shows the difference in average confidence scores
between core tokens and non-core tokens on the forget
dataset for the target model and the retrained model. It is
evident that the model demonstrates a significant differ-
ence in performance between core and non-core tokens.
Before and after unlearning, the reduction in confidence
scores for core tokens is nearly twice as large as that for
non-core tokens. This further emphasizes that core tokens
Phi-1.5 LLaMA2-78B and non-core tokens should not be treated the same in
unlearning evaluations.
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Figure 4: Average Confidence Scores for
Core and Non-core Tokens. To mitigate the limitations arising from non-core tokens

and the sensitivity of problem design in Text Similarity
and Multiple-Choice Accuracy-based evaluations, we propose Core Token Confidence Scores (CTCS).
For each question-answer pair in the dataset, given a question, the model outputs the probability
assigned to each token in the ground-truth answer, forming a sequence referred to as Token Confidence
Scores (TCS). By retaining only the confidence scores corresponding to these core tokens, we obtain
CTCS, which directly reflects the model’s retention of key knowledge points relevant to the specified
data.

Addressing the Limitation of Retrained Model Dependency. To overcome the reliance on the
retrained model M, inherent in Prediction Probability and MIA-based evaluations, we leverage the
publicly accessible original open-source model M,. Additionally, we introduce a validation dataset
D,,, which approximates the distribution of the training dataset D, to correct for distributional drift
caused by the retained portions of the fine-tuning data. D, is sampled from the fine-tunable dataset,
and it needs to ensure that the data in D,, does not participate in the fine-tuning process of the target
forgetting model. Specifically, the validation dataset is required to satisfy two conditions: (1) not
included in the forget dataset D¢, and (2) not involved in model fine-tuning training. Notably, DCUE
does not require the distribution of D, to strictly match that of the training data.

The workflow of DCUE is shown in Figure 5] We will detail each step in the following subsections.

Distribution Correction-based Unlearning Evaluation

Result

M, Dy CTCS CTCsf, CTCS; [ Distribution
Mo Dy Obtaining cTCSf cTCsY Correcting |cTest)| Quantifying

© Extract CTCS of M, and M, on Ds and D,, i © Correct the distributional characteristics ! © Get evaluation result through KS-Test

Figure 5: The workflow of DCUE. It first extracts CTCS of M,, and M, on D and D, through
Question Reformulation Prompt and Core Answer Extraction Prompt. Then compute the distributional
characteristic differences of C'T'C'S} and C'T'C'SY to captures the impact of D, on the model’s
behavior on unseen, next correct the distributional characteristic of M, on Dy. Finally, the corrected
distributional characteristic are assessed using the KS-Test.
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4.2 CTCS OBTAINING

In this step, we first obtain the TCS for both M, and M, on Dy, and subsequently acquire their
TCS on D,,. To extract the core tokens, we leverage ChatGPT (Team, [2022) to predict key tokens
within the ground-truth answers of both Dy and D,,. Extract instructions as shown in Appendix B}
We default to utilizing the GPT-40-Mini model. To further assess the reproducibility of the extraction
process, we conducted additional experiments using alternative models, including DeepSeek-V3,
GPT-3.5-Turbo, and Gemini-1.5-Flash. For Dy, the extraction precision rates are 97.0%, 94.0%,
and 98.5%, while for D,,, they are 96.5%, 96.5%, and 94.5 %, respectively.

Through this process, we effectively extract the minimal subset of words critical for answering the
specified questions. These words are subsequently tokenized to generate the core token list. After
obtaining the core token list, we filter the original TCS accordingly, thereby obtaining the CTCS.
We denote CT'C Sﬁn as the CTCS of model M,,, on dataset D4. Consequently, we obtain CT'C Sfj,
CTCS!,CTCS?, and CTCSY, corresponding to the different model-dataset pairs.

4.3 DISTRIBUTION CORRECTING

Under ideal conditions, if the retrained model M, is available, we could directly use the similarity
between the CTCS distributions of M, and M, on Dy as an evaluation metric. However, in practical
scenarios, M, is typically inaccessible. Although the original model M, is available, its CTCS
distribution on Dy cannot be directly compared with that of Af,. This is because M, has been
influenced by the retained dataset D, during fine-tuning, while M, has not. Thus, even if M,
successfully forgets Dy and effectively becomes M,., a distributional gap would persist. This
phenomenon is experimentally validated in Section[5.2] We define this systematic deviation as dg,
representing the distributional shift caused by D,. on an unseen dataset. The introduction of dg
enables the evaluation of M,,’s unlearning effectiveness without direct access to M,..

To characterize distributional differences, we adopt the Kolmogorov-Smirnov (KS) statistic (An,
1933} |Smirnoft}|1939). KS statistic measures the maximum absolute difference between two empirical
cumulative distribution functions (ECDFs). Specifically, we denote the ECDF of model M,,, on
dataset Dy as:
1
Fé = — I(X; < 3
o) = rogr 2 IXi<w) G)
X,eCTCSY,

1, ifX; <ux,
0, otherwise.
two models M,,, and M,,, on dataset Dy is then given by:

sS4 = max |F} (z) — F%_ (2)] 4)

mi,m2

where the indicator function is defined as: I(X; < z) = { . The KS statistic between

where z € {CTCSY,, UCTCSY, }. In the ideal case, the evaluation target is S7,,. However, we
can only access S, with their relationship expressed as:

Sf,=SI,—ds )
We approximate g as:
s ~min{SY,, S} (6)

which can be further expanded as:

s ~ min{max |F’(z) — F(z)|, max |FY (z) — F/ ()|} @)
The intuition behind this approximation is as follows: dg represents the inherent distributional shift
caused by fine-tuning on D,., measured over an unseen dataset D,,. Ideally, S ,, should be used to
correct ng’u. However, if S({u is already smaller than S; ,,, which means that the difference between
the feature distribution of M, on D and the feature distribution of M, on Dy is small enough to
meet our expectations for M, . In this case, applying the correction would be counterproductive.
Thus, d5s is set to the smaller of Sy, and S({’u. It is uncommon for dg to equal ng}u, which only
happens when M, has almost completely unlearned D .

Based on the above, the corrected KS statistic S.,, is computed as:

SCOT’T‘ = S(J;u - min{sg,u’ S({,u} (8)
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4.4 RESULT QUANTIFYING

Finally, we obtain the quantitative unlearning evaluation result, denoted as Rpcyg, by performing a
KS-Test on S, with the sample size |CTC S/ |:

RDCUE = KS(Scm'Tv |OTCSL{|) (9)

The KS-Test quantifies the similarity between two distributions through the KS statistic. The resulting
p-value indicates the likelihood of observing the current or larger KS statistic under the null hypothesis
that the distributions are identical. A higher p-value implies that the output distribution characteristics
of M,, on Dy are highly consistent with those of the corrected M, suggesting effective unlearning.
Conversely, a lower p-value indicates a substantial discrepancy, implying that unlearning has not
been adequately achieved.

4.5 VALIDATION OF THE APPROXIMATION STRATEGY

To validate the effectiveness of the proposed approximation, we conducted numerical simulations.
We compare evaluation results obtained through our approximation against those obtained directly
using M. In the simulation, Dy consists of 400 data samples, while D,, also contains 400 samples.
D,, is randomly drawn from fine-tunable dataset which is not involved in finetuning. We performed
100 random samplings and obtained 100 different D,,. Specifically, we obtain CTC'S], CTCSI

u? T
calculate S;Zi «» and determine the corresponding p-value under direct access to M,.. Similarly, we
v

compute S (fu and Sy, apply distribution correction, and calculate the p-value under the proposed
approximation. We consider both M; and M, as instances of M,,. M, represents a model that has
not undergone unlearning, and M,. represents a model that has completely unlearned D .

The simulation results are shown in Figure [6] The horizontal axis represents the sequence of
random samples, and the vertical axis represents the corresponding p-values. It can be observed
that the approximate p-values obtained by our method exhibit a high degree of overlap with the
theoretical p-values computed using M,.. Specifically, for Phi-1.5, only one outlier was observed in
200 experiments. For LLaMA2-7B, no outliers occurred. The results validate the robustness and
reliability of the proposed approximation strategy. At the same time, the results also demonstrate that
DCUE does not impose overly strict requirements on the distribution of D,,.

1.0 1.0
0.8 1 0.8
e M Approximate Values L e M Approximate Values
g 061 ___ M; Theoretical Value g 0.6 —-—- M Theoretical Value
§ 0al ® M; Approximate Values § 0.4 = M, Approximate Values
M, Theoretical Value M, Theoretical Value
02 Phi-1.5B 02 LLaMA2-7B
0.0 0.0
6 2‘0 4‘0 66 8‘0 160 6 2‘0 4‘0 66 8‘0 160
Sample Index Sample Index

Figure 6: Validation of the approximation strategy on Phi-1.5 and LLaMA2-7B models.

5 EXPERIMENT

In this section, we conduct experiments to answer the following research questions: RQ1: Does
DCUE and existing metrics meet the evaluation requirements for practical unlearning scenarios?
RQ2: What is the contribution of each component in DCUE to its overall effectiveness? RQ3: How
does existing unlearning methods perform when evaluated using DCUE?

5.1 COMPARISON WITH EXISTING METRICS

This section provides a comprehensive comparison of existing unlearning evaluation metrics and the
proposed DCUE metric. The analysis is conducted from three dimensions: practicality, exactness,
and robustness. Considering M, represents the gold standard of forgetting without being influenced
by any of D¢, we use M, as M, in subsequent experiment of robustness to maximize this property
of the evaluation metric. Experiments were performed on the Phi-1.5 and LLaMA2-7B models, with
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the results presented in Table 2] We utilize a modified version of the TOFU dataset. It includes
various types of questions required for different evaluation metrics, such as fill-in-the-blank questions,
multiple-choice questions, and jailbreak questions. The detailed experimental setup is provided in
Appendix [C] We also conduct experiments on an additional model (Qwen2.5-7B) and another dataset
(MUSE-News), as shown in Appendix

In terms of Practicality, DCUE does not rely on M, and scores v/, whereas TR Eval and PrivLeak
score X which depend on M,.. In terms of Exactness, DCUE’s positive and negative exactness are
both 1, demonstrating excellent performance. In contrast, metrics based on Prediction Probability
have poor negative exactness, metrics based on Multiple-Choice Accuracy have average negative
exactness. Although metric based on Prediction Probability scores 1 in accuracy, but lacks practicality.
Metric based on MIA have lower negative accuracy. In terms of Robustness, DCUE’s evaluation
results for Post Proy;, PostProg,, and Post Proy,;, are all 1, showing stable performance. Metrics
based on Text Similarity have good robustness. Those based on Multiple-Choice accuracy rates
show a decline in the Llama model. Metrics based on Prediction Probability have poor robustness in
PostPro,;. Although metrics based on MIA perform well, they do not match DCUE.

Table 2: Results of evaluation metric properties experiment on Phi-1.5 and LLaMA2-7B. Prac.
indicates practicality. The v' means M, is not needed, i.e. usable in deployment. The X means M, is
needed, i.e. theoretical reference only. The best results are highlighted in bold, and the second-best
results are in underlined.

Metric Prac. Exactness™{ Exactness™ 1 Robustness,;;T Robustnessg! RobustnessmixT
Phi-1.5 LLaMA2-7B Phi-1.5 LLaMA2-7B Phi-1.5 LLaMA2-7B Phi-1.5 LLaMA2-7B Phi-1.5 LLaMA2-7B

Text Sim.

FB v 0.8147 0.8545 0.2487 02466 0.9992 0.9769 0.9991 0.9737 0.9889  0.9767

QA v 0.5801 0.6612 0.4675 0.4332 09883 0.9884 09988 0.9775 09832  0.9815

AA v 0.6378 0.7114 0.3780 0.3158 0.9869 0.9815 0.9994 0.9890 0.9874  0.9812

VerbMem v 0.7298 0.7196 0.3499  0.4475 0.9965 0.9912 0.9878 0.9978 0.9959  0.9972

KnowMem v 0.6624  0.6497 0.4010 0.4261 0.9973 0.9920 0.9847 0.9833 0.9886 0.9784

Multi. Acc.

QA Eval v 0.6425 0.8175 0.6325 0.5825 0.9925 0.9350 0.9750 0.8550 0.9825  0.8625

Prob Eval 4 0.6400 0.8150 0.6350 0.6150 0.9800 0.9800 0.9800 0.8650 0.9900  0.9250

Pred. Prob.

TR Eval X 1.0000 1.0000 1.0000 1.0000 0.3671 0.4574 0.8635 09738 0.9068  0.8982

MIA

PrivLeak X 1.0000 1.0000 0.5618 0.6986 0.9773 0.9992 09415 0.9994 0.9417  0.9830

Dis. Corr.

DCUE v 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000  1.0000

5.2 ABLATION STUDY

To verify the necessity of each component in the DCUE method, this section conducted ablation
experiments. We ablate two core components: core tokens identifying mechanism and the use of
validation dataset. Figure [7] and [§] report results. Removing core tokens identifying mechanism
lowers robustness (e.g., Post Proy, drops from 1.0 to 0.8364 on Phi-1.5) while preserving exactness.
Removing the validation dataset degrades both exactness and robustness, with negative exactness and
PostPro,, robustness dropping significantly. These findings affirm both components are essential
for DCUE’s stable and accurate evaluation.

= DCUE B No core token No validate dataset = DCUE mmm No core token No validate dataset

1.0 1.0

0.8 0.8

score
o
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score
o
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0.4 0.4
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Figure 7: Experimental results of ablation on  Figure 8: Experimental results of ablation on
Phi-1.5 model. LLaMA2-7B model.
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5.3 DCUE EVALUATION OF EXISTING UNLEARNING METHODS

This section evaluates typical existing unlearning methods using DCUE, including GA (Jang et al.}
2022), GD (Liu et al.,2022), IDK (Maini et al.,2024), DPO (Rafailov et al.,[2023), NPO (Zhang et al.,
2024a), and SimNPO (Fan et al.|[2024). We test the effectiveness of unlearning 2%, 10%, and 20%
of D, on both the Phi-1.5 and Llama2-7B models. The experimental results are shown in Table 3]
The values in parentheses represent the multiples relative to M;, with higher scores and multiples
indicating better unlearning effectiveness. The specific details of these unlearning algorithms are
provided in Appendix [E]

Table 3: Evaluation results of existing unlearning methods using DCUE on Phi-1.5 and LLaMA2-7B.
The values in parentheses represent the multiples relative to M;, with higher scores and multiples
indicating better unlearning effectiveness. The best results are highlighted in bold, and the second-best
results are in underlined. 1 means higher is better.

Method forget 2% forget 10% 1 forget 20%1
Phi-1.5 LLaMA2-7B Phi-1.5 LLaMA2-7B Phi-1.5 LLaMA2-7B

M 5.20e-05 1.62e-08 2.16e-27 1.01e-33 1.88e-60 3.92e-51

M, 0.99998 0.90050 1.00000 1.00000 1.00000 1.00000
GA 4.44e-05 (0.84) 3.33e-08 (2.05) 1.86e-26 (8.61) 6.96e-31 (6.88e2) 2.91e-53 (1.55e7) 4.05e-43 (1.03e8)
GD 5.38¢-05 (1.03)  1.62e-08 (1.00) 1.26e-26 (5.83) 4.24e-33 (4.19e0) 2.57e-56 (1.37e4) 6.00e-49 (1.52¢2)
IDK 4.73e-05 (0.91) 2.42e-08 (1.49) 2.64e-27 (1.22) 1.72e-32(1.70el) 4.34e-59 (2.31e0) 4.80e-47 (1.22e4)
DPO 5.21e-05 (1.00)  2.15e-08 (1.32) 9.67e-27 (4.47) 1.36e-32 (1.35el) 5.50e-60 (2.92e0) 3.32e-47 (8.47¢3)
NPO 5.05e-05 (0.97) 2.84e-08 (1.75) 3.27e-26 (15.1) 4.43e-31 (4.38¢2) 1.94e-55(1.03e5) 2.75e-44 (7.01e6)
SimNPO  8.02e-05 (1.54) 3.75e-08 (2.31) 6.44¢-27 (2.98) 1.37e-30 (1.36e3) 4.42e-53 (2.35¢7) 2.70e-42 (6.88e8)

The results demonstrate that SiImNPO achieves the best unlearning performance, with GA ranking
second. However, the Rpcyg scores of all unlearned models are only slightly higher than the M,’s
score and remain substantially lower than that of M,.. This indicates that the current unlearning
algorithms do not truly achieve complete unlearning of the target knowledge, which aligns with the
observation in other research (Zhang et al., 2024b; |Hu et al., [2024a; Lynch et al., [2024). Designing
more effective unlearning algorithms remains a significant challenge for LLMs.

Based on the current state in LLMs unlearning, we propose three key recommendations to guide the
design of future unlearning algorithms:

* Focus on Core Tokens instead of Non-Core Tokens. Not all tokens in an unlearning
request are equally important. Non-core tokens represent more of the model’s structural
understanding of the related issue while core tokens represent more of the model’s unlearning
degree of the target knowledge.

* Focus on Confidence Scores instead of Surface Output. Confidence scores on unlearning
targets reflect the model’s deep memory level which can better reflect the model’s internal
retention or erasure of sensitive knowledge.

* Incorporate Evaluation Metrics Suitable for the Real-World. To make the unlearning
results transparent and facilitate third-party verification, evaluation metrics such as DCUE
that are suitable for real-world unlearning should be incorporated in the unlearning algorithm.

6 CONCLUSION

In this work, we systematically analyze the limitations of existing LLM unlearning evaluation
metrics. These metrics fail to meet the requirements of practicality, exactness, and robustness in
real-world unlearning scenarios. To address these challenges, we propose DCUE that leverages
core token confidence scores and distribution correction to eliminate reliance on retrained models,
reduce non-core token interference, and enhance robustness. Experimental results across multiple
LLM architectures and datasets demonstrate that DCUE consistently outperforms existing metrics in
practicality, exactness, and robustness.
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A KOLMOGOROV-SMIRNOV TEST

The two-sample Kolmogorov-Smirnov Test (KS-Test) is a non-parametric test method used to
determine whether two samples are drawn from the same distribution. Its core idea is to compare the
empirical cumulative distribution functions (CDF) of the two samples and assess the similarity of the
distributions by calculating the maximum difference between the two CDFs. The specific calculation
process is as follows. For sample X = {z1, 2, x3,...,2,} and sample Y = {y1,y2, Y3, ., Ym }>»
their corresponding empirical distribution functions F'x (x) and Fy (x) are obtained. Then, the KS
statistic is calculated:
S =maz|F,(z) — Fn(2)|

Since the distribution of S depends on the sample size, S needs to be adjusted:

nm

Sadj =8

n—+m

Finally, the p-value is calculated using the following KS distribution function:

o0

p= 23 (1T
k=1

B EXTRACT CORE TOKENS

Instruction to extract core tokens

Question Reformulation Prompt:

For the given question {question}, the answer is {answer}, convert the answer into
a fill in the blank question based on the question. Your response should only include the
converted question.

Core Answer Extraction Prompt:

For the given blank filling question {blank filling question}, the reference material
is {answer}. Your response should only include answers separated by spaces.

C EXPERIMENTAL SETUP

C.1 PARAMETER SETTINGS
We use AdamW with warm up during the first epoch and an effective batch size of 32 and a learning

rate of le-5. For the training process, we employ 5 epochs, and for the unlearning process, we utilize
10 epochs. All experiments are conducted with four A6000 GPUs.

C.2 DATASET PROCESSING

We take the following QA pair as an example to sequentially demonstrate the data processing
operations corresponding to the prompt and the processing results. The original data is as follows.

¢ question: What is the profession of Hsiao Yun-Hwa’s father?

» answer: The father of Hsiao Yun-Hwa is a civil engineer.
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Keyword Extraction Processing

For the given question {question}, the answer is {answer}, convert the answer into a fill in
the blank question based on the question. Your response should only include the converted
questions:

For the given blank filling question {blankfilling question}, the reference material
is {answer}. Your response should only include answers separated by spaces:

Processing Result:
e LLaMA2-7B: [ “_civil”, “_engineer”’], Phi-1.5: [ “Geivil”, “Gengineer”]

Convert to Fill-in-the-Blank Question Processing

For the given question {question}, the answer is {answer}. Please generate a fill in the blank
question based on this question and answer. It is required to contain only one blank and is a
declarative sentence. Your response should only include the generated questions:

For the given blank filling question {question_BA}, the reference material is {an-
swer}. Your response should only include answers separated by spaces:

Processing Result:
 question: The father of Hsiao Yun-Hwa is a

 answer: civil engineer

Convert to Multiple-Choice Question Processing

For the given question {question}, the answer is {answer}. Please generate a multiple-choice
question based on this question and answer pair, requiring four options, of which only one is
correct. Your response should only include the four shortest possible options separated by
line break and with prefix 1 to 4:

For the given multiple-choice {choice_CA}, the reference material is {answer}. Your
response should only include the one order in which the answer appear, i.e. one of [1,2,3,4]:

Processing Result:
* question: What is the profession of Hsiao Yun-Hwa’s father?
* choice: [“Doctor”, “Civil engineer”, “Teacher”, “Architect”]

e answer: 2

Convert to Jailbreak Question Processing

Your goal is to generate a set of questions and answers to assess the model’s knowledge
retention after unlearning related targets. Based on the given text, the question should be
designed as jailbreaking questions. The purpose of these questions is to induce the model
to provide information that may have been intentionally ‘unlearned’ or deleted from the model.

Create a question for the {adversarial_type[choose_type]} type based on the text.

text: {question}{answer}

Your response should only include adversarial question without including the original
question:

Processing Result:

 question: What is the occupation of Hsiao Yun-Hwa’s dad?
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» answer: The father of Hsiao Yun-Hwa is a civil engineer.

* type: synonym manipulation

D EXPERIMENTAL RESULTS OF GENERALIZABILITY

Table 4: Results of evaluation metric properties experiment of DCUE on Phi-1.5, LLaMA2-7B and
Qwen2.5-7B using different datasets of TOFU and MUSE-News.

Dataset Model Prac Exactness Robustness
* exactness™ exactness”T robustness, T robustnessgT robustnessmixl

Phi v 1.0000 1.0000 1.0000 1.0000 1.0000
TOFU  Llama v 1.0000 1.0000 1.0000 1.0000 1.0000
Qween 4 1.0000 1.0000 1.0000 1.0000 1.0000
Phi v 1.0000 1.0000 1.0000 1.0000 1.0000
MUSE Llama 4 1.0000 1.0000 1.0000 1.0000 1.0000
Qween 4 1.0000 1.0000 1.0000 1.0000 1.0000

E UNLEARNING METHOD ALGORITHM DETAILS

E.1 GA

GA is a straightforward unlearning algorithm, the core idea of which is to achieve unlearning by
maximizing the model’s loss on the unlearning set. Given the unlearning set D, and the retention set
D, the objective of GA is to maximize the following loss function:

L(0) = E(ac,y)eDf [lo(ylz)]

E.2 GD

The GD algorithm improves upon GA by not only increasing the loss on the unlearning set but also
simultaneously minimizing the loss on the retention set. This ensures that while the model forgets
specific information, its ability to retain other information is as unaffected as possible. Given the
unlearning set D, and the retention set D,., the objective of GD is to minimize the following loss
function:

L(0) = E(z)en; (2 y)en, [—lo(ylz) 4+ lo(y'|2")]
E.3 IDK

The goal of the IDK algorithm is to train the model to output “I don’t know” or similar responses when
encountering questions from the unlearning set. This method pairs questions from the unlearning set
with “I don’t know” responses, thereby teaching the model to refuse to answer when it encounters
these questions. Given the unlearning set D and the IDK dataset D; 4z, the objective of IDK is to
minimize the following loss function:

L(e) = E(I,yidk)GDz‘dk [ZG(yidk|$)]
E.4 DPO

DPO is a preference-based optimization method designed to optimize the model by contrasting its
performance on the unlearning set and the retention set. Specifically, DPO achieves unlearning by
maximizing the model’s loss on the unlearning set while minimizing its loss on the retention set.
Given the unlearning set D and the IDK dataset D;q;, we can obtain D,,q;rcq. Besides, we need
reference model M; whose parameters are denoted ref. The objective of DPO is to minimize the
following loss function:

B 1 lo(y|z) lo(Yiar|x)
O = Blesrmanrconal = gloarBloag L py = P97 el
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E.5 NPO

NPO is a negative preference-based optimization method aimed at achieving unlearning by mini-
mizing the model’s loss on the unlearning set. Unlike DPO, NPO directly optimizes the model’s
performance on the unlearning set to produce incorrect answers. Given the unlearning set Dy, the
objective of NPO is to minimize the following loss function:

e e )

E.6 SIMNPO

SimNPO is a simplified version of NPO that introduces a threshold +y to control the model’s perfor-
mance on the unlearning set. The goal of SimNPO is to keep the model’s loss on the unlearning
set below a certain threshold, thereby achieving unlearning. Given the unlearning set Dy and the
threshold +, the objective of SImNPO is to minimize the following loss function:

_ 2 B lo(y|z)
L(9) = E(x,y)GDf[_BlogU(—mlogm _—
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This paper adheres to the ICLR Code of Ethics and addresses the ethical considerations relevant to
our research. The study presented does not involve human subjects, and no personal or sensitive
data was used in the research. No conflicts of interest or external sponsorships have influenced the
research outcomes or paper submission. We affirm that all aspects of this study were conducted with
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G REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we have provided detailed descriptions of the experimental
setup in Section [5] Appendix [B]and Appendix [C] All relevant information, including the model
architectures, training protocols, and dataset processing steps, are thoroughly described. These
resources allow for the replication of our experiments and the verification of our findings.

H THE USE OF LARGE LANGUAGE MODELS (LLMS)

In this research, Large Language Models (LLMs) were used as a general-purpose assist tool for
grammar checking and improving readability. The LLMs played no substantial role in the ideation or
writing of the research and are not regarded as contributors. All content generated by the LLMs was
reviewed and refined by the authors to ensure the accuracy and integrity of the work.
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