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Abstract
Hyperpolarized (HP) gas MRI allows visualization and quantification of regional lung venti-
lation; however, there is limited clinical uptake due to the requirement for highly specialized
equipment and exogenous contrast agents. Alternative, non-contrast, model-based proton
(1H)-MRI surrogates of ventilation, which correlate moderately with HP gas MRI, have
been proposed. Recently, deep learning (DL)-based methods have been used for the synthe-
sis of HP gas MRI from free-breathing 1H-MRI for a single 2D section. Here, we developed
and evaluated a multi-channel 3D DL method that combines modeling and data-driven
approaches to synthesize HP gas MRI ventilation scans from multi-inflation 1H-MRI.
Keywords: Deep learning, image synthesis, proton MRI, functional imaging

1. Introduction

Hyperpolarized (HP) gas MRI allows visualization and quantification of regional lung ven-
tilation with high spatial and temporal resolution; however, there is limited clinical uptake
due to the requirement for highly specialized equipment and exogenous contrast agents,
such as xenon-129 (129Xe). Alternative, non-contrast proton (1H)-MRI–based surrogates
of ventilation, which exhibit moderate spatial correlation with HP gas MRI, have been
proposed (Tahir et al., 2021). Recently, deep learning (DL) using convolutional neural net-
works (CNNs) has shown promise for several lung image synthesis applications (Astley et al.,
2020). For example, the synthesis of HP gas MRI from free-breathing 1H-MRI for a single
2D coronal section over time, limiting volumetric information on regional ventilation, has
been reported (Capaldi et al., 2020). Here, we developed and evaluated a multi-channel 3D
CNN method that combines modeling and data-driven approaches to synthesize functional
3D HP gas MRI scans from structural multi-inflation 1H-MRI without exogenous contrast.
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2. Methods

The data set comprised 3D 1H-MRI scans acquired at approximately total lung capacity
(TLC) and residual volume (RV), and HP 129Xe-MRI ventilation scans with corresponding
1H-MRI acquired at functional residual capacity (FRC)+bag from 150 healthy participants
and patients with numerous lung pathologies. TLC and RV 1H-MRI scans were aligned
using deformable image registration and subsequently registered to the spatial domain of
129Xe-MRI via the corresponding 1H-MRI FRC+bag scan. Model-based 1H-MRI ventila-
tion surrogates were computed from the aligned TLC and RV 1H-MRI scans as described
previously (Tahir et al., 2021). We used a 3D multi-channel VNet CNN (Milletari et al.,
2016), which employed the aligned RV and TLC 1H-MRI scans and the corresponding
model-based 1H-MRI ventilation scans as inputs to generate synthetic 129Xe-MRI scans. A
Huber loss function with a delta of 0.1, PReLU activation function, and ADAM optimiza-
tion on patches of 192x192x48 voxels were used. A learning rate of 1x10�5 and decay of
0.0001 were used for 1750 epochs of training. Five-fold cross-validation was used, resulting
in training and testing sets of 120 and 30 participants, respectively, for each fold. 1H-MRI
ventilation scans and DL-generated synthetic ventilation scans were median filtered with a
radius of 3x3x1 to account for noise and registration errors. We evaluated the accuracy of
the synthetic ventilation scans through comparison with 129Xe-MRI scans using voxel-wise
Spearman’s rs, mean absolute error (MAE), and root mean square error (RMSE) across the
lung parenchyma. Paired t-tests were used to assess significances of di↵erences between the
proposed DL approach and the conventional 1H-MRI ventilation model.

3. Results and Discussion

Qualitative spatial agreement and Spearman’s correlation between 129Xe-MRI and DL syn-
thetic ventilation as well as 1H-MRI ventilation models for three cases are shown in Figure 1.

Figure 1: Example coronal slices of TLC and RV 1H-MRI, 129Xe-MRI, DL synthetic ven-
tilation, and a conventional 1H-MRI ventilation model for three random participants.
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Table 1 displays results comparing the DL- and model-based ventilation methods; the
DL method significantly outperformed the 1H-MRI ventilation model (p<0.0001).

Table 1: Synthetic ventilation results from 1H-MRI ventilation modeling and DL compared
with 129Xe-MRI ventilation. Median (range) values are provided.

Synthetic ventilation method Spearman’s rs MAE RMSE

1H-MRI ventilation model 0.38 (–0.01, 0.61) 0.33 (0.09, 1.33) 0.41 (0.12, 1.50)
DL fold 1 0.68 (0.13, 0.85) 0.17 (0.07, 0.30) 0.20 (0.09, 0.32)
DL fold 2 0.66 (0.18, 0.84) 0.14 (0.07, 0.28) 0.18 (0.10, 0.31)
DL fold 3 0.67 (0.28, 0.79) 0.12 (0.09, 0.26) 0.16 (0.11, 0.30)
DL fold 4 0.69 (0.14, 0.83) 0.17 (0.07, 0.33) 0.20 (0.08, 0.35)
DL fold 5 0.66 (0.15, 0.84) 0.14 (0.08, 0.23) 0.17 (0.10, 0.28)
DL all folds 0.68 (0.13, 0.85) 0.14 (0.07, 0.33) 0.17 (0.08, 0.35)

Our study represents the first 3D synthesis of HP gas MRI from multi-inflation 1H-MRI.
The proposed DL-based multi-channel 3D CNN approach produced synthetic ventilation
scans that mimicked HP gas MRI with good Spearman’s correlation. Qualitative agree-
ment, as shown in Figure 1, demonstrated the ability of synthetic functional MR images to
mimic defects present in the corresponding 129Xe-MRI scans. Cases 1 and 2 showed that
gross ventilation defects present in the 129Xe-MRI were replicated by the synthetic ven-
tilation scans. This was further reinforced by the quantitative results showing significant
improvements over conventional 1H-MRI ventilation models.
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