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Abstract

Foundation models or pre-trained models have001
substantially improved the performance of var-002
ious language, vision, and vision-language un-003
derstanding tasks. However, existing foun-004
dation models can only perform the best in005
one type of tasks, namely language, vision, or006
vision-language. It is still an open question007
whether it is possible to construct a general008
foundation model performing the best for all009
the understanding tasks. In this paper, we pro-010
pose a new method for training the general011
foundation model, X-FM (the X-Foundation012
Model). X-FM has one language encoder, one013
vision encoder, and one fusion encoder, as well014
as a new training method. The training method015
includes two new techniques for learning X-FM016
from text, image, and image-text pair data. One017
is to stop gradients from the vision-language018
training when learning the language encoder.019
The other is to leverage the vision-language020
training to guide the learning of the vision en-021
coder. Extensive experiments on benchmark022
datasets show that X-FM can significantly out-023
perform existing general foundation models024
and perform better than or comparable to ex-025
isting foundation models specifically for lan-026
guage, vision, or vision-language understand-027
ing.028

1 Introduction029

With the enormous power of foundation models,030

also known as pre-trained models, remarkable per-031

formance gains have recently been achieved in a032

variety of understanding tasks in natural language033

processing (NLP), computer vision (CV), and other034

fields (Devlin et al., 2019; Liu et al., 2019; Lewis035

et al., 2020; Raffel et al., 2020; Brown et al., 2020;036

Dosovitskiy et al., 2021; He et al., 2022; Bao et al.,037

2021; Lu et al., 2019; Tan and Bansal, 2019; Chen038

et al., 2020; Li et al., 2020, 2021a; Zeng et al., 2021,039

2022) . Foundation models are usually equipped040

with Transformer (Vaswani et al., 2017) as the041

backbone, pre-trained with a tremendous amount 042

of unlabeled data, and then fine-tuned with small 043

amounts of labeled data in downstream tasks. The 044

strong representation ability of the model, the mas- 045

sive amount of data, and the effective means of 046

training make the foundation models powerful for 047

successfully solving the tasks of vision, language, 048

and vision-language (Li et al., 2021b,c; Singh et al., 049

2021; Wang et al., 2021b, 2022b; Diao et al., 2022; 050

Wang et al., 2022a). 051

The state-of-the-art foundation models usually 052

work the best for one type of tasks, namely lan- 053

guage, vision, and vision-language. For exam- 054

ple, RoBERTa (Liu et al., 2019), BEiTv2 (Peng 055

et al., 2022), and X-VLM (Zeng et al., 2021, 2022) 056

are language, vision, and vision-language founda- 057

tion models respectively, and can achieve state- 058

of-the-art performances for the specific type of 059

tasks. It is still very challenging, however, to 060

build a general foundation model that can perform 061

the best in all types of tasks. Existing models, 062

such as FLAVA (Singh et al., 2021), OFA (Wang 063

et al., 2022b), DaVinci (Diao et al., 2022) and 064

Uni-Perceiver-MoE (Zhu et al., 2022), are trying 065

to achieve the goal. Their performances are still 066

not satisfactory, however, when compared with the 067

best performing foundation models for the individ- 068

ual types of tasks, as shown in Table 1. Previous 069

work (Bingel and Søgaard, 2017; Wang et al., 2020) 070

also shows that it is difficult to train a general foun- 071

dation model in a multi-task learning setting that 072

can effectively learn and utilize representations for 073

all types of tasks. The reason is that language, 074

vision, and vision-language are very different in na- 075

ture, and a simple way of jointly training a model 076

from language, vision, and vision-language data 077

can easily create a suboptimal solution. 078

To address the challenge, we propose a new 079

method for training general foundation model, and 080

bring in X-FM (X-Foundation Model). X-FM con- 081

sists of three modular encoders for language (text) 082
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Methods
Text Tasks Vision Tasks Multi-modal Tasks (MSCOCO Retriveal & VQA & NLVR)

GLUE ImageNet Zero-Shot Fine-Tune

MNLI FT/LE TR IR TR IR VQA NLVR

Foundation models specifically for language, vision, or vision-language understanding
RoBERTa (Liu et al., 2019) 87.6 – – – – – – –
BEiTv2 (Peng et al., 2022) – 85.5/80.1 – – – – – –
X-VLM (Zeng et al., 2021) – – 70.8/92.1/96.5 55.6/82.7/90.0 80.4/95.5/98.2 63.1/85.7/91.6 78.1 84.8
X2-VLM (Zeng et al., 2022) – – – – 83.5/96.3/98.5 66.2/87.1/92.2 80.4 87.0

General foundation models
UNIMO-2 (Li et al., 2021c) 87.5 80.8/- – – – – 76.3 –
SimVLM (Wang et al., 2021c) 83.4 -/80.6 – – – – 77.9 81.8
FLAVA (Singh et al., 2021) 80.3 -/75.5 42.7/76.8/- 38.4/67.5/- 61.5/82.1/89.6 50.1/74.4/83.2 72.8 –
OFA (Wang et al., 2022b) 84.3 82.2/– – – – – 78.0 –
DaVinci (Diao et al., 2022) 83.1 83.9/78.8 – – – – 76.3 77.9
OmniVL (Wang et al., 2022a) – – – – 76.8/93.6/97.3 58.5/82.6/89.5 78.3 –
Uni-Perceiver-MoE (Zhu et al., 2022) 81.5 84.5/– 64.6/–/– 51.6/–/– 70.5/–/– 54.1/–/– – –
mPLUG-2base (Xu et al., 2023) 87.6 –/– –/–/– –/–/– 81.2/95.2/98.1 65.3/86.9/92.4 79.3 –
X-FMbase 87.7 85.5/81.2 77.6/94.8/97.7 61.1/84.5/90.6 84.2/96.4/98.4 67.0/87.2/92.4 80.5 88.4

Table 1: Performance comparisons between foundation models. All results are from base-size models. MSCOCO
is a cross-modal retrieval task, and IR and TR are image-retrieval and text-retrieval, respectively. MNLI results are
average accuracies of MNLI-m and MNLI-mm. For ImageNet1k classification, we report linear evaluation (LE)
performance and fine-tuning (FT) performance, respectively. We report R@1/R@5/R@10 for all retrieval tasks at
both zero-shot and fine-tune settings. We report the VQA test-dev result and the NLVR test-P result. bold denotes
the best number across general foundation models. underline denotes the best across all models.

encoding, vision (image) encoding, and fusion en-083

coding, as shown in Fig 1. The language encoder,084

the vision encoder, and the entire model can be085

used in downstream tasks of language, vision, and086

vision-language understanding, respectively. The087

language encoder and the vision encoder follow the088

implementations of BERT (Devlin et al., 2019) and089

ViT (Dosovitskiy et al., 2021), respectively. Note090

that X-FM do not include any extra parameters for091

language and vision tasks. The fusion encoder has092

the same architecture as BERT except that there is093

a cross-attention sub-layer after the self-attention094

sub-layer in each Transformer layer.095

In learning of X-FM, the language encoder, vi-096

sion encoder, and fusion encoder are jointly trained097

with text data, image data, and image-text pair098

data as input. Given the text data, we train the099

language encoder by masked language modeling100

(MLM). Given the image data, we train the vision101

encoder by masked image modeling (MIM). Given102

the image-text pair data, we train the fusion encoder103

by image text matching (ITM), image-conditioned104

masked language modeling (IMLM), bounding box105

prediction (BBP), also train the vision encoder and106

the language encoder by image-text contrastive107

learning (ITC). (See Fig 1.)108

The essential thinking of our learning method109

is that language is more abstract than vision, and110

there is an asymmetric relationship between lan-111

guage and vision. Therefore, we separate the learn-112

ing of the three encoders. The language encoder113

is trained mainly from text data and is isolated114

from the training of the fusion encoder. The vi- 115

sion encoder is simultaneously trained from image 116

data and image-text pair data, guided by the vision- 117

language training. The fusion encoder is trained 118

from image-text pair data. 119

Our learning method includes two new tech- 120

niques. One technique is to stop gradients from 121

the vision-language training when learning the lan- 122

guage encoder. The gradient flow is stopped from 123

the fusion encoder to the language encoder in train- 124

ing, while the activation flow from the language en- 125

coder to the fusion encoder is as usual. As a result, 126

the language encoder is not affected by training of 127

the fusion encoder with image-text pair data. More- 128

over, the training of the fusion encoder concentrates 129

on learning the alignments between language and 130

vision features. 131

The other technique is to leverage the vision- 132

language training to guide the learning of the vi- 133

sion encoder with masked image modeling (MIM). 134

In MIM, the masked image is compared with the 135

original image by the differences between the pre- 136

dicted representations and target representations 137

at the masked and [CLS] positions. The vision 138

encoder creates both the predicated and target rep- 139

resentations, while there is gradient flow from the 140

predicted representations but no gradient flow from 141

the target representations. The vision encoder can 142

create the target representations because it is also 143

trained in the vision-language training. 144

We conduct experiments on a variety of twenty- 145
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three tasks of language, vision, and vision-language146

understanding. X-FM can outperform other general147

foundation models by a large margin and can even148

achieve better or comparable performance than149

SOTA foundation models specifically designed for150

language, vision, or vision-language understanding151

tasks, as shown in Table 1.152

2 Related Work153

Following the success of language model pre-154

training (Devlin et al., 2019; Liu et al., 2019;155

Sun et al., 2019; Joshi et al., 2020; Clark et al.,156

2020; Lan et al., 2020; Zhang et al., 2020; He157

et al., 2021), vision pre-training (Dosovitskiy et al.,158

2021; He et al., 2022; Bao et al., 2021; Peng et al.,159

2022; Wei et al., 2022a) and vision-language pre-160

training (Radford et al., 2021; Jia et al., 2021; Li161

et al., 2021a, 2022; Yuan et al., 2021; Wang et al.,162

2021a; Bao et al., 2022; Zeng et al., 2021, 2022)163

with Transformer as the backbone have also made164

significant progress recently, pushing the state-of-165

the-art of various understanding tasks of language,166

vision, and vision-language.167

Recently, the fact that Transformer can model168

multi-modal data within a single architecture has169

inspired research to develop general foundation170

models that can solve language, vision, and vision-171

language tasks at the same time. FLAVA (Singh172

et al., 2021) performs pre-training with masked173

uni-modal and multi-modal modeling objectives.174

OFA (Wang et al., 2022c) formulates vision-175

language tasks as sequence-to-sequence (seq2seq)176

problems and pre-trains a seq2seq model in multi-177

task learning. SimVLM (Wang et al., 2021c) pre-178

trains a seq2seq model with a single objective of179

language generation (prefix language modeling).180

DaVinci (Diao et al., 2022) combines prefix lan-181

guage modeling and prefix image modeling to learn182

a general foundation model for a wide range of183

tasks. Uni-Perceiver (Zhu et al., 2021, 2022) builds184

a unified perception architecture that processes var-185

ious modalities and tasks with a single Transformer186

and shared parameters.187

Previous studies on general foundation models188

have shown that different capabilities can be es-189

tablished with only one model. Still, few stud-190

ies demonstrate that the best performance can be191

achieved in all tasks with one model. In this pa-192

per, we propose a new method for training general193

foundation model and show that it can perform the194

best for all the understanding tasks of language, vi-195

sion, and vision-language. We compare our model 196

extensively with recent general foundation models 197

on multiple dimensions, as shown in Appendix A. 198

Several super-large foundation models (over 1B 199

parameters) are proposed recently, most of which 200

are trained on super-large in-house datasets (over 201

900M image-text pairs). The authors do not re- 202

port results at the base (about 300M parameters) 203

scale on public datasets, which we consider in 204

this paper. CoCa (Yu et al., 2022) pre-trains an 205

image-text sequence-to-sequence model with con- 206

trastive loss and captioning loss. BEiT-3 (Wang 207

et al., 2022d) uses a multi-way Transformer and 208

a unified objective of masked “language” model- 209

ing for learning from image, text, and image-text 210

pair data. Flamingo (Alayrac et al., 2022) makes 211

use of a large language model in vision-language 212

pre-training to solve the “in-context learning” prob- 213

lem for vision-language tasks. PaLI (Chen et al., 214

2022) jointly scales up the vision encoder and lan- 215

guage encoder to cover a variety of language, vi- 216

sion, vision-language, and multilingual tasks. 217

3 Method 218

3.1 Model Architecture and Training Process 219

We propose a new method for training general 220

foundation model and bring in X-FM, having a 221

language encoder, a vision encoder, and a fusion 222

encoder, shown as Fig 1. The architectures of lan- 223

guage encoder, vision encoder and fusion encoder 224

are following precious works (Devlin et al., 2019; 225

Dosovitskiy et al., 2021; Li et al., 2021a). We pro- 226

pose a new method for training general foundation 227

model. Text, image, and image-text pair data are 228

used as input to train X-FM. The language encoder 229

is trained by masked language modeling (MLM) 230

and image text contrastive learning (ITC). The vi- 231

sion encoder is trained by masked image model- 232

ing (MIM) and ITC. The fusion encoder is trained 233

by image text matching (ITM), image-conditioned 234

masked language modeling (IMLM), and bounding 235

box prediction (BBP). There are two new tech- 236

niques developed for the training. 237

Stop Gradient. We stop gradients from the 238

vision-language training when learning the lan- 239

guage encoder. Specifically, when the fusion en- 240

coder is trained with image-text pair data by ITM, 241

IMLM, and BBP, there are forward flows (activa- 242

tions) from the language encoder to the fusion en- 243

coder, but there are no backward flows (gradients) 244

from the fusion encoder to the language encoder. In 245
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Figure 1: The architecture and pre-training process of X-FM, a Transformer-based general foundation model.
Given a text, we learn the language encoder by MLM. Given an image, we learn the vision encoder by MIM. Given
an image-text pair, we learn the fusion encoder by BBP, ITM, IMLM and ITC, and further learn the vision encoder
by MIM. The gradients of BBP, ITM, and IMLM are stopped from the fusion encoder to the language encoder.
The vision encoder is trained by MIM with both the image-text pair data and the image data. M, N and L denote
numbers of encoder layers.

this way, the language encoder is only trained with246

text data by MLM and with image-text pair data247

by ITC. The former helps the language encoder to248

learn text representations, and the latter helps to249

make alignments between text representations and250

image representations. Meanwhile, the training of251

the fusion encoder is performed separately with the252

focus of learning cross-modal alignments.253

Vision-Language Guided Masked Image Mod-254

eling. The training of vision encoder by MIM255

is carried out as follows. The image data is first256

masked and then predicted by the vision encoder.257

The differences between predicted representations258

and ‘target’ representations at masked positions259

and [CLS] position are then measured with MSE260

(mean squared error) loss. The target representa-261

tions are obtained from the same image data (with-262

out masking) by the vision encoder. There are263

no gradients from the target representations in the264

learning of the vision encoder. The vision encoder265

can create target representations because it is also266

trained with image-text pair data. In this way, the267

vision encoder is trained by both the cross-modal268

objectives (ITC, ITM, BBP, IMLM) with image-269

text pair data and the uni-modal objective (MIM)270

with image data. The representations obtained from271

the vision-language training are highly semantic,272

which is necessary for MIM as demonstrated in273

previous work (Bao et al., 2021; Peng et al., 2022;274

Wei et al., 2022a,b).275

There are mainly two advantages by exploiting276

the new MIM technique. First, it is convenient277

to conduct MIM with the signals from the vision-278

language training. Note that most previous work279

for MIM uses an external image tokenizer such280

as VQ-VAE (Bao et al., 2021; Singh et al., 2021), 281

CLIP (Wei et al., 2022b), and VQ-KL (Peng et al., 282

2022). Second, the learning of the vision encoder 283

and that of the fusion encoder are mutually en- 284

hanced. Once the vision encoder is trained, it is 285

also utilized to train the fusion encoder. Fortu- 286

nately, image data for training the vision encoder 287

is relatively easy to obtain. 288

3.2 Pre-training Objectives 289

We explain six objectives in learning of X-FM. 290

Here, T represents the distribution of text data, 291

I represents the distribution of image data, and D 292

represents the distribution of image-text pair data. 293

Masked Language Modeling (MLM) We per- 294

form MLM on text data to learn the language en- 295

coder of X-FM. Specifically we recover the masked 296

tokens in a text by minimizing the cross entropy 297

loss below. 298

Lmlm = ET∼T H(y⃗(T̄ ), ˆ⃗p(T̄ )) (1) 299

where T denotes a text, T̄ denotes the masked 300

text of T , ˆ⃗p denotes the predicted probability vec- 301

tors of masked tokens of T̄ , y⃗ denotes the one-hot 302

vectors representing the original tokens of T̄ , and 303

H denotes cross-entropy. 304

Image-Text Contrastive Learning (ITC). We 305

use a contrastive loss as in CLIP (Radford et al., 306

2021) to learn the alignments between images and 307

texts in ITC. Given a batch of images and texts, 308

we calculate the cosine similarities between all 309

image-text pairs. For each image, there is one 310

text matched and the rest is unmatched. For each 311

text, there is one image matched and the rest is 312

unmatched. The contrastive loss is defined as fol- 313

4



lows.314
Litc =

1

2
E(I,T )∼D

[
H(y⃗i2t(I), p⃗i2t(I))315

+H(y⃗t2i(T ), p⃗t2i(T ))
]

(2)316

where (I, T ) denotes an image-text pair, p⃗i2t(I)317

denotes the in-batch image-to-text similarities,318

p⃗t2i(T ) denotes the in-batch text-to-image similari-319

ties, y⃗i2t(I) denotes the one-hot vectors represent-320

ing the image-to-text matching relations, y⃗t2i(T )321

denotes the one-hot vectors representing the text-to-322

image matching relations, and H is cross-entropy.323

Image-Text Matching (ITM). We also learn the324

alignments between images and texts in ITM, us-325

ing a loss indicating whether an image-text pair326

is matched. For each image in a batch there is327

a matched (positive) text, and we sample an un-328

matched (negative) text in the batch. For each text329

there is a matched (positive) image, and we sam-330

ple an unmatched image in the batch. The loss is331

defined as follows.332

Litm = E(I,T )∼D
[
H(pmatch(I, T ))333

+H(pmatch(Ĩ , T )) (3)334

+H(pmatch(I, T̃ ))
]

335

where (I, T ) denotes a positive image-text pair,336

(Ĩ , T ) and (I, T̃ ) denote negative image-text pairs,337

pmatch(I, T ) denotes a predicted matching proba-338

bility of (I, T ), and H denotes logistic loss.339

Image-conditioned Masked Language Mod-340

eling (IMLM) We conduct IMLM on image-text341

pair data to learn the fusion encoder. We recover342

the masked text tokens given for an image-text pair343

by minimizing the cross entropy loss below.344

Limlm = E(I,T )∼DH(y⃗(T̄ ), ˆ⃗p(I, T̄ )) (4)345

where (I, T ) denotes an image-text pair, T̄ denotes346

the masked text of T , ˆ⃗p(I, T̄ ) denotes the predicted347

probability vectors of the masked tokens of T̄ based348

on I , y⃗ denotes the one-hot vectors representing the349

original tokens of T̄ , and H denotes cross-entropy.350

Bounding Box Prediction (BBP) We adopt the351

BBP in X-VLM (Zeng et al., 2021, 2022), which352

locates the visual concept in the image by a bound-353

ing box given the text. With BBP we learn the354

alignments between the images and texts in multi-355

granularity. In BBP, two losses are simultane-356

ously minimized to measure the differences be-357

tween the predicted bounding box and the ground-358

truth bounding box. One is generalized intersection359

over union GIoU (Rezatofighi et al., 2019) and the360

other is ℓ1 distance. 361

Lbbp = E(I,T )∼D{GIoU (⃗b,
ˆ⃗
b) + ∥⃗b− ˆ⃗

b∥1} (5) 362

where b⃗ = (cx, cy, w, h) denotes the ground truth 363

bounding box, ˆ⃗b = (ĉx, ĉy, ŵ, ĥ) denotes the pre- 364

dicted bounding box. A bounding box is repre- 365

sented by two coordinates, width, and height. 366

Masked Image Modeling (MIM) We perform 367

MIM on image data and image-text pair data to 368

learn the vision encoder. Specifically, we recover 369

the masked image patches in an image by minimiz- 370

ing the loss below. 371

Lmim = E(I,T )∼D||v⃗(Ī)− ˆ⃗v(Ī)||2 372

+EI∼I ||v⃗(Ī)− ˆ⃗v(Ī)||2 (6) 373

where (I, T ) and I denote an image-text pair and 374

a single image respectively, Ī denotes the masked 375

image I , ˆ⃗v(Ī) denotes the predicted representa- 376

tions at the masked positions and [CLS] of Ī , 377

and v⃗(Ī) denotes the target representations at the 378

masked positions and [CLS] of Ī . |||̇|2 is the MSE 379

loss. We employ block masking following previous 380

work (Bao et al., 2021; Peng et al., 2022). Note 381

that (I, T ) and I are independently sampled from 382

D and I, and the sample sizes are not necessarily 383

equal. 384

Finally, the pre-training objective of X-FM is 385

defined as the sum of the losses described above. 386

L = Lmlm+Litc+Litm+Limlm+Lbbp+Lmim 387
388

4 Experiments 389

4.1 Implementation Details 390

Pre-training Datasets. We mainly conduct our 391

experiments on several widely used public datasets, 392

consisting of two in-domain datasets, COCO (Lin 393

et al., 2014) and Visual Genome (VG) (Krishna 394

et al., 2017), and two out-of-domain datasets, SBU 395

Captions (Ordonez et al., 2011) and Conceptual 396

Captions (CC) (Sharma et al., 2018). Follow- 397

ing X-VLM (Zeng et al., 2021, 2022), we also 398

include annotations of objects and regions from 399

RefCOCO (Yu et al., 2016), Objects365 (Shao 400

et al., 2019) and OpenImages (Kuznetsova et al., 401

2018). Since we assume also using uni-modal 402

data, we include RoBERTa corpus (Liu et al., 403

2019), C4 datasets (Raffel et al., 2020) and Im- 404

agenet21K (Ridnik et al., 2021). In addition, we 405

also scale up the pre-training dataset with Concep- 406
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RoBERTa BEiTv2 X2-VLM X2-VLM UNIMO-2 FLAVA SimVLM OFA DaVinci DaVinci Uni-Per. OmniVL mPLUG-2base X-FMbase X-FMbase

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Task Eval. – – 4M 1.3B 4M 70M 1.8B 21M 46M 648M 30M 14M 17M 4M 1.3B

MNLI FT 87.6 – – – 87.5 80.3 83.4 84.3 82.3 83.1 81.5 – 87.6 87.7 87.7
CoLA FT 63.6 – – – 62.1 50.7 46.7 52.3 52.1 54.8 52.2 – – 65.3 65.7
MRPC FT 90.2 – – – – 84.2 79.8 88.7 83.1 84.5 – – 87.3 91.7 91.2
QQP FT 91.9 – – – – 88.7 90.4 91.3 88.2 88.9 – – 91.3 91.8 91.7
SST-2 FT 94.8 – – – 94.7 90.9 90.9 92.7 90.5 91.4 90.9 – 93.5 95.0 94.6
QNLI FT 92.8 – – – – 87.3 88.6 91.1 87.2 87.9 88.2 – 93.2 92.9 92.8
RTE FT 78.70 – – – – 57.8 63.9 70.8 60.7 64.2 75.8 – 85.2 83.8 82.7
STS-B FT 91.2 – – – 91.2 85.7 87.2 – 86.3 87.1 – – – 90.8 90.7

Language Avg. 86.4 – – – – 78.2 78.9 – 78.8 80.2 – – – 87.4 87.1

ImageNet FT – 85.5 – – 80.8 – – 82.2 – 83.9 84.5 – – 85.3 85.5
ImageNet LE – 80.1 – – – 75.5 80.6 71.4† 75.9 77.7 – – – 81.0 81.2
Food101 LE – 88.2† – – – 88.5 – 75.2† 89.3 90.1 – 87.4 – 88.7 90.5
CIFAR10 LE – 95.3† – – – 92.9 – 86.1† 93.0 94.0 – 96.2 – 97.2 97.4
CIFAR100 LE – 81.5† – – – 77.7 – 66.7† 79.0 80.1 – 83.2 – 86.7 86.2
Pets LE – 93.1† – – – 84.8 – 81.0† 85.5 88.2 – 87.1 – 90.8 90.2
DTD LE – 78.4† – – – 77.3 – 70.3† 77.1 78.3 – 76.2 – 78.4 80.0
Flowers102 LE – 95.7† – – – 96.4 – 86.3† 96.1 96.9 – 89.8 – 97.1 96.4

Vision Avg. – 88.7 – – – 86.3 – 79.2 86.7 87.9 – 86.7 – 89.8 90.1

VQAv2 FT – – 79.2 80.4 76.3 72.5 77.9 78.0 73.9 76.4 – 78.3 79.3 79.1 80.5
NLVR2 FT – – 86.1 87.0 – – 81.8 – 77.9 – – – – 86.7 88.4
Flickr30K TR R@1 ZS – – 85.1† 85.1† 84.6† 88.5 67.7 – – – 82.1 – – 90.1 93.4
Flickr30K IR R@1 ZS – – 77.3† 79.2† 72.7 65.2 – – – – 72.4 – – 79.1 84.1
Flickr30K TR R@1 FT – – 97.4 98.5 92.0 – – – – – 93.6 94.9 96.9 97.4 98.1
Flickr30K IR R@1 FT – – 90.0 90.4 80.1 – – – – – 79.8 83.4 88.2 88.6 89.9
COCO TR R@1 ZS – – 68.4† 71.7† – 42.7 – – – – 64.6 – – 73.8 77.6
COCO IR R@1 ZS – – 55.2† 58.3† – 38.4 – – – – 51.6 – – 59.4 61.1
COCO TR R@1 FT – – 80.5 83.5 – – – – – – 70.5 76.8 81.2 81.8 84.2
COCO IR R@1 FT – – 62.7 66.2 – – – – – – 52.6 58.5 65.3 64.7 67.0

Vision-Language Avg. – – 78.2 80.0 – – – – – – – – – 80.1 82.4

Table 2: Experimental results on vision, language and vision-language tasks. The multi-modal data size used for
pre-training are reported under the model name. MNLI results are average of MNLI-m and MNLI-mm. MRPC
results are average accuracies and F1 scores. Matthews correlation coefficient (MCC) is reported for CoLA, and
Pearson correlation coefficient (PCC) is reported for STS-B. We report accuracies for all the vision and multi-
modal tasks. FT is short for fine-tuning, LE for linear evaluation, ZS for zero-shot, TR for text retrieval, and IR
for image retrieval. Results for RoBERTa are from its corresponding paper (Liu et al., 2019), and they use the
mid-training (Phang et al., 2018) on MNLI for RTE, MRPC, and STS-B while other models (e.g., DaVinci, X-FM)
do not use this trick. Note that mPLUG-2 used more layers and parameters than RoBERTa and X-FM for the
language understanding tasks. Language Avg. is the average score of all the language tasks, while Vision Avg. is
the average score of six line evaluation tasks except ImageNet. Vision-Language Avg. is the average score of all
vision-language tasks. † are our reproduced results with the officially released models.

tual 12M dataset (CC-12M) (Changpinyo et al.,407

2021) and LAION (Schuhmann et al., 2022) as the408

“more data" setting, which contains around 1.3B409

image-text pairs. Please refer to Appendix C for410

statistics of the pre-training datasets.411

Pre-training Settings. Our model is of base size,412

and the detailed parameters are explained in Ap-413

pendix E. The vision encoder is initialized with414

BEiTv2. The language encoder is initialized with415

RoBERTa. The fusion encoder is trained from416

scratch. X-FM is pre-trained at image resolution of417

224× 224 with patch size of 16× 16. We pre-train418

X-FM for 200K steps with a batch size of 3072419

image-text pairs, 3072 images, and 8192 sentences420

on 32 A100, which takes about six days. The learn-421

ing rate for both models is warmed-up to 1e−4 in422

the first 2500 steps and decayed following a linear423

schedule. We set the maximum number of text to-424

kens to 30 for image-text pairs, while that of pure425

text corpus is set to 128. For the “more data" set-426

ting, we pre-train X-FM for 400k steps with 18k427

batch size on 64 A100. Due to the consideration of428

computational cost, we did not pre-train the large429

or giant models. We apply mixed precision for pre- 430

training. We choose widely used downstream tasks 431

whose details are shown in Appendix D. 432

4.2 Comparison with Foundation Models 433

We extensively compare the performance of X- 434

FM with state-of-the-art foundation models on 435

vision, language, and multi-modal tasks. We 436

first compare our model with general foundation 437

models, including UNIMO-v2 (Li et al., 2021c), 438

FLAVA (Singh et al., 2021), SimVLM (Wang et al., 439

2021c), OFA (Wang et al., 2022b), DaVinci (Diao 440

et al., 2022), Uni-Perceiver-MoE (Zhu et al., 2022), 441

OmniVL (Wang et al., 2022a), and mPLUG-2 (Xu 442

et al., 2023). We also include comparisons with 443

SOTA foundation models specifically designed 444

for language, vision, or vision-language tasks, 445

RoBERTa (Liu et al., 2019), BEiTv2 (Peng et al., 446

2022), and X2-VLM (Zeng et al., 2022). There are 447

several observations in Table 2. First, X-FMbase 448

(column 15) outperforms all the previous general 449

foundation models (column 5-13) across almost 450

all tasks by a large margin, becoming a new and 451
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Model # Params
MSCOCO (5K test set) Flickr30K (1K test set) MSCOCO (5K test set) Flickr30K (1K test set)

TR-Fine-Tune IR-Fine-Tune TR-Fine-Tune IR-Fine-Tune TR-Zero-Shot IR-Zero-Shot TR-Zero-Shot IR-Zero-Shot
R@1/R@5/R@10 R@1/R@5/R@10 R@1/R@5/R@10 R@1/R@5/R@10 R@1/R@5/R@10 R@1/R@5/R@10 R@1/R@5/R@10 R@1/R@5/R@10

ALBEF 210M 73.1/91.4/96.0 56.8/81.5/89.2 94.3/99.4/99.8 82.8/96.7/98.4 – – 90.5/98.8/99.7 76.8/93.7/96.7
VLMobase 175M 74.8/93.1/96.9 57.2/82.6/89.8 92.3/99.4/99.9 79.3/95.7/97.8 – – – –
VL-BEiT 175M 79.5/–/– 61.5/–/– 95.8/–/– 83.9/–/– – – – –
OmniVL 288M 76.8/93.6/97.3 58.5/82.6/89.5 94.9/9.6/99.9 83.4/97.0/98.6 – – – –
X-VLM 216M 80.4/95.5/98.2 63.1/85.7/91.6 96.8/99.8/100 86.1/97.4/98.7 70.8/92.1/96.5 55.6/82.7/90.0 85.3/97.8/99.6 71.9/93.3/96.4
X2-VLMbase 255M 80.5/95.5/97.8 62.7/84.7/90.7 97.4/99.9/100 90.0/98.6/99.3 68.4†/92.5†/96.8† 55.2†/82.2†/89.3† 85.1†/99.2†/100.0† 77.3†/95.3†/97.6†
X-FMbase 327M 81.8/96.0/98.3 64.7/86.1/91.6 97.4/100/100 88.6/97.9/98.9 73.8/93.9/97.2 59.4/83.6/90.0 90.1/99.2/99.9 79.1/95.2/97.3

More Data
CLIP 490M – – 88.7/98.0/99.2 76.7/93.6/96.4 58.4/81.5/88.1 37.8/62.4/72.2 88.0/98.7/99.4 68.7/90.6/95.2
ALIGN 490M 77.0/93.5/96.9 59.9/83.3/89.8 95.3/99.8/100 84.9/97.4/98.6 58.6/83.0/89.7 45.6/69.8/78.6 88.6/98.7/99.7 75.7/93.8/96.8
Florence 893M 81.8/95.2/– 63.2/85.7/– 97.2/99.9/– 87.9/98.1/– 64.7/85.9/– 47.2/71.4/– 90.9/99.1/– 76.7/93.6/–
X2-VLMbase 255M 83.5/96.3/98.5 66.2/87.1/92.2 98.5/100/100 90.4/98.2/99.3 71.7†/93.4†/97.5† 58.3†/84.7†/91.0† 84.6†/99.1†/99.9† 79.2†/96.4†/98.0†

X-FMbase 327M 84.2/96.4/98.4 67.0/87.2/92.4 98.1/100/100 89.9/98.6/99.4 77.6/94.8/97.7 61.1/84.5/90.6 93.4/99.8/99.9 84.1/96.5/98.1

Super-Large Models
CoCa 2.1B – – – – 66.3/86.2/91.8 51.2/74.2/82.0 92.5/99.5/99.9 80.4/95.7/97.7
BEiT-3 1.9B 84.8/96.5/98.3 67.2/87.7/92.8 98.0/100/100 90.3/98.7/99.5 – – 94.9/99.9/100.0 81.5/95.6/97.8

Table 3: Results of text-retrieval (TR) and image-retrieval (IR) on COCO and Flickr30K. † denotes our reproduced
results with the officially released models. In more data setting, we use Conceptual 12M dataset (CC-12M) (Chang-
pinyo et al., 2021) and LAION (Schuhmann et al., 2022) as additional datasets. More details are explained in
Appendix C. Giant models with over 1B parameters (e.g., BEiT-3) are in grey since they are not directly comparable
with other models.

stronger general foundation model. When we452

use less pre-training data, X-FM can also achieve453

competitive performance compared with previ-454

ous general foundation models (column 5-13 vs455

14). Second, we compare X-FM with state-of-456

the-art foundation models specifically designed457

for language, vision, and vision-language tasks,458

RoBERTa, BEiTv2 and X2-VLM. We observe that459

X-FM is also better than or comparable with the460

foundation models (column 1,2,3,4 vs 15). In ad-461

dition, we compare our model with CLIP, FLAVA462

and DaVinci in a total of 18 image classification463

tasks (linear evaluation) in Appendix B, in which464

11 ( 11/18 ) are won by X-FM.465

4.3 Comparison with multi-modal Models466

In addition to general foundation models, we467

also compare X-FM with state-of-the-art vision-468

language models. The results are shown in Table 3469

and Table 5. X-FM demonstrates its superiority470

on five downstream vision-language tasks includ-471

ing MSCOCO Retrieval, Flick Retrieval, VQA,472

NLVR and RefCOCO+. Note that X-FMbase out-473

performs CLIP, ALIGN and Florence on image-text474

retrieval tasks with fewer parameters and much less475

training data. Compared to the recently released476

SOTA vision-language model, X2-VLM, X-FM is477

much better on zero-shot image-text retrieval tasks.478

When we scale up pre-training datasets, X-FMbase479

is consistently better than previous vision-language480

models for most cases.481

4.4 Ablation Study482

To verify the contributions of different modules483

in our framework, we ablate them and evaluate484

the performance of X-FM on all downstream tasks. 485

The results are shown in Table 4. We first explain 486

several abbreviations in the table. S-MLM means 487

that we only stop the gradient of language repre- 488

sentations in IMLM task, while S-ITM means stop- 489

ping the gradient of language representations for 490

computing ITM and BBP. wostop indicates without 491

stopping the gradients of all language representa- 492

tions. woMIM means that we do not learn by MIM, 493

while wBEiTv2 tokenizer means that we learn by 494

MIM with the image tokenizer used in BEiTv2. 495

Multi-task is a variation that uses straightforward 496

multi-task learning to optimize the three encoders 497

in X-FM. To make a fair comparison, we also train 498

RoBERTa, BEiTv2 and X2-VLM with the same 499

data noted as RoBERTa†, BEiTv2† and X2-VLM†. 500

Note that we also increase the fusion layers in X2- 501

VLM† to make the parameter sizes comparable to 502

our models. RoBERTa†, BEiTv2† and X2-VLM† 503

all have slightly better results on average than the 504

official ones. From the results, we have the follow- 505

ing observations. 506

First, both designs (stop gradient and vision- 507

language guided MIM) bring improvements, and 508

the combination can make further improvements 509

on all three downstream tasks (column 10 vs. oth- 510

ers). Second, without separated language represen- 511

tations, models always perform worse on language 512

understanding tasks (column 10 vs. 2,3,4). Be- 513

sides, the separate language representations in the 514

IMLM task on image-text data are helpful for multi- 515

modal tasks (column 2 vs. 4). As we point out in 516

section 1, the fusion encoder can concentrate on 517

learning the alignments between language and vi- 518

sion features instead of predicting masked tokens 519
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X-FMbase

RoBERTa† S-MLM S-ITM wostop BEiTv2† woMIM wBEiTv2 Tokenizer X2-VLM† Multi-task ALL
Task Eval. 1 2 3 4 5 6 7 8 9 10

MNLI FT 87.7 87.4 87.3 87.7 – – – – 87.4 87.6
CoLA FT 63.2 61.6 63.6 64.2 – – – – 62.2 65.2
MRPC FT 90.7 92.2 91.1 90.7 – – – – 92.0 92.5
QQP FT 91.5 91.6 91.6 91.6 – – – – 91.6 91.6
SST-2 FT 95.0 95.1 94.2 94.6 – – – – 94.4 95.3
QNLI FT 93.1 93.0 93.2 92.5 – – – – 92.8 92.9
RTE FT 80.9 79.1 81.6 81.2 – – – – 79.8 81.9
STS-B FT 90.9 90.7 90.7 90.4 – – – – 90.1 90.8

Language Avg. 86.6 86.4 86.7 86.6 – – – – 86.3 87.2

ImageNet FT – – – – 85.5 84.8 85.0 – 85.0 85.3
ImageNet LE – – – – 80.5 79.1 79.4 – 79.3 81.1
Food101 LE – – – – 88.2 86.9 87.2 – 86.9 88.7
CIFAR10 LE – – – – 95.3 96.6 96.5 – 96.6 97.5
CIFAR100 LE – – – – 81.5 83.3 83.9 – 84.1 86.9
Pets LE – – – – 93.1 88.1 88.5 – 88.2 90.7
DTD LE – – – – 78.4 77.7 76.9 – 78.0 78.7
Flowers102 LE – – – – 95.7 94.1 94.5 – 94.2 97.1

Vision Avg. – – – – 87.3 86.3 86.5 – 86.5 88.2

VQAv2 FT – 78.8 78.5 78.7 – 78.3 78.2 78.0 78.2 78.6
NLVR2 FT – 86.3 86.0 86.4 – 85.9 85.5 86.2 86.1 86.7
Flickr30K TR R@1 ZS – 88.3 87.2 87.1 – 87.1 87.2 87.7 85.0 89.3
Flickr30K IR R@1 ZS – 76.6 74.9 75.8 – 76.1 75.3 75.1 75.6 77.4
Flickr30K TR R@1 FT – 97.5 97.0 97.2 – 96.4 96.7 97.0 97.0 97.7
Flickr30K IR R@1 FT – 87.4 86.9 87.3 – 86.2 86.6 86.2 86.4 87.4
COCO TR R@1 ZS – 72.0 72.1 70.5 – 73.0 72.1 73.2 69.9 72.8
COCO IR R@1 ZS – 58.4 57.1 57.7 – 58.2 57.7 57.7 56.5 59.0
COCO TR R@1 FT – 81.2 80.2 80.9 – 80.6 80.1 80.3 80.0 81.2
COCO IR R@1 FT – 64.2 63.4 63.6 – 63.7 63.0 63.1 63.0 64.0

Vision-Language Avg. – 79.1 78.3 78.5 – 78.6 78.2 78.5 77.8 79.4

Table 4: Ablation studies on vision, language, and vision-language tasks. We use the same settings as Table 2.
“ALL” means we use both of our proposed techniques. To compare fairly, we pre-train all variants with the same
data at the same settings for both pre-training and fine-tuning. Avg. means the average score.

Method # Params
VQA NLVR2 RefCOCO+

test-dev test-std dev test-P val testAd testBd

ALBEF 210M 74.5 74.7 80.2 80.5 – – –
VLMobase 175M 76.6 76.9 82.8 83.3 – – –
METER 341M 77.7 77.6 82.3 83.1 – – –
VL-BEiT 175M 77.5 77.8 81.9 82.7 – – –
BLIPbase 240M 78.2 78.2 82.5 83.1 – – –
X-VLM 216M 78.1 78.1 84.2 84.2 80.2 86.4 71.0
OFAbase 182M 78.0 78.1 – – 81.4 87.2 74.3
OmniVL 288M 78.3 78.4 – – – – –
X2-VLMbase 255M 79.2 79.3 85.9 86.1 85.4 89.2 77.3
X-FMbase 327M 79.1 79.2 86.3 86.5 84.8 89.7 79.1

More Data
SimVLMbase 273M 77.9 78.1 81.7 81.8 – – –
X2-VLMbase 255M 80.4 80.2 86.2 87.0 85.2 90.3 78.4
X-FMbase 327M 80.5 80.4 87.6 88.4 86.1 90.4 79.8

Super-Large Models
CoCa 2.1B 82.3 82.3 86.1 87.0 – – –
BEiT-3 1.9B 84.2 84.0 91.5 92.6 – – –

Table 5: Results on VQA, visual reasoning and visual
grounding. Giant models with over 1B parameters (e.g.,
CoCa and BEiT-3) are in grey because they are not
directly comparable with other models.

with clues from other visible text tokens. Although520

S-ITM shows slight side effects (column 4 vs. 3),521

stopping the gradients of language representation522

in the fusion encoder is necessary to simultane-523

ously achieve strong language understanding and524

vision-language understanding capability. Third,525

the vision-language guided MIM task is useful for526

both vision-language and vision learning (column527

10 vs. 6). Meanwhile, the targets in our MIM task528

are better than the BEiTv2 tokenizer (column 10529

vs. 7). Four, X-FM is much better than a naive 530

multi-task learning strategy for a foundation model, 531

compared with which, X-FMbase improves an aver- 532

age of 0.9%, 1.7% and 1.6% on language, vision, 533

and vision-language tasks, respectively (column 10 534

vs. 9). Five, X-FM is also better than foundation 535

models specifically designed for language, vision, 536

and vision-language tasks with the same training 537

corpus (column 10 vs. 1,5,8). 538

5 Conclusion 539

In this work, we address the problem of how to 540

build a general foundation model that can perform 541

the best for all the understanding tasks of language, 542

vision, and vision-language. We propose a new 543

method for training general foundation model with 544

two new and effective techniques, bringing in X- 545

FM, to learn rich language, vision, and vision- 546

language representations at the same time. Experi- 547

mental results demonstrate that X-FM outperforms 548

other general foundation models by a large margin. 549

Moreover, X-FM can even be better than or compa- 550

rable to the SOTA foundation models specifically 551

designed for language, vision, or vision-language 552

understanding tasks. We also summarize the limi- 553

tations and risks of our approach in Appendix F. 554
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A Comparison of Foundation Models1065

Table 6 shows an extensive comparison of recent1066

foundation models and X-FM on multiple axes.1067

Previous work either (i) perform best on uni-modal1068

tasks (Liu et al., 2019; Peng et al., 2022) or vision-1069

language tasks (Zeng et al., 2021, 2022); (2) tar-1070

get a specific uni-modal domain along with part1071

of vision-and-language tasks (Wang et al., 2021a;1072

Radford et al., 2021; Jia et al., 2021; Wang et al.,1073

2021c; Yu et al., 2022; Wang et al., 2022b; Diao1074

et al., 2022); or (3) target all domains but cannot1075

perform best on all the tasks (Li et al., 2021c; Singh1076

et al., 2021; Zhu et al., 2022). Our model, X-FM,1077

is a general foundation model that can perform the1078

best for all the understanding tasks of language,1079

vision, and vision language.1080

B More Image Classification Tasks1081

We further compare our model, X-FMbase, with1082

three previous foundation models on 18 image clas-1083

sification tasks on the linear evaluation setting to1084

evaluate generalization performance on vision un-1085

derstanding tasks. The results are shown in Table 7.1086

X-FMbase wins 11 of 18 tasks, 7 for CLIP, 2 for1087

FLAVA, and 2 for DaVinci.1088

C Details of Pre-training Datasets1089

We conduct our experiments on several widely1090

used public datasets, consisting of two in-domain1091

datasets, COCO (Lin et al., 2014) and Visual1092

Genome (VG) (Krishna et al., 2017), and two out-1093

of-domain datasets, SBU Captions (Ordonez et al.,1094

2011) and Conceptual Captions (CC) (Sharma1095

et al., 2018). Following X-VLM (Zeng et al., 2021,1096

2022), we use annotations of objects and regions1097

from RefCOCO (Yu et al., 2016), Objects365 (Shao1098

et al., 2019) and OpenImages (Kuznetsova et al.,1099

2018). We also include uni-modal data, RoBERTa1100

corpus (Liu et al., 2019), C4 datasets (Raffel et al.,1101

2020) and Imagenet21K (Ridnik et al., 2021).1102

For our “more data" setting, we scale up the1103

pre-training dataset by including image-text pairs1104

from Conceptual 12M dataset (CC-12M) (Chang-1105

pinyo et al., 2021) and LAION (Schuhmann et al.,1106

2022). Thanks to LAION, we can use a large-scale1107

public corpus of image-text pairs. However, we1108

note that there are amounts of “low-quality" im-1109

age text pairs, as it is only filtered by the CLIP1110

score. The clip score is deceptive when an image1111

contains word tokens in its caption. Therefore, we 1112

apply three filters, OCR filter, text filter, and image 1113

filter, to capture “high-quality" image-text pairs 1114

from LAION. Note that we only use English data 1115

in LAION. The OCR filter will remove an image 1116

(image-text pair) when its OCR text contains more 1117

than four words or any token in the caption. The 1118

text filter will remove a text image (image-text pair) 1119

if it is an address or contains only digits or symbols. 1120

The image filter will remove an image (image-text 1121

pair) if the shorter edge is smaller than 224 pixels, 1122

and also remove an image (image-text pair) if the 1123

height/width or width/height ratio is greater than 1124

3. Finally, we have 1.3B paired data after all three 1125

filters. Statistics of the pre-training datasets are 1126

shown in Table 8. 1127

D Details of Downstream Tasks 1128

We report overall performance on eight language 1129

tasks from GLUE (Wang et al., 2019), eight vi- 1130

sion tasks following OmniVL (Wang et al., 2022a) 1131

(More image classification tasks can be found in 1132

Appendix B.), four multi-modal tasks, which are 1133

text-image retrieval on MSCOCO and Flickr, visual 1134

question answering (VQA (Goyal et al., 2017)), vi- 1135

sual reasoning (NLVR2 (Suhr et al., 2019a)) and vi- 1136

sual grounding (RefCOCO+ (Yu et al., 2016)). For 1137

image-text retrieval task, we report both zero-shot 1138

results and fine-tuned results. For the ImageNet 1139

classification task, we report both linear evaluation 1140

results and fine-tuning results. The other vision 1141

tasks are evaluated in the linear evaluation setting. 1142

All the other tasks are evaluated in the fine-tuning 1143

setting. Because the image resolution differs be- 1144

tween pre-training and fine-tuning, the position 1145

parameters are adapted using linear interpolation. 1146

For all downstream tasks, we apply random re- 1147

size crops and horizontal flips augmentation for the 1148

images during training. More details of network ar- 1149

chitectures and hyper-parameters setups are given 1150

in Appendix E. 1151

Language Understanding. 1152

We conduct experiments on GLUE bench- 1153

mark including MNLI (Williams et al., 2018), 1154

CoLA (Warstadt et al., 2019), MRPC (Dolan and 1155

Brockett, 2005), QQP (Iyer et al., 2017), SST- 1156

2 (Socher et al., 2013), QNLI (Rajpurkar et al., 1157

2016), RTE (Dagan et al., 2005; Haim et al., 2006; 1158

Giampiccolo et al., 2007; Bentivogli et al., 2009), 1159

and STS-B (Agirre et al., 2007). We follow the 1160
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Methods
Multimodal data Pretraining Objectives Fusion Arch. Target Modalities

public dataset(s) size Contr. ITM BBP (M/P)LM Unimodal ST CT MT V CV&L MV&L L

RoBERTa (Liu et al., 2019) – – – – – – – MLM – – – – – – !

BEiTv2 (Peng et al., 2022) – – – – – – – MIM – – – ! – – –
X-VLM (Zeng et al., 2021, 2022) ! Combination 5M ! ! ! MLM – – ! – – ! ! –
VLMo (Wang et al., 2021a) ! Combination 5M ! ! – MLM MLM+MIM – – ! – ! ! –
CLIP (Radford et al., 2021) % WebImageText 400M ! – – – – – – – ! ! – –
ALIGN (Jia et al., 2021) % JFT 1.8B ! – – – – – – – ! ! – –
SimVLM (Wang et al., 2021c) % JFT 1.8B – – – PrefixLM PrefixLM ! – – ∗ – ! !

CoCa (Yu et al., 2022) % JFT 4.8B ! – – LM – ! – – ! ! ! –
UNIMO-2 (Li et al., 2021c) ! Combination 5M – ! – MLM VCL ! – – ! ! ! !

OFA (Wang et al., 2022b) ! Combination 15M – – – LM LM ! – – ∗ – ! !

DaVinci (Diao et al., 2022) ! Combination 46M – – – PrefixLM + PrefixIM PrefixLM ! – – ! – ! !

FLAVA (Singh et al., 2021) ! Combination 70M ! ! – MLM MLM+MIM ! – – ! ! ! !

Uni-Perceiver-MoE (Zhu et al., 2022) ! Combination 116M – ! – LM+MLM LM+MLM+Classify. ! – – ! ! ! !

X-FM ! Combination 5M ! ! ! MLM+MIM MLM+MIM – ! – ! ! ! !

Super-Large Models
Flamingo (Alayrac et al., 2022) % Combination 2.2B – – – LM – ! – – – ! ! –
BEiT-v3 (Wang et al., 2022d) ! Combination 21M – – – MLM MLM+MIM – – ! ∗ ! ! –
PaLI (Chen et al., 2022) % WebImageText 41B – – – LM – ! – – ! ! ! !

Table 6: Comparison of recent foundation models in different modalities. Contr. indicates contrastive learning.
ITM is short for image-text matching. BBP represents boundary box prediction. (M/P)LM means image-conditioned
(masked/prefix) language modeling. V, CV&L, MV&L and L stand for vision tasks, cross-modal retrieval tasks,
multi-modal fusion tasks and language tasks respectively. ST, CT and MT are abbreviations for single Transformer,
cross-attention Transformer and multiway Transformer. VCL stands for visual contrastive learning. ∗ means the
modality is partially targeted (SimVLM and OFA include ImageNet.). Giant models with over 1B parameters (e.g.
BEiT-3) are in grey since they are not directly comparable with other models.
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CLIP B/16-224px 80.2 92.8 96.2 83.1 86.7 59.5 79.2 93.1 97.1 99.0 99.0 30.1 78.4 75.5 94.7 86.6 83.5 69.5
FLAVA B/16-224px 75.5 88.5 92.9 77.7 70.9 47.3 77.3 84.8 98.1 99.0 98.9 28.9 82.1 57.1 95.7 79.5 85.3 61.1
DaVinci B/16-224px 77.7 90.1 94.0 80.1 74.6 49.6 78.3 88.2 96.9 99.0 99.2 29.9 – – – – – –
X-FMbase B/16-224px 81.2 90.5 97.4 86.2 88.3 47.4 80.0 90.2 96.4 99.0 99.2 24.9 93.9 60.6 97.1 90.9 82.4 72.6

Table 7: Linear evaluation performance of four foundation models over 18 datasets. B/16-224px means base
size model, 16*16 patches, and 224*224 resolution, respectively. The best performance is identified with bold.

Dataset # Images # Texts # Objects # Regions

COCO 0.11M 0.55M 0.45M -
VG 0.10M - 2.0M 3.7M
SBU 0.86M 0.86M - -
CC-3M 2.9M 2.9M - -
Objects365 0.58M - 2.0M -
OpenImages 1.7M - 4.2M -
C4 - 800GB - -
RoBERTa Corpus - 160GB - -
ImageNet-21k 14M - - -

More Data
CC-12M 11.1M 11.1M - -
LAION 1.3B 1.3B - -

Table 8: Statistics of the pre-training datasets.

practice of BERT (Devlin et al., 2019; Liu et al.,1161

2019) and feed the input into the language encoder,1162

and the hidden state of the [CLS] is fed into a new1163

multi-class linear classifier or regression head.1164

Vision Understanding.1165

We conduct vision experiments on both fine-tuning1166

and linear evaluation (linear eval). The linear eval-1167

uation follows a common practice (Caron et al., 1168

2021; He et al., 2020; Singh et al., 2021) in self- 1169

supervised learning to evaluate the representation 1170

quality, where the pre-trained backbone model 1171

is frozen, and an MLP head is appended on top 1172

of it. We choose 7 popular datasets following 1173

OmnVL (Wang et al., 2022a): ImageNet (Rus- 1174

sakovsky et al., 2015), Food101 (Bossard et al., 1175

2014), CIFAR10 (Krizhevsky et al., 2009), CI- 1176

FAR100 (Krizhevsky et al., 2009), DTD (Cimpoi 1177

et al., 2014), Pets (Parkhi et al., 2012) and Flow- 1178

ers102 (Nilsback and Zisserman, 2008). 1179

Vision-Language Understanding. 1180

Image-Text Retrieval We evaluate X-FM on both 1181

MSCOCO and Flickr30K datasets. We adopt the 1182

widely used Karpathy split (Karpathy and Li, 2015) 1183

for both datasets. Following the previous work (Li 1184

et al., 2021a; Zeng et al., 2021, 2022), we first 1185

encode images and texts separately and calculate 1186

s(I, T ) to obtain the top-k candidates, and then use 1187
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Model Param Hidden Layers
Total Trans. Vision Text Fusion

X-FMbase 327M 284M 768 12 12 12
X-FMlarge 866M 807M 1024 24 24 12

Table 9: Size variants of X-FM. All modules consist of
transformer layers. Param indicates the parameter. Total
means the total parameter number, and Trans. indicates
parameter number for Transformer layers.

the fusion encoder to re-rank the candidates.1188

Visual Question Answering The task requires the1189

model to predict an answer given an image and1190

a question. We evaluate X-FM on the VQA v2.01191

dataset (Goyal et al., 2017). Following the previous1192

work (Zeng et al., 2021), we use a Transformer1193

decoder to generate answers based on the outputs of1194

the fusion module. The decoder network shares the1195

same network architecture with the fusion encoder.1196

Note that we use an image resolution of 768*7681197

for the final result of X-FMbase, and use an image1198

resolution of 480*480 for X-FMlarge and X-FMbase1199

in ablation studies for efficient fine-tuning.1200

Visual Reasoning We evaluate X-FM on a widely1201

used benchmark NLVR2 (Suhr et al., 2019b). The1202

task allows the model to determine whether a text1203

describes the relations between two images. Fol-1204

lowing previous work (Wang et al., 2021a; Bao1205

et al., 2022), we formulate the triplet input into two1206

image-text pairs, each containing the text descrip-1207

tion and an image. We then concatenate the final1208

output [CLS] features of the fusion module of the1209

two pairs to predict the label.1210

Visual Grounding We evaluate X-FM on Ref-1211

COCO+ (Yu et al., 2016). Given an image and1212

a text description as input, the final output [CLS]1213

features of the fusion module is utilized to predict1214

the bounding box (cx, cy, w, h), i.e. the normal-1215

ized center coordinates, width, and height.1216

E Details of hyper parameters1217

Pre-training X-FMbase is implemented with a1218

12-layer language encoder, a 12-layer vision en-1219

coder, and a 12-layer fusion encoder, 768 di-1220

mensions for hidden states, 3072 for intermedi-1221

ate size, and 128 for maximum input length. X-1222

FMlarge is implemented with a 24-layer language1223

encoder, a 24-layer vision encoder, and a 12-layer1224

fusion encoder, 1024 dimensions for hidden states,1225

4096 for intermediate size, and 128 for maxi-1226

mum input length. We initialize the language en-1227

coder with RoBERTa and the vision encoder with 1228

BEiTv2. The weight decay is set to 0.01 with 1229

β1 = 0.9, β2 = 0.98. The learning rate is 1e-4 1230

with a warm-up period for the first 2500 steps and 1231

then linearly decayed to 0. In each batch, there are 1232

3072 image-text pairs, 3072 images, and 8192 text- 1233

only sentences. We use center-crop to resize each 1234

image to the size of 224×224. The model sizes 1235

and default hyper-parameter settings are shown in 1236

Table 9 and Table 10, respectively. 1237

config value
optimizer AdamW

learning rate 1e-4
weight decay 0.01

optimizer momentum β1, β2=0.9, 0.999
language batch size 8192

vision batch size 3072
vision-language batch size 3072

learning rate schedule linear decay
warmup steps 2500
training steps 200k
augmentation RandomResizedCrop

image res 224*224
patch size 16

text length for MLM 128
text length for IMLM 30

Table 10: Pre-training setting.

Fine-tuning The learning rate is ∈ {1e-5, 2e- 1238

5, 5e-5} and our model is optimized by AdamW. 1239

Because the image resolution differs between pre- 1240

training and fine-tuning, the position parameters 1241

are adapted using linear interpolation. For all down- 1242

stream tasks, we apply random resize crops and 1243

horizontal flips augmentation during training. The 1244

default settings for text classification, image clas- 1245

sification and vision-language understanding are 1246

shown in Tables 11, 12, 13 and 14, respectively. 1247

Note that the resolution for VQA is different as 1248

described in Section D. 1249

F Limitations and Potential Risks 1250

Limitations. Like most existing work on foun- 1251

dation models, the entire project consumed over 1252

5 A100 GPU years on a computing cluster with 1253

high electricity costs, although we only tested base 1254

models. There is still potential for efficiency im- 1255

provement through sparse attention (Zaheer et al., 1256

2020) or the lottery ticket hypothesis (Frankle and 1257

Carbin, 2018). We will explore the techniques to 1258

improve the training efficiency and reduce the car- 1259
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bon footprint so that we can adhere to the proposals1260

on “green” deep learning (Schwartz et al., 2020;1261

Xu et al., 2021).1262

Due to considerations of fair comparisons and1263

computational resources, we did not try super-large1264

models which use at least 1.9B or more parameters1265

like BEITv3 (Wang et al., 2022d), CoCa (Yu et al.,1266

2022) and PaLI (Chen et al., 2022). We also did not1267

pre-train large size model on large-scale datasets.1268

However, scalability is also an important factor for1269

foundation models. We leave the investigations to1270

future work.1271

Potential Risks. The image-text pairs use for1272

training our model are mostly derived from lexical1273

databases and image queries in English, resulting in1274

source material with a North American or Western1275

European bias.1276

config value
optimizer AdamW

learning rate {1e-5, 2e-5, 5e-5}
weight decay 0.0

optimizer momentum β1, β2=0.9, 0.999
batch size {16, 32, 64}

learning rate schedule linear decay
warmup ratio 0.0

training epochs {5, 10, 20}

Table 11: Text classification: GLUE setting.

config value
optimizer AdamW

learning rate [2e-5, 4e-5]
weight decay 0.01

optimizer momentum β1, β2=0.9, 0.999
batch size [256, 2048]

learning rate schedule linear decay
warmup rate 0.1

training epochs 100
augmentation RandomResizedCrop

image res 224*224
patch size 16

Table 12: Image classification: Linear probing setting.

config value
optimizer AdamW

learning rate 4e-5
minimal learning rate 1e-7

weight decay 0.01
optimizer momentum β1, β2=0.9, 0.999

batch size 1024
learning rate schedule linear decay

warmup rate 0.1
training epochs 100
augmentation RandomResizedCrop

image res 224*224
patch size 16

label smoothing 0.1
mixup prob. 1.0
cutmix prob. 1.0

Table 13: ImageNet classification: Fine-tuning setting.

config value
optimizer AdamW

learning rate {1e-5, 2e-5, 5e-5}
weight decay 0.01

optimizer momentum β1, β2=0.9, 0.999
batch size {64, 192, 512}

learning rate schedule linear decay
warmup rate 0.1

training epochs {10, 15, 20}
augmentation RandomResizedCrop

image res 384*384
patch size 16

Table 14: Vision-Language understanding: fine-tuning
setting.

17


