
Under review as a conference paper at ICLR 2021

MEMORY-AUGMENTED DESIGN OF GRAPH NEURAL
NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

The expressive power of graph neural networks (GNN) has drawn much interest
recently. Most existent work focused on measuring the expressiveness of GNN
through the task of distinguishing between graphs. In this paper, we inspect the
representation limits of locally unordered messaging passing (LUMP) GNN archi-
tecture through the lens of node classification. For GNNs based on permutation
invariant local aggregators, we characterize graph-theoretic conditions under which
such GNNs fail to discriminate simple instances, regardless of underlying architec-
ture or network depth. To overcome this limitation, we propose a novel framework
to augment GNNs with global graph information called memory augmentation.
Specifically, we allow every node in the original graph to interact with a group of
memory nodes. For each node, information from all the other nodes in the graph
can be gleaned through the relay of the memory nodes. For proper backbone archi-
tectures like GAT and GCN, memory augmented GNNs are theoretically shown to
be more expressive than LUMP GNNs. Empirical evaluations demonstrate the sig-
nificant improvement of memory augmentation. In particular, memory augmented
GAT and GCN are shown to either outperform or closely match state-of-the-art
performance across various benchmark datasets.

1 INTRODUCTION

Graph neural networks (GNN) are a powerful tool for learning with graph-structured data, and
has achieved great success on problems like node classification (Kipf & Welling, 2016), graph
classification (Duvenaud et al., 2015) and link prediction (Grover & Leskovec, 2016). GNNs typically
follow a recursive neighborhood aggregation (or message passing) scheme (Xu et al., 2019) such that
within each aggregation step, each node collects information from its neighborhood (usually feature
vectors), then apply aggregation and combination mechanism to compute its new feature vector.
Typically, GNN architectures differ in their design of aggregation and combination mechanisms.
Popular architectures like GCN (Kipf & Welling, 2016), GraphSAGE (Hamilton et al., 2017), and
GAT (Veličković et al., 2018) fall into this paradigm.

Despite their empirical success, there are a couple of limitations of GNNs that update node features
only based on local information. One important issue is their limited expressive power. In the graph
classification setting (Xu et al., 2019), it was shown that message passing neural networks are at most
as powerful as Weisfeiler Lehman graph isomorphism tests. A more recent line of work has suggested
using variants of message passing scheme that incorporates the layout of local neighborhoods (Sato
et al., 2019; Klicpera et al., 2020) or spatial information of the graph (You et al., 2019).

Another problem is due to the phenomenon that the performance of GNN does not improve, or even
degrades when layer size increases (Kipf & Welling, 2016; Xu et al., 2018; Li et al., 2018; Oono &
Suzuki, 2020), known as the problem of over-smoothing that makes extending the receptive path of
message passing GNNs a difficult task. Many successful GNN architectures are based on stacking
a few number of layers like 2 or 3 (Kipf & Welling, 2016), which could be viewed as an implicit
inductive bias that node labels are determined up to neighborhoods that are a few hops away. However
this assumption may not hold for many real-world data—for example, structurally similar nodes may
offer strong predictive power for very distant node pairs (Donnat et al., 2018). Several techniques
are proposed for aggregating node information from a wider range (Xu et al., 2018; Klicpera et al.,
2019a;b).

1

Under review as a conference paper at ICLR 2021

In this paper, we investigate the expressive power of GNNs through the task of node classification.
We characterize cases where GNNs that builds on LUMP protocol fail, regardless of underlying
implementation or aggregation range. We then propose a novel architecture that aggregates infor-
mation beyond the local neighborhood. Through making use of global feature information, we can
distinguish a wide range of cases that LUMP type GNNs inherently fail. Our main contributions are
summarized as follows:

• We discuss the expressive power of GNNs for node classification tasks under the premise
that node labels are not solely determined by first-order neighborhood information, and
show an indistinguishable scenario where LUMP algorithms fail to discriminate nodes in
structurally different graphs even if infinite rounds of message passing is performed.

• We develop a novel framework that extends GNN with global graph information called
memory augmentation, motivated by memory networks (Graves et al., 2014; Weston et al.,
2014). With proper choice of backbone architectures like GAT or GCN, the augmented
architectures are provably more expressive than LUMP type GNNs in that they discriminate
a wide range of cases that LUMP type GNNs fail with a compact architecture of two layers.

• We derive two representative memory augmented architectures, MemGAT and MemGCN,
and evaluate their performance on standard datasets. Empirical results show that the memory
augmented architectures significantly improves their corresponding backbone architectures
across all tasks, either outperforming or closely matching state-of-the-art performance.

2 REPRESENTATION LIMITS OF LOCALLY UNORDERED MESSAGE PASSING

In this paper we consider the task of node classification over an undirected graph G = (V,E)
with node set V and edge set E. Let N = |V | be the number of nodes and A,D be its associated
adjacency matrix and degree matrix. For each node v ∈ V , let Nv = {u | (u, v) ∈ E} be its
neighborhood set and Xv ∈ X ⊂ Rd be its associating feature. Each node v ∈ V is associated with
a label Yv. Node classification algorithms make predictions of Yv based on the information given
by G and the node feature matrix X . In this paper we will be interested in situations where node
labels are not determined solely by their first order neighborhood information. i.e., P (Yv|G,X) 6=
P (Yv|Xv, Xu, u ∈ Nv) ,∀v ∈ V . For a collection of elements C that are not necessarily distinct,
we use {C} to denote its set representation and {{C}} to denote its multiset representation. For each
c ∈ {C}, let rC(c) be the multiplicity of c in {{C}}. A popular tool for encoding higher order graph
information is to utilize the locally unordered message passing (LUMP) protocol (Garg et al., 2020)
to build GNNs. For node v, its (hidden) representation h(l)v is updated using an aggregation and
combine strategy:

h(l)v = COMBINE
(
h(l−1)v ,AGG

({{
h(l−1)u , u ∈ Nv

}}))
(1)

The protocol is unordered in the sense that no spatial information (like the relative orientation of
neighbors) is used throughout the message passing procedure, and the aggregator AGG is often
chosen as a permutation invariant function. After k rounds of message passing, each node will have a
feature vector that encodes the information of its height k rooted subtree. Aggregation strategies that
extend to arbitrary node were suggested in pioneering works of GNNs (Scarselli et al., 2009) that use
a learnable, contractive aggregator, and perform infinite rounds of message passing till convergence.

Next we discuss the expressive power of the above mentioned mechanisms. Let G(v) be the subgraph
of G that contains v,Nv and their associated edges. We consider two graphs, G = (V,E) and
G′ = (V ′, E′), with corresponding feature matrices X and X ′.
Definition 1. (Gross & Tucker, 2001) A graph map f : G 7→ G′ is called a local isomorphism if for
every node v ∈ V , the restriction of f to G(v) is an isomorphism onto G(f(v)).

Local isomorphism could be understood as a relaxed version of graph isomorphism. In particular, for
two isomorphic graphs, the isomorphism map is also a local isomorphism but the converse is not true
(see figure 1). Next we use the notion of local isomorphism to help characterize the expressive power
of GNNs in node classification context. We say a graph G is locally indistinguishable to graph G′, if
there exists a surjective local isomorphism f from G to G′, and if in addition the feature matrices are
related as Xv = X ′f(v). The following theorem states a specific situation where LUMP type GNNs
fail to distinguish between nodes in different graph contexts.

2

Under review as a conference paper at ICLR 2021

Theorem 1. If G is locally indistinguishable to graph G′ under map f , then under the LUMP
protocol equation 1, we have h(l)v = h

(l)′

f(v) for any v ∈ V and l ∈ Z+.

a1

a2 a3

a4

a5a6

1

0 0

1

00
Ga

b1

b2

b3

0

1

1
Gb

Figure 1: Graph structures that LUMP GNNs fail
to discriminate in terms of node classification tasks.
(with respect to the assignment annotated near the
corresponding node)

The proof will be given in appendix A.2. We
give a pictorial illustration in figure 1, with node
color indicating feature value. The local iso-
morphism is constructed as f(a1) = f(a4) =
b1, f(a2) = f(a5) = b2, f(a3) = f(a6) = b3.
Theorem 1 implies that representations of nodes
with same color remain identical for arbitrary
rounds of LUMP. Hence for the node label as-
signment la1 = 1, lb1 = 0, GNNs based on
LUMP fail to express this difference.
Remark 1. Figure 1 is a contrived case that sel-
dom happens in practice. Note that such cases
correspond to the worst case under which infi-
nite depth LUMP architecture fails. For a more
realistic setup, we may consider relaxing the
surjectivity requirement in the definition of local
indistinguishable graphs: if two nodes from different graphs have their induced k-hop neighborhood
being isomorphic, it follows that any depth-k LUMP architectures fail to distinguish these two nodes.
Locally isomorphic subgraphs are frequently observed in chemistry and bioinformatics (Raymond &
Willett, 2002; Cao et al., 2008). Although locally isomorphic subgraphs from globally distinct graphs
may get discriminated via using deep LUMP architectures, it is non-trivial to scale GNNs to deep
architectures without losing expressivity due to the phenomenon of over-smoothing Xu et al. (2018).

3 OUR MODEL

3.1 MEMORY AUGMENTATION

Our model is constructed via augmenting a backbone GNN whose updating rule could be written
as a simplified version of equation 1: the hidden representation in the lth layer satisfies h(l+1)

v =

AGGϑ(l)

({{
h
(l)
v , h

(l)
Nv

}})
. The aggregation function AGG is parameterized by ϑ(l). We will assume

the set X to be countable, then by (Xu et al., 2019, Lemma 4), the range of h(l)v , denotedH(l), is also
countable for any given parameterization and any layer l.

Augmentation Inspired by memory networks (Graves et al., 2014; Weston et al., 2014), the memory
component is formulated as a collection of learnable objects corresponding to M � N auxiliary
nodes, called memory nodes. Let VM be the set of memory nodes. We define memory as an M × d
matrix m with row vector mv serving as the memory embedding of memory node v. We allow every
node in the original graph to interact with the memory component. In particular, we augment the
original graph G into a slightly larger graph G∗ = (V ∗, E∗), where V ∗ = V

⋃
VM and

E∗ij =


Eij , if i, j ∈ V
1, if i ∈ V, j ∈ VM or i ∈ VM, j ∈ V
0, if i, j ∈ VM

(2)

so that each memory node is connected to every node in the original graph G. Performing message
passing using the backbone architecture would thus allow every node in the original graph to aggregate
information from both its neighbors and the memory component, while the memory component
aggregates information from the whole graph:

∀v ∈ V, h(l+1)
v = AGGϑ(l)

({{
h(l)v , h

(l)
Nv
,mVM

}})
∀v ∈ VM,m(l+1)

v = AGGϑ(l)

({{
ml
v, h

(l)
V

}})
Figure 2 illustrates how memory augmentation does "symmetry breaking" in locally indistinguishable
graphs: although the height k rooted subtree remains identical for Ga and Gb for any k, starting

3

Under review as a conference paper at ICLR 2021

a1

a2 a6

a1 a3 a1 a5ωa ωa

ωa

a1

a2

a3

a4

a5

a6

b1

b2 b3

b1 b3 b1 b2ωb ωb

ωb

b1

b2

b3

Figure 2: Illustration of memory augmentation applied to the two graphs in figure 1: Ga (left) and
Gb (right). Both graphs are augmented with one memory node. Aggregation paths of a1 and b1
are presented as two hop subtree structures, corresponding to a two round message passing using
the memory augmented attention mechanism. Memory connections are drawn as dashed lines and
original connections as solid lines. The figure implies that, although the local subtree structures
rooted at a1 and b1 are identical, the message carried by the memory node distinguishes a1 from b1,
provided that the message passing is performed for more than one round.

from the second layer, messages from the memory component would become distinct thus makes
discrimination possible. More rigorously, we characterize conditions for the backbone architecture
under which the memory augmented architecture achieves stronger expressive power:
Definition 2. We say two multisets {{X}} and {{X ′}} are distributionally equivalent if they share the
same underlying set, i.e. {X} = {X ′}, and the corresponding multiplicities are proportional to each
other: for ∀x ∈ {X}, rX(x)/rX′(x) ≡ m,m ∈ Z+.

Note that distributional equivalence is a well defined equivalence relation. We require the following
condition on the backbone GNN:

[C1] The backbone GNN identifies bounded size multisets in X up to distributional equivalence.

Using a single memory node ω, we have the following result:
Lemma 1. Under condition C1, there exists a vector m̃ω such that if the memory embedding is
initialized with m

(0)
ω,G = m̃ω for any graph G, then the following holds:

(i) For any l ∈ Z+, there exists a parameter configuration ϑ(l)∗ such that the map AGG
ϑ
(l)
∗

is injective over all multisets that takes the form:
{{
C,m

(l)
ω,G

}}
, where {C} is a bounded

subset of X

(ii) For graph pairs (G,G′) with {{X}} 6= {{X ′}}, the updated memory representations after 1

round of message passing are different, i.e. m(1)
ω,G 6= m

(1)
ω,G′ .

It then follows from (Xu et al., 2019, Theorem 3) that memory augmentation enhances proper
backbone architectures to achieve the strongest expressive power among LUMP GNNs. Lemma
1 suggests that as long as the overall network architecture contains more than one layer, starting
from the second layer, nodes in the original graph would receive messages that contain some kind
of aggregated global information that identifies the multiset feature representation of the original
graph. This could be also viewed as a graph specific bias term that discriminates that message passing
protocol from LUMP. As a consequence, we have the following theorem for binary node labels:
Theorem 2. For locally indistinguishable graphs (G,G′) under map f , there exists a two layer
memory augmented GNN with its backbone architecture satisfying condition C1, such that with a
proper memory initialization (i.e. the one in lemma 1), the final output h satisfies: if {{X}} 6= {{X ′}},
then hv > 0.5 and hf(v) ≤ 0.5 for any v ∈ V .

Theorem 2 suggests that memory augmentation helps to identify locally indistinguishable graphs with
different multiset feature representations. The following corollary justifies using two most popular

4

Under review as a conference paper at ICLR 2021

GNN architecture as the backbone architecture for memory augmentations. We adopt the formulation
in Xu et al. (2019):

Corollary 1. Both GAT and GCN satisfies condition C1.

We defer all proofs to appendix A.2. For an empirical verification, we conducted a simple experiment
corresponding to the setup in figure 1. We use categorical features (with a cardinality of three) and
compared memory augmented GAT with GAT. We use the reference GAT architecture in (Veličković
et al., 2018) and augment it with one memory node. We use a learnable multi-layer perceptron as
the nonlinear readout function for both models. Figure 3 shows the result. It could be seen from
the figure that the training accuracy of GAT never exceeds 2/3, which is its theoretical limit in this
example. While memory augmented GAT fits the data perfectly after sufficient rounds of gradient
updates, thereby verifies our theoretical findings.

3.2 TWO CANONICAL DESIGNS: MEMGAT AND MEMGCN

60 80 100 120 140 160 180 200
0.2

0.4

0.6

0.8

1

training step

tr
ai

ni
ng

ac
cu

ra
cy

GAT
MemGAT

Figure 3: Comparison of memory aug-
mented GAT with GAT on synthesized
data, performance measured in training
accuracy, results for initial 50 gradient
iterations are discarded

Now we derive two canonical architectures that enhances
two popular GNNs GAT (Veličković et al., 2018) and
GCN (Kipf & Welling, 2016). The resulting architectures
are termed MemGAT and MemGCN. For both designs,
we introduce several improvements to the vanilla memory
augmentation described in section 3.1 to balance the contri-
bution from the original graph and the memory component.
We also make a discussion on architectures that may not
benefits from memory augmentation, see appendix A.4 for
details.

MemGAT We enhance attention-based GNNs
(Veličković et al., 2018) via using a modified attention
mechanism. The attention weights are calculated as:

α
(l)
ij =



λψij exp
(
β
(l)
ij

)
/Z

(l)
i , if i, j ∈ V

1−λ
M exp

(
β
(l)
ij

)
/Z

(l)
i , if i ∈ V, j ∈ VM

exp
(
β
(l)
ij

)
/Y

(l)
i , if i ∈ VM, j ∈ V

1(i=j)exp
(
β
(l)
ij

)
/Y

(l)
i if i, j ∈ VM

(3)

where h(l)i ∈ Rdl denotes the hidden feature of node i ∈ V in the l th layer with h(0)i = Xi,
and β(l)

ij = φ(l)(σ(l)(h
(l)
i), σ(l)(h

(l)
j)) with σ(l) a (possibly) nonlinear function for the l th layer.

{ψij}i,j,∈V are edge weights over the original graph, and λ ∈ (0, 1) is a parameter that balances the
contribution between information provided by the original neighbor and the memory component.
{Z(l)

i }i∈V , {Y
(l)
j }j∈VM are normalizing factors such that

∑
j α

(l)
ij = 1,∀l. We write separately

the updating equation for hidden representations corresponding to nodes in the original graph and
memory embeddings:

∀v ∈ V, h
(l+1)
i =

∑
k∈{i}

⋃
Ni

α
(l)
ik σ

(l)(h
(l)
k) +

∑
v∈VM

α
(l)
iv σ

(l)(mv
(l)) (READ)

∀v ∈ VM, mv
(l+1) = α(l)

vvσ
(l)(mv

(l)) +
∑
j∈V

α
(l)
vj σ

(l)(h
(l)
j) (WRITE)

Connections to memory based network design The above equations interprets the memory com-
ponent as content addressing memory design in memory-based neural networks (Graves et al., 2014;
Weston et al., 2014): For nodes in the original graph, the aggregation step is interpreted as a reading
step with a selective focus over both its immediate neighbors and the memory obtained from the
previous layer. Alternatively, for the memory nodes, aggregation operations are hence interpreted as
a writing step.

5

Under review as a conference paper at ICLR 2021

MemGCN The augmented GCN adopts similar design aspects as MemGAT with balancing param-
eter λ. We adopt the GCN formulation in Dehmamy et al. (2019), by using edge weights {ψij}i,j,∈V
to characterize the aggregation scheme:

∀v ∈ V, h
(l+1)
i = λ

ψiiW (l)σ(l)(h
(l)
i) +

∑
j∈Ni

ψijW
(l)σ(l)(h

(l)
i)

+
1− λ
M

∑
v∈VM

Wm(l)
v

∀v ∈ VM, mv
(l+1) = λW (l)σ(l)(mv

(l)) +
1− λ
M

∑
j∈V

W (l)σ(l)(h
(l)
i)

where W (l)s are learnable weight matrices. We identify two canonical types of GCN: Kipf & Welling
(2016) uses ψij = 1/

√
(di + 1)(dj + 1), and a slightly modified method of Hamilton et al. (2017)

uses ψij = 1/(di + 1).
Remark 2. Recently several variants of LUMP that take ordered information into account are
proposed, among which CPCGNN (Sato et al., 2019) and DimeNet (Klicpera et al., 2020) are
based on modifications to the first-order message passing scheme, and are provably more expressive
than LUMP type GNNs (Garg et al., 2020). We give a detailed comparison of memory augmented
GNN architectures with CPCGNN and DimeNet in appendix A.5. We found that regarding node
classification, there’s no dominating choice between these methods. And it would be of interest to
extend the idea of memory augmentation to other kinds of message passing schemes. We leave this
direction to future research.

4 OTHER RELATED WORK

The expressive power of GNNs has been extensively studied recently (Xu et al., 2019; Maron et al.,
2019; Garg et al., 2020; Sato et al., 2020; Zhang & Xie, 2020), with the majority of these works
defining the expressive power of GNN with its ability to distinguish different graphs. (Xu et al.,
2019) proposed the GIN model that is theoretically as powerful as the first order Weisfeiler Lehman
(1-WL) test and is thus the most powerful among LUMP GNNs. (Zhang & Xie, 2020) suggests
accounting for cardinality information for attention based GNNs. More powerful GNN architectures
are then proposed via extending the message passing formulation: higher order GNNs or k-GNNs
(Morris et al., 2019; Maron et al., 2019) operate on k- tuple of nodes and aggregate information from
neighborhoods defined on k- tuples of nodes. While such kind of GNN variants could be shown to
be as powerful as k-WL test, they are not directly applicable to node level tasks. Another line of
work (Sato et al., 2019; Klicpera et al., 2020) generalizes the LUMP protocol to allow nodes passing
messages depending on their relative position in their belonging neighborhoods. Such kind of variants
are also provably more powerful than LUMP GNNs and are applicable to node level tasks. See
section 6 for a more detailed comparison between our approach and these variants. Position aware
GNN (PGNN) (You et al., 2019) is another class of powerful GNN variants that uses random anchor
sets to break local structural symmetry, and integrates positional information into a modified message
passing architecture, with an inductive bias suitable for relational classification. rGIN (Sato et al.,
2020) pairs each node with a random feature, thereby breaks locally indistinguishable subgraphs.
Our method is different from previous approaches in that we exploit the information of entire graphs’
node features, achievable with a minimal network depth of 2.

Memory-based neural networks date back to the 1990s (for example (Schmidhuber, 1992)). Notable
recent developments include Neural Turing Machine (Graves et al., 2014) and Memory Networks
(Weston et al., 2014). Our memory augmentation mechanism could be viewed as a GNN implementa-
tion of the design principle in (Weston et al., 2014). There has been a couple of works on GNNs that
adopted memory-based design lately (Khasahmadi et al., 2020; Ma et al., 2019a), under different
problem contexts.

5 EXPERIMENTS

In this section we evaluate the performance of memory augmented GNNs using two canonical
architectures MemGAT and MemGCN. We also conduct an ablation study to decompose performance
gains under different design aspects. We use four types of benchmark datasets, with their characteristic
statistics summarized in appendix A.1:

6

Under review as a conference paper at ICLR 2021

Citation networks Cora, Citeseer, and Pubmed are standard citation network benchmark datasets.
For all the three datasets, graphs are constructed by treating documents as nodes and citation links as
edges, the task is to classify academic papers into different subjects using the papers’ bag-of-words
representation as features
Actor co-occurrence networks This dataset is the actor-only induced subgraph of the film-director-
actor-writer network. Where nodes correspond to actors, and an edge between two nodes denotes
co-occurrence on the same Wikipedia page. Node features correspond to some keywords in the
Wikipedia pages and labels are actors categories
Web networks We use Cornell, Texas, and Wisconsin dataset (Pei et al., 2020). where nodes and
edges represent web pages and hyperlinks, respectively. The feature of each node is the bag-of-words
representation of the corresponding page, and labels are categories of web pages.
Protein-protein interaction (PPI) This is a dataset containing 24 graphs, with each graph corre-
sponding to a human tissue. (Hamilton et al., 2017). The task is to classify protein functions based on
features containing positional gene sets, motif gene sets and immunological signatures. This setting
is inductive in that at test time, algorithms shall make prediction with respect to completely unseen
graphs. We will present the details of the PPI experiment in appendix A.6.

5.1 EXPERIMENTAL SETUP

Architecture and parameters We mostly adopt parameters for backbone architectures from their
original implementation, respectively GAT (Veličković et al., 2018) and GCN (Kipf & Welling, 2016),
detailed in appendix A.1. We applied entropy regularization (Grandvalet & Bengio, 2005) with tuning
parameter 0.6 for Cora and Citeseer datasets and 0.1 for Pubmed dataset. We use the following
truncated diffusion matrix (Klicpera et al., 2019b) to generate edge weights:

S := S(θ,K, T) :=

K∑
k=0

θkT
k (4)

In our experiments we use two sets of θs: personalized page rank: θk = α(1− α)k with α = 0.15

and heat kernel: θk = tke−t

k! with t = 5. We choose the transition matrix T to be either Arw =

(D + I)−1(A + I) or Asym = (D + I)−1/2(A + I)(D + I)−1/2. We report the best performing
combination for each experiment. We tune the number of random walk steps K ∈ N. Note that for
large K, the resulting matrix is an approximation to the diffusion matrix (Klicpera et al., 2019b).
For the memory component, we used λ = 0.9, we choose the number of memory nodes to be the
number of classes across all tasks, a study of this hyperparameter is presented in appendix A.3. Finally,
we applied skip connection using the form proposed in Zhang & Meng (2019) to stabilize training.
The detailed tuning strategies are listed in appendix A.1. For a better understanding of performance
gains corresponding to different modifications to the backbone architecture, we provide an ablation
study on the citation datasets. For the rest of the datasets, we additionally report performances without
using edge weights, which we termed MemGAT-NE and MemGCN-NE.

Baseline comparisons We compare MemGAT and MemGCN with their backbone architectures
across all benchmarks. We also report two state-of-the-art models that are able to aggregate neigh-
borhood information from distant nodes: APPNP (Klicpera et al., 2019a) and GCNII (Chen et al.,
2020). For the citation networks, we additionally report GraphSage (Hamilton et al., 2017) with
max-pooling aggregation and GIN (Xu et al., 2019) and G3NN (Ma et al., 2019b). For actor and
wiki networks, we additionally report GEOM-GCN (Pei et al., 2020) with its best performing variant.
Besides, we report the performance of a two-layer MLP with 256 hidden units on these datasets, as
was recently noted that MLP performs very well on actor and wiki networks (Zhu et al., 2020).

Evaluation strategy it was reported in (Shchur et al., 2018) that the performance of current state-
of-the-art graph neural networks are typically unstable with respect to different train/validation/test
split of the dataset. Hence for fair comparison of algorithm performances, in addition to results on
the original, standard split, we provide extensive results over 10 random splits of Cora, Citeseer and
Pubmed datasets.

5.2 RESULTS

We use accuracy for performance metrics across all the tasks. The results of our evaluation experi-
ments are summarized in Tables 1 and 2. We report training details in appendix A.1. As shown in

7

Under review as a conference paper at ICLR 2021

Table 1: Summary of results (%mean ± %standard deviation test set accuracy) for the citation
datasets, with 10 random train/validation/test split of datasets as well as the standard split. We
annotate the original paper where we take the results from aside the algorithm name

Algorithm Cora Citeseer Pubmed

Random split

GCN (Shchur et al., 2018) 81.5± 1.3 71.9± 1.9 77.8± 2.9
GraphSage(maxpool) (Shchur et al., 2018) 76.6± 1.9 67.5± 2.3 76.1± 2.3
GAT (Shchur et al., 2018) 81.8± 1.3 71.4± 1.9 78.7± 2.3
GIN (Klicpera et al., 2019b) 73.96± 0.46 61.09± 0.58 72.38± 0.63
APPNP (our run) 82.45± 1.89 70.60± 1.31 77.28± 3.14

MemGAT(ours) 83.94± 1.04 74.07± 1.1 79.18± 2.11
MemGCN(ours) 82.94± 1.61 72.87± 1.69 78.53± 1.91

Standard split

GCN (Shchur et al., 2018) 81.9± 0.8 69.5± 0.9 79.0± 0.5
GraphSage(maxpool) (Shchur et al., 2018) 77.4± 1.0 67.0± 1.0 76.6± 0.8
GAT (Shchur et al., 2018) 82.8± 0.5 71.0± 0.6 77.0± 0.3
APPNP (our run) 83.60± 0.61 72.46± 0.52 79.04± 0.53
G3NN(GAT) (Ma et al., 2019b). 82.9± 0.3 74.0± 0.3 77.4± 0.4
G3NN(GCN) (Ma et al., 2019b). 82.2± 0.3 74.5± 0.3 78.4± 0.4
GCNII (Chen et al., 2020) 85.5 73.4 80.3

MemGAT(ours) 84.65± 0.52 74.20± 0.73 79.18± 0.56
MemGCN(ours) 84.30± 0.53 75.12± 0.22 80.46± 0.27

Table 2: Summary of results (%mean±%standard deviation test set accuracy) for actor co-occurence
and web network datasets, with 10 random train/validation/test split of datasets. We annotate the
original paper where we take the results from aside the algorithm name

Algorithm Actor Cornell Texas Wisconsin

GCN (Pei et al., 2020) 26.86 52.70 52.16 45.88
GAT (Pei et al., 2020) 28.45 54.32 58.38 49.41
APPNP (Chen et al., 2020) 31.31 73.51 65.41 69.02
GEOM-GCN (Pei et al., 2020) 31.63 60.81 67.57 64.12
GCNII (Chen et al., 2020) NA 76.49 77.84 81.57
MLP (our run) 37.01± 1.02 80.65± 6.34 80.84± 4.21 84.31± 3.41

MemGAT(ours) 31.93± 1.69 70.37± 7.57 72.08± 8.02 73.80± 5.05
MemGCN(ours) 36.95± 0.95 81.92± 6.00 82.19± 5.19 84.96± 3.59
MemGAT-NE(ours) 34.93± 0.74 66.14± 2.99 61.75± 3.18 65.14± 5.41
MemGCN-NE(ours) 36.44± 0.53 80.76± 0.99 82.76± 2.14 83.35± 1.12

8

Under review as a conference paper at ICLR 2021

Table 3: Summary of the ablation study results (%mean ± %standard deviation test set accuracy) for
the citation datasets over 100 trials. For MemGCN, we did not use skip connection on the citation
datasets; for MemGAT, we did not incorporate edge weights on the pubmed dataset.

Model MemGAT MemGCN

Dataset Cora Citeseer Pubmed Cora Citeseer Pubmed

(I) 82.32± 0.57 71.11± 0.97 77.00± 0.30 81.99± 0.52 69.50± 0.90 79.00± 0.50
(II) 83.54± 0.55 71.76± 0.48 N/A 82.26± 0.88 72.68± 0.27 79.95± 0.23
(III) 83.77± 0.72 73.21± 0.66 78.97± 1.05 N/A N/A N/A
(IV) 84.65± 0.52 74.20± 0.73 79.18± 0.56 84.30± 0.53 75.12± 0.22 80.46± 0.27

table 1, MemGAT and MemGCN consistently outperforms GAT and GCN by a significant margin
and is competitive to current state-of-the-art algorithms for graph learning. In particular, on the web
network datasets, MemGCN improves GCN with a relative accuracy gain of over 50% while using
the same network depth, and outperforms GCNII, which uses deep architectures (16 and 32 layers)
on these datasets. Moreover the gain of using edge weights appears marginal on the web datasets,
suggesting that the incorporation of memory component is highly beneficial. Results from random
split experiments demonstrate that memory augmented architectures have fairly stable performance.

Ablation study We analyze the contribution of different components of MemGAT or MemGCN
in a progressive way, with (I) backbone GNN (original GAT or GCN) (II) backbone GNN with
edge weights. (III) backbone GNN with edge weights and skip connections. (IV) full MemGAT or
MemGCN, which corresponds to adding memory component to the setup in (III). Table 3 records
results on the citation datasets. The results demonstrate significant improvement provided by incorpo-
rating the memory component.

6 CONCLUSIONS

We introduced memory augmentation, a framework that extends GNNs with a memory component
that aims at incorporating global information of the graph. Our method has the advantage of
stronger expressive power than GNNs based on LUMP protocol and is applicable to standard GNN
architectures like GAT and GCN. Experimental results reflect our theoretical motivations.

REFERENCES

Yiqun Cao, Tao Jiang, and Thomas Girke. A maximum common substructure-based algorithm for
searching and predicting drug-like compounds. Bioinformatics, 24(13):i366–i374, 2008.

Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. Simple and deep graph
convolutional networks. arXiv preprint arXiv:2007.02133, 2020.

Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accurate deep network
learning by exponential linear units (elus). arXiv preprint 1511.07289, 2015.

Nima Dehmamy, Albert-László Barabási, and Rose Yu. Understanding the representation power of
graph neural networks in learning graph topology. In Advances in Neural Information Processing
Systems, pp. 15413–15423, 2019.

Claire Donnat, Marinka Zitnik, David Hallac, and Jure Leskovec. Learning structural node embed-
dings via diffusion wavelets. In Proceedings of the 24th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, pp. 1320–1329, 2018.

David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bombarell, Timothy Hirzel, Alán
Aspuru-Guzik, and Ryan P Adams. Convolutional networks on graphs for learning molecular
fingerprints. In Advances in neural information processing systems, pp. 2224–2232, 2015.

Vikas K Garg, Stefanie Jegelka, and Tommi Jaakkola. Generalization and representational limits of
graph neural networks. arXiv preprint arXiv:2002.06157, 2020.

9

Under review as a conference paper at ICLR 2021

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward
neural networks. In Yee Whye Teh and Mike Titterington (eds.), Proceedings of the Thirteenth
International Conference on Artificial Intelligence and Statistics, volume 9 of Proceedings of
Machine Learning Research, pp. 249–256, Chia Laguna Resort, Sardinia, Italy, 13–15 May 2010.
PMLR. URL http://proceedings.mlr.press/v9/glorot10a.html.

Yves Grandvalet and Yoshua Bengio. Semi-supervised learning by entropy minimization. In Advances
in neural information processing systems, pp. 529–536, 2005.

Alex Graves, Greg Wayne, and Ivo Danihelka. Neural turing machines. arXiv preprint
arXiv:1410.5401, 2014.

Jonathan L Gross and Thomas W Tucker. Topological graph theory. Courier Corporation, 2001.

Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In Proceedings
of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining, pp.
855–864, 2016.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs. In
Advances in neural information processing systems, pp. 1024–1034, 2017.

Amir Hosein Khasahmadi, Kaveh Hassani, Parsa Moradi, Leo Lee, and Quaid Morris. Memory-
based graph networks. In International Conference on Learning Representations, 2020. URL
https://openreview.net/forum?id=r1laNeBYPB.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
arXiv preprint arXiv:1609.02907, 2016.

Johannes Klicpera, Aleksandar Bojchevski, and Stephan Günnemann. Combining neural networks
with personalized pagerank for classification on graphs. In International Conference on Learning
Representations, 2019a. URL https://openreview.net/forum?id=H1gL-2A9Ym.

Johannes Klicpera, Stefan Weiß enberger, and Stephan Günnemann. Diffusion improves
graph learning. In Advances in Neural Information Processing Systems 32, pp. 13354–
13366. Curran Associates, Inc., 2019b. URL http://papers.nips.cc/paper/
9490-diffusion-improves-graph-learning.pdf.

Johannes Klicpera, Janek Groß, and Stephan Günnemann. Directional message passing for molecular
graphs. In International Conference on Learning Representations, 2020. URL https://
openreview.net/forum?id=B1eWbxStPH.

Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolutional networks for
semi-supervised learning. In Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

Ziqi Liu, Chaochao Chen, Longfei Li, Jun Zhou, Xiaolong Li, Le Song, and Yuan Qi. Geniepath:
Graph neural networks with adaptive receptive paths. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 33, pp. 4424–4431, 2019.

Chen Ma, Liheng Ma, Yingxue Zhang, Jianing Sun, Xue Liu, and Mark Coates. Memory augmented
graph neural networks for sequential recommendation, 2019a.

Jiaqi Ma, Weijing Tang, Ji Zhu, and Qiaozhu Mei. A flexible generative framework for graph-based
semi-supervised learning. In Advances in Neural Information Processing Systems 32, pp.
3281–3290. Curran Associates, Inc., 2019b. URL http://papers.nips.cc/paper/
8590-a-flexible-generative-framework-for-graph-based-semi-supervised-learning.
pdf.

Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, and Yaron Lipman. Provably pow-
erful graph networks. In Advances in Neural Information Processing Systems 32, pp.
2156–2167. Curran Associates, Inc., 2019. URL http://papers.nips.cc/paper/
8488-provably-powerful-graph-networks.pdf.

10

http://proceedings.mlr.press/v9/glorot10a.html
https://openreview.net/forum?id=r1laNeBYPB
https://openreview.net/forum?id=H1gL-2A9Ym
http://papers.nips.cc/paper/9490-diffusion-improves-graph-learning.pdf
http://papers.nips.cc/paper/9490-diffusion-improves-graph-learning.pdf
https://openreview.net/forum?id=B1eWbxStPH
https://openreview.net/forum?id=B1eWbxStPH
http://papers.nips.cc/paper/8590-a-flexible-generative-framework-for-graph-based-semi-supervised-learning.pdf
http://papers.nips.cc/paper/8590-a-flexible-generative-framework-for-graph-based-semi-supervised-learning.pdf
http://papers.nips.cc/paper/8590-a-flexible-generative-framework-for-graph-based-semi-supervised-learning.pdf
http://papers.nips.cc/paper/8488-provably-powerful-graph-networks.pdf
http://papers.nips.cc/paper/8488-provably-powerful-graph-networks.pdf

Under review as a conference paper at ICLR 2021

Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen, Gaurav
Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural networks. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pp. 4602–4609, 2019.

Kenta Oono and Taiji Suzuki. Graph neural networks exponentially lose expressive power for
node classification. In International Conference on Learning Representations, 2020. URL
https://openreview.net/forum?id=S1ldO2EFPr.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-
performance deep learning library. In Advances in Neural Information Processing Systems 32, pp.
8024–8035. Curran Associates, Inc., 2019. URL http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.
pdf.

Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. Geom-gcn: Geometric
graph convolutional networks. In International Conference on Learning Representations, 2020.
URL https://openreview.net/forum?id=S1e2agrFvS.

John W Raymond and Peter Willett. Maximum common subgraph isomorphism algorithms for the
matching of chemical structures. Journal of computer-aided molecular design, 16(7):521–533,
2002.

Ryoma Sato, Makoto Yamada, and Hisashi Kashima. Approximation ratios of graph neural networks
for combinatorial problems. In Advances in Neural Information Processing Systems, pp. 4083–
4092, 2019.

Ryoma Sato, Makoto Yamada, and Hisashi Kashima. Random features strengthen graph neural
networks, 2020.

F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini. The graph neural network
model. IEEE Transactions on Neural Networks, 20(1):61–80, 2009.

Jürgen Schmidhuber. Learning to control fast-weight memories: An alternative to dynamic recurrent
networks. Neural Computation, 4(1):131–139, 1992.

Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Günnemann. Pitfalls
of graph neural network evaluation. arXiv preprint arXiv:1811.05868, 2018.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: A simple way to prevent neural networks from overfitting. Journal of Machine
Learning Research, 15(56):1929–1958, 2014. URL http://jmlr.org/papers/v15/
srivastava14a.html.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In International Conference on Learning Representations,
2018. URL https://openreview.net/forum?id=rJXMpikCZ.

Jason Weston, Sumit Chopra, and Antoine Bordes. Memory networks. arXiv preprint
arXiv:1410.3916, 2014.

Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, and Stefanie
Jegelka. Representation learning on graphs with jumping knowledge networks. In Jennifer Dy and
Andreas Krause (eds.), Proceedings of the 35th International Conference on Machine Learning,
volume 80 of Proceedings of Machine Learning Research, pp. 5453–5462, Stockholmsmässan,
Stockholm Sweden, 10–15 Jul 2018. PMLR. URL http://proceedings.mlr.press/
v80/xu18c.html.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2019. URL https:
//openreview.net/forum?id=ryGs6iA5Km.

11

https://openreview.net/forum?id=S1ldO2EFPr
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://openreview.net/forum?id=S1e2agrFvS
http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html
https://openreview.net/forum?id=rJXMpikCZ
http://proceedings.mlr.press/v80/xu18c.html
http://proceedings.mlr.press/v80/xu18c.html
https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=ryGs6iA5Km

Under review as a conference paper at ICLR 2021

Jiaxuan You, Rex Ying, and Jure Leskovec. Position-aware graph neural networks. In Kamalika
Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the 36th International Conference
on Machine Learning, volume 97 of Proceedings of Machine Learning Research, pp. 7134–7143,
Long Beach, California, USA, 09–15 Jun 2019. PMLR. URL http://proceedings.mlr.
press/v97/you19b.html.

Jiawei Zhang and Lin Meng. Gresnet: Graph residual network for reviving deep gnns from suspended
animation. ArXiv, abs/1909.05729, 2019.

Shuo Zhang and Lei Xie. Improving attention mechanism in graph neural networks via cardinality
preservation. International Joint Conferences on Artificial Intelligence, 2020.

Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, and Danai Koutra. Generaliz-
ing graph neural networks beyond homophily, 2020.

A APPENDIX

A.1 EXPERIMENTAL DETAILS

Dataset summary An overview of the characteristics of the datasets we used for our experiments
is given in Table 4.

Table 4: Summary of the datasets used in our experiments.

Cora Citeseer Pubmed Actor Cornell Texas Wisconsin

Nodes(# Graphs) 2708 (1) 3327 (1) 19717 (1) 7600 (1) 183 (1) 183 (1) 251 (1)
Edges 5429 4732 44338 33544 295 309 499
Features/Node 1433 3703 500 931 1703 1703 1703
Classes 7 6 3 5 5 5 5
Training Nodes 140 120 60 60% 60% 60% 60%
Validation Nodes 500 500 500 20% 20% 20% 20%
Test Nodes 1000 1000 1000 20% 20% 20% 20%

For Actor, Cornell, Texas and Wisconsin datasets, we used the available split given in
https://github.com/graphdml-uiuc-jlu/geom-gcn/tree/master/splits to ensure fair comparison.

Backbone architecture Here we specify setups of the backbone architectures.

MemGAT We mostly adopted the original architecture of GAT. Specifically, we used a two-layer
GAT across all tasks. For all but the PubMed dataset, the first layer consists of 2 attention heads and
256 features each. The second layer is used for classification with a single attention head that computes
C features (with C being number of classes), followed by a softmax activation. For Pubmed dataset,
we used 8 output attention heads as in Veličković et al. (2018). For the edge weights, we picked ψij =

Sij where S is the edge weight matrix, and φ(l) (h, h′) = LeakyRelu
(
Sij〈a,

[
W (l)h ‖W (l)h′

]
〉
)
.

The nonlinear function σ(l) was chosen identically across all models and all layers as the ELU
function Clevert et al. (2015), with the exception that we did not use nonlinear transform of the input
features.
MemGCN We used a two-layer GCN across all tasks with 256 hidden features.

Training We applied L2 regularization with tuning parameter 0.001 and a dropout Srivastava et al.
(2014) operation of probability 0.6 to each layer’s inputs for all transductive tasks. We applied entropy
regularization Grandvalet & Bengio (2005) with tuning parameter 0.6 for Cora and Citeseer datasets
(but not for the ablation study) and 0.1 for Pubmed dataset. All models used Glorot initialization
Glorot & Bengio (2010) and cross entropy loss optimized using Adam Kingma & Ba (2014) with
an initial learning rate of 0.01 for Pubmed dataset, and 0.005 for all the other datasets. We used an
early stopping strategy on both the cross-entropy loss and accuracy on the validation nodes, with a
patience of 100 epochs.

12

http://proceedings.mlr.press/v97/you19b.html
http://proceedings.mlr.press/v97/you19b.html
https://github.com/graphdml-uiuc-jlu/geom-gcn/tree/master/splits

Under review as a conference paper at ICLR 2021

Optimal hyperparameters We report the optimal choice of hyperparameters in table 5.

Table 5: Optimal choice of hyperparameters, namely the incorporation of skip connection, the
number of random walk steps K, and the type of transition matrix T . We tune K over the set
{0, 1, 2, 3, 4, 5, 10, 20, 30}.

MemGAT MemGCN

Dataset Cora Citeseer Pubmed Cora Citeseer Pubmed

skip connection 3 3 3 7 7 7
K 30 30 0 3 1 30
T Asym Asym Asym Asym Asym Asym

MemGAT MemGCN

Dataset Actor Cornell Texas Wisconsin Actor Cornell Texas Wisconsin

skip connection 3 3 3 3 3 3 3 3
K 0 3 3 3 3 3 0 3
T Asym Asym Asym Asym Asym Asym Asym Asym

Implementation We implemented MemGAT based on the open source PyTorch Paszke et al. (2019)
implementation of GAT Veličković et al. (2018) at https://github.com/PetarV-/GAT,
and MemGCN based on the open source PyTorch implementation of GCN (Kipf & Welling, 2016) at
https://github.com/tkipf/pygcn,

A.2 PROOF OF THEOREMS

Proof of theorem 1. We show by induction on l, for l = 0 it follows trivially sinceXv = X ′f(v),∀v ∈
V , suppose for l = L we have h(L)v = h

(L)′
f(v),∀v ∈ V , for l = L + 1, consider any v ∈ V , since

STAR(v) is isomorphic to STAR(f(v)) and the map f is surjective, it follows that the multiset
representation of the feature vector XNv is identical to X ′Nf(v)

, thus an unordered aggregation

function would produce h̃(L)v = h̃
(L)′
f(v), we conclude that h(L+1)

v = COMBINE
(
h
(L)
v , h̃

(L)
v

)
=

COMBINE
(
h
(L)′
f(v), h̃

(L)′
f(v)

)
= h

(L+1)′
f(v) .

Proof of lemma 1. For part (i), under condition C1 there exists a parameter (hereafter referred to as
identifier) ϑ∗0 = Θ(X) that identifies every bounded subset (with subset in the sense of multiset) of
X up to distributional equivalence. The map Θ hence maps feature set to an "identifier" parameter.
Since X is a countable subset of some euclidean space, it’s easy to find an element m0 /∈ X , and
we let X̄ = X

⋃
{m0}, it follows immediately that if we augment every {{X}} into {{X

⋃
{m0}}},

the identifier ϑ̃∗0 = Θ(X̄) over X̄ identifies {{X
⋃
{m0}}} and {{X ′

⋃
{m0}}} for any {{X}} 6= {{X ′}},

since m0 always has a multiplicity of one and is distinct from all elements in X .

The injectivity is therefore defined in the following sense: for any multiset
{{
X̃
}}

satisfying:

(i) Its underlying set X̃ represented as X̃ = {m0}
⋃
X whereX is a subset ofX with bounded

size.

(ii) The multiplicity of m0 is restricted to be one, and the multiplicities of other elements are
uniformly bounded from above.

Then under identifier ϑ̃∗0, GNNϑ̃∗0

({{
X̃
}})

= GNNϑ̃∗0

({{
X̃ ′
}})

if and only if
{{
X̃
}}

=
{{
X̃ ′
}}

,
which is equivalent to {{X}} = {{X ′}}. Applying the previous argument iteratively, we obtain
identifier for each layer ϑ̃∗l , l ∈ N and injectivity could be defined in similar ways. Part (ii) is a
consequence of part (i) in that we choose X and X ′ to be the corresponding graph feature of G and
G′.

13

https://github.com/PetarV-/GAT
https://github.com/tkipf/pygcn

Under review as a conference paper at ICLR 2021

Proof of theorem 2. By lemma 1, the output of the second MemGAT layer would be different for
h
(2)
v , h

(2)′
f(v),∀v ∈ V , since the underlying feature space is countable, there exists a nonlinear function

σ satisfying σ
(
h
(2)
v

)
< 0.5, σ

(
h
(2)′
f(v)

)
≥ 0.5,∀v ∈ V . Picking the readout function as σ finishes

the proof. Note also that this function could be approximated by universal approximators like multi
layer perceptrons.

Proof of corollary 1. We first show for GCN. Note that GCN has several different definitions, we
will follow the general definition in Dehmamy et al. (2019) without bias term:

H(l+1) = σ
(
τ(A)H(l)W

)
(5)

where H(l) is the matrix stacked by hidden representations of each node in the lth layer, and
τ : RN×N 7→ RN×N is a matrix transformation operation. With D = diag(AIN), two popular
forms of GCN are defined as

Kipf & Welling (2016) uses τ1(A) = (D + In)−1/2(A+ IN)(D + IN)−1/2, and σ is RELU.

Xu et al. (2019) uses τ2(A) = (D + In)−1(A + IN) which reduces to mean pooling, and σ is
RELU.

The fact that GCN formulated by τ2 satisfied condition C1 is directly implied by Xu et al. (2019,
Corollary 8). But for GCN induced by τ1, the identifiability result need not hold since the aggregation
process of each node v ∈ V is determined not solely by its neighborhood information, but also by the
degree of its neighborhoods which could be arbitrary. Nevertheless, we could still gain insights from
this (more popular) design by noting that with respect to regular graphs, the identifiability issue of
both formulations are the same, and are mitigated via memory augmentation.
For GAT, consider the worst case of two multisets with their underlying set identical with a single
element but different in multiplicities. In this case, regardless of the attention mechanism, GAT is
identical to mean pooling. Hence it suffices to choose the identifier obtained from (Xu et al., 2019,
Corollary 8) over mean pooling that makes GAT identify multisets up to distributional equivalence.

A.3 ON THE EFFECT OF NUMBER OF MEMORY NODES

In this section we present a study on training MemGAT on the Cora dataset using different number of
memory nodes M . The tuning range is {1, 3, 5, 7, 9, 11, 13, 15, 17}. The rest of the hyperparameters
are the same as the one reported in table 1. The results are reported in table 6. The result shows little
performance difference in using different number of memory nodes.

A.4 ARCHITECTURES UNSUITABLE FOR MEMORY AUGMENTATION

GNN architectures that utilize max pooling for aggregating operation may not identify distributionally
equivalent instances (Xu et al., 2019, Corollary 9), hence the max-pooling version of GraphSAGE
(Hamilton et al., 2017) is not a proper backbone architecture for memory augmentation. GIN (Xu et al.,
2019) uses sum pooling that is strictly more expressive than mean pooling hence satisfies condition
C1. However, summing up feature vectors of the whole graph increases numerical instability and is
empirically found hard to train.

A.5 COMPARISONS WITH OTHER MESSAGE PASSING VARIANTS

Comparison with CPCGNN CPCGNN Sato et al. (2019) utilizes a consistent port numbering
that numbers the neighbors of each node v by an integer i ∈ [degree(v)], according to a port
numbering function p such that p(v, i) = (u, j) identifies the neighboring node u labeled i and a port
number j ∈ [degree(u). The port numbering rule is said to be consistent if p(p(v, i)) = (v, i) for
any valid (v, i) pairs. CPCGNN allows node v sending messages to node u depending on both its
own feature and the port number of u, thus forms a certain kind of locally ordered message passing
framework that is strictly more expressive than locally unordered GNNs. However was shown in

14

Under review as a conference paper at ICLR 2021

a1

a2 a3

a4

a5a6

1

2

2
1

1
2

1

1

2

2

1

2

Ga

b1

b2

b3

1

2

1
2

2
1

Gb

Figure 4: Consistent port numberings for Ga and Gb that makes them locally distinguishable

a1

a2 a3

a4

a5a6

1

2

2
1

2
1

2

1

1

2

2

1

Ga

b1

b2

b3

1

2

2
1

2
1

Gb

Figure 5: Consistent port numbering for Ga and Gb that fails to distinguish a1, a4 and b1

Garg et al. (2020) that since consistent port numbering functions are non-unique, there exists some
port numbering functions that does not strengthen expressiveness, we illustrate this phenomenon
using the construction in figure 4 and figure 5. Figure 4 shows a port numbering that makes a1, a4
receiving different messages with that of b1. Meanwhile in figure 5 the port numbering can not
distinguish a1, a4 and b1. Finding a consistent port numbering that succeeds in distinguishing local
structures is yet another challenging task, MemGAT thus offers an easier choice when the two graphs
have different global features.

Table 6: Study on number of memory
nodes on the Cora dataset using Mem-
GAT model. Results (%mean ±%stan-
dard deviation test set accuracy) are com-
puted over 100 trials

M Performance
1 84.60± 0.58
3 84.62± 0.58
5 84.70± 0.52
7 84.64± 0.52
9 84.71± 0.54
11 84.69± 0.67
13 84.78± 0.59
15 84.78± 0.59
17 84.76± 0.60

Comparison with DimeNet DimeNet Klicpera et al.
(2020) is a directional message passing model that ex-
ploits the relative layout of local neighborhood through
angles. Specifically DimeNet computes node embedding
h
(l)
v as the summation of its incoming message embed-

dings h(l)v =
∑
u∈Nv

m
(l)
uv, and the update rule is defined

as

m(l)
uv = fupdate

m(l−1)
uv ,

∑
w∈Nv\u

fintegrate

(
m(l−1)
wv , e(uv), a(wu,uv)

)
(6)

where fintegrate and fupdate are analogs of aggregate and
combine as in LUMP protocol, e(uv) is a representation
vector measuring the distance from u to v, and a(wu,uv)
combines ∠wuv with the distance fromw to u. The choice
of metric is problem dependent, and we presume a suitable
one exists. Consider the following construction:

15

Under review as a conference paper at ICLR 2021

a1 a2

a3a4

a5 a6

a7a8

Ga

b1 b2

b3b4

Gb

Figure 6: Two graphs Ga = (Va, Ea) and Gb = (Vb, Eb) that DimeNet cannot distinguish locally:
for any V ∈ {Va, Vb} and all w, u, v ∈ V satisfying (u,w) ∈ E, (u, v) ∈ E, the graph is constructed
such that ∠wuv = π/2 and for any (u, v) ∈ E, the distance between u and v is identical.

Figure 6 shows a construction that DimeNet fails to distinguish with the local isomorphism map
defined as f(a1) = f(a5) = b1, f(a2) = f(a6) = b2, f(a3) = f(a7) = b3, f(a4) = f(a8) = b4,
while MemGAT is able to distinguish them.

The above contrived examples suggest that the optimal choice of GNN architecture shall be problem
dependent.

A.6 EXPERIMENT ON THE PPI DATASET

A.6.1 EXPERIMENTAL SETUP

We evaluated the results of MemGAT and MemGCN in the PPI dataset. For MemGAT, we used
a three-layer network architecture, the first two layers consist of 4 attention heads computing 256
features, and a final layer uses 4 attention heads computing 121 features each. For MemGCN, we
used a two-layer network with 256 hidden features. Since the construction process of PPI dataset
already includes diffusion like mechanisms, and was previously reported to have no improvements
Klicpera et al. (2019b), we did not apply diffusion in this experiment. The training setup is identical
to those used in transductive tasks.

Baseline comparisons Aside from two backbone architectures, we report GCN/GAT version of
JK-Net Xu et al. (2018) with the best result (LSTM aggregation) and GeniePath Liu et al. (2019) that
utilizes attention style design in the breadth search phase.

A.6.2 RESULTS

We present results on the PPI dataset on table 7. The result provides strong evidence that incorporating
global graph information significantly improves node classification. Moreover, since diffusion is not
used, the captured local structure is the same with that of backbone architectures, and smaller than
the other variants. Therefore we think the contribution of memory mechanism is significant in this
case, suggesting evidence that the global information helps for inductive node classification.

16

Under review as a conference paper at ICLR 2021

Table 7: Summary of the results (% test set micro-averaged F1 score) for the inductive setting,
performance metric is averaged over 100 trials, with standard deviations also reported

Algorithm PPI
GCN Hamilton et al. (2017) 50.00
GraphSage(LSTM) Veličković et al. (2018) 76.8
GAT Veličković et al. (2018) 96.80± 0.20
JK-LSTM(GCN)Xu et al. (2018) 81.8
JK-LSTM(GAT)Xu et al. (2018) 97.60± 0.7
GeniePathLiu et al. (2019) 97.9

MemGAT(ours) 98.47± 0.15
MemGCN(ours) 88.01± 0.40

17

	Introduction
	Representation limits of locally unordered message passing
	Our model
	Memory augmentation
	Two canonical designs: MemGAT and MemGCN

	Other Related Work
	Experiments
	Experimental setup
	Results

	Conclusions
	Appendix
	Experimental details
	Proof of theorems
	On the effect of number of memory nodes
	Architectures unsuitable for memory augmentation
	Comparisons with other message passing variants
	Experiment on the PPI dataset
	Experimental setup
	Results

