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ABSTRACT

Large Language Models (LLMs) often produce outputs that – though plausible –
can lack consistency and reliability, particularly in ambiguous or complex scenar-
ios. Challenges arise from ensuring that outputs align with both factual correct-
ness and human intent. This is problematic in existing approaches that trade im-
proved consistency for lower accuracy. To mitigate these challenges, we propose
a novel game-theoretic approach to enhance consistency and reliability during the
decoding stage of LLM output generation. Our method models the decoding pro-
cess as a multistage Bayesian Decoding Game. The strategic decoding process
dynamically converges to a consensus on the most reliable outputs without hu-
man feedback or additional training. Remarkably, our game design allows smaller
models to outperform much larger models through game mechanisms (e.g. 78.1
LLaMA13B vs 76.6 PaLM540B), as well as integrating various LLM strategies
and models, demonstrating the potential of game-theoretic tools to improve the
truthfulness and reliability of LLMs.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated extraordinary capabilities in tasks such as fac-
tual question answering, fact-checking, and open-ended text generation (Brown et al., 2020; Radford
et al., 2021). Yet, like Damocles’ sword, this remarkable progress comes with a hidden price – as
these generative models increase in complexity and scale, resulting in outputs that, while plausible,
may be factually incorrect or subtly misleading (McKenzie et al., 2023). This dilemma – whether
manifesting as an inevitable artifact of the model’s optimization process or as unintended halluci-
nations (Banerjee et al., 2024; Bai et al., 2024) – poses a fundamental challenge, often outpacing
the ability of human judgment to accurately assess the fidelity and truthfulness of the generated
content (Leike et al., 2018).

Traditional approaches attempt to optimize model outputs through human feedback (e.g.,
RLHF (Christiano et al., 2017; 2018; Saunders et al., 2022; Markov et al., 2023)). However, hu-
man feedback, inherently constrained by limitations in interpretability (Singh et al., 2024) and the
challenge of reliably assessing the complex logical structures (Hendrik Kirchner et al., 2024) of
AI-generated content, cannot cope with increasingly complex reasoning (Casper et al., 2023; Leike
et al., 2018). In light of these challenges, the reliability of LLMs in collaborative and high-stakes
decision-making remains deeply uncertain and we pose the question:

How can we enable LLMs to systematically verify their outputs through strategic multi-agent
interactions, surpassing both single-agent reasoning and human evaluation limitations

To answer this question, we explore a game-theoretic approach by introducing a Verifier, serving
as a proxy for human judgment to systematically assess generators as outlined in Fig. 1. The mo-
tivation for this approach is threefold: (1) LLMs are increasingly employed to assist in evaluating
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Figure 1: Illustration of strategic decoding through a Bayesian game (BDG) for cat sound decoding
(Q.) with candidates (A.), with initial rankings (left) and convergence dynamics (right) between Gen-
erator (solid) and Verifier (dashed). The ambiguity in answers is resolved through game-theoretic
(not ad-hoc interaction, i.e., debate) collaboration (consensus) between arbitrary LLMs based on
correctness and confidence (not black-box generation).

their own outputs, offering a more scalable alternative to solely relying on human feedback (Bai
et al., 2023; Saunders et al., 2022; Markov et al., 2023; Mu et al., 2024); (2) the flexibility to ad-
just game-theoretic objectives – such as utilities and policies between the generator and verifier –
allows us to analyze latent decoding consistency and legibility as a function (Jacob et al., 2024; Hen-
drik Kirchner et al., 2024); and (3) in scenarios where human guidance is constrained, structured AI
interactions can effectively elicit and refine latent knowledge, thereby enhancing model reliability,
and generation consistency (Christiano et al., 2021; Turpin et al., 2024).

Focus of the paper. Realistically, neither models nor humans can be expected to be perfectly cor-
rect or reliable. Thus, our work focuses on achieving consistency through systematic verification
and reliability through strategic interaction between LLMs calibrated on correctness and confidence
measures. We design a multi-step Bayesian Decoding Game with complex action spaces that en-
able generators and verifiers to iteratively refine their strategies. Through the proposed no-regret
optimization, our framework drives agents toward an equilibrium that ensures both consistency and
reliability. Our framework addresses two types of outputs that are challenging for existing methods:

1. Equilibrium-based Consistencies: Outputs where strategic interactions converge to equilib-
rium states that systematically validate correctness and reliability.

2. Game-emergent Inconsistencies: Subtle flaws game-theoretically exposed through strategic
agent interactions, surpassing human detection capabilities.

We formulate this verification process as a multi-step Bayesian Decoding Game with complex ac-
tion spaces (Fig. 2). In this game-theoretic framework, generators and verifiers engage in strategic
interactions: generators sample outputs based on latent model knowledge, while verifiers assess
these outputs. To enhance the efficiency and reliability of this process, we improve upon traditional
no-regret optimization through Markovian strategy updates and σi-separation constraints, enabling
faster convergence to optimal equilibrium while maintaining clear separation between correct and
incorrect outputs.

2 A BAYESIAN DECODING GAME (BDG)

2.1 PRELIMINARIES: MODELING LLM DECODING AS A SIGNALING GAME

To begin with, we define LLM decoding as a signaling game. The simplest form of a signaling
game (Gibbons et al., 1992) can be described as follows: the generator receives a signal (Correct
or Incorrect) and then takes a strategy (choose an answer implied by the signal from the candidate
answer set) to transmit the signal information to the verifier. The verifier has to make a judgment
(Correct or Incorrect) of the signal based on the strategy of the generator. If the judgment matches
the signal, both the generator and verifier receive utility 1, and otherwise 0; in LLM decoding, the
signaling game has been used to fine-tune the LLMs to output the best possible answer(s) under
equilibrium. Equilibrium Consensus Game (ECG) proposed by (Jacob et al., 2024) is a pioneer-
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Figure 2: Overview of the Bayesian Decoding Game under a signaling game structure. Envi-
ronment (Env) sends private signals to generator (GC/I ), who generates candidates (y1, ..., yn) for
information transmission. The verifier makes judgments (C/I) without observing original signals,
enabling strategic decoding through Markovian Strategy Update (dashed) until equilibrium.

ing work on this problem, but like all existing consensus game frameworks, it fails to address a
fundamental challenge: the Collusion in a Nash Equilibrium.

Theorem 1. More than one (mixed) strategy 1 Nash Equilibrium exists for this game.

Definition 1. (Bonjour et al., 2022) Collusion in a competitive multi-agent game occurs when two
or more agents cooperate covertly to the disadvantage of others.

Collusion in a Nash Equilibrium (NE). Thm. 1. is both a guarantee and a curse; the existence of
an equilibrium ensures convergence, but the presence of multiple equilibria raises the risk of unde-
sirable outcomes under collusion, where low-quality output may incorrectly align with successful
verification. The proof and explanation are in Appx. D.1.

Example. In a signaling game, given the query “What is the capital of Switzerland?”, one
Collusive Nash Equilibrium can be given by a Correct signal, generator chooses “Zurich”,
verifier judges {Correct} signal, generator chooses “Bern”, verifier judges {Incorrect} which
means that the verifier makes judgments only conditioning on the generator’s choice pattern
rather than factual correctness. Under this equilibrium, the more plausible but incorrect answer
(Zurich) is validated while the correct answer (Bern) is rejected.

Algorithmic collusion has been studied quite extensively in literature including (Xu & Zhao, 2024;
Koirala & Laine, 2024; Sadoune et al., 2024). However, only requiring the game to converge to a
Nash Equilibrium is not enough to avoid collusion, therefore BDG introduces a Separating Equi-
librium for improved consistency.

2.2 AN OPTIMAL EQUILIBRIUM FOR DECODING GAME

Collusion Avoidance with Separating Equilibrium. To ensure that both the generator distin-
guishes between the correct and incorrect signal and the verifier verifies answers correctly, we de-
signed the BDG and convergence algorithm to constrain the equilibrium to be Separating Equilib-
rium (SE).

Definition 2. (Separating Equilibrium (Black et al., 2012)) A Separating Equilibrium (SE) is a type
of Perfect Bayesian Equilibrium (PBE) Appx. C where agents with different types (signal) choose
different strategies.

Definition 3. (Decoding Game) The Decoding Game is an alternative version of the signaling game
in §2.1, and its payoff is determined by the preference ordering of each player, Oi ∈ SY , i ∈ {G,V },

1mixed strategies refer to a probability distribution over all strategies rather than committing to one strategy
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where |Y| is the cardinality of the candidate set Y and SY is the set of all permutations of elements
in Y . We define the utility of the decoding game as

uG(OG, OV ) = uV (OG, OV ) = 1(OG=OV ) (1)

such that 1(OG=OV )(·, ·) is the indicator function at OG = OV . Oi is the preference relation
indicated by players’ strategy, sG(y | x, correct, bS), sV (correct | x, y, bV ):

sG(yi | x, correct, bS) ≥ sG(yj | x, correct, bS) ⇐⇒ yi ≿G yj

sV (correct | x, yi, bV ) ≥ sV (correct | x, yj , bV ) ⇐⇒ yi ≿V yj
(2)

bG = bG(y | x, correct) is the generator’s belief of the probability of y being judged correctly by the
verifier, and bV = bV(correct | x, y) is the verifier’s belief of the probability of y being associated
with the correct environment signal received by the generator. sG, sV are the strategies for the
generator and verifier, respectively.2 With the preference relation, we determine OG, OV , and the
equilibrium is reached when preference relations align.

To avoid collusion, we need to enforce an σi-Separated condition for the equilibrium, which is
defined as

Definition 4. (σi-Separated Equilibrium (σi-SE) ) For both the generator and verifier, given con-
stants σG, σV , the generator’s equilibrium strategy is said to be σG-separated, i ∈ {G,V } if and
only if minyi∈Y ∥sG(yi | x, correct, bS)− sG(yi | x, incorrect, bS)∥ > σG, whereas for the verifier,
we have minyi∈Y sV (correct | x, yi, bS)− sV (incorrect | x, yi, bS)∥ > σV

Example. The σG-separated constraint enforces that the generator’s strategies for different sig-
nals must maintain an L1 distance of at least σG, meaning its output distributions are distinctly
different when receiving correct versus incorrect signals. Similarly, σV -separation ensures that
the verifier’s judgment probabilities maintain a clear quantitative distinction of at least σV be-
tween different outputs.

2.3 BDG OPTIMIZATION: NO-REGRET OPTIMIZATION FOR EQUILIBRIUM

No-Regret Optimization. Based on the Decoding Game in §2.2, we propose two strategy update
schedules to numerically achieve optimal convergence of σi-SE in Defi. 3., 4.. The multiplicity of
SE leads to convergence to suboptimal outcomes, necessitating the definition of an initial strategy
for each player. This “true” prior is denoted as s(1)V (· | x, y) and s

(1)
G (· | x, v) following (Jacob et al.,

2024).

Through repeated interactions and iterative policy refinement, no-regret learning approximates equi-
libria in large games. Our cumulative regret is defined as:

Reg
(T )
i :=

1

T

(
T∑

t=1

ui

(
s∗i , s

(t)
D ; bi

)
− ui

(
s
(t)
i , s

(t)
D ; bi

))
, (3)

where s∗i is the optimal hindsight strategy that maximizes this value. Rather than computing regret
at each iteration, s∗i is selected based on the time-averaged strategies.

In sequential games with private information and discrete choices, global regret minimization is
achieved by minimizing regret locally within each information set, given the finite nature of these
sets. For example, to minimize overall regret, the generator must minimize regret by selecting an
optimal mixed strategy sG, conditioned on the signal correctness received from the environment.
The verifier follows a similar procedure, updating its strategy with respect to each yi ∈ Y .

For this problem, the payoff is maximized when the generator and verifier align their strategies
and minimize their confidence difference. Thus, the strategy update should be directed towards
alignment with the opponent’s strategy based on the adaptability3 of players (Roughgarden, 2010).

2The generator’s strategy is a probability distribution over all candidates given the signal and the prompt,
and the verifier’s strategy is a probability distribution of correct and incorrectness given the prompt and the
chosen candidate; there is a difference between belief and strategy: the belief is the player’s belief in the
opponent’s strategy.

3An adaptive player is a function that inputs (1) the opponent i, (2) time t, (3) mixed strategies s1, . . . , st

produced by i, and (4) past strategies a1, . . . , at−1, and outputs a coupled strategy and belief.
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Markovian Strategy Update. To maximize the utility given by Eq. 1 the players update their
strategy based on the belief. Each player’s belief bi,t at time t of the opponent’s strategy is given by
the opponent’s strategy in period t− 1. We hence propose a Markovian strategy update schedule:

b
(t+1)
G (y | x, v) = s

(t)
V (v | x, y), b

(t+1)
V (v | x, y) = s

(t)
G (y | x, v) (4)

s
(t+1)
G (y | x, v) ∝ exp

{
1
2 b

(t+1)
G (y | x, v) + λG log s

(t)
G (y | x, v, b(t)G )

1/ (ηGt) + λG

}
(5)

s
(t+1)
V (v | x, y) ∝ exp

{
1
2 b

(t+1)
V (v | x, y) + λV log s

(t)
V (v | x, y, b(t)V )

1/ (ηVt) + λV

}
(6)

Initial policies are s
(1)
V (· | x, y), s(1)G (· | x, v), where ηi, λi, i ∈ {G,V }, δ are the learning rate

and stiffness hyperparameter and consistency bound. The two strategy update schedules we propose
show satisfactory convergence properties, and the stopping criteria are given by:

1. Preference Alignment: OG = OV .
2. Consistency: ∥sG(y | x, correct, bS)− aNV(correct | x, y, bV )∥ < δ.
3. Collusion Avoidance: satisfy σi-SE in Defi. 4.

Theorem 2. A Markovian update schedule for a Decoding Game converges to an optimal σi-
Separated Equilibrium.

The proof can be found in Appx. D.2. Under BDG’s utility and the design of the no-regret algorithm,
our method reaches σi-SE 30 times faster than the current state-of-the-art (Jacob et al., 2024) based
on Average Recall update with an accurate correctness alignment between the generator and verifier.
Table 1 and Appx. F illustrate the difference in game design between BDG and ECG.

2.4 BDG ANALYSIS: PROPERTIES AND BEHAVIOR

Equilibrium Properties. At σi-SE with signal distribution P(correct, incorrect) = (0.5, 0.5), we
analyze the separation characteristics induced by our no-regret optimization. According to the envi-
ronment, we label the n

2 most preferred candidates as correct, and the rest as incorrect. We denote
the candidate in each group as yi,C , yi,I , respectively. For candidate set Y with |Y| = n where
n mod 2 = 0, we characterize degree of separation between correct- and incorrect-ness by the
separation score:

|s(t)V (correct | x, yn
2
)− s

(t)
V (correct | x, yn

2 +1)|
This measure at t = 1 quantifies the verifier’s initial separation score between the least correct and
least incorrect candidates under the prior. When this value is small (when the verifier is ambiguous
about the correctness classification), the ambiguity is revealed and sorted through the preference
fluctuation during the strategic interaction with the Markovian update, in contrast to the Average
Recall update shown in Fig. 3 b (right corner). Our separating constraint enforces that the equi-
librium separation score is bounded below by the same parameter as in Defi. 4. under a rational
assumption, which is described by the proposition below

Proposition 1 Under any signal distribution environment such that P(correct, incorrect) = (p, 1−
p) s.t. p < 1 and the rationality condition that the equilibrium confidence scores is greater than
1
2 for correct candidates and less than 1

2 the incorrect candidates, the separation score is also
bounded below by the same parameter in Defi.4.

s∗V (correct | x, yk)− s∗V (correct | x, yk+1) ≥ σV (7)

if and only if the σi-separated condition is enforced. k is the least correct candidate and k + 1 is
the least incorrect candidate in equilibrium, determined by the candidate set cardinality and signal
distribution.

Prop. 1 exemplifies how σi-separated condition (Defi.4.) ensure that, in a decision-making envi-
ronment, correct and incorrect candidates can be properly segregated. Especially, our Markovian
updates maintain this separation while ensuring convergence, as demonstrated below. However,
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Figure 3: Convergence dynamics comparison between Separating Equilibrium (SE) and Nash
Equilibrium (NE). We track generator (G, solid lines) and verifier (V, dashed lines) rankings for
10 answer candidates. (a) BDG’s Markovian update achieves rapid convergence to SE within 100
iterations, with clear separation in rankings and consistent alignment between G and V. (b) ECG’s
Average-recall update (Jacob et al., 2024) converges to NE but exhibits persistent oscillations and
ranking ambiguity.

there is no such guarantee based on the Average Recall update in Table. 1 and Nash equilibrium of
Thm. 1., more details can be found in Appx. D.3. A comparison can be found in Fig. 3.

Reliable Behavior. The σi-SE in BDG prevents collusion through strategic separation which en-
sures reliable behaviors of LLMs and agents. In equilibrium, we examine both correctness alignment
between the generator and verifier and collusion prevention:

Intuition. At equilibrium, reliable behavior emerges from two mechanisms: the strategic sepa-
ration enforces a strict preference ordering that prevents collusion, while the reliability measure
ensures this preference translates to an optimal balance between strategic consistency and be-
havioral reliability.

Experts

Non-experts

Time 

Accuracy

Human Eva. w/o BDG or ECG

with BDG
with ECG

Human

Improve

Improve

(a) Convergence of BDG (b) Convergence of ECG

Generator Policy Entropy
Verifier Policy Entropy

Generator Policy Entropy
Verifier Policy Entropy

Figure 4: Left: Policy entropy dynamics of BDG vs ECG. (a) BDG exhibits initial exploration
followed by rapid stabilization, demonstrating efficient convergence to separating equilibrium. (b)
ECG shows continuous entropy decrease without stabilization, reflecting unstable agent interactions
seen in Fig. 3. Right: Performance Comparison. Experts, Non-Experts, and Game-Theoretic
Strategies (BDG and ECG) on time, accuracy. The evaluation is based on a user study (n=183)
where participants classified LLM-generated math solutions under three conditions (baseline, BDG-
guided, ECG-guided), with expertise levels determined by a 150s temporal threshold.

We analyze policy entropy dynamics between BDG and ECG to understand the equilibrium be-
haviorally. We evaluate convergence through policy entropy H(π) = −

∑
π(∗) log π(∗) which

measures agent strategy uncertainty. This metric captures both convergence efficiency (entropy re-
duction rate) and equilibrium stability (final entropy level) for generator and verifier policies. Fig. 4
shows how BDG achieves reliable separation: the entropy trajectories show rapid stabilization after
initial exploration, validating our game-theoretic framework and theoretical guarantees.
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3 EXPERIMENTS

Focus and Setting. We aim to answer the following questions: (1) What design choices enable
decoding games to improve language generation performance? (2) To what extent does our BDG
improve consistency? (3) To what extent does the BDG improve factual validity and reliability?

BDG focuses on improving the consistency and reliability of LLMs. However, consistency and re-
liability manifest themselves in various forms across different domains and dimensions, including
correctness, truthfulness, factuality, valid reasoning, value alignment, among others. We first as-
sess efficiency and reliability through a multidimensional comparison with another game-theoretic
method (Jacob et al., 2024) and several variants. Then, we evaluate performance on a diverse set
of LLMs used for real-world tasks: MMLU (Hendrycks et al., 2020b), ARC-Easy (E.), -Challenge
(C.) (Clark et al., 2018), RACE-High (H.) (Lai et al., 2017). It is important to note that BDG
is a game-theoretic decoding strategy and not a deliberation/training-based method like a prover-
verifier-game (PVG) (Hendrik Kirchner et al., 2024), or contrastive-objective based generation (Li
et al., 2022). Nevertheless, we demonstrate effectiveness through benchmarks in reasoning task:
GSM8K (Cobbe et al., 2021), medical taks: PubMedQA (Jin et al., 2019), MMLU-Medical (M.),
and ethical scenarios, including justice, virtue, deontology and utilitarianism in Ethics (Hendrycks
et al., 2020a), that BDG yields reliable improvements and demonstrates synergistic potential across
various scenarios.

Action Space in the Game. To define the action space in BDG, the generator selects from a finite
set of candidates Y . For multiple-choice tasks, Y directly corresponds to the given options. For
open-ended generative tasks, we construct Y by sampling candidates from the LLM’s distribution
PLLM(y | q, correct) using nucleus (Holtzman et al., 2019) and top-k (Fan et al., 2018) sampling
methods. This standardized action space allows BDG and benchmarks to be applied consistently
across different types of tasks while maintaining tractable strategy spaces.

Baselines and Models. For fair comparisons, following the setting and scores (Jacob et al., 2024),
we use LLaMA models (Touvron et al., 2023) (7B, 13B parameters) with 16-bit inference across all
experiments unless otherwise specified. On multiple-choice datasets, we employ: Generative Rank-
ing (G): Ranks candidates by PLLM(y | x, correct) following (Brown et al., 2020; Touvron et al.,
2023); Discriminative Ranking (D): Re-weights query-candidate pairs using π

(1)
D (correct | x, y)

based on (Jacob et al., 2024); Self-Contrastive Decoding (SCD): Utilizes π(1)
G for reweighting can-

didates (Jacob et al., 2024; Li et al., 2022); Equilibrium Consensus Game (ECG): Average Re-
call update with Nash equilibrium discriminator (x, y) by π∗

D(correct | x, y) (Jacob et al., 2024);
BDG update query-candidate pairs based on Markovian Strategy with SE discriminator (x, y) by
π∗
D(correct | x, y).

Prompting. Unless otherwise specified, the condition for the PLLM corresponds to the standard
zero-shot prompt (Jacob et al., 2024; Hendrycks et al., 2020b). Furthermore, we combine chain-of-
thought (CoT) (Wei et al., 2022), and few-shots setting (Wei et al., 2022) as orthogonal analysis.

3.1 GAME-THEORETIC DESIGN

Searching & Convergence Behavior. We have compared searching behaviors of BDG with the
most closely related method, the ECG (Jacob et al., 2024), in the multiple-choice question answering
(MCQA) task (Clark et al., 2018). Fig. 3 and 4 provide a visual case study. BDG demonstrates con-

Table 1: Comparison between ECG and BDG.
Criteria ECG: Equilibrium

Consensus Game
BDG: Bayesian
Decoding Game

Thm.

Strategy ER-update xi,t+1 =
xi,t +

1
2tΣ

t
0x−i,t

last-round belief up-
date bi,t = a−i,t−1

2

Convergence NE SE 3

Update Average Recall Markovian 3

Complexity O(n2) O(n log n) N/A
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Table 2: Comparison of inconsistency (InC.%) and improvements (Imp.%) between Accuracies of
G, ECG, and BDG.

Domain Model InC.% G ECG Imp.% BDG Imp.%

MMLU LLaMA-7B 69.0% 30.4 39.9 31.3% 40.5 33.2%
LLaMA-13B 60.6% 41.7 45.1 8.1% 46.9 12.5%

ARC-E. LLaMA-7B 56.1% 68.2 71.5 4.8% 75.3 10.4%
LLaMA-13B 46.1% 71.2 76.4 7.3% 78.1 9.7%

ARC-C. LLaMA-7B 65.9% 47.3 58.3 23.2% 59.6 26.0%
LLaMA-13B 59.1% 51.9 61.4 18.3% 62.2 19.8%

RACE-H. LLaMA-7B 62.0% 46.4 56.4 21.5% 57.7 24.4%
LLaMA-13B 58.8% 47.9 62.8 31.1% 60.3 25.9%

Average 59.7% 50.6 59.0 18.2% 60.1 20.2%

Table 3: Model consistency across different domains.
Domain Model G MI SCD D ECG BDG

MMLU LLaMA-7B 30.4 33.1 30.5 40.4 39.9 40.5
LLaMA-13B 41.7 41.8 41.7 41.9 45.1 46.9

ARC-E. LLaMA-7B 68.2 68.8 69.5 52.5 71.5 75.3
LLaMA-13B 71.2 71.5 73.0 65.0 76.4 78.1

ARC-C. LLaMA-7B 47.3 47.4 56.5 42.7 58.3 59.6
LLaMA-13B 51.9 52.1 59.3 48.5 61.4 62.2

RACE-H. LLaMA-7B 46.4 46.3 53.1 46.0 56.4 57.7
LLaMA-13B 47.9 48.4 58.9 55.1 62.8 60.3

sistent and reliable convergence. Conversely, the ECG exhibits prolonged and inconsistent searching
behavior. Despite continuous shifts in candidate selections, ECG fails to achieve stable convergence
with persistent disagreement between the generator and verifier. Tab. 1 highlights the improved
convergence properties of the BDG over the ECG.

Game-emergent Inconsistencies. We quantified the degree of inconsistency during the decoding
stage by analyzing the disagreement percentage between Generative (G) and Discriminative Rank-
ing (D) following (Jacob et al., 2024). The game-theoretic ECG and BDG reveal inherent model
inconsistencies with a 59.7% disagreement rate between them. In Tab. 2, G and D often yield con-
flicting results, indicating significant inherent inconsistencies during the decoding stage of genera-
tive models. These discrepancies can be effectively mitigated by our approach, specifically during
the decoding process, without the need for additional training. Tab. 2 shows that BDG consistently
outperforms both G and ECG, particularly in cases with higher disagreement rates. We achieve
superior consistency with higher correctness with fewer updates in each case Fig. 3.

Human vs. Game-Theoretic Detection We conducted a user study (n=183) evaluating mathemat-
ical assessment under three conditions: unassisted baseline, BDG-guided verification, and ECG-
guided verification. Performance metrics included solution accuracy and completion time, with par-
ticipants stratified into expert/non-expert groups based on empirically determined temporal thresh-
old (150s).

Fig. 4 reveals significant performance disparities between experts and non-experts, quantitatively
illustrating human evaluation limitations as generation complexity increases. Game-theoretic ap-
proaches, particularly BDG, enhance decoding effectively – without further free – maintaining
accuracy while closely aligning with human intent. BDG consistently improves accuracy across
non-experts and experts levels and significantly reduces sample identification time, outperforming
unassisted baseline and ECG across multiple dimensions. This also suggest its effectiveness in
bridging the expertise gap. Additional results about this finding are in provided in Appx. I.

3.2 CONSISTENCY BENCHMARKING: ACROSS DOMAINS WITH SMALLER MODELS

With “relatively easy” reasoning and comprehension tasks, we show superior performance compared
to baselines and other game-theoretic methods in Tab. 3 due to the efficient alignment of consistency.
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Table 4: The orthogonal enhancements with few shots.

Domain Model BDG
zero-shot few-shot

M
ed

ic
al PubMedQA LLaMA-7B 71.45 71.89

LLaMA-13B 74.00 74.47

MMLU-M. LLaMA-7B 51.35 52.90
LLaMA-13B 56.01 58.85

E
th

ic
s

Justice LLaMA-13B 52.27 53.15
Virtue LLaMA-13B 33.10 33.82
Deontology LLaMA-13B 52.41 53.01
Utilitarianism LLaMA-13B 65.35 66.75

Table 5: The reliability across different domains with CoT.
Domain Model Decoding Methods Game-theoretic

Greedy MI SCD D ECG BDG

GSM8K LLaMA-7B 10.8 14.7 13.4 15.0 15.1 15.8
LLaMA-13B 14.9 22.5 23.1 22.5 23.0 22.7

TruthfulQA LLaMA-7B 33.41 34.79 34.91 34.17 34.27 35.07
LLaMA-13B 33.05 36.30 34.61 39.05 38.63 40.01

In a broader comparison, our zero-shot LLaMA-13B (78.1, ARC-E.) outperforms larger models,
PaLM-540B model (76.6) (Chowdhery et al., 2023).

With more challenging reasoning and multitask understanding tasks, such as ARC-C, RACE-
H, and MMLU, we achieve the best equilibrium decoding with fewer rounds and higher accu-
racy. Our LLaMA-13B (46.9, MMLU; 57.7, RACE-H.) outperforms zero-shot GPT-3-175B (37.7,
MMLU) (Hendrycks et al., 2020b), LLaMA-65B (51.6, RACE-H.) (Touvron et al., 2023), and
PaLM-540B (49.1, RACE-H.) (Hendrycks et al., 2020b).

3.3 ORTHOGONAL ENHANCEMENTS FOR ROBUST DECODING

Datasets in Tab. 4, 5 involve challenging scenarios to test models’ reasoning abilities. We use these
benchmarks to study whether we can combine our approach with various orthogonal strategies.
Based on game theory, BDG does not conflict with the computationally intensive game mechanism
during training, nor does it conflict with CoT and few-shot variations. BDG shows enhanced perfor-
mance in more challenging scenarios in Table 5, establishing a highly novel direction in decoding
research. Furthermore, it achieves broader accuracy and robustness across datasets, underscoring its
adaptability and trustworthiness.

4 DISCUSSION

Game Design over ECG and PVG. BDG and ECG share the common goal of aligning genera-
tive models with human intentions to improve output reliability, yet they differ significantly in their
game design, achieving substantial gains with reduced computational overhead. While ECG utilizes
moving-average updates to foster consensus, often leading to unstable and fluctuating equilibria,
BDG employs a structured Bayesian framework that drives interactions toward an optimal equi-
librium with greater stability. In contrast, Prover-Verifier Games (PVGs) (Hendrik Kirchner et al.,
2024), which contribute to ChatGPT o1 (OpenAI, 2024), use a RL-based alignment and focus on
adversarial training phases featured by RL and competitive dynamics. This requires intensive train-
ing and causes potential deviations from cooperative strategies. Appx. E and F explore the distinct
phases and transitions between these frameworks, highlighting BDG’s scalability and its departure
from the training-intensive PVG.

Robustness and Integrative Potential. BDG achieves consistent performance improvements
across diverse domains, maintaining effectiveness even with lower-quality initial LLM outputs. The
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framework readily integrates with existing techniques such as self-consistency and chain-of-thought
prompting, while offering fast equilibrium convergence and reliable verification.

Balancing Correctness and Reliability. Reliability (Rastogi et al., 2023) tries to give an account
of the prover model’s failure modes and sense-making, whether the reasoning is correct or not.
The resulting decoding can be arbitrarily complex (Nanda et al., 2023). In contrast, correctness
allows to verify if a given solution is correct, ignoring how the generator reasoned it to be reliable
(consistent with the environment). Consequently, reliability requires model outputs that are coherent
and consistent to human understanding (Mökander et al., 2023). We show that it is possible to have
both, without sacrificing correctness for reliability (Hendrik Kirchner et al., 2024), and especially in
high-stakes settings reliability is as important as correctness (Casper et al., 2024).

Limitation. One potential limitation arises from the explicit specification of correctness consistency
branches during the game process, as this alignment is primarily intended to match human intent
with model outputs, similar to game-based approaches (Jacob et al., 2024; Hendrik Kirchner et al.,
2024). Adding multi-metrics and multiple agents to achieve game-based deliberation is possible.

5 RELATED WORK

Multi-Agent Debate Systems. Previous work has explored mechanisms where multiple language
model instances “debate” to refine and converge to a final answer (Du et al., 2023; Chen et al., 2023;
Khan et al., 2024; Kori et al., 2022). It is possible to categorize our method as a major variant of
this multi-agent debate in which the interaction occurs within a game-theoretic framework, rather
than directly within the language models’ outputs. This structured signaling game enables BDG to
enhance the correctness and reliability of outputs without relying on human feedback, by dynami-
cally optimizing the generation and verification processes. Additionally, this approach can resolve
ambiguity, confusion, and low accuracy caused by inconsistencies, but not by poor reasoning.

Signaling Game. Conventional signaling game settings have been successfully deployed for Poker
(Brown & Sandholm, 2018; 2019), Stratego (Perolat et al., 2022), Diplomacy (, FAIR; Bakhtin et al.,
2022; Jacob et al., 2022), and LLM tasks (Hendrik Kirchner et al., 2024; Chen et al., 2023). Building
on these insights, we propose a novel signaling game framework between a generator and verifier
for systematic LLM output verification.

Decoding Strategies. Top-k sampling (Fan et al., 2018), nucleus sampling (Holtzman et al., 2019),
and typical sampling (Meister et al., 2023) focus on generating high-confidence text but do not ad-
dress the correctness of the outputs. Candidates were generated using these methods. Equilibrium-
ranking (Jacob et al., 2024) applies an average-moving strategy to the initial distribution. In contrast,
BDG integrates a multistage signaling game that inherently balances correctness and consistency
during the generation process. BDG can be seamlessly combined with these strategies to enhance
the reliability and reliability of generated text.

Ranking Techniques. Ranking is a widely used approach to select the correct output from a set of
candidates generated by language models. (Thoppilan et al., 2022) use additional human annotations
to train a ranking model for response filtering. (Hendrik Kirchner et al., 2024) trains different provers
and verifiers for increasing output legibility. Although our work also utilizes existing language
models as discriminators, BDG eliminates the need for additional training and does not impose
specific assumptions on the structure of either the generator or discriminator.

6 CONCLUSION

BDG is a game-theoretic framework that enhances both the consistency and reliability of LLMs.
By framing the decoding process as a multistage signaling game between a generator and verifier,
BDG efficiently aligns model outputs with human intent while mitigating the trade-off between
correctness and reliability. Our approach achieves superior performance across benchmarks, often
surpassing larger models, and demonstrates its adaptability when combined with existing techniques
like chain-of-thought prompting. BDG ensures reliable and robust LLM outputs, offering a scalable,
training-free solution to the challenges of ambiguity and inconsistency in generative models.
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IMPACT STATEMENT

With the improvement of generation quality, one can imagine more potent disinformation (e.g.,
automatic generation of fake news) that may be hard to distinguish from human-authored content. It
might be worthwhile to augment current decoding techniques so that the generated outputs will also
be watermarked without compromising their quality.
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A REPRODUCIBILITY STATEMENT

We conducted our evaluations using widely recognized benchmarks such as ARC-Easy, ARC-
Challenge, MMLU, and RACE. The experiments were performed using the open-source LLaMA
7B and 13B models. Key aspects of the game, including update policies and initial strategies, are
thoroughly detailed in both the main text and appendix to facilitate accurate replication of the re-
sults. All experiments were conducted on NVIDIA A6000 and A100 GPUs, with runtimes ranging
from 0.5 to 6 hours depending on the model size, task, and experimental settings. Further details on
the game-theoretic mechanisms and specific design choices can be found in the methods section and
the appendix.

B POTENTIAL ETHICS RISKS AND SOCIETAL IMPACT

Bayesian Decoding Game (BDG) is a novel game-theoretic framework that significantly enhances
both the consistency and reliability of large language model outputs. By framing the decoding
process as a multistage signaling game between a generator and verifier, BDG efficiently aligns
model outputs with human intent while mitigating the trade-off between correctness and reliability.
BDG ensures reliable and robust LLM outputs, offering a scalable, training-free solution to the
challenges of ambiguity and inconsistency in generative models.

With the improvement of generation quality, one can imagine more potent disinformation (e.g.,
automatic generation of fake news) that may be hard to distinguish from human-authored content. It
might be worthwhile to augment current decoding techniques so that the generated outputs will also
be watermarked without compromising their quality. More potential ethics risks and societal impact
can be seen from Fig. 5.
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Figure 5: Distinguishing different type of LLM outputs, particularly when human evaluation
may overlook plausible errors. The three panels demonstrate how models can generate both accu-
rate and reliable, and plausible but misleading responses.

C GAME-THEORETIC FORMULATION SUPPLEMENTARY

A generative language model (LM) maps input x to output y according to some distribution PLM(y |
x). Here, we do not impose restrictions on the form of input or output, as illustrated in Fig. 1, 2, 5.
Instead, we address a multi-faceted problem involving a question x and a set of answer candidates
Y , generated by pre-trained language models on specific tasks. In the first stage, using this candidate
set, we leverage generative LMs in two distinct ways:

Generatively, by supplying as input

1. a prompt x,

2. the set of candidates Y , and
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3. a natural language prompt indicating that a correct or incorrect answer is desired. The LM
may be thought of as modeling a distribution PLM(y | x, incorrect), where the token incorrect
denotes the fact that the model was prompted to generate an incorrect answer.

Verifiably, by supplying as input

1. the same x and
2. a possible candidate answer y ∈ Y , together with
3. a prompt indicating that a correctness assessment v ∈ {correct, incorrect} is sought. In this

case, the language model acts as a models a distribution PLM(v | x, y) where v ∈ {correct,
incorrect}.

The essence of a signaling game (Gibbons et al., 1992) is that one player (the generator) takes an
strategy, the signal, to convey information to another player (the verifier); in the simplest setup, the
final payoff depends on whether the verifier correctly judges the generator’s type based on the gen-
erator’s signal. Based on this intuition from game theory, (Jacob et al., 2024) design a Equilibrium
Consensus Game (ECG), without a formal definition of the game. Thus, we firstly provide a com-
prehensive game-theoretic formulation for generative model decoding, and propose improvements
to address limitations.

Formally, the signaling game’s components can be defined as follows:

1. Players: Generator and Verifier;
2. Choice sets: Generator’s choice set is y ∈ CG = Y , with prompt p randomly drawn from

{Correct, Incorrect}, and the Verifier’s choice set is v ∈ CV = {Correct, Incorrect}, based on
the generator’s choice y ∈ Y;

3. Payoff Function: uG = uV = 1p=v(p, v), where 1 equals 1 if the correctness prompt x
matches the verification result, and 0 otherwise.

We are now ready to state the fundamental concept of this signaling game, a Perfect Bayesian Nash
Equilibrium (PBNE) (Cho & Kreps, 1987). We use the short form Perfect Bayesian Equilibrium
(PBE) with the auxiliary definitions Defi. 5. and 6. for PBE Definition.

Definition (Perfect Bayesian Equilibrium (Fudenberg, 1991)) A Perfect Bayesian Nash Equi-
librium (PBE) is a pair (s, b) of strategy profile and a set of beliefs such that

1. s is sequentially rational given beliefs b, and
2. b is consistent with s.

Example 1. For generative model decoding, the generator’s belief is given by its perceived
probability distribution, P({correct, incorrect}) = (pi, 1−pi), for each yi ∈ Y of the verifier’s
judgment, and with its belief and type, the generator chooses a mixed strategy that maximizes its
utility, i.e., if the generator’s type is correct, then its optimal mixed strategy would be allocating
positive possibility only on yi such that pi > 1− pi and zero possibility to other yi.

Definition 5. (Sequential Rationality)
A player is said to be sequentially rational iff, at each information set he is to move, he maximizes

his expected utility given his beliefs at the information set (and given that he is at the information
set) - even if this information set is precluded by his own strategy.

Definition 6. (Consistency on Path)
Given any (possibly mixed) strategy profile s, an information set is said to be on the path of play

if and only if the information set is reached with positive probability according to s. Given any
strategy profile s and any information set I on the path of play of s, the beliefs of a player at I are
said to be consistent with s if and only if his beliefs are derived using the Bayes rule and s.
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D PROOFS OF THEOREMS

D.1 PROOF OF THEOREM 1

Theorem 1. More than one (mixed) strategy Nash Equilibrium exists for this game.

Proof of Theorem 1.:

Suppose that the candidate set has 2 options (can be extended to any cardinality |Y|), y1, y2, one
equilibrium can be described as: If the environment sends correct/incorrect, the generator gener-
ates the probability distribution (1, 0)/(0, 1) for (y1, y2) given his belief that verifier probabilistic
judgment, {correct, incorrect}, for y1, y2 is (1, 0), (0, 1).

For the verifier, he believes that if the environment chooses correct/incorrect, then he believes that
of generator’s probabilistic generation for (y1, y2) are (1, 0), (0, 1), therefore the verifier’s best re-
sponse is given by (correct, incorrect) = (1, 0) if sees y1, (correct, incorrect) = (0, 1) if sees y2.
The (strategy and belief) for the generator and verifier above constitute one PBE for our game. For
another equilibrium, we can revert every 0s and 1s in the above strategy profile, for all the strategies
and the beliefs.

D.2 PROOF OF THEOREM 2

Theorem 2. The Markovian update schedule for our Decoding Game will converge to an equi-
librium.

Proof of Theorem 2.:

We will show that the Markovian update schedule is in fact no-regret (thus guarantees CCE-
convergence) for correct generator, and when generator receives incorrect signal, she will auto-
matically perform the reversed strategy; then, if the Markovian update schedule converges to CCE
for the incorrect signal, it automatically satisfies that the Markovian schedule will converge to a
Bayes-CCE of our Decoding Game.

Definition 7. A randomized strategy profile s ∈ ∆(Σ) is a coarse-correlated Bayesian equilib-
rium if for every a′i ∈ Ai and for every vi ∈ Vi :

EsEv [Ui (s(v);vi) | vi = vi] ≥ EsEv [Ui (a
′
i, s−i (v−i) ;vi) | vi = vi]

We will first prove that the Markovian update schedule is asymptotically no-regret. For the generator,
suppose that at time t, the chosen strategy is a(t)G (y | x, correct), and the optimal hindsight strategy
that maximize U is given by a

(t)
NV (correct | x, y)∀y, which is the normalized verifer’s strategy on

each candidate y ∈ Y , and our update schedule

s
(t+1)
G (y | x, v) ∝ exp

{
1
2b

(t+1)
G (y | x, v) + λG log s

(t)
G (y | x, v, b(t)G )

1/ (ηGt) + λG

}
such that

b
(t+1)
G (y | x, v) = s

(t)
V (v | x, y)

therefore, the regret at time t is given by

∥a(t)G (y | x, correct)− a
(t)
NV (correct | x,y)∥

and in time t+ 1, we have that the generator is at least 1
2ηG closer to the verifier’s strategy, and the

verifier is also at least 1
2ηV closer to the generator’s strategy. Thus we have that

∥a(t+1)
G (y | x, correct)− a

(t+1)
NV (correct | x,y)∥ ≤(

1− 1

2
(ηG + ηV )

)
∥a(t)G (y | x, correct)− a

(t)
NV (correct | x,y)∥

and by construction we have 1− 1
2 (ηG + ηV ) < 1, then asymptotically we can obtain that

lim
t→∞

∥a(t)G (y | x, correct)− a
(t)
NV (correct | x,y)∥ → 0
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thus the cumulative average regret also goes to 0 asymptotically. Therefore, the Markovian update
schedule is no-regret and thus will converge to a Bayes-CCE of this game; moreover, with our
stopping criteria satisfying Defi.4., the σi-separated condition is automatically satisfied with σi of
our choice.

D.3 PROOF OF PROPOSITION 1

Proposition 1 Under any signal distribution environment such that P(correct, incorrect) =
(p, 1− p) s.t. p < 1, if the equilibrium confidence scores is conditioned that the correct candi-
dates is greater than 1

2 and the incorrect candidates is less than 1
2 , then the separation score is

also bounded below by the same parameter in Defi.4.

s∗V (correct | x, yk)− s∗V (correct | x, yk+1) ≥ σV (8)

if and only if the σi-separeted condition is satisfied. where k is the least correct candidate and
k+1 is the least incorrect candidate in equilibrium, determined by the candidate set cardinality
and signal distribution.

Proof of Proposition 1: we first show that the σi-separatedness implies separation score bound.

for any given environment such that the signal distribution is given by P(correct, incorrect =
P(p, 1 − p) this proof applies, for simplicity, we will provide the proof only for P(p, 1 − p) =
(0.5, 0.5), the only difference will be the index of the least correct and least incorrect candidate.
According to Defi. 4. the σi-separated condition, in equilibrium, the inequality below is satisfied

|s∗V (correct | x, yn
2
)− s∗V (incorrect | x, yn

2
)| > σV

and
s∗V (correct | x, yn

2
) = 1− s∗V (incorrect | x, yn

2
)

thus the inequality becomes

|2 · s∗V (correct | x, yn
2
)− 1| > σV

we condition that the equilibrium confidence for correct candidate being greater than 1
2 and

the incorrect candidate being less than 1
2 , thus we can remove the absolute value and get 2 ·

s∗V (correct | x, yn
2
)− 1 > 0, moreover, for s∗V (correct | x, yn

2 +1), we have

1− 2 · s∗V (correct | x, yn
2 +1) > σV

adding the two inequalities together, divided by 2, we get

s∗V (correct | x, yn
2
)− s∗V (correct | x, yn

2 +1) > σV

Then, we prove that reverse by contradiction. if the σi-separated condition is not satisfied as a
stopping criterion, then the separation score can be bounded above by some constant less than σV .

We first assume that for all candidates, the correct and incorrect confidence score is bounded above
uniformly by some σ′ such that σ′ < σV , which is given by

|s∗V (correct | x, yi)− s∗V (incorrect | x, yi)| < σ′

with the boldfaced rationality condition, we have that

2 · s∗V (correct | x, yn
2
)− 1 < σ′ 1− 2 · s∗V (correct | x, yn

2 +1) < σ′

adding the two equalities together we have that

2 · s∗V (correct | x, yn
2
)− 2 · s∗V (correct | x, yn

2 +1) < 2σ′

s∗V (correct | x, yn
2
)− ·s∗V (correct | x, yn

2 +1) < σ′ < σV

which showcases that without enforcing Defi.4., under the boldfaced rationality condition, the sep-
aration could be bounded above by some constant less than σV .
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E FROM TRAINING-FREE BAYESIAN DECODING GAME (BDG) TO
RL-BASED PROVER-VERIFIER GAME(PVG)

Prover-Verifier Game (PVG) (Hendrik Kirchner et al., 2024), structured as zero-sum games, en-
counter substantial challenges that undermine their efficacy in ensuring reliable outputs. The ad-
versarial nature of zero-sum games inherently prioritizes winning over mutual consistency, which
leads to strategic behavior focused on exploiting the opposing agent rather than achieving genuine
correctness e.g., model collapse. This often results in provers generating outputs that are optimized
to mislead the verifier rather than to align with factual truth, thus producing equilibria that favor
strategic manipulation over accurate assessment. Such dynamics complicate the training process,
requiring extensive tuning and computational resources without guaranteeing robust, interpretable
results. Furthermore, the reliance on reinforcement learning in these systems falls short of effec-
tively replacing human feedback, as the trained verifier cannot fully replicate the nuanced judgment
required to evaluate complex or ambiguous output. These limitations fall into the misalignment be-
tween training objectives and practical needs, where models become adept at adversarial optimiza-
tion but lack the reliability and consistency necessary for real-world application. However, Bayesian
Decoding Game (BDG) can bring the advantages of the game and bridge the purposes with proper
implementations, which bypass the extensive training and adversarial pitfalls by directly modeling
output verification through probabilistic reasoning, enhancing the interpretability and reliability of
the generated content without the dependencies on zero-sum competition.

Here, we consider the connections between the PVG and BDG, and before the comparison, we give
a brief introduction of PVG.

We consider a scenario of problems with ground-truth answers (x, y) ∈ X × Y , where x denotes a
problem statement and y = y(x) denotes the mapping from the prompt x to ground-truth answer
or set of answers. PVG has set the prover’s type to be drawn from a known distribution, which
can be either honest or sneaky, to produce an answer z condition on the prompt x and type; such
that the honest prover is told to produce correct answers and make sure the verifier recognize the
correctness, whereas the sneaky prover is told to trick the verifier by providing wrong answers that
are not easy to be detected; then, after receiving solution, the verifier verifies the answer based
solely on the answer and prompt, and the output v(x, z) ∈ {0, 1} estimates the correctness of the
solution’s answer. The output of the verifier is either 1(the statement is correct) or 0(the statement
is incorrect).
More precisely, The game follows the procedure below:

1. The type of prover t is randomly drawn from a known distribution P (t), such that t ∈ {h, s},
where h, s dictates honest and sneaky prover’s type.

2. Given a problem statement, the prover generates proofs by maximizing the payoff func-
tion(utility) of each round myopically, such that

z = argmax r(v(x, z),1t=h1correct (x, z) + 1t=s(1− 1correct (x, z)))

the function r(v, q) satisfies that r(1, 1) > r(0, 1) > r(1, 0) > r(0, 01), which corresponds to
the fact that both prover prioritizing generating proofs that match their types (correct answer
for honest and incorrect answer for sneaky), ∀v r(v, 1) > r(v, 0) and then both want their
answers to be accepted as correct by the verifer ∀q r(1, q) > r(0, q).

3. the verifier provides verification v ∈ {0, 1} based solely on the proof x given that the utility is
1 if v(x, z) = 1(x, z) and 0 otherwise
Theoretically, this is a simple Stackleberg game such that an equilibrium exists and before
diving into the equilibrium strategy profile, an important definition from (Hendrik Kirchner
et al., 2024) needs to be mentioned.

Definition 8. (Checkability Hendrik Kirchner et al. (2024)) Prover π from model family H is
verifiable to verifier v on the data distribution PXY if and only if the prover always generates
correct and convincing solutions, and no sneaky prover from the same model family H can fool
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the verifier into accepting incorrect solutions. In mathematical notations, the two properties
are given by:
Completeness: ∀x ∈ X ,1correct (x, π(x)) = v(x, π(x)) = 1.
Soundness: ∀π′ ∈ H,∀x ∈ X ,1correct (x, π

′(x)) = 0 =⇒ v (x, π′(x)) = 0.

With the definition in hand, the equilibrium strategy profile is given by (the honest prover always
provides checkable and correct proof, the sneaky prover always provides noncheckable and incorrect
proof, the verifier can always verify the correctness of the given proof). For the neural networks to
approximate the equilibrium strategies, (Hendrik Kirchner et al., 2024) utilized a reinforcement
learning-based algorithm to train the prover and the verifier.

RL-based PVG Hendrik Kirchner et al. (2024) can fit in part into the framework of our training-free
BDG framework. As for the game-theoretic setting, PVG is a zero sum verifier-lead Stackleberg
game, the strategy update schedule must be modified to fit the utility defined in Hendrik Kirchner
et al. (2024). Moreover, the verifier’s strategy update cannot be achieved training-free as her utility
only depends on the ground truth right/wrong of the candidate and thus needs to be trained; but on
the prover side, both honest and sneaky prover can update strategies pain-free from the verifier’s
trained strategies.
Firstly, we define the strategy for verifier and prover in the same way as in BDG, such that given
the environment signal, the prover generates a probability distribution for a set of answers, and the
verifier always generates a probability distribution of {correct, incorrect} for each of the answers.
Also, we make the same assumption that each player can observe the opponent’s full strategy
profile rather than the realized strategy; then, we are ready to highlight the difference in schedule
update under the Markovian schedule, the condition where v = correct, we will abbreviate that as
correct = C, stays the same, such that because they want to align their strategies with the verifier

b
(t+1)
P (y | x,H) = s

(t)
V (C | x, y)

a
(t+1)
P (y | x,H) ∝ exp

{
1
2b

(t+1)
P (y | x,C) + λP log a

(t)
P (y | x,C, b

(t)
P )

1/ (ηPt) + λP

}
However, for the sneaky prover, her utility is maximized when the verifier mistakens the correctness
of the problem. Therefore, the optimal update schedule for the sneaky prover is given updating
toward a normal distribution over the preference generated by the probability distribution of verifier’s
strategy. The reason for this update is because, near the correct/incorrectness boundary is where the
verifier tends to make mistakes, such that

a
(t+1)
P (y | x,S) ∝ exp

{
1
2N (y | aV ) + λP log a

(t)
P (y | x, I, b(t)P )

1/ (ηPt) + λP

}
For example, if there are 10 answer candidates, the verifier’s preference from her strategy is given
by y3 ≻ y7 ≻ y6 ≻ y5 ≻ y10 ≻ y2 ≻ y9 ≻ y4 ≻ y1 ≻ y8, then N (y | aV ) is given by

y3 y7 y6 y5 y10 y2 y9 y4 y1 y8
Index (Permutation of {y_i})
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Normal Distribution Over N Discrete Answers Indexed by Permutation

21



F FROM MEMORYLESS BAYESIAN DECODING GAME (BDG) TO
MOVING-AVERAGE EQUILIBRIUM CONSENSUS GAME (ECG)

The moving average update schedule proposed by Jacob et al. (2024) requires both the generator
and the verifier to keep track of the average strategy of the opponent in addition to the strategy in the
last round, while our Markovian framework allows the players to be memoryless. To better compare
ECG with our update schedule, we provide a general, unifying framework called the History window
schedule, where the player’s belief is given by the average of past history strategies for the period
n, and at the same time, this schedule retains a large part the initial policy for each round with a
stiffness parameter λi, i ∈ {G,V }. The belief is given by

b
(t+1)
G (y | x, v) = 1

n

t∑
τ=t−n+1

s
(τ)
V (v | x, y)

b
(t+1)
V (v | x, y) = 1

n

t∑
τ=t−n+1

s
(τ)
G (y | x, v)

(9)

Thus the strategy update is given by

sG
(t+1)(y | x, v) ∝ exp

{
1
2b

(t+1)
G (y | x, v) + λG log sG

(1)(y | x, v)
1/ (ηGt) + λG

}

sG
(t+1)(v | x, y) ∝ exp

{
1
2b

(t+1)
V (y | x, v) + λV log s

(1)
V (v | x, y)

1/ (ηVt) + λV

}
As it can be noted in 9, if we take n = t, the update schedule coincides with ECG which requires
the memory of the moving-average of full history, rather if we take n = 1, the update schedule
becomes fully memoryless and requires no memory of any past events other than the last period’s
opponent strategy.

22



G EXPERIMENT DETAILS

Baselines and Models. For the fair comparision following(Jacob et al., 2024), we use the same
public 7B and 13B parameter models from the LLaMA family(Touvron et al., 2023) and perform
16-bit inference for all our experiments. Since we have a multi-round optimization game and in order
to distinguish consensus/ zero-sum games, we define ours as a verifier rather than a discriminator.
Across the experiments, all the approaches and orthogonal techniques involved:

• Generative Ranking (G): The baseline(Brown et al., 2020; Touvron et al., 2023) ranks every
candidate y by PLLM(y | x, correct) and picks the top candidate. This is the standard approach
used in past work. Due to implementation differences and non-public resources, we report the
existing scores in (Jacob et al., 2024).

• Discriminative Ranking (D): Following(Jacob et al., 2024), this approach reweighs every
query-candidate pair (x, y) by π

(1)
D (correct | x, y). Typically, this would surpass the perfor-

mance of ordinary individuals, who might neglect to notice the ambiguity errors. And outstrip
the generators that might trust the unreliable decoding.

• Mutual Information Ranking (MI): The mutual-information based baseline reweights every
candidate y by PLM(y | x, correct) · PLM(correct | x, y) (Li & Jurafsky, 2016).

• Self-Contrastive Decoding (SCD): The contrastive-based method (Jacob et al., 2024; Li
et al., 2022) utilizes the contrastive-based generator π

(1)
G to reweight every candidate y by

π
(1)
G (correct | x, y). This method achieves a contrasting effect by comparing negative samples

instead of employing a verifier (in BDG)/ discriminator (in ECG).
• Equilibrium Consensus Discriminator (ECG): This approach is based on discriminator
π∗
D (Jacob et al., 2024). It reweighs every query-candidate pair (x, y) by π∗

D(correct | x, y).
This method, involving comprehensive policies and updates, serves as our main benchmark.

• Bayesian Decoding Game (BDG): This approach utilizes our Bayesian Decoding Game-based
discriminator π∗

D. This approach reweighs every query-candidate pair (x, y) by π∗
D(correct |

x, y).

Orthogonal Techniques. Furthermore, BDG can combine chain-of-thought (CoT) (Wei et al., 2022)
and few-shots setting (Wei et al., 2022) as orthogonal extra gains.

• Chain-of-Thought (CoT): CoT (Wei et al., 2022) prompting enables language models to gen-
erate intermediate reasoning steps, improving performance on complex tasks. By providing
exemplars of reasoning chains, the model is guided to produce more coherent and accurate
responses.

• Few-Shot: Few-shot setting (Wei et al., 2022) involves providing the model with a small num-
ber of example input-output pairs within the prompt. This technique helps the model adapt to
the task at hand without additional fine-tuning, improving its ability to generalize from limited
data.

Hyperparameters. We set ηD, λD and ηG, λG with 0.1 compared to ECG. Experiments are run
5000 times with early stopping based on equilibrium convergence. BDG can usually converge by
500 iterations or less. The hyperparameters can be larger according to the tasks and initial model
ability.

Extra Metrics. Following (Li et al., 2022), we have

• Diversity. This metric aggregates n-gram repetition rates:

DIV =

4∏
n=2

unique n-grams(xcont)

total n-grams(xcont)
.

Models that score low for diversity are prone to repetition, while models that score high for
diversity are lexically diverse.

• MAUVE. MAUVE (Pillutla et al., 2021) measures the similarity between generated text and
gold reference text.
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• Coherence. (Su et al., 2022) approximates coherence by cosine similarity between the sentence
embeddings of prompt xpre and generated continuation xcont:

COH(xcont, xpre) =
EMB(xpre) · EMB(xcont)

∥EMB(xpre)∥ · ∥EMB(xcont)∥
,

where EMB(x) represents the pre-trained SimCSE embedding (Gao et al., 2021).
• Human Evaluation. To further evaluate the quality of the generated text, we consider two

critical aspects: correctness and confidence in reliability. More details can be found in the next
section.

H SEARCHING & CONVERGENCE BEHAVIOR SUPPLEMENTARY

Question:	

Which	of	these	events	during	a	storm	at	sea	{can,	can	not	}	add	oxygen	from	the atmosphere	to	ocean	water?		 A. high	winds B. lightning			C. pressure	change		D. temperature	change	

C:	Mixing	Wind	(A):	Directly	mixes	oxygen	into	water.
C:	Pressure	Change	(C):	Alters	gas	solubility,	affecting	oxygen.
C:	High Winds (A):	Cooler	water	holds	more	oxygen.
C:	Wind	(A):	Wind-driven	waves	increase	oxygen	diffusion.
C:	High	Winds	(A):	Storm	winds	exchange	water	and	oxygen.

(b) Searching via BAYESIAN DECODING GAME

(a) MCQA with Inconsistent & Ambiguous Decoding

(c) Searching via EQUILIBRIUM CONSENSUS GAME

I:	Lightning	(B):	No	real	impact	on	oxygen	levels.
I:	Wind	(A):	Distributes,	but doesn’t	add	oxygen.
I:	Temperature	Rise	(D):	Warmer	water	holds	less	oxygen.
I:	Rainfall	(#)Doesn’t	add	atmospheric	oxygen.
I:	Cloud	Cover	(#):	Irrelevant	to	oxygen	levels.

(d) Model Precision between BDG and ECG
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Figure 6: BDG’s game design quickly reaches equilibrium and consensus between the genera-
tor and discriminator, typically within 100 epochs. In contrast, ECG requires significantly more
epochs (3000 in this case) and exhibits continuous fluctuations (as shown in the lower right) before
achieving consensus. (Zoom in for details.)

We first compare searching behaviors of BDG with the most closely related method, the ECG (Jacob
et al., 2024), in the multiple-choice question answering (MCQA) task (Clark et al., 2018). Fig.6
provides a visual case study. BDG demonstrates a swift and consistent convergence in (b).

Conversely, the ECG, shown in (c), exhibits prolonged and inconsistent searching behavior. Despite
continuous shifts in candidate selections, ECG fails to achieve stable convergence with persistent
disagreement between the generator and verifier. (d) and Tab.1 highlights the enhanced and fast
convergence properties of the BDG over the ECG.
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I HUMAN EVALUATION

Setting. In this experiment, participants were tasked with evaluating the correctness of ten answers
to a high-school level multiple-choice mathematics problem generated by a Large Language Model
(LLM). Participants were instructed to classify each answer as correct, incorrect, or ambiguous. The
experiment was conducted in two stages:

In the first stage, participants were given two minutes to classify as many answers as possible,
and their results were recorded. In the second stage, participants were allowed to allocate their
time freely to complete the remaining classifications, and they were asked to record the time upon
completion of their classifications. Below is the questionnaire we utilized for the experiment.

Each participant was randomly assigned three distinct problems, and the corresponding solutions
were classified under three conditions: without any hints, with a BDG hint, and with an ECG hint.
The hints provided were rankings of the answers generated by the respective models (BDG and
ECG). The assignment of different problems across the three conditions was designed to prevent
memorization and to control for potential confounding effects related to the content of the specific
problem. Problems were drawn from a pool of questions with similar difficulty levels, allowing for
consistent observation of treatment effects across varying problem sets.

Samples. To better illustrate the experiment setting details, we provided the questionnaire interface,
the instructions, and two cases set below.
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Instructions For task 1, you will judge the correctness of each solution under a mandatory
2-minute limit, and for the ones that you are unsure, label them as ambiguous and
record the result on the answer sheet provided. If you did not finish in 2 minutes,
then record your incomplete result at the 2-minute cutoff and continue your task
until finished, also remember to record your completion time.
For task 2, 3, we will provide a reference (ranking of the solutions to assist and
accelerate your correctness judgement, however, always stick to your own judge-
ment if there exists a divergence. All other procedures are the same as task 1.

Question #

Random
selected

On a Cartesian coordinate plane, points (1, 2) and (7, 4) are opposite vertices of a
square. What is the area of the square?

Choices A. 20 B. 34 C. 40 D.
√
40

Task 1 Candidates

0. ”To find the area of the square, we multiply the length of the diagonal, which is√
40, by itself. This gives us 40, so the answer is C. 40.”

1. ”The distance between the points (1, 2) and (7, 4) is
√
40. This is the diagonal of

the square, so the area could either be 20 or 40. The answer might be A. 20.”

2. ”The diagonal of the square is
√
40, and the area must be equal to this value. The

answer is D.
√
40.”

3. ”First, calculate the diagonal between the points (1, 2) and (7, 4), which gives√
40. Since this is the diagonal of the square, the area is (

√
40)2

2 = 20. Therefore,
the answer is A. 20.”

4. ”The area of the square is found by calculating the distance between the points.
The diagonal is

√
40, so the area is likely

√
40. The answer is D.

√
40.”

5. ”First, find the distance between (1, 2) and (7, 4) using the distance formula: d =√
(7− 1)2 + (4− 2)2 =

√
40. This distance is the diagonal of the square. The

area of the square is then (
√
40)2

2 = 20. Therefore, the correct answer is A. 20.”

6. ”Using the distance formula, the diagonal of the square is
√
40. Therefore, the

area of the square is 20. The answer is A. 20.”

7. ”First, calculate the distance between the points (1, 2) and (7, 4), which gives the
diagonal of the square. The distance formula gives d =

√
(7− 1)2 + (4− 2)2 =√

40. Since the diagonal of the square is
√
40, the area is (

√
40)2/2 = 20. There-

fore, the answer is A. 20.”

8. ”Using the distance formula, the diagonal of the square is found to be
√
40. The

area of the square is 20, so the answer is A. 20.”

9. ”Calculate the diagonal of the square using the distance formula: d =
√
40. Since

the diagonal is
√
40, the area of the square is simply 40. Therefore, the answer is

C. 40.”

Task 2 BDG Guidance [Will be hidden during evaluation]

0.

Consistent ”First, find the distance between (1, 2) and (7, 4) using the distance formula: d =√
(7− 1)2 + (4− 2)2 =

√
40. This distance is the diagonal of the square. The

area of the square is then (
√
40)2

2 = 20. Therefore, the correct answer is A. 20.”
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1. ”First, calculate the diagonal between the points (1, 2) and (7, 4), which gives√
40. Since this is the diagonal of the square, the area is (

√
40)2

2 = 20. Therefore,
the answer is A. 20.”

2. ”Using the distance formula, the diagonal of the square is
√
40. Therefore, the

area of the square is 20. The answer is A. 20.”

3. ”Using the distance formula, the diagonal of the square is found to be
√
40. The

area of the square is 20, so the answer is A. 20.”

4. ”The distance between the points (1, 2) and (7, 4) is
√
40. This is the diagonal of

the square, so the area could either be 20 or 40. The answer might be A. 20.”

5. ”First, calculate the distance between the points (1, 2) and (7, 4), which gives the
diagonal of the square. The distance formula gives d =

√
(7− 1)2 + (4− 2)2 =√

40. Since the diagonal of the square is
√
40, the area is (

√
40)2/2 = 20. There-

fore, the answer is A. 20.”

6. ”The diagonal of the square is
√
40, and the area must be equal to this value. The

answer is D.
√
40.”

7. ”The area of the square is found by calculating the distance between the points.
The diagonal is

√
40, so the area is likely

√
40. The answer is D.

√
40.”

8. ”Calculate the diagonal of the square using the distance formula: d =
√
40. Since

the diagonal is
√
40, the area of the square is simply 40. Therefore, the answer is

C. 40.”

9.

Inconsistent ”To find the area of the square, we multiply the length of the diagonal, which is√
40, by itself. This gives us 40, so the answer is C. 40.”

Task 3 ECG Guidance [Will be hidden during evaluation]

0.

Consistent ”First, find the distance between (1, 2) and (7, 4) using the distance formula: d =√
(7− 1)2 + (4− 2)2 =

√
40. This distance is the diagonal of the square. The

area of the square is then (
√
40)2

2 = 20. Therefore, the correct answer is A. 20.”

1. ”Using the distance formula, the diagonal of the square is
√
40. Therefore, the

area of the square is 20. The answer is A. 20.”

2. ”First, calculate the diagonal between the points (1, 2) and (7, 4), which gives√
40. Since this is the diagonal of the square, the area is (

√
40)2

2 = 20. Therefore,
the answer is A. 20.”

3. ”The distance between the points (1, 2) and (7, 4) is
√
40. This is the diagonal of

the square, so the area could either be 20 or 40. The answer might be A. 20.”

4. ”Using the distance formula, the diagonal of the square is found to be
√
40. The

area of the square is 20, so the answer is A. 20.”

5. ”Calculate the diagonal of the square using the distance formula: d =
√
40. Since

the diagonal is
√
40, the area of the square is simply 40. Therefore, the answer is

C. 40.”

6. ”First, calculate the distance between the points (1, 2) and (7, 4), which gives the
diagonal of the square. The distance formula gives d =

√
(7− 1)2 + (4− 2)2 =√

40. Since the diagonal of the square is
√
40, the area is (

√
40)2/2 = 20. There-

fore, the answer is A. 20.”

7. ”The diagonal of the square is
√
40, and the area must be equal to this value. The

answer is D.
√
40.”
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8. ”To find the area of the square, we multiply the length of the diagonal, which is√
40, by itself. This gives us 40, so the answer is C. 40.”

9.

Inconsistent ”The area of the square is found by calculating the distance between the points.
The diagonal is

√
40, so the area is likely

√
40. The answer is D.

√
40.”

Question #

Random
selected

The standard tip in a restaurant is 15% of the bill before tax. Many people in
California find the tip by doubling the sales tax, which is 8.25%. By how many
cents does this exceed the standard tip on a bill of $60 before tax?

Choices A. 90 B. 80 C. 70 D. 60

Task 1 Candidates

0. ”The tax is doubled to 16.5%, and the standard tip is 15%. The difference is around
70 cents for a $60 bill, so the answer is C. 70.

1. ”To find the tip, we double the sales tax of 8.25%, which gives us 16.5%. The
standard tip is 15%, and the difference on a $60 bill is 60× (16.5%− 15%) = 90
cents. Therefore, the answer is A. 90.”

2. ”Doubling the sales tax of 8.25% gives 16.5%. The difference between the stan-
dard tip and this new tip is around 60 cents for a $60 bill. Therefore, the answer is
D. 60.”

3. ”Doubling the tax gives a tip of 16.5%, and the difference from the standard 15%
tip is 90 cents. Therefore, the answer is A. 90.”

4. ”The standard tip is 15% of 60, which is 60×0.15 = 9 dollars. Doubling the sales
tax of 8.25% gives 16.5%, and the tip based on this is 60× 0.165 = 9.90 dollars.
The difference is 9.90− 9.00 = 90 cents. Therefore, the correct answer is A. 90.”

5. ”Doubling the sales tax gives 16.5%, and the standard tip is 15%. This difference
gives 60× 0.5% = 30 cents. Therefore, the answer is A. 90.”

6. ”The standard tip is 15%, or 9, and doubling the sales tax gives a tip of 16.5%, or
9.90. The difference is 90 cents. The correct answer is A. 90.”

7. ”The difference between doubling the sales tax and using the standard tip is 90
cents for a 60 bill, but it could also be 80 cents depending on rounding. It might
be A. 90 or B. 80.”

8. ”The standard tip is 15%, and doubling the tax gives a different percentage. The
difference could be either 60 or 90 cents. The answer might be D. 60.”

9. ”Doubling the sales tax gives a tip rate of 16.5%, while the standard tip is 15%.
The difference for a 60$ bill is 90 cents. So the answer is A. 90.”

Task 2 BDG Guidance [Will be hidden during evaluation]

0.

Consistent ”The standard tip is 15% of 60, which is 60×0.15 = 9 dollars. Doubling the sales
tax of 8.25% gives 16.5%, and the tip based on this is 60× 0.165 = 9.90 dollars.
The difference is 9.90− 9.00 = 90 cents. Therefore, the correct answer is A. 90.”

1. ”The standard tip is 15%, or 9, and doubling the sales tax gives a tip of 16.5%, or
9.90. The difference is 90 cents. The correct answer is A. 90.”
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2. ”To find the tip, we double the sales tax of 8.25%, which gives us 16.5%. The
standard tip is 15%, and the difference on a $60 bill is 60× (16.5%− 15%) = 90
cents. Therefore, the answer is A. 90.”

3. ”Doubling the tax gives a tip of 16.5%, and the difference from the standard 15%
tip is 90 cents. Therefore, the answer is A. 90.”

4. ”Doubling the sales tax gives a tip rate of 16.5%, while the standard tip is 15%.
The difference for a 60$ bill is 90 cents. So the answer is A. 90.”

5. ”The difference between doubling the sales tax and using the standard tip is 90
cents for a 60 bill, but it could also be 80 cents depending on rounding. It might
be A. 90 or B. 80.”

6. ”Doubling the sales tax of 8.25% gives 16.5%. The difference between the stan-
dard tip and this new tip is around 60 cents for a $60 bill. Therefore, the answer is
D. 60.”

7. ”Doubling the sales tax gives 16.5%, and the standard tip is 15%. This difference
gives 60× 0.5% = 30 cents. Therefore, the answer is A. 90.”

8. ”The tax is doubled to 16.5%, and the standard tip is 15%. The difference is around
70 cents for a $60 bill, so the answer is C. 70.
9.

Inconsistent ”The standard tip is 15%, and doubling the tax gives a different percentage. The
difference could be either 60 or 90 cents. The answer might be D. 60.”

Task 3 ECG Guidance [Will be hidden during evaluation]

0.

Consistent ”The standard tip is 15%, or 9, and doubling the sales tax gives a tip of 16.5%, or
9.90. The difference is 90 cents. The correct answer is A. 90.”

1. ”The standard tip is 15% of 60, which is 60×0.15 = 9 dollars. Doubling the sales
tax of 8.25% gives 16.5%, and the tip based on this is 60× 0.165 = 9.90 dollars.
The difference is 9.90− 9.00 = 90 cents. Therefore, the correct answer is A. 90.”

2. ”To find the tip, we double the sales tax of 8.25%, which gives us 16.5%. The
standard tip is 15%, and the difference on a $60 bill is 60× (16.5%− 15%) = 90
cents. Therefore, the answer is A. 90.”

3. ”Doubling the tax gives a tip of 16.5%, and the difference from the standard 15%
tip is 90 cents. Therefore, the answer is A. 90.”

4. ”Doubling the sales tax gives a tip rate of 16.5%, while the standard tip is 15%.
The difference for a 60$ bill is 90 cents. So the answer is A. 90.”

5. ”The difference between doubling the sales tax and using the standard tip is 90
cents for a 60 bill, but it could also be 80 cents depending on rounding. It might
be A. 90 or B. 80.”

6. ”Doubling the sales tax gives 16.5%, and the standard tip is 15%. This difference
gives 60× 0.5% = 30 cents. Therefore, the answer is A. 90.”

7. ”The tax is doubled to 16.5%, and the standard tip is 15%. The difference is around
70 cents for a $60 bill, so the answer is C. 70.

8. ”The standard tip is 15%, and doubling the tax gives a different percentage. The
difference could be either 60 or 90 cents. The answer might be D. 60.”

9.

Inconsistent ”Doubling the sales tax of 8.25% gives 16.5%. The difference between the stan-
dard tip and this new tip is around 60 cents for a $60 bill. Therefore, the answer is
D. 60.”
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Results. To differentiate between expert and non-expert participants, a threshold of 150 seconds was
set based on empirical observations of participant behavior. This threshold was corroborated by a
scatterplot that visually demonstrated the partitioning between experts and non-experts, supporting
the appropriateness of the selected cut-off time for classification performance. From the 183 samples
we collected, we have come to conclusions:

Firstly, human evaluation on these LLM-generated solutions have instrinsic unreliability and am-
biguity, especially for non-expert participants; under the 2-minute time constraint, there were 28
participants who scored an accuracy of 50% or below, even without time constraint, there were 10
participants in total whose accuracies were 60% or below.

Secondly, with the hint of BDG, we observed that the participants in both the expert and the non-
expert groups outperformed the participants without the hint or the ECG hint; more importantly,
with the hint of BDG, the performance of the non-expert participants improved significantly with
respect to the expert participants, whereas the ECG hint did not achieve this.

Thirdly, across problems, samples with BDG hint achieved the highest accuracies for 7/10 problems
and fastest completion also for 7/10 problems. This result showcases the robustness of BDG hint
also within the same problems.

Last but not least, the BCG hint has also helped non-expert participants spot ambiguous solutions
more accurately compared to non-expert participamts with the ECG hint or without the hint.
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Generations.

Question.
Suppose the graph of y = f(x) includes the points (1, 5), (2, 3), and (3, 1). Based only on
this information, there are two points that must be on the graph of y = f(f(x)). If we call
those points (a, b) and (c, d), what is ab+ cd?

BDG.
”Given the points (1, 5), (2, 3), and (3, 1) on the graph of y = f(x), we compute
f(f(2)) = f(3) = 1 and f(f(3)) = f(1) = 5. So the points (2, 1) and (3, 5) are on the
graph of y = f(f(x)). Therefore, ab+ cd = 2× 1 + 3× 5 = 17. ”

ECG.
”From f(x), we see that f(f(2)) = 1 and f(f(3)) = 5. Therefore, ab + cd = 17. The
answer is 17”

Question.
Positive integers x and y have a product of 56 and x < y. Seven times the reciprocal of the
smaller integer plus 14 times the reciprocal of the larger integer equals 4. What is the value
of x?

BDG.
”Let the integers be x and y. Since x · y = 56 and x < y, try small values. Testing x = 2
and y = 28 satisfies 7 · 1

x + 14 · 1
y = 4. Therefore, x = 2, so the answer is 2.”

ECG.
”Since x · y = 56, try small values of x like 2. This satisfies the equation, so the answer is
2.”

Question.
Six positive integers are written on the faces of a cube. Each vertex is labeled with the
product of the three numbers on the faces adjacent to the vertex. If the sum of the numbers
on the vertices is equal to 1001, then what is the sum of the numbers written on the faces?

BDG.
”The numbers on the faces of the cube contribute to the product at each vertex. Given that
the sum of the vertex products is 1001, and knowing the cube’s geometry, we deduce that
the sum of the numbers on the faces is 31.”

ECG.
”Using the fact that the sum of the vertex products is 1001, and knowing there are six faces,
we calculate that the sum of the face numbers is 31. So the answer is 31.”
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