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ABSTRACT

While machine learning (ML)-based crop disease classifiers mostly targeted indi-
vidual leaf images, real-world applications call for disease classification on crop
foliage images instead, because they usually rely on cameras mounted on un-
manned aerial vehicles to capture foliage images across vast crop fields for auto-
mated disease identification. We found that known state-of-the-art (SOTA) classi-
fiers on the only real-world soybean foliage image dataset all exhibited unsatisfac-
tory performance, despite the dataset being modest-sized and including just two
soybean disease categories (among many). Hence, it is desirable to make available
large foliage image datasets with common crop disease categories for better eval-
uating and possibly improving SOTA crop disease classifiers on foliage images.
This paper introduces a framework that generates crop foliage images utilizing
available datasets of individual leaf images, termed Foliagen (short for foliage
generation). A generated foliage image dataset can be arbitrarily sized, with each
image emulating the natural distribution of diseased leaves with a specified dis-
ease rate. Being annotated by design, such generated datasets are valuable for (1)
evaluating the SOTA classifiers when applied to practical use and (2) pre-training
general SOTA classifiers, making it possible to effectively fine-tune them using
any real-world foliage image dataset for improved classification performance. The
Foliagen framework is exemplified by generating foliage image datasets for soy-
bean and tomato. Our evaluation results indicate that five SOTA classifiers on
generated datasets with nine disease categories achieve accuracy up to 87% for
soybean and 86% for tomato under γ = 5%, and that they all exhibit less than
92% in classifying the real soybean foliage image dataset (with just two disease
categories). Foliagen makes it possible to generate crop foliage image datasets to
evaluate future disease classifiers objectively, aiming at in-field applications.

1 INTRODUCTION

Crops have been indispensable to human civilization since its inception, serving as a fundamental
source of food, medicine, clothing, shelter, and oxygen. Extensive pursuits in crop’s structure,
phyllotaxis phenomenon (Coussement et al., 2018; Koki et al., 1994; Niklas, 1988), life cycle, and
disease have been undertaken, aiming at yield improvement to meet growing demands. According
to the Food and Agriculture Organization (FAO), crop diseases cost approximately $220 billion
annually in the world (cro, 2021), with soybean alone accounting for a loss up to $3.9 billion USD in
the USA (Bradley et al., 2021). They usually show prominent symptoms, manifesting themselves as
changes in the soybean’s leaf foliar appearance and/or shape. For example, rust in soybean exhibits
small, pale green to yellow spots on the upper surface of leaves (see Figure 1(f)). Since many crop
disease categories possibly exist as illustrated in Figures 1 and 2, early disease identification makes
it possible to apply proper measures at the onset of diseases for curbing damage they may cause,
retaining crop yields as best as possible.

Instead of relying on experienced farmers for disease identification, machine learning (ML) has
been adopted (Abbas et al., 2021; Karlekar and Seal, 2020; Pan et al., 2023; Sun et al., 2024a;b;
Wu et al., 2023; Yogabalajee et al., 2024) recently to classify soybean and tomato diseased leaf
images with success. ML models automate disease classification through training on large amounts
of diseased and healthy leaf images. As exemplified in Figures 1 and 2, quality images of individual
diseased soybean and tomato leaves exist in public datasets (Bevers et al., 2022; Hughes et al.,
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2015; Sivm205, 2023) for model training. A state-of-the-art (SOTA) ML model targeting soybean
disease classification is shown to have an average accuracy above 85% on a non-public dataset of
individual leaf images gathered from the soybean plantations of the author’s college (Wu et al.,
2023). Meanwhile, two SOTA ML models for tomato disease classification are demonstrated to
enjoy high accuracy rates, with one under two public datasets of individual leaf images (given in
(Gehlot et al., 2023; Hughes et al., 2015)) to exceed 99% (Sun et al., 2024b). Note that those SOTA
classifiers often resort to specific augmentation strategies; for example, random masking on the
individual soybean leaf images (Wu et al., 2023) or the Gaussian filter for enhancing and obscuring
artifacts of individual tomato leaf images (Sun et al., 2024b). Such augmentation strategies can be
expensive and less effective when applied to images with large numbers of leaves, like crop foliage
images (see Figure 5 and Figures 6 and 7).

Although SOTA ML models (e.g., (Pan et al., 2023; Sun et al., 2024b; Wu et al., 2023; Yoga-
balajee et al., 2024)) are high classification performers on the existing datasets of individual leaf
images, they lack practicality, for in-field applications, where sequences of foliage images are usu-
ally captured over areas of interest by the cameras of unmanned aerial vehicles (UAVs) for disease
identification. Therefore, accurate automated disease classification on foliage images is essential
for practical applications. While one early work (Tetila et al., 2017) dealt with a small collection of
foliage images covering only two diseased categories, it required highly experienced agronomists
with substantial time and effort to annotate segmented parts of foliage images for accurate clas-
sification, considered too expensive and impractical to apply for in-field applications where large
volumes of images are involved. So far, there is just one annotated soybean foliage image dataset
available to the public, MH-SoyaHealthVision (Shinde and Attar, 2024), and no publicly available
dataset of tomato foliage images exists, to the best of our knowledge. Unfortunately, the MH-
SoyaHealthVision dataset fails to include many predominant soybean disease categories (see Figure
5 and Figures 6 and 7 in Appendix) and is likely to be inadequate to train an effective classifier for
identifying the diseases at their early stages, since its images were not captured at the disease onset
and thus often had considerable diseased leaves each.

This paper pioneers a framework to generate crop foliage images utilizing available datasets of sin-
gle leaf images, called Foliagen (short for foliage generation). A generated foliage image dataset can
be arbitrarily sized, with each of its images having a specified rate of diseased leaves (denoted by γ)
and the rest being healthy. Such generated datasets are annotated by design, tailored to in-field ap-
plications for foliage image classification. They are valuable for (1) evaluating the SOTA classifiers
when applied to practical use and (2) pre-training general SOTA classifiers, making it possible to
fine-tune them using any real-world foliage image dataset for improved classification performance.
The Foliagen framework is exemplified by generating foliage image datasets for soybean and tomato,
using the individual diseased leaf images from ASDID (Bevers et al., 2022), PlantVillage (Hughes
et al., 2015), and Kaggle (Sivm205, 2023) datasets. It takes as its input (1) the disease category and
(2) the rate (γ) of diseased leaves in a foliage image. Each generated foliage image dataset covers
nine predominant disease categories for soybean and tomato (with samples depicted in Figure 5 and
Figures 6 and 7 in the Appendix, respectively). Such datasets make it possible to train classifiers for
early disease identification when generating foliage images at a small γ (say, 5%).

Unlike an individual leaf image where background or noise takes up its considerable area, a foliage
image synthesized by Foliagen is dominated by soybean or tomato leaves, with only a small fraction
of its area being background (see Figure 5 and Figures 6 and 7 in Appendix). It is found from our
evaluation results that SOTA models classify nine disease categories less accurately on the generated
soybean foliage image datasets than on the original individual leaf images, at varying degrees. As
listed in Table 1 for soybean disease classification, SOTA classifiers are subject to accuracy reduction
by up to 3% (or 12%) on generated foliage image datasets with γ = 15% (or 5%), rendering the best
performer (VGG19 (Simonyan and Zisserman, 2015)) for classifying individual soybean images
to be less attractive for foliage image classification. Similar performance degradation is observed
for tomato disease classification, up to 17% (or 22%) reduction in accuracy for Swin Transformer
(Liu et al., 2021) under generated foliage image datasets with γ = 15% (or 5%), as shown in Table
3. The most effective classifier under foliage image datasets is DenseNet121 (Huang et al., 2017),
instead of VGG19 (Simonyan and Zisserman, 2015) on the datasets of individual tomato leaf images.
Hence, Foliagen establishes foliage image datasets useful for candidly assessing known and future
classifiers to identify ones that are most effective for in-field applications.
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In addition, classifiers pre-trained by a generated soybean foliage image dataset with γ = 15% is
confirmed to perform equally well (with VGG19 to achieve 93+% accuracy) under the only known
real-world foliage image dataset (e.g., MH-SoyaHealthVision (Shinde and Attar, 2024)) via em-
ploying a small fraction of the dataset (say, 10%) to fine-tune the pre-trained classifiers, as the result
of transfer learning. Classifiers so pre-trained learns abstract features of diseased soybean foliage
images under various disease categories, making it possible to adapt soundly for classifying the real-
world foliage images with high accuracy. The overall contributions of this paper are summarized as
follows:

• A framework for generating annotated foliage image datasets (Foliagen) is introduced by
utilizing public datasets of individual crop leaf images. Datasets so generated can be arbi-
trarily large, properly annotated, and aimed to cover various crop disease categories com-
mon in the field and to target early disease identification by setting a small γ (say, 5%).

• Foliagen is exemplified by generating foliage image datasets for soybean and tomato, with
the generated datasets used for evaluating SOTA classifiers to determine the most effective
ones for real-world applications.

• We have demonstrated that generated foliage image datasets can pre-train a general model
for crop disease classification, so that the pre-trained model can then be fine-tuned by a
small fraction of any real-world foliage image dataset for high classification accuracy under
the dataset, as a result of transfer learning.

2 RELATED WORK

2.1 PLANT LEAF DATASETS

Many plant leaf datasets are available to the public, with some covering a variety of plant species
each, such as PlantVillage (Hughes et al., 2015) and PlantDoc (Singh et al., 2020), and others being
plant-specific, including those for soybean and tomato given in (Bevers et al., 2022; Gehlot et al.,
2023; Hughes et al., 2015; Shinde and Attar, 2024; Sivm205, 2023). Existing plant leaf datasets
are outlined briefly below, with more details about the PlantVillage dataset (Hughes et al., 2015),
ASDID (Bevers et al., 2022), a Kaggle dataset (Sivm205, 2023), and the MH-SoyaHealthVision
dataset (Shinde and Attar, 2024) provided in Section 3.1.

PlantVillage dataset. PlantVillage (Hughes et al., 2015) contains over 54,300 expertly curated
healthy and diseased leaf images from various plants, including thirteen major crop species like
soybean, tomato, etc. Its leaf classification has been attempted by GoogleNet (Szegedy et al., 2015)
and AlexNet (Krizhevsky et al., 2012) to attain high accuracy.

PlantDoc dataset. The PlantDoc dataset (Singh et al., 2020) contains 2,598 single-leaf images of 17
disease categories across 13 plant species, including tomato and soybean. With its images gathered
in a controlled laboratory environment, this dataset has limited applicability in real-world scenarios.

ASDID. Auburn Soybean Diseased Image Dataset (ASDID) (Bevers et al., 2022) provides high-
quality individual leaf images of the soybean plant, covering 9 disease categories, namely, bacterial
blight, cercospora leaf blight, downy mildew, frogeye leaf spot, soybean rust, target spot, and potas-
sium deficiency. The dataset was captured primarily at the EV Smith Agricultural Research Station
in Tallassee, Alabama, and added with 80 images per disease category from the publicly available
Image Database of Plant Disease Symptoms (PDDB) (Barbedo et al., 2016). Several ML-based
classifiers (He et al., 2016; Huang et al., 2017; Simonyan and Zisserman, 2015) were employed to
evaluate the dataset, with DenseNet201 (Huang et al., 2017) achieving the highest performance.

Kaggle dataset. Soybean Diseased Leaf Dataset contains individual leaf images from Kaggle
(Sivm205, 2023), embracing 10 disease categories and having an artificially generated complex
background added to each image. Among the 10 diseases, only mosaic virus and sudden death
syndrome are considered.

FieldPlant dataset. FieldPlant (Moupojou et al., 2023) is a dataset of individual crop leaf images
annotated by pathologists, containing 8,629 images across 27 disease categories for three crops,
including tomato. It aims at practical crop disease classification with every leaf image involving a
complex background.
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Tomato-Village dataset. Compensating for the negative effects due to the laboratory-controlled en-
vironment setup for gathering PlantVillage’s leaf images, the Tomato-Village dataset (Gehlot et al.,
2023) contains real-world images, which belong to three groups, respectively for (1) multi-class
tomato disease classification, (2) multi-label tomato disease classification, and (3) object detection-
based tomato disease detection. This dataset covers seven disease categories, namely, early blight,
late blight, leaf miner, magnesium deficiency, nitrogen deficiency, potassium deficiency, and spotted
wilt virus, for multi-class classification applications.

MH-SoyaHealthVision dataset. As far as we know, MH-SoyaHealthVision (Shinde and Attar,
2024) is the only public and well-annotated dataset of diseased soybean foliage images. The dataset
provides both ground-level leaf images and foliage leaf images, collected using a UAV, from the
soybean fields of Maharashtra, India. It comprises a total of 5,680 high-resolution images grouped
into (1) single leaf images of 4 diseases categories (i.e., frogeye, mosaic virus, septoria brown spot,
and rust), two types of pest attacks, and healthy leaves and (2) UAV-captured soybean foliage images,
which belong to two disease categories of mosaic virus and rust, plus the healthy category.

All the above datasets were reviewed and carefully examined for possible use by our Foliagen frame-
work; however, only the PlantVillage, ASDID, and the Kaggle datasets were selected as single-leaf
image sources due to their large numbers of well-annotated images, with high fidelity and clarity.

2.2 GENERATION METHODS

Synthetic dataset generation has been widely adopted in the field of computer vision, especially in
areas such as disease detection, object detection, and segmentation, where data collection is very
costly and time-consuming. Various methods have been experimented with in previous research
to augment image data, including simple copy & paste, graphical method (Bradley et al., 2013),
and machine learning techniques. Simple copy & paste has been utilized to augment data (Guo,
2024; Higuchi et al., 2023), and found to be effective for object detection (Dwibedi et al., 2017),
image classification (Mesnage et al., 2025), and instance segmentation (Ghiasi et al., 2021; Remez
et al., 2018; Shen and Li, 2023). (Dwibedi et al., 2017) introduced the concept of cut and paste to
augment image data for instance detection, demonstrated to yield marked improvements under the
LVIS benchmark (Ghiasi et al., 2021)and improved training performance for ultrasound instance
segmentation (Shen and Li, 2023).

Deep learning (DL) methods were also implemented to augment leaf data, such as LeafNST (Khare
et al., 2024), NeuraLeaf (Yang et al., 2025), LeafGAN (Cap et al., 2020), and others (Benfenati
et al., 2022; Ward et al., 2018). Particularly, (Benfenati et al., 2022) adopted a Residual Variational
Autoencoder for leaf generation and a generative adversarial network, Pix2pix, for color translation
on generated leaf images. Similarly, LeafNST Khare et al. (2024) transfers the symptoms of diseased
leaves into healthy leaves to enlarge the diseased leaf count. While these DL models are proven to
be effective for data augmentation, they are limited to single leaf images, inevitably constraining
their usage in the real world.

2.3 CROP LEAF DISEASE CLASSIFICATION MODELS

Automated disease classification studies have been conducted lately based on the aforementioned
publicly available datasets, plus certain privately collected datasets, to exhibit impressive classifi-
cation outcomes (Abbas et al., 2021; Bouni et al., 2024; Karlekar and Seal, 2020; Pan et al., 2023;
Sun et al., 2024a;b; Wu et al., 2023; Yogabalajee et al., 2024; Yu et al., 2022). Bevers et al. (Bev-
ers et al., 2022) in Auburn, AL collected a high-quality single leaf imagery dataset and employed
standard CNN-based models, such as VGG19, DenseNet201, and ResNet50, etc., to classify their
collected dataset, achieving high accuracy. Enhanced DenseNet121 (Yogabalajee et al., 2024) re-
lied on transfer learning to tackle the intricate challenges of classifying individual soybean leaf
images. Using a conditional generative adversarial network (C-GAN) to generate synthetic indi-
vidual tomato diseased leaves, previous work (Abbas et al., 2021) achieved very high performance
employing DenseNet121 (Huang et al., 2017) as its classification model. Merging classical feature
engineering with modern machine learning techniques, Bouni et al. (Bouni et al., 2024) recently
have employed a CNN pre-trained on ImageNet (Deng et al., 2009) under mutual information-based
feature fusion to get a high performer for tomato disease classification.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

While CNN-based models can capture the prominent features of images, incorporating an attention
mechanism into the models enables them to emphasize the region that contributes most to perfor-
mance improvement. Previous studies incorporating attention mechanisms (Hu et al., 2018; Liu
et al., 2021; Sun et al., 2024a;b; Wang et al., 2020; Woo et al., 2018; Wu et al., 2023) have been
proven effective for computer vision tasks, such as image segmentation, image classification, and
object detection targeting leaf disease classification, where leaf colors and shapes are key features of
interest (Pan et al., 2023; Wu et al., 2023). Swin Transformer (Liu et al., 2021) introduces a hierar-
chical segmentation along with the vision transformer to implement shifted windows, which capture
main features across different segmentation regions of an image. Meanwhile, CBAM-ConvNeXt
(Wu et al., 2023) employs both channel attention and spatial attention plus ConvNeXt (Liu et al.,
2022), to classify the individual soybean leaf images, which are not publicly available yet. While
exhibiting impressive feats, all known studies (but (Tetila et al., 2017)) aim only at classifying high-
resolution images of individual crop leaves, as illustrated in Figures 1 and 2.

3 METHODOLOGY

The Foliagen framework generates diseased foliage images out of available single-leaf diseased
images for the classification of diseased foliage images for (1) objectively evaluating known and
future crop disease classifiers when deployed for in-field applications and (2) pre-training general
crop disease classifiers, making them tailored for specific fields with high classification performance
after fine-tuned by a small number of annotated foliage images gathered in those fields, as the result
of transfer learning. It is exemplified by generating foliage images of soybean and tomato, leveraging
three publicly available individual-leaf image datasets, ASDID Bevers et al. (2022), a Kaggle dataset
Sivm205 (2023), and the PlantVillage dataset (Hughes et al., 2015), which are detailed in Section
3.1. Single soybean leaf images are preprocessed (as described in Section 3.1) before being utilized
by Foliagen to generate diverse sets of foliage images for evaluating known classifiers objectively.
Such a single image manipulation methods has been proven to be effective for image segmentation
and object detection data augmentation (Dwibedi et al., 2017; Ghiasi et al., 2021; Remez et al.,
2018). In addition, known classifiers after being pre-trained by generated foliage images that cover
9 disease categories are fine-tuned via 10% of images from the real-world soybean foliage image
dataset, MH-SoyaHealthVision Shinde and Attar (2024), and are found to classify the remaining
80% MH-SoyaHealthVision images with improved performance.

3.1 DATA COLLECTION

Soybean. A total of 10,722 high-resolution single leaf images covering 7 disease categories from
ASDID Bevers et al. (2022) and 132 images (with 22 for Mosaic Virus and 110 for sudden Death
Syndrome) from a Kaggle dataset (Sivm205, 2023) were chosen for foliage image generation. Im-
ages of those nine disease categories (as depicted in Figure 1) feature diverse and complex natu-
ral/artificial backgrounds, which are undesirable when generating foliage images. Therefore, we
pre-process the images to remove their undesired backgrounds (i.e., to make them transparent) us-
ing an open-sourced and AI-enabled background remover, rembg (Gatis, 2021), as shown in the first
stage of Overall Foliagen depicted in Figure 3. Freely available soybean field soil images are then
included in generated foliage images as their backgrounds, to emulate the natural habitat of soybean
plants as best as possible.

The only publicly available and properly annotated dataset of diseased foliage images, MH-
SoyaHealthVision (Shinde and Attar, 2024), comprises two disease categories: soybean rust and
mosaic virus. The original images have a very high resolution of 3840 × 2160 and the dataset is
imbalanced, with rust images outnumbering healthy images by a factor of four, leading to biased
predictions favoring the majority class and consequently reducing the model’s generalizability. To
address these issues, we crop the high-resolution foliage images into ones with a lower resolution to
ensure a more balanced data distribution and to obtain a total of 3210 images, comprising 1084 rust
images, 1027 healthy images, and 1099 mosaic virus images, respectively.

Tomato. The single-leaf diseased images of tomato are from the PlantVillage dataset (Hughes et al.,
2015), with 9 primary tomato disease categories, and they are taken in a laboratory environment and
with the dimension of 256 × 256, as shown in Figure 2.
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(a) Potassium
deficiency

(b) Cercospora
leaf blight

(c) Downy
mildew

(d) Sudden death
syndrome

(e) Bacterial
blight

(f) Rust (g) Frogeye (h) Target spot (i) Mosaic virus (j) Healthy

Figure 1: Soybean single-leaf images of 9 diseases, labeled by (a) to (i).

(a) Curl virus (b) Mosaic Virus (c) Leaf mold (d) Septoria spot (e) TSSM

(f) Bacterial spot (g) Early blight (h) Late blight (i) Target spot (j) Healthy

Figure 2: Tomato single leaf images of 9 diseases, labeled by (a) to (i).

3.2 FOLIAGEN FRAMWORK

Foliagen takes pre-processed individual leaf images as input to generate foliage images with a cus-
tomizable rate of diseased leaves. After preprocessing single leaf images for background removal
via rembg (Gatis, 2021), it then involves 3 levels of generation, Leaf Level, Plant Level, and Foliage
Level, as depicted in Figure 3. Each level incorporates plant-specific information such as disease
categories, target disease rate, and inherent leaf structural characteristics, as denoted by ‘Configu-
ration File’ in Figure 3. The structure of the configuration file used to provide this information is
detailed in Appendix A.6.
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Figure 3: Overall Foliagen.

Leaf Level. Soybean leaves arrange themselves into 3 leaflets in each petiole, with a slightly bigger
central leaflet and two lateral leaflets on the two side of the central leaflet, as illustrated in Figure
3. On the other hand, tomato leaves arrange themselves around a central axis, called the rachis. In
practice, crop leaflets may or may not be diseased. Hence, a random number of healthy leaflets are
included in each foliage image, governed by the disease rate γ.

Plant Level. The number of leaves in an adult crop differs largely, based on the crop. An adult
soybean plant might contain 30-40 trifoliates, while an adult tomato plant may have 20-40 leaves,
assuming the determinate variety of tomato crop. Both crops exhibit spiral phyllotaxis (Koki et al.,
1994; Niklas, 1988), in which leaves are arranged in a spiral arrangement that makes the golden
angle, i.e, 137.5◦, to maximize sunlight exposure and minimize leaf overlap. Most of the leaves in
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a crop are healthy in the early stages of a disease, so foliagen takes a small disease rate γ (e.g., 5%
or 15%). A spiral phyllotactic coordinates generator is the vital part of this Plant level, following
the formulae given below to determine the coordinates and the angles of leaves to maintain spiral
phyllotaxis (Niklas, 1988).

• Center: (x0, y0), Golden angle: θradg = 137.5◦ × π
180 = 1.57, Scaling factor: s = 35

• Number of trifoliates: N = X ∼ U{30, 31, . . . , 40}
For each trifoliate index n ∈ {1, 2, ..., N}:

Angular displacement: θn = n · θrad
g Radial distance: rn = s ·

√
n

Cartesian coordinates:
{
xn = x0 + rn cos(θn)

yn = y0 + rn sin(θn)

The final discrete leaf positions are expressed by:

coords = {(⌊xn⌋ , ⌊yn⌋) | n = 1, 2, ..., N} ,
where ⌊·⌋ denotes the integer truncation.

As a tomato plant has branches, with a pair of leaves attached at a similar stem height and arranged
in opposite directions, a sub-layer, called the branch layer, is added to create branches, each with
3-9 leaves. Such an emulated branch is then attached to the main stem in spiral phyllotactical order.

Foliage Level. Foliage images usually consist of multiple rows of crops planted in a farm field.
Observation from real-world images taken using UAVs Shinde and Attar (2024) reveals that the
major area of an image is covered by leaves, with only a small area being field soil (Freepik, 2025).
As a result, Foliagen generates images with three rows of crops in each image to emulate their
natural appearance. Samples of generated foliage images are illustrated in Figure 5 and Figures 6
and 7 in Appendix A.1.

3.3 DISEASE DISTRIBUTION

The distribution of disease in plant leaves is influenced by multiple interacting factors, including
insect vectors, wind-mediated spore dispersal, plantation age, and environmental conditions, such
as humidity, rainfall, and temperature. Although the spatial pattern of disease may vary consid-
erably depending on these influences, a consistent phenomenon is that infections generally begin
as localized hotspots on leaves or within a small plant patch and subsequently spread outward to
one (or multiple) neighboring patch(es), ultimately forming a larger area of diseased foliage (Chen
et al., 2025; Tao et al., 2021; Yang et al., 1991). This diseased leaf distribution is confirmed by
us through examining the real-world foliage images of various disease categories in the available
MH-SoyaHealthVision dataset (Shinde and Attar, 2024) (see Figure 4(c)), leading us to devise a
three-level disease distribution pattern, as explained next.

Region Level. The whole image is divided into a α×β grid with a total of α×β regions. e.g., 4 × 3
= 12 regions. Most regions are disease-free when the disease rate (γ) is small, say ≤ 20% and every
diseased region is provided with a disease rate, so that all α× β regions have the aggregate disease
rate of γ. The diseased leaves in a diseased region are distributed normally across the region.

Patch Level. A patch refers to a collection of adjacent regions with one hotspot and its neighboring
regions. Based on the disease rate, the number of diseased patches in a single foliage image varies
from 1 to 2 under our disease rate of interest to be less than 20% for early disease identification.
Naturally, a higher disease rate is expected to yield more disease patches in a patch. The distribution
of the number of hotspots among the foliage images follows a skewed graph. Figure 4(b) shows the
distribution of two hotspots for the mean disease rate of 15%, where the number of hotspot disease
patches per image being 1 (or 2) equals 1,721 (or 6,279) out of 8,000 total generated foliage images.

Dataset Level. The disease rate of the foliage images is normally distributed with the standard
deviation (σ) of 1.5 and the variable mean (µ = γ) of 15% (or 5%). Figure 4(a) depicts the disease
rate distribution for γ = 15%, where the disease rate varies from 10% to 20%. For γ = 5%, the
disease rate ranges from 1% to 9%, with a similar normal distribution as illustrated in Figure 4(a).

Crop Level Customization. Foliagen is a common framework, aiming to generate a foliage imagery
dataset for various crops out of those crops’ single leaf images. Given crops differ among one

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

10 12 14 16 18 20 22
Disease rate (%)

0.00

0.05

0.10

0.15

0.20

0.25

De
ns

ity

Distribution of disease rate in dataset
Histogram
Normal Fit

=14.53, =1.51

(a) Disease rate distribution

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Number of patches

0

1

2

3

4

De
ns

ity
 (K

DE
)

Disease Hotspot Distribution
1: 1721 samples
2: 6279 samples

(b) Synthetic hotspot distribution (c) Natural hotspot distribution

Figure 4: Disease distributions, (a) and (b) across synthetic diseased soybean foliage datasets (γ =
15%), and (c) for the natural foliage dataset (MH-SoyaHealthVision).

(a) Potassium
deficiency

(b) Cercospora
leaf blight

(c) Downy
mildew

(d) Sudden death
syndrome

(e) Bacterial
blight

(f) Bacterial spot (g) Early blight (h) Late blight (i) Target spot (j) Healthy

Figure 5: Generated soybean foliage images (a)-(e) and tomato foliage images (f)-(j), for γ = 15%.
(All generated foliage image categories for soybean and tomato are shown respectively in Figures 6
and 7 in Appendix A.1.)

another in many factors, such as the leaf shapes, the leaf arrangements, phyllotaxis, number of
leaves in single branch, numbers of leaves in single branches, etc., Foliagen is provisioned with
a configuration file as its input to account for the crops’ variability, with the file listing such crop-
specific customization parameters as the disease rate, the size of individual leaf, the size of individual
plant, the foliage size, disease categories, etc., to properly emulate crops’ natural structures.

4 EVALUATION AND RESULT DISCUSSION

Extensive experiments to evaluate the performance of SOTA crop disease classifiers on generated
foliage images are conducted on two workstations, with one housing 2 NVIDIA GeForce RTX 3090
GPUs (each with 24 GB of GDDR6X VRAM) and another housing 2 NVIDIA RTX 6000 Ada
GPUs (each with 48 GB of GDDR6X VRAM). The foliage image datasets of soybean and tomato
for γ = 5% and 15% (to emulate the early stage of disease) have been generated for evaluation,
with the sensitivity results of classifiers to a wide range of disease rates provided in Appendix A.4.
Each generated foliage image dataset contains about 800 images for every disease category, plus a
similar number of healthy foliage images. The Adam optimizer was used for model training, since
it is known to converge faster with better performance by dynamically adjusting the learning rate
for each parameter based on the first and second moments of gradients. Each model was trained
for a maximum of 100 epochs, with an early stopping mechanism (with patience of 5 epochs) to
avoid local minima. The batch size was set to 4, restricted by the GPU memory limitation, and the
learning rate was initialized to 0.000001.

4.1 EVALUATION ON GENERATED SOYBEAN FOLIAGE IMAGE DATASETS

Various generated soybean foliage image datasets under different γ (the rate of diseased leaves in
each foliage image) values have been produced by Foliagen to objectively evaluate the SOTA dis-
ease classification models of VGG19 (Simonyan and Zisserman, 2015), ResNet50 (He et al., 2016),
DenseNet121 (Huang et al., 2017), Swin Transformer (Liu et al., 2021), and CBAM-ConvNeXt (Wu
et al., 2023) under exactly the same set of foliage images without any classifier-specific data pre-
processing or manipulation. Each produced foliage image dataset covers all crop disease categories
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that exist in the original datasets of individual leaf images, with a small γ (say, 5%) to indicate an
early disease stage. The evaluation results shed light on choosing the best classifier among those
SOTA models for real-world soybean applications, where disease identification is based on in-field
images captured by cameras mounted on UAVs. The evaluation metric outcomes under a synthetic
dataset with a larger γ are expected to be higher because more diseased leaves exist in each foliage
image, making disease classification easier. The comparative performance evaluation results are ob-
tained for γ ranging from 5% to 15% and beyond, and they are found to follow similar trends. For
simplicity, only the results for γ = 5% to 15% are listed in Table 1. It is evident from the table that
DenseNet121 prevails for both γ values, in terms of all the metrics.

Table 1: Comparative performance evaluation results (in %) under generated soybean foliage image
dataset with γ = 15% (or 5%)

Models Accuracy F1-score Precision Recall
VGG19 (Simonyan and Zisserman, 2015) 76.26 (65.45) 77.17 (65.67) 78.11 (66.19) 76.26 (65.15)
ResNet50 (He et al., 2016) 85.31 (81.91) 85.40 (83.58) 85.69 (85.37) 85.11 (81.87)
DenseNet121 (Huang et al., 2017) 94.47 (87.56) 95.45 (90.81) 96.45 (94.45) 94.48 (87.44)
Swin Transformer (Liu et al., 2021) 72.36 (65.38) 72.99 (64.50) 72.37 (63.62) 72.68 (65.41)
CBAM-ConvNeXt (Wu et al., 2023) 77.76 (66.33) 79.73 (69.59) 81.84 (73.15) 77.72 (66.36)

4.2 EVALUATION ON REAL SOYBEAN FOLIAGE IMAGE DATASET

Baseline. The MH-SoyaHealthVision dataset (Shinde and Attar, 2024) was split into 80% for train-
ing, 10% for validation, and 10% for evaluation, enabling an objective evaluation of the same five
SOTA classifiers under exactly the same set of real-world foliage images without any data prepro-
cessing or manipulation. From the comparative performance results summarized under Baseline of
Table 2, it is found that Swin Transformer achieves the highest performance, with accuracy exceed-
ing 91% across all four metrics, whereas other models have the accuracy values ranging from 85+%
to 89−%. The baseline results indicate that Swin Transformer is the top performer for real-world
applications.

Transfer Learning. Generated foliage image datasets can pre-train crop disease classification mod-
els to get powerful disease classifiers suitable for general applications. After those five SOTA mod-
els are pre-trained by our generated foliage images to cover nine categories of predominant soybean
diseases, they are expected to serve as general classifiers for effectively identifying any real-world
dataset of soybean foliage images at hand by fine-tuning them using a small fraction of foliage
images in the dataset, due to transfer learning. When classifiers are pre-trained by a generated fo-
liage image dataset with a small γ (say, 5%), they are geared for identifying soybean diseases at an
early stage, especially useful for real-world field applications. To this end, the trained models are
evaluated under the real-world MH-SoyaHealthVision dataset (Shinde and Attar, 2024), after being
fine-tuned via 5% images in the dataset, with the evaluation results listed under Pre-trained in Table
2. Note that the results are obtained when 10% and 85% dataset images are for validation and evalua-
tion, respectively, after 5% images are employed for fine-tuning. Comparing the obtained evaluation
results shown in Table 2, we find that the trained models with fine-tuning elevate performance metric
values noticeably, to exceed 92% in accuracy for DenseNet121, ResNet50, CBAM-ConvNeXt, and
Swin Transformer under γ = 15%. The performance results of pre-trained models are worse under
γ = 5% than under γ = 15%, as expected, since the former aimed to detect diseases in an early stage,
known to be harder but more useful. They also signify that Swin Transformer is the most desirable
for in-field applications, when aiming at early disease detection (under γ = 5%).

Table 2: Comparative performance evaluation results (in %) under MH-SoyaHealthVision
Baseline Pre-trained with γ = 15% (or 5%)

Models Accuracy F1-score Precision Recall
VGG19 85.38 86.6 87.98 85.38
ResNet50 88.31 89.69 91.11 88.31
DenseNet121 87.5 87.95 88.37 87.5
Swin Transformer 91.48 91.47 91.46 91.48
CBAM-ConvNeXt 88.82 87.06 85.39 88.83

Accuracy F1-score Precision Recall
88.00 (84.03) 88.22 (84.06) 88.41 (84.08) 88.03 (84.03)
95.83 (90.61) 95.91 (90.86) 95.98 (91.12) 95.84 (90.60)
94.40 (94.47) 94.48 (94.19) 94.55 (94.29) 94.40 (94.08)
92.32 (87.57) 91.33 (88.52) 90.39 (89.51) 92.29 (87.56)
95.38 (86.76) 95.37 (88.06) 95.36 (89.42) 95.38 (86.74)
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4.3 TOMATO

Foliagen synthesizes various disease datasets of tomato foliage images based on the PlantVillage
dataset (Hughes et al., 2015) (publicly available datasets of single leaf images with 9 primary tomato
disease categories), under a range of γ for evaluating the SOTA classifiers. The evaluation metric
outcomes under a generated dataset with a larger γ are expected to be higher because more diseased
leaves exist in each foliage image, making disease classification easier. Given that the comparative
evaluation results are obtained for γ ranging from 5% to 15% and beyond follow similar trends,
Table 3 lists only the results for γ = 5% and 15%. As evident from the table, the considered models
all perform better under 15% than under 5% with respect to the four performance metrics, under-
scoring the fact that they tend to struggle in early disease detection (under γ = 5%), especially for
VGG19, ResNet50, and Swin Transformer. The evaluation results imply that DenseNet121 out-
performs the rest consistently, making it the most desirable classifier for in-field applications for
identifying tomato diseases according to foliage images captured in the field by UAVs.

Table 3: Comparative performance evaluation results (in %) under generated tomato foliage image
dataset with γ = 15% (or 5%)

Models Accuracy F1-score Precision Recall
VGG19 (Simonyan and Zisserman, 2015) 87.66 (80.53) 87.71 (81.01) 87.64 (81.51) 87.78 (80.50)
ResNet50 (He et al., 2016) 92.22 (78.84) 92.44 (81.39) 92.65 (84.11) 92.23 (78.83)
DenseNet121 (Huang et al., 2017) 96.38 (86.93) 97.34 (89.47) 97.69 (92.16) 96.99 (86.93)
Swin Transformer (Liu et al., 2021) 79.80 (66.53) 79.36 (66.71) 78.84 (66.81) 79.88 (66.60)
CBAM-ConvNeXt (Wu et al., 2023) 81.91 (64.85) 81.68 (65.56) 82.96 (66.24) 81.96 (64.89)

5 CONCLUSION

This article introduces a framework (called Foliagen) to generate rich and arbitrarily-sized datasets
of crop foliage images to cover all disease categories that exist in publicly available datasets of in-
dividual leaf images, with a given rate of diseased leaves (γ) in each foliage image generated to
emulate the real foliage images captured in farm fields when their crop diseases are at the stage
corresponding to γ. The generated foliage datasets are employed to better and objectively evalu-
ate state-of-the-art leaf disease classifiers without invoking classifier-specific data pre-processing or
manipulation. The evaluation results make it possible to choose the most effective crop classifier
among SOTA ones for in-field applications with UAV-captured images (rather than individual leaf
images) for disease identification. Being a generated foliage dataset, its primary limitation lies in
the lack of naturalness and limited real-world applicability; however, the strong performance of crop
disease classifiers pre-trained on it suggests its potential viability for broader applications. With an
available in-field foliage dataset, the pre-trained models can be fine-tuned using a small fraction of
the dataset images to yield effective disease classifiers targeting the field where the foliage dataset
is gathered. While Foliagen is exemplified for classifying soybean and tomato diseases via SOTA
models in this paper, it is readily useful for other crops and for objectively evaluating future disease
classifiers aiming at in-field applications.
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A APPENDIX

This section contains additional evidence to support our dataset and data generation method.
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(a) Potassium
deficiency

(b) Cercospora
leaf blight

(c) Downy
mildew

(d) Sudden death
syndrome

(e) Bacterial
blight

(f) Rust (g) Frogeye (h) Target spot (i) Mosaic virus (j) Healthy

Figure 6: Generated soybean foliage images of 9 diseases, labeled by (a) to (i), for γ = 15%.

(a) Curl virus (b) Mosaic virus (c) Leaf mold (d) Septoria spot (e) TSSM

(f) Bacterial spot (g) Early blight (h) Late blight (i) Target spot (j) Healthy

Figure 7: Generated tomato foliage images of 9 diseases, labeled by (a) to (i), for γ = 15%.

A.1 GENERATED FOLIAGE IMAGES

The generated diseased foliage images for both Soybean and Tomato are shown next.

A.2 NATURAL FOLIAGE IMAGE

Foliagen is based on the observation of natural foliage and the findings given in published articles, to
obtain high quality data for foliage disease classification. Our work evaluates MH-SoyaVisionHealth
(Shinde and Attar, 2024), a natural soybean foliage dataset with 2 disease categories, rust and mosaic
virus. Figure 8 depicts real-world soybean foliage images collected using UAVs at a farm in India.

(a) Rust (b) Mosiac virus (c) Healthy

Figure 8: Sample soybean foliage images from the MH-SoyaVisionHealth dataset (Shinde and Attar,
2024).

A.2.1 FOLIAGE GENERATION USING GENERATIVE MODEL

Recently, generative models have been used to generate almost all digital artifacts, including photos,
videos, and texts. In the context of photos, the generative adversarial networks (GAN) and diffusion

14
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models have been used extensively. Hence, we experiment with Deep Convolutional Generative
Adversarial Network (DCGAN), Denoising Diffusion Probabilistic Model (DDPM), and PixelCNN
to generate diseased foliage images from the real-world MH-SoyaVisionHealth dataset. All gener-
ative models are trained for 100 epochs before generating images from them, with their outcomes
depicted in Figure 9.

(a) DDPM (b) DCGAN (c) PixelCNN

Figure 9: Foliage generated using generative models.

A.3 ADDITIONAL EXPERIMENTAL RESULTS

We conducted extensive experimentation with multiple strategies aimed at strengthening the viabil-
ity and reliability of our dataset. These efforts included (1) exploring alternative data preparation
and augmentation techniques and (2) comparing the results of Foliagen with the baselines to en-
sure that its resulting dataset captures realistic variability while preserving essential pathological
characteristics. The outcomes of these investigations are presented in the following sections.

A.3.1 TRANSFER LEARNING USING ASDID

The models were pre-trained on the raw ASDID dataset and then fine-tuned with 5% of the MH-
SoyaVisionHealth dataset. Table 4 illustrates the transfer learning performance with all the hyper-
parameters configured as discussed in Section 4.

Table 4: Comparative performance evaluation results (in %) under the MH-SoyaVisionHealth
dataset, pre-trained on ASDID dataset

Models Accuracy F1-score Precision Recall
VGG19 (Simonyan and Zisserman, 2015) 33.33 32.56 33.33 32.94
ResNet50 (He et al., 2016) 74.84 75.31 75.80 74.82
DenseNet121 (Huang et al., 2017) 35.37 34.43 33.55 35.36
Swin Transformer (Liu et al., 2021) 69.45 69.92 70.38 69.45
CBAM-ConvNeXt (Wu et al., 2023) 49.32 50.25 51.22 49.32

A.3.2 VARYING LEAF SIZES

The current version of the dataset reduces the size of individual leaves to a similar size as that
of natural foliage leaves. This step gave a huge performance hike in the evaluated model. Many
variations in leaf sizes, maintaining their aspect ratio, were used to create the dataset and were
evaluated. One of the experimental results is shown in Table 5. It is vivid from the table that
upscaling the leaf size leads to degraded performance for all classifiers; this is also true when the
leaves are downscaled in size.

A.3.3 COMPARISON OF MODEL METRICS

Foliagen, as demonstrated by the results in this paper, generates high-quality datasets for foliage
disease classification in both soybean and tomato. Besides accuracy, computational efficiency is
also important for consideration. Table 6 reports the model parameter count and the per-epoch
training times when trained on a generated foliage dataset, compared with those of the baseline con-
structed from individual leaf images. As expected, single-leaf images incur lower training times per
epoch due to their reduced visual complexity. Despite their substantially higher image complexity
and larger spatial dimensions, foliage images are subject to only some 30% increases in per-epoch
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Table 5: Comparative performance evaluation results (in %) under the generated tomato foliage
image dataset with 2× upscaled leaf size

Models Accuracy F1-score Precision Recall
VGG19 (Simonyan and Zisserman, 2015) 65.23 65.41 65.59 65.23
ResNet50 (He et al., 2016) 76.73 77.61 78.51 76.73
DenseNet121 (Huang et al., 2017) 83.78 83.14 82.38 83.92
Swin Transformer (Liu et al., 2021) 67.95 68.96 70.02 67.91
CBAM-ConvNeXt (Wu et al., 2023) 71.88 71.96 72.03 71.88

training time, indicating that Foliagen produces results to train useful classifiers for real-world ap-
plications, with acceptable computational overheads.

Table 6: Comparative model evaluation metrics results under the generated dataset and the single-
leaf image datasets of Soybean

For generated dataset (γ = 15%) For single leaf images
Models No. of Parameters Per epoch training time
VGG19 (Simonyan and Zisserman, 2015) 139,611,210 459.17
ResNet50 (He et al., 2016) 23,581,642 433.38
DenseNet121 (Huang et al., 2017) 7,047,754 454.73
Swin Transformer (Liu et al., 2021) 27,527,044 419.10
CBAM-ConvNeXt (Liu et al., 2021) 29,727,934 437.34

No. of Parameters Per epoch training time
139,611,210 331.03
23,581,642 244.10
7,047,754 645.819
27,527,044 290.10
29,727,934 331.03

A.4 SENSITIVITY ANALYSIS OF DISEASE RATE

Figure 10 illustrates the sensitivity analytic results across disease rates, revealing consistent per-
formance patterns among the classifiers. Accuracy increases for all models as disease prevalence
intensifies, with DenseNet maintaining the highest and most stable performance levels across the
full disease rate range and ResNet showing a similarly smooth upward trend. VGG improves more
gradually, becoming competitive only at higher disease rates, whereas CBAM remains highly sen-
sitive to disease severity, performing poorly at low levels but rising sharply once pathological cues
become pronounced. Swin consistently yields the weakest performance with limited benefit from
increased disease information.

(a) Sensitivity analysis of soybean (b) Sensitivity analysis of tomato

Figure 10: Sensitivity analysis on the disease rate for soybean and tomato.

A.5 ABLATION STUDY

To investigate the contribution of each component of the Foliagen framework, we conducted an
extensive ablation study on both soybean and tomato plants. Table 7 reports the performance of
different framework variants for both crops. Specifically, we evaluate two configurations: (1) with-
out the plant-level component, where naturally structured single-plant foliage is generated solely by
arranging leaves according to the spiral phyllotactic pattern, and (2) without removing background
from individual leaf images. The results clearly demonstrate that the full Foliagen framework con-
sistently outperforms all ablated variants across all evaluated models. As expected, retaining the

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

background in leaf images leads to a substantial performance drop, highlighting the importance of
clean leaf segmentation for realistic foliage synthesis.

Table 7: Ablation study of Foliagen for Soybean and Tomato (γ = 15%)
Soybean Tomato

Models Ours Without plant level with background
VGG19 76.26 69.29 37.52
ResNet50 85.31 82.01 45.78
DenseNet121 91.47 84.66 76.66
Swin Transformer 72.36 65.94 32.58
CBAM-ConvNeXt 77.76 73.15 49.15

Ours Without plant level With background
87.66 82.60 53.71
92.22 87.39 55.32
96.98 90.32 71.63
79.80 66.53 43.84
81.91 72.51 59.50

A.6 CONFIGURATION FILE

As depicted in Figure 3, all level of foliage generation require plant specific information to generate
high quality foliage images. The configuration file includes number of leaves, disease rate, and other
factors listed next.

{

” num leaves ” : 50 ,
” d i s e a s e s ” : ” l i s t o f d i s e a s e s ” ,
” f o l i a g e s i z e ” : ” ( 1 0 2 4 , 1 5 0 0 ) ” ,
” s i n g l e p l a n t s i z e ” : 512 ,
” s i n g l e l e a f s i z e ” : 70 ,
” n u m p l a n t s ” : 16 ,
” p l a n t o f f s e t ” : 100 ,
” d i s e a s e r a t e ” : 15 ,
” b a c k g r o u n d i m a g e p a t h ” : ”<p a t h t o b a c k g r o u n d i m a g e s >” ,
” i n p u t p a t h ” : ”< p a t h t o r a w i n p u t i m a g e s >” ,
” o u t p u t p a t h ” : ”< p a t h t o s a v e g e n e r a t e d i m a g e s >” ,
” t y p e ” : ” tomato ” ,
” l e a f s p a c i n g ” : 60

}
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